• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2009 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #define ATRACE_TAG ATRACE_TAG_GRAPHICS
18 
19 #include <binder/IPCThreadState.h>
20 #include <gui/DisplayEventReceiver.h>
21 #include <utils/Log.h>
22 #include <utils/Timers.h>
23 #include <utils/threads.h>
24 
25 #include <scheduler/interface/ICompositor.h>
26 
27 #include "EventThread.h"
28 #include "FrameTimeline.h"
29 #include "MessageQueue.h"
30 
31 namespace android::impl {
32 
dispatchFrame(VsyncId vsyncId,TimePoint expectedVsyncTime)33 void MessageQueue::Handler::dispatchFrame(VsyncId vsyncId, TimePoint expectedVsyncTime) {
34     if (!mFramePending.exchange(true)) {
35         mVsyncId = vsyncId;
36         mExpectedVsyncTime = expectedVsyncTime;
37         mQueue.mLooper->sendMessage(sp<MessageHandler>::fromExisting(this), Message());
38     }
39 }
40 
isFramePending() const41 bool MessageQueue::Handler::isFramePending() const {
42     return mFramePending.load();
43 }
44 
handleMessage(const Message &)45 void MessageQueue::Handler::handleMessage(const Message&) {
46     mFramePending.store(false);
47     mQueue.onFrameSignal(mQueue.mCompositor, mVsyncId, mExpectedVsyncTime);
48 }
49 
MessageQueue(ICompositor & compositor)50 MessageQueue::MessageQueue(ICompositor& compositor)
51       : MessageQueue(compositor, sp<Handler>::make(*this)) {}
52 
53 constexpr bool kAllowNonCallbacks = true;
54 
MessageQueue(ICompositor & compositor,sp<Handler> handler)55 MessageQueue::MessageQueue(ICompositor& compositor, sp<Handler> handler)
56       : mCompositor(compositor),
57         mLooper(sp<Looper>::make(kAllowNonCallbacks)),
58         mHandler(std::move(handler)) {}
59 
vsyncCallback(nsecs_t vsyncTime,nsecs_t targetWakeupTime,nsecs_t readyTime)60 void MessageQueue::vsyncCallback(nsecs_t vsyncTime, nsecs_t targetWakeupTime, nsecs_t readyTime) {
61     ATRACE_CALL();
62     // Trace VSYNC-sf
63     mVsync.value = (mVsync.value + 1) % 2;
64 
65     const auto expectedVsyncTime = TimePoint::fromNs(vsyncTime);
66     {
67         std::lock_guard lock(mVsync.mutex);
68         mVsync.lastCallbackTime = expectedVsyncTime;
69         mVsync.scheduledFrameTime.reset();
70     }
71 
72     const auto vsyncId = VsyncId{mVsync.tokenManager->generateTokenForPredictions(
73             {targetWakeupTime, readyTime, vsyncTime})};
74 
75     mHandler->dispatchFrame(vsyncId, expectedVsyncTime);
76 }
77 
initVsync(std::shared_ptr<scheduler::VSyncDispatch> dispatch,frametimeline::TokenManager & tokenManager,std::chrono::nanoseconds workDuration)78 void MessageQueue::initVsync(std::shared_ptr<scheduler::VSyncDispatch> dispatch,
79                              frametimeline::TokenManager& tokenManager,
80                              std::chrono::nanoseconds workDuration) {
81     std::unique_ptr<scheduler::VSyncCallbackRegistration> oldRegistration;
82     {
83         std::lock_guard lock(mVsync.mutex);
84         mVsync.workDuration = workDuration;
85         mVsync.tokenManager = &tokenManager;
86         oldRegistration = onNewVsyncScheduleLocked(std::move(dispatch));
87     }
88 
89     // See comments in onNewVsyncSchedule. Today, oldRegistration should be
90     // empty, but nothing prevents us from calling initVsync multiple times, so
91     // go ahead and destruct it outside the lock for safety.
92     oldRegistration.reset();
93 }
94 
onNewVsyncSchedule(std::shared_ptr<scheduler::VSyncDispatch> dispatch)95 void MessageQueue::onNewVsyncSchedule(std::shared_ptr<scheduler::VSyncDispatch> dispatch) {
96     std::unique_ptr<scheduler::VSyncCallbackRegistration> oldRegistration;
97     {
98         std::lock_guard lock(mVsync.mutex);
99         oldRegistration = onNewVsyncScheduleLocked(std::move(dispatch));
100     }
101 
102     // The old registration needs to be deleted after releasing mVsync.mutex to
103     // avoid deadlock. This is because the callback may be running on the timer
104     // thread. In that case, timerCallback sets
105     // VSyncDispatchTimerQueueEntry::mRunning to true, then attempts to lock
106     // mVsync.mutex. But if it's already locked, the VSyncCallbackRegistration's
107     // destructor has to wait until VSyncDispatchTimerQueueEntry::mRunning is
108     // set back to false, but it won't be until mVsync.mutex is released.
