• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2006 The Android Open Source Project
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #include "include/core/SkBitmap.h"
9 #include "include/core/SkMaskFilter.h"
10 #include "include/core/SkPathBuilder.h"
11 #include "include/core/SkRRect.h"
12 #include "include/core/SkStrokeRec.h"
13 #include "include/core/SkVertices.h"
14 #include "src/base/SkMathPriv.h"
15 #include "src/core/SkBlurMask.h"
16 #include "src/core/SkGpuBlurUtils.h"
17 #include "src/core/SkMaskFilterBase.h"
18 #include "src/core/SkMatrixProvider.h"
19 #include "src/core/SkRRectPriv.h"
20 #include "src/core/SkReadBuffer.h"
21 #include "src/core/SkStringUtils.h"
22 #include "src/core/SkWriteBuffer.h"
23 
24 #if defined(SK_GANESH)
25 #include "include/gpu/GrRecordingContext.h"
26 #include "src/core/SkRuntimeEffectPriv.h"
27 #include "src/gpu/SkBackingFit.h"
28 #include "src/gpu/ganesh/GrCaps.h"
29 #include "src/gpu/ganesh/GrFragmentProcessor.h"
30 #include "src/gpu/ganesh/GrRecordingContextPriv.h"
31 #include "src/gpu/ganesh/GrResourceProvider.h"
32 #include "src/gpu/ganesh/GrShaderCaps.h"
33 #include "src/gpu/ganesh/GrStyle.h"
34 #include "src/gpu/ganesh/GrTextureProxy.h"
35 #include "src/gpu/ganesh/GrThreadSafeCache.h"
36 #include "src/gpu/ganesh/SkGr.h"
37 #include "src/gpu/ganesh/SurfaceDrawContext.h"
38 #include "src/gpu/ganesh/effects/GrBlendFragmentProcessor.h"
39 #include "src/gpu/ganesh/effects/GrMatrixEffect.h"
40 #include "src/gpu/ganesh/effects/GrSkSLFP.h"
41 #include "src/gpu/ganesh/effects/GrTextureEffect.h"
42 #include "src/gpu/ganesh/geometry/GrStyledShape.h"
43 #include "src/gpu/ganesh/glsl/GrGLSLFragmentShaderBuilder.h"
44 #include "src/gpu/ganesh/glsl/GrGLSLProgramDataManager.h"
45 #include "src/gpu/ganesh/glsl/GrGLSLUniformHandler.h"
46 #endif // defined(SK_GANESH)
47 
48 using namespace skia_private;
49 
50 class SkBlurMaskFilterImpl : public SkMaskFilterBase {
51 public:
52     SkBlurMaskFilterImpl(SkScalar sigma, SkBlurStyle, bool respectCTM);
53 
54     // overrides from SkMaskFilter
55     SkMask::Format getFormat() const override;
56     bool filterMask(SkMask* dst, const SkMask& src, const SkMatrix&,
57                     SkIPoint* margin) const override;
58 
59 #if defined(SK_GANESH)
60     bool canFilterMaskGPU(const GrStyledShape& shape,
61                           const SkIRect& devSpaceShapeBounds,
62                           const SkIRect& clipBounds,
63                           const SkMatrix& ctm,
64                           SkIRect* maskRect) const override;
65     bool directFilterMaskGPU(GrRecordingContext*,
66                              skgpu::v1::SurfaceDrawContext*,
67                              GrPaint&&,
68                              const GrClip*,
69                              const SkMatrix& viewMatrix,
70                              const GrStyledShape&) const override;
71     GrSurfaceProxyView filterMaskGPU(GrRecordingContext*,
72                                      GrSurfaceProxyView srcView,
73                                      GrColorType srcColorType,
74                                      SkAlphaType srcAlphaType,
75                                      const SkMatrix& ctm,
76                                      const SkIRect& maskRect) const override;
77 #endif
78 
