• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //
2 // Copyright © 2017 Arm Ltd. All rights reserved.
3 // SPDX-License-Identifier: MIT
4 //
5 
6 #pragma once
7 
8 #include "SchemaSerialize.hpp"
9 #include <armnnTestUtils/TensorHelpers.hpp>
10 
11 #include "flatbuffers/idl.h"
12 #include "flatbuffers/util.h"
13 
14 #include <ArmnnSchema_generated.h>
15 #include <armnn/IRuntime.hpp>
16 #include <armnnDeserializer/IDeserializer.hpp>
17 #include <armnn/utility/Assert.hpp>
18 #include <armnn/utility/IgnoreUnused.hpp>
19 #include <ResolveType.hpp>
20 
21 #include <fmt/format.h>
22 #include <doctest/doctest.h>
23 
24 #include <vector>
25 
26 using armnnDeserializer::IDeserializer;
27 using TensorRawPtr = armnnSerializer::TensorInfo*;
28 
29 struct ParserFlatbuffersSerializeFixture
30 {
ParserFlatbuffersSerializeFixtureParserFlatbuffersSerializeFixture31     ParserFlatbuffersSerializeFixture() :
32         m_Parser(IDeserializer::Create()),
33         m_Runtime(armnn::IRuntime::Create(armnn::IRuntime::CreationOptions())),
34         m_NetworkIdentifier(-1)
35     {
36     }
37 
38     std::vector<uint8_t> m_GraphBinary;
39     std::string m_JsonString;
40     std::unique_ptr<IDeserializer, void (*)(IDeserializer* parser)> m_Parser;
41     armnn::IRuntimePtr m_Runtime;
42     armnn::NetworkId m_NetworkIdentifier;
43 
44     /// If the single-input-single-output overload of Setup() is called, these will store the input and output name
45     /// so they don't need to be passed to the single-input-single-output overload of RunTest().
46     std::string m_SingleInputName;
47     std::string m_SingleOutputName;
48 
SetupParserFlatbuffersSerializeFixture49     void Setup()
50     {
51         bool ok = ReadStringToBinary();
52         if (!ok)
53         {
54             throw armnn::Exception("LoadNetwork failed while reading binary input");
55         }
56 
57         armnn::INetworkPtr network =
58                 m_Parser->CreateNetworkFromBinary(m_GraphBinary);
59 
60         if (!network)
61         {
62             throw armnn::Exception("The parser failed to create an ArmNN network");
63         }
64 
65         auto optimized = Optimize(*network, {armnn::Compute::CpuRef},
66                                   m_Runtime->GetDeviceSpec());
67 
68         std::string errorMessage;
69         armnn::Status ret = m_Runtime->LoadNetwork(m_NetworkIdentifier, move(optimized), errorMessage);
70 
71         if (ret != armnn::Status::Success)
72         {
73             throw armnn::Exception(fmt::format("The runtime failed to load the network. "
74                                                "Error was: {0}. in {1} [{2}:{3}]",
75                                                errorMessage,
76                                                __func__,
77                                                __FILE__,
78                                                __LINE__));
79         }
80 
81     }
82 
SetupSingleInputSingleOutputParserFlatbuffersSerializeFixture83     void SetupSingleInputSingleOutput(const std::string& inputName, const std::string& outputName)
84     {
85         // Store the input and output name so they don't need to be passed to the single-input-single-output RunTest().
86         m_SingleInputName = inputName;
87         m_SingleOutputName = outputName;
88         Setup();
89     }
90 
ReadStringToBinaryParserFlatbuffersSerializeFixture91     bool ReadStringToBinary()
92     {
93         std::string schemafile(&deserialize_schema_start, &deserialize_schema_end);
94 
95         // parse schema first, so we can use it to parse the data after
96         flatbuffers::Parser parser;
97 
98         bool ok = parser.Parse(schemafile.c_str());
99         CHECK_MESSAGE(ok, std::string("Failed to parse schema file. Error was: " + parser.error_).c_str());
100 
101         ok &= parser.Parse(m_JsonString.c_str());
102         CHECK_MESSAGE(ok, std::string("Failed to parse json input. Error was: " + parser.error_).c_str());
103 
104         if (!ok)
105         {
106             return false;
107         }
108 
109         {
110             const uint8_t* bufferPtr = parser.builder_.GetBufferPointer();
111             size_t size = static_cast<size_t>(parser.builder_.GetSize());
112             m_GraphBinary.assign(bufferPtr, bufferPtr+size);
113         }
114         return ok;
115     }
116 
117     /// Executes the network with the given input tensor and checks the result against the given output tensor.