109     oldRegistration.reset();
110 }
111 
onNewVsyncScheduleLocked(std::shared_ptr<scheduler::VSyncDispatch> dispatch)112 std::unique_ptr<scheduler::VSyncCallbackRegistration> MessageQueue::onNewVsyncScheduleLocked(
113         std::shared_ptr<scheduler::VSyncDispatch> dispatch) {
114     const bool reschedule = mVsync.registration &&
115             mVsync.registration->cancel() == scheduler::CancelResult::Cancelled;
116     auto oldRegistration = std::move(mVsync.registration);
117     mVsync.registration = std::make_unique<
118             scheduler::VSyncCallbackRegistration>(std::move(dispatch),
119                                                   std::bind(&MessageQueue::vsyncCallback, this,
120                                                             std::placeholders::_1,
121                                                             std::placeholders::_2,
122                                                             std::placeholders::_3),
123                                                   "sf");
124     if (reschedule) {
125         mVsync.scheduledFrameTime =
126                 mVsync.registration->schedule({.workDuration = mVsync.workDuration.get().count(),
127                                                .readyDuration = 0,
128                                                .earliestVsync = mVsync.lastCallbackTime.ns()});
129     }
130     return oldRegistration;
131 }
132 
destroyVsync()133 void MessageQueue::destroyVsync() {
134     std::lock_guard lock(mVsync.mutex);
135     mVsync.tokenManager = nullptr;
136     mVsync.registration.reset();
137 }
138 
setDuration(std::chrono::nanoseconds workDuration)139 void MessageQueue::setDuration(std::chrono::nanoseconds workDuration) {
140     ATRACE_CALL();
141     std::lock_guard lock(mVsync.mutex);
142     mVsync.workDuration = workDuration;
143     mVsync.scheduledFrameTime =
144             mVsync.registration->update({.workDuration = mVsync.workDuration.get().count(),
145                                          .readyDuration = 0,
146                                          .earliestVsync = mVsync.lastCallbackTime.ns()});
147 }
148 
waitMessage()149 void MessageQueue::waitMessage() {
150     do {
151         IPCThreadState::self()->flushCommands();
152         int32_t ret = mLooper->pollOnce(-1);
153         switch (ret) {
154             case Looper::POLL_WAKE:
155             case Looper::POLL_CALLBACK:
156                 continue;
157             case Looper::POLL_ERROR:
158                 ALOGE("Looper::POLL_ERROR");
159                 continue;
160             case Looper::POLL_TIMEOUT:
161                 // timeout (should not happen)
162                 continue;
163             default:
164                 // should not happen
165                 ALOGE("Looper::pollOnce() returned unknown status %d", ret);
166                 continue;
167         }
168     } while (true);
169 }
170 
postMessage(sp<MessageHandler> && handler)171 void MessageQueue::postMessage(sp<MessageHandler>&& handler) {
172     mLooper->sendMessage(handler, Message());
173 }
174 
postMessageDelayed(sp<MessageHandler> && handler,nsecs_t uptimeDelay)175 void MessageQueue::postMessageDelayed(sp<MessageHandler>&& handler, nsecs_t uptimeDelay) {
176     mLooper->sendMessageDelayed(uptimeDelay, handler, Message());
177 }
178 
scheduleConfigure()179 void MessageQueue::scheduleConfigure() {
180     struct ConfigureHandler : MessageHandler {
181         explicit ConfigureHandler(ICompositor& compositor) : compositor(compositor) {}
182 
183         void handleMessage(const Message&) override { compositor.configure(); }
184 
185         ICompositor& compositor;
186     };
187 
188     // TODO(b/241285876): Batch configure tasks that happen within some duration.
189     postMessage(sp<ConfigureHandler>::make(mCompositor));
190 }
191 
scheduleFrame()192 void MessageQueue::scheduleFrame() {
193     ATRACE_CALL();
194 
195     std::lock_guard lock(mVsync.mutex);
196     mVsync.scheduledFrameTime =
197             mVsync.registration->schedule({.workDuration = mVsync.workDuration.get().count(),
198                                            .readyDuration = 0,
199                                            .earliestVsync = mVsync.lastCallbackTime.ns()});
200 }
201 
getScheduledFrameTime() const202 auto MessageQueue::getScheduledFrameTime() const -> std::optional<Clock::time_point> {
203     if (mHandler->isFramePending()) {
204         return Clock::now();
205     }
206 
207     std::lock_guard lock(mVsync.mutex);
208     if (const auto time = mVsync.scheduledFrameTime) {
209         return Clock::time_point(std::chrono::nanoseconds(*time));
210     }
211 
212     return std::nullopt;
213 }
214 
215 } // namespace android::impl
216