79     void computeFastBounds(const SkRect&, SkRect*) const override;
80     bool asABlur(BlurRec*) const override;
81 
82 
83 protected:
84     FilterReturn filterRectsToNine(const SkRect[], int count, const SkMatrix&,
85                                    const SkIRect& clipBounds,
86                                    NinePatch*) const override;
87 
88     FilterReturn filterRRectToNine(const SkRRect&, const SkMatrix&,
89                                    const SkIRect& clipBounds,
90                                    NinePatch*) const override;
91 
92     bool filterRectMask(SkMask* dstM, const SkRect& r, const SkMatrix& matrix,
93                         SkIPoint* margin, SkMask::CreateMode createMode) const;
94     bool filterRRectMask(SkMask* dstM, const SkRRect& r, const SkMatrix& matrix,
95                         SkIPoint* margin, SkMask::CreateMode createMode) const;
96 
ignoreXform() const97     bool ignoreXform() const { return !fRespectCTM; }
98 
99 private:
100     SK_FLATTENABLE_HOOKS(SkBlurMaskFilterImpl)
101     // To avoid unseemly allocation requests (esp. for finite platforms like
102     // handset) we limit the radius so something manageable. (as opposed to
103     // a request like 10,000)
104     static const SkScalar kMAX_BLUR_SIGMA;
105 
106     SkScalar    fSigma;
107     SkBlurStyle fBlurStyle;
108     bool        fRespectCTM;
109 
110     SkBlurMaskFilterImpl(SkReadBuffer&);
111     void flatten(SkWriteBuffer&) const override;
112 
computeXformedSigma(const SkMatrix & ctm) const113     SkScalar computeXformedSigma(const SkMatrix& ctm) const {
114         SkScalar xformedSigma = this->ignoreXform() ? fSigma : ctm.mapRadius(fSigma);
115         return std::min(xformedSigma, kMAX_BLUR_SIGMA);
116     }
117 
118     friend class SkBlurMaskFilter;
119 
120     using INHERITED = SkMaskFilter;
121     friend void sk_register_blur_maskfilter_createproc();
122 };
123 
124 const SkScalar SkBlurMaskFilterImpl::kMAX_BLUR_SIGMA = SkIntToScalar(128);
125 
126 ///////////////////////////////////////////////////////////////////////////////
127 
SkBlurMaskFilterImpl(SkScalar sigma,SkBlurStyle style,bool respectCTM)128 SkBlurMaskFilterImpl::SkBlurMaskFilterImpl(SkScalar sigma, SkBlurStyle style, bool respectCTM)
129     : fSigma(sigma)
130     , fBlurStyle(style)
131     , fRespectCTM(respectCTM) {
132     SkASSERT(fSigma > 0);
133     SkASSERT((unsigned)style <= kLastEnum_SkBlurStyle);
134 }
135 
getFormat() const136 SkMask::Format SkBlurMaskFilterImpl::getFormat() const {
137     return SkMask::kA8_Format;
138 }
139 
asABlur(BlurRec * rec) const140 bool SkBlurMaskFilterImpl::asABlur(BlurRec* rec) const {
141     if (this->ignoreXform()) {
142         return false;
143     }
144 
145     if (rec) {
146         rec->fSigma = fSigma;
147         rec->fStyle = fBlurStyle;
148     }
149     return true;
150 }
151 
filterMask(SkMask * dst,const SkMask & src,const SkMatrix & matrix,SkIPoint * margin) const152 bool SkBlurMaskFilterImpl::filterMask(SkMask* dst, const SkMask& src,
153                                       const SkMatrix& matrix,
154                                       SkIPoint* margin) const {
155     SkScalar sigma = this->computeXformedSigma(matrix);
156     return SkBlurMask::BoxBlur(dst, src, sigma, fBlurStyle, margin);
157 }
158 