118     /// This overload assumes the network has a single input and a single output.
119     template<std::size_t NumOutputDimensions,
120              armnn::DataType ArmnnType,
121              typename DataType = armnn::ResolveType<ArmnnType>>
122     void RunTest(unsigned int layersId,
123                  const std::vector<DataType>& inputData,
124                  const std::vector<DataType>& expectedOutputData);
125 
126     template<std::size_t NumOutputDimensions,
127              armnn::DataType ArmnnInputType,
128              armnn::DataType ArmnnOutputType,
129              typename InputDataType = armnn::ResolveType<ArmnnInputType>,
130              typename OutputDataType = armnn::ResolveType<ArmnnOutputType>>
131     void RunTest(unsigned int layersId,
132                  const std::vector<InputDataType>& inputData,
133                  const std::vector<OutputDataType>& expectedOutputData);
134 
135     /// Executes the network with the given input tensors and checks the results against the given output tensors.
136     /// This overload supports multiple inputs and multiple outputs, identified by name.
137     template<std::size_t NumOutputDimensions,
138              armnn::DataType ArmnnType,
139              typename DataType = armnn::ResolveType<ArmnnType>>
140     void RunTest(unsigned int layersId,
141                  const std::map<std::string, std::vector<DataType>>& inputData,
142                  const std::map<std::string, std::vector<DataType>>& expectedOutputData);
143 
144     template<std::size_t NumOutputDimensions,
145              armnn::DataType ArmnnInputType,
146              armnn::DataType ArmnnOutputType,
147              typename InputDataType = armnn::ResolveType<ArmnnInputType>,
148              typename OutputDataType = armnn::ResolveType<ArmnnOutputType>>
149     void RunTest(unsigned int layersId,
150                  const std::map<std::string, std::vector<InputDataType>>& inputData,
151                  const std::map<std::string, std::vector<OutputDataType>>& expectedOutputData);
152 
CheckTensorsParserFlatbuffersSerializeFixture153     void CheckTensors(const TensorRawPtr& tensors, size_t shapeSize, const std::vector<int32_t>& shape,
154                       armnnSerializer::TensorInfo tensorType, const std::string& name,
155                       const float scale, const int64_t zeroPoint)
156     {
157         armnn::IgnoreUnused(name);
158         CHECK_EQ(shapeSize, tensors->dimensions()->size());
159         CHECK(std::equal(shape.begin(), shape.end(),
160                                       tensors->dimensions()->begin(), tensors->dimensions()->end()));
161         CHECK_EQ(tensorType.dataType(), tensors->dataType());
162         CHECK_EQ(scale, tensors->quantizationScale());
163         CHECK_EQ(zeroPoint, tensors->quantizationOffset());
164     }
165 };
166 
167 template<std::size_t NumOutputDimensions, armnn::DataType ArmnnType, typename DataType>
RunTest(unsigned int layersId,const std::vector<DataType> & inputData,const std::vector<DataType> & expectedOutputData)168 void ParserFlatbuffersSerializeFixture::RunTest(unsigned int layersId,
169                                                 const std::vector<DataType>& inputData,
170                                                 const std::vector<DataType>& expectedOutputData)
171 {
172     RunTest<NumOutputDimensions, ArmnnType, ArmnnType, DataType, DataType>(layersId, inputData, expectedOutputData);
173 }
174 
175 template<std::size_t NumOutputDimensions,
176          armnn::DataType ArmnnInputType,
177          armnn::DataType ArmnnOutputType,
178          typename InputDataType,
179          typename OutputDataType>
RunTest(unsigned int layersId,const std::vector<InputDataType> & inputData,const std::vector<OutputDataType> & expectedOutputData)180 void ParserFlatbuffersSerializeFixture::RunTest(unsigned int layersId,
181                                                 const std::vector<InputDataType>& inputData,