filterRectMask(SkMask * dst,const SkRect & r,const SkMatrix & matrix,SkIPoint * margin,SkMask::CreateMode createMode) const159 bool SkBlurMaskFilterImpl::filterRectMask(SkMask* dst, const SkRect& r,
160                                           const SkMatrix& matrix,
161                                           SkIPoint* margin, SkMask::CreateMode createMode) const {
162     SkScalar sigma = computeXformedSigma(matrix);
163 
164     return SkBlurMask::BlurRect(sigma, dst, r, fBlurStyle, margin, createMode);
165 }
166 
filterRRectMask(SkMask * dst,const SkRRect & r,const SkMatrix & matrix,SkIPoint * margin,SkMask::CreateMode createMode) const167 bool SkBlurMaskFilterImpl::filterRRectMask(SkMask* dst, const SkRRect& r,
168                                           const SkMatrix& matrix,
169                                           SkIPoint* margin, SkMask::CreateMode createMode) const {
170     SkScalar sigma = computeXformedSigma(matrix);
171 
172     return SkBlurMask::BlurRRect(sigma, dst, r, fBlurStyle, margin, createMode);
173 }
174 
175 #include "include/core/SkCanvas.h"
176 
prepare_to_draw_into_mask(const SkRect & bounds,SkMask * mask)177 static bool prepare_to_draw_into_mask(const SkRect& bounds, SkMask* mask) {
178     SkASSERT(mask != nullptr);
179 
180     mask->fBounds = bounds.roundOut();
181     mask->fRowBytes = SkAlign4(mask->fBounds.width());
182     mask->fFormat = SkMask::kA8_Format;
183     const size_t size = mask->computeImageSize();
184     mask->fImage = SkMask::AllocImage(size, SkMask::kZeroInit_Alloc);
185     if (nullptr == mask->fImage) {
186         return false;
187     }
188     return true;
189 }
190 
draw_rrect_into_mask(const SkRRect rrect,SkMask * mask)191 static bool draw_rrect_into_mask(const SkRRect rrect, SkMask* mask) {
192     if (!prepare_to_draw_into_mask(rrect.rect(), mask)) {
193         return false;
194     }
195 
196     // FIXME: This code duplicates code in draw_rects_into_mask, below. Is there a
197     // clean way to share more code?
198     SkBitmap bitmap;
199     bitmap.installMaskPixels(*mask);
200 
201     SkCanvas canvas(bitmap);
202     canvas.translate(-SkIntToScalar(mask->fBounds.left()),
203                      -SkIntToScalar(mask->fBounds.top()));
204 
205     SkPaint paint;
206     paint.setAntiAlias(true);
207     canvas.drawRRect(rrect, paint);
208     return true;
209 }
210 
draw_rects_into_mask(const SkRect rects[],int count,SkMask * mask)211 static bool draw_rects_into_mask(const SkRect rects[], int count, SkMask* mask) {
212     if (!prepare_to_draw_into_mask(rects[0], mask)) {
213         return false;
214     }
215 
216     SkBitmap bitmap;
217     bitmap.installPixels(SkImageInfo::Make(mask->fBounds.width(),
218                                            mask->fBounds.height(),
219                                            kAlpha_8_SkColorType,
220                                            kPremul_SkAlphaType),
221                          mask->fImage, mask->fRowBytes);
222 
223     SkCanvas canvas(bitmap);
224     canvas.translate(-SkIntToScalar(mask->fBounds.left()),
225                      -SkIntToScalar(mask->fBounds.top()));
226 
227     SkPaint paint;
228     paint.setAntiAlias(true);
229 
230     if (1 == count) {
231         canvas.drawRect(rects[0], paint);
232     } else {
233         // todo: do I need a fast way to do this?
234         SkPath path = SkPathBuilder().addRect(rects[0])
235                                      .addRect(rects[1])
236                                      .setFillType(SkPathFillType::kEvenOdd)
237                                      .detach();
238         canvas.drawPath(path, paint);
239     }
240     return true;
241 }
242 
rect_exceeds(const SkRect & r,SkScalar v)243 static bool rect_exceeds(const SkRect& r, SkScalar v) {
244     return r.fLeft < -v || r.fTop < -v || r.fRight > v || r.fBottom > v ||
245            r.width() > v || r.height() > v;
246 }
247 
248 #include "src/core/SkMaskCache.h"
249 
copy_mask_to_cacheddata(SkMask * mask)250 static SkCachedData* copy_mask_to_cacheddata(SkMask* mask) {
251     const size_t size = mask->computeTotalImageSize();
252     SkCachedData* data = SkResourceCache::NewCachedData(size);
253     if (data) {
254         memcpy(data->writable_data(), mask->fImage, size);
255         SkMask::FreeImage(mask->fImage);
256         mask->fImage = (uint8_t*)data->data();
257     }
258     return data;
259 }
260 
find_cached_rrect(SkMask * mask,SkScalar sigma,SkBlurStyle style,const SkRRect & rrect)261 static SkCachedData* find_cached_rrect(SkMask* mask, SkScalar sigma, SkBlurStyle style,
262                                        const SkRRect& rrect) {
263     return SkMaskCache::FindAndRef(sigma, style, rrect, mask);
264 }
265 
add_cached_rrect(SkMask * mask,SkScalar sigma,SkBlurStyle style,const SkRRect & rrect)266 static SkCachedData* add_cached_rrect(SkMask* mask, SkScalar sigma, SkBlurStyle style,
267                                       const SkRRect& rrect) {
268     SkCachedData* cache = copy_mask_to_cacheddata(mask);
269     if (cache) {
270         SkMaskCache::Add(sigma, style, rrect, *mask, cache);
271     }
272     return cache;
273 }
274 
find_cached_rects(SkMask * mask,SkScalar sigma,SkBlurStyle style,const SkRect rects[],int count)275 static SkCachedData* find_cached_rects(SkMask* mask, SkScalar sigma, SkBlurStyle style,
276                                        const SkRect rects[], int count) {
277     return SkMaskCache::FindAndRef(sigma, style, rects, count, mask);
278 }
279 
add_cached_rects(SkMask * mask,SkScalar sigma,SkBlurStyle style,const SkRect rects[],int count)280 static SkCachedData* add_cached_rects(SkMask* mask, SkScalar sigma, SkBlurStyle style,
281                                       const SkRect rects[], int count) {
282     SkCachedData* cache = copy_mask_to_cacheddata(mask);
283     if (cache) {
284         SkMaskCache::Add(sigma, style, rects, count, *mask, cache);
285     }
286     return cache;
287 }
288 
289 static const bool c_analyticBlurRRect{true};
290 
291 SkMaskFilterBase::FilterReturn
filterRRectToNine(const SkRRect & rrect,const SkMatrix & matrix,const SkIRect & clipBounds,NinePatch * patch) const292 SkBlurMaskFilterImpl::filterRRectToNine(const SkRRect& rrect, const SkMatrix& matrix,
293                                         const SkIRect& clipBounds,
294                                         NinePatch* patch) const {
295     SkASSERT(patch != nullptr);
296     switch (rrect.getType()) {
297         case SkRRect::kEmpty_Type:
298             // Nothing to draw.
299             return kFalse_FilterReturn;
300 
301         case SkRRect::kRect_Type:
302             // We should have caught this earlier.
303             SkASSERT(false);
304             [[fallthrough]];
305         case SkRRect::kOval_Type:
306             // The nine patch special case does not handle ovals, and we
307             // already have code for rectangles.
308             return kUnimplemented_FilterReturn;
309 
310         // These three can take advantage of this fast path.
311         case SkRRect::kSimple_Type:
312         case SkRRect::kNinePatch_Type:
313         case SkRRect::kComplex_Type:
314             break;
315     }
316 
317     // TODO: report correct metrics for innerstyle, where we do not grow the
318     // total bounds, but we do need an inset the size of our blur-radius
319     if (kInner_SkBlurStyle == fBlurStyle) {
320         return kUnimplemented_FilterReturn;
321     }
322 
323     // TODO: take clipBounds into account to limit our coordinates up front
324     // for now, just skip too-large src rects (to take the old code path).