182                                                 const std::vector<OutputDataType>& expectedOutputData)
183 {
184     RunTest<NumOutputDimensions, ArmnnInputType, ArmnnOutputType>(layersId,
185                                                                   { { m_SingleInputName, inputData } },
186                                                                   { { m_SingleOutputName, expectedOutputData } });
187 }
188 
189 template<std::size_t NumOutputDimensions, armnn::DataType ArmnnType, typename DataType>
RunTest(unsigned int layersId,const std::map<std::string,std::vector<DataType>> & inputData,const std::map<std::string,std::vector<DataType>> & expectedOutputData)190 void ParserFlatbuffersSerializeFixture::RunTest(unsigned int layersId,
191                                                 const std::map<std::string, std::vector<DataType>>& inputData,
192                                                 const std::map<std::string, std::vector<DataType>>& expectedOutputData)
193 {
194     RunTest<NumOutputDimensions, ArmnnType, ArmnnType, DataType, DataType>(layersId, inputData, expectedOutputData);
195 }
196 
197 template<std::size_t NumOutputDimensions,
198          armnn::DataType ArmnnInputType,
199          armnn::DataType ArmnnOutputType,
200          typename InputDataType,
201          typename OutputDataType>
RunTest(unsigned int layersId,const std::map<std::string,std::vector<InputDataType>> & inputData,const std::map<std::string,std::vector<OutputDataType>> & expectedOutputData)202 void ParserFlatbuffersSerializeFixture::RunTest(
203     unsigned int layersId,
204     const std::map<std::string, std::vector<InputDataType>>& inputData,
205     const std::map<std::string, std::vector<OutputDataType>>& expectedOutputData)
206 {
207     auto ConvertBindingInfo = [](const armnnDeserializer::BindingPointInfo& bindingInfo)
208         {
209             return std::make_pair(bindingInfo.m_BindingId, bindingInfo.m_TensorInfo);
210         };
211 
212     // Setup the armnn input tensors from the given vectors.
213     armnn::InputTensors inputTensors;
214     for (auto&& it : inputData)
215     {
216         armnn::BindingPointInfo bindingInfo = ConvertBindingInfo(
217             m_Parser->GetNetworkInputBindingInfo(layersId, it.first));
218         bindingInfo.second.SetConstant(true);
219         armnn::VerifyTensorInfoDataType(bindingInfo.second, ArmnnInputType);
220         inputTensors.push_back({ bindingInfo.first, armnn::ConstTensor(bindingInfo.second, it.second.data()) });
221     }
222 
223     // Allocate storage for the output tensors to be written to and setup the armnn output tensors.
224     std::map<std::string, std::vector<OutputDataType>> outputStorage;
225     armnn::OutputTensors outputTensors;
226     for (auto&& it : expectedOutputData)
227     {
228         armnn::BindingPointInfo bindingInfo = ConvertBindingInfo(
229             m_Parser->GetNetworkOutputBindingInfo(layersId, it.first));
230         armnn::VerifyTensorInfoDataType(bindingInfo.second, ArmnnOutputType);
231         outputStorage.emplace(it.first, std::vector<OutputDataType>(bindingInfo.second.GetNumElements()));
232         outputTensors.push_back(
233                 { bindingInfo.first, armnn::Tensor(bindingInfo.second, outputStorage.at(it.first).data()) });
234     }
235 
236     m_Runtime->EnqueueWorkload(m_NetworkIdentifier, inputTensors, outputTensors);
237 
238     // Compare each output tensor to the expected values
239     for (auto&& it : expectedOutputData)
240     {
241         armnn::BindingPointInfo bindingInfo = ConvertBindingInfo(
242             m_Parser->GetNetworkOutputBindingInfo(layersId, it.first));
243         auto outputExpected = it.second;
244         auto result = CompareTensors(outputExpected, outputStorage[it.first],
245                                      bindingInfo.second.GetShape(), bindingInfo.second.GetShape());
246         CHECK_MESSAGE(result.m_Result, result.m_Message.str());
247     }
248 }
249