325     if (rect_exceeds(rrect.rect(), SkIntToScalar(32767))) {
326         return kUnimplemented_FilterReturn;
327     }
328 
329     SkIPoint margin;
330     SkMask  srcM, dstM;
331     srcM.fBounds = rrect.rect().roundOut();
332     srcM.fFormat = SkMask::kA8_Format;
333     srcM.fRowBytes = 0;
334 
335     bool filterResult = false;
336     if (c_analyticBlurRRect) {
337         // special case for fast round rect blur
338         // don't actually do the blur the first time, just compute the correct size
339         filterResult = this->filterRRectMask(&dstM, rrect, matrix, &margin,
340                                             SkMask::kJustComputeBounds_CreateMode);
341     }
342 
343     if (!filterResult) {
344         filterResult = this->filterMask(&dstM, srcM, matrix, &margin);
345     }
346 
347     if (!filterResult) {
348         return kFalse_FilterReturn;
349     }
350 
351     // Now figure out the appropriate width and height of the smaller round rectangle
352     // to stretch. It will take into account the larger radius per side as well as double
353     // the margin, to account for inner and outer blur.
354     const SkVector& UL = rrect.radii(SkRRect::kUpperLeft_Corner);
355     const SkVector& UR = rrect.radii(SkRRect::kUpperRight_Corner);
356     const SkVector& LR = rrect.radii(SkRRect::kLowerRight_Corner);
357     const SkVector& LL = rrect.radii(SkRRect::kLowerLeft_Corner);
358 
359     const SkScalar leftUnstretched = std::max(UL.fX, LL.fX) + SkIntToScalar(2 * margin.fX);
360     const SkScalar rightUnstretched = std::max(UR.fX, LR.fX) + SkIntToScalar(2 * margin.fX);
361 
362     // Extra space in the middle to ensure an unchanging piece for stretching. Use 3 to cover
363     // any fractional space on either side plus 1 for the part to stretch.
364     const SkScalar stretchSize = SkIntToScalar(3);
365 
366     const SkScalar totalSmallWidth = leftUnstretched + rightUnstretched + stretchSize;
367     if (totalSmallWidth >= rrect.rect().width()) {
368         // There is no valid piece to stretch.
369         return kUnimplemented_FilterReturn;
370     }
371 
372     const SkScalar topUnstretched = std::max(UL.fY, UR.fY) + SkIntToScalar(2 * margin.fY);
373     const SkScalar bottomUnstretched = std::max(LL.fY, LR.fY) + SkIntToScalar(2 * margin.fY);
374 
375     const SkScalar totalSmallHeight = topUnstretched + bottomUnstretched + stretchSize;
376     if (totalSmallHeight >= rrect.rect().height()) {
377         // There is no valid piece to stretch.
378         return kUnimplemented_FilterReturn;
379     }
380 
381     SkRect smallR = SkRect::MakeWH(totalSmallWidth, totalSmallHeight);
382 
383     SkRRect smallRR;
384     SkVector radii[4];
385     radii[SkRRect::kUpperLeft_Corner] = UL;
386     radii[SkRRect::kUpperRight_Corner] = UR;
387     radii[SkRRect::kLowerRight_Corner] = LR;
388     radii[SkRRect::kLowerLeft_Corner] = LL;
389     smallRR.setRectRadii(smallR, radii);
390 
391     const SkScalar sigma = this->computeXformedSigma(matrix);
392     SkCachedData* cache = find_cached_rrect(&patch->fMask, sigma, fBlurStyle, smallRR);
393     if (!cache) {
394         bool analyticBlurWorked = false;
395         if (c_analyticBlurRRect) {
396             analyticBlurWorked =
397                 this->filterRRectMask(&patch->fMask, smallRR, matrix, &margin,
398                                       SkMask::kComputeBoundsAndRenderImage_CreateMode);
399         }
400 
401         if (!analyticBlurWorked) {
402             if (!draw_rrect_into_mask(smallRR, &srcM)) {
403                 return kFalse_FilterReturn;
404             }
405 
406             SkAutoMaskFreeImage amf(srcM.fImage);
407 
408             if (!this->filterMask(&patch->fMask, srcM, matrix, &margin)) {
409                 return kFalse_FilterReturn;
410             }
411         }
412         cache = add_cached_rrect(&patch->fMask, sigma, fBlurStyle, smallRR);
413     }
414 
415     patch->fMask.fBounds.offsetTo(0, 0);
416     patch->fOuterRect = dstM.fBounds;
417     patch->fCenter.fX = SkScalarCeilToInt(leftUnstretched) + 1;
418     patch->fCenter.fY = SkScalarCeilToInt(topUnstretched) + 1;
419     SkASSERT(nullptr == patch->fCache);
420     patch->fCache = cache;  // transfer ownership to patch
421     return kTrue_FilterReturn;
422 }
423 
424 // Use the faster analytic blur approach for ninepatch rects
425 static const bool c_analyticBlurNinepatch{true};
426 
427 SkMaskFilterBase::FilterReturn
filterRectsToNine(const SkRect rects[],int count,const SkMatrix & matrix,const SkIRect & clipBounds,NinePatch * patch) const428 SkBlurMaskFilterImpl::filterRectsToNine(const SkRect rects[], int count,
429                                         const SkMatrix& matrix,
430                                         const SkIRect& clipBounds,
431                                         NinePatch* patch) const {
432     if (count < 1 || count > 2) {
433         return kUnimplemented_FilterReturn;
434     }
435 
436     // TODO: report correct metrics for innerstyle, where we do not grow the
437     // total bounds, but we do need an inset the size of our blur-radius
438     if (kInner_SkBlurStyle == fBlurStyle || kOuter_SkBlurStyle == fBlurStyle) {
439         return kUnimplemented_FilterReturn;
440     }
441 
442     // TODO: take clipBounds into account to limit our coordinates up front
443     // for now, just skip too-large src rects (to take the old code path).
444     if (rect_exceeds(rects[0], SkIntToScalar(32767))) {
445         return kUnimplemented_FilterReturn;
446     }
447 
448     SkIPoint margin;
449     SkMask  srcM, dstM;
450     srcM.fBounds = rects[0].roundOut();
451     srcM.fFormat = SkMask::kA8_Format;
452     srcM.fRowBytes = 0;
453 
454     bool filterResult = false;
455     if (count == 1 && c_analyticBlurNinepatch) {
456         // special case for fast rect blur
457         // don't actually do the blur the first time, just compute the correct size
458         filterResult = this->filterRectMask(&dstM, rects[0], matrix, &margin,
459                                             SkMask::kJustComputeBounds_CreateMode);
460     } else {
461         filterResult = this->filterMask(&dstM, srcM, matrix, &margin);
462     }
463 
464     if (!filterResult) {
465         return kFalse_FilterReturn;
466     }
467 
468     /*
469      *  smallR is the smallest version of 'rect' that will still guarantee that
470      *  we get the same blur results on all edges, plus 1 center row/col that is
471      *  representative of the extendible/stretchable edges of the ninepatch.
472      *  Since our actual edge may be fractional we inset 1 more to be sure we
473      *  don't miss any interior blur.
474      *  x is an added pixel of blur, and { and } are the (fractional) edge
475      *  pixels from the original rect.
476      *
477      *   x x { x x .... x x } x x
478      *
479      *  Thus, in this case, we inset by a total of 5 (on each side) beginning
480      *  with our outer-rect (dstM.fBounds)
481      */
482     SkRect smallR[2];
483     SkIPoint center;
484 
485     // +2 is from +1 for each edge (to account for possible fractional edges
486     int smallW = dstM.fBounds.width() - srcM.fBounds.width() + 2;
487     int smallH = dstM.fBounds.height() - srcM.fBounds.height() + 2;
488     SkIRect innerIR;
489 
490     if (1 == count) {
491         innerIR = srcM.fBounds;
492         center.set(smallW, smallH);
493     } else {
494         SkASSERT(2 == count);
495         rects[1].roundIn(&innerIR);
496         center.set(smallW + (innerIR.left() - srcM.fBounds.left()),
497                    smallH + (innerIR.top() - srcM.fBounds.top()));
498     }
499 
500     // +1 so we get a clean, stretchable, center row/col
501     smallW += 1;
502     smallH += 1;
503 
504     // we want the inset amounts to be integral, so we don't change any
505     // fractional phase on the fRight or fBottom of our smallR.
506     const SkScalar dx = SkIntToScalar(innerIR.width() - smallW);
507     const SkScalar dy = SkIntToScalar(innerIR.height() - smallH);
508     if (dx < 0 || dy < 0) {
509         // we're too small, relative to our blur, to break into nine-patch,
510         // so we ask to have our normal filterMask() be called.
511         return kUnimplemented_FilterReturn;
512     }
513 
514     smallR[0].setLTRB(rects[0].left(),       rects[0].top(),
515                       rects[0].right() - dx, rects[0].bottom() - dy);
516     if (smallR[0].width() < 2 || smallR[0].height() < 2) {
517         return kUnimplemented_FilterReturn;
518     }
519     if (2 == count) {
520         smallR[1].setLTRB(rects[1].left(), rects[1].top(),
521                           rects[1].right() - dx, rects[1].bottom() - dy);
522         SkASSERT(!smallR[1].isEmpty());
523     }
524 
525     const SkScalar sigma = this->computeXformedSigma(matrix);
526     SkCachedData* cache = find_cached_rects(&patch->fMask, sigma, fBlurStyle, smallR, count);
527     if (!cache) {
528         if (count > 1 || !c_analyticBlurNinepatch) {
529             if (!draw_rects_into_mask(smallR, count, &srcM)) {
530                 return kFalse_FilterReturn;
531             }
532 
533             SkAutoMaskFreeImage amf(srcM.fImage);
534 
535             if (!this->filterMask(&patch->fMask, srcM, matrix, &margin)) {
536                 return kFalse_FilterReturn;
537             }
538         } else {
539             if (!this->filterRectMask(&patch->fMask, smallR[0], matrix, &margin,
540                                       SkMask::kComputeBoundsAndRenderImage_CreateMode)) {
541                 return kFalse_FilterReturn;
542             }
543         }
544         cache = add_cached_rects(&patch->fMask, sigma, fBlurStyle, smallR, count);
545     }
546     patch->fMask.fBounds.offsetTo(0, 0);
547     patch->fOuterRect = dstM.fBounds;
548     patch->fCenter = center;
549     SkASSERT(nullptr == patch->fCache);
550     patch->fCache = cache;  // transfer ownership to patch
551     return kTrue_FilterReturn;
552 }
553 
computeFastBounds(const SkRect & src,SkRect * dst) const554 void SkBlurMaskFilterImpl::computeFastBounds(const SkRect& src,
555                                              SkRect* dst) const {
556     // TODO: if we're doing kInner blur, should we return a different outset?
557     //       i.e. pad == 0 ?
558 
559     SkScalar pad = 3.0f * fSigma;
560 
561     dst->setLTRB(src.fLeft  - pad, src.fTop    - pad,
562                  src.fRight + pad, src.fBottom + pad);
563 }
564 
CreateProc(SkReadBuffer & buffer)565 sk_sp<SkFlattenable> SkBlurMaskFilterImpl::CreateProc(SkReadBuffer& buffer) {
566     const SkScalar sigma = buffer.readScalar();
567     SkBlurStyle style = buffer.read32LE(kLastEnum_SkBlurStyle);
568 
569     uint32_t flags = buffer.read32LE(0x3);  // historically we only recorded 2 bits
570     bool respectCTM = !(flags & 1); // historically we stored ignoreCTM in low bit
571 
572     return SkMaskFilter::MakeBlur((SkBlurStyle)style, sigma, respectCTM);
573 }
574 
flatten(SkWriteBuffer & buffer) const575 void SkBlurMaskFilterImpl::flatten(SkWriteBuffer& buffer) const {
576     buffer.writeScalar(fSigma);
577     buffer.writeUInt(fBlurStyle);
578     buffer.writeUInt(!fRespectCTM); // historically we recorded ignoreCTM
579 }
580 
581 
582 #if defined(SK_GANESH) && defined(SK_GANESH)
583 
584 ///////////////////////////////////////////////////////////////////////////////
585 //  Circle Blur
586 ///////////////////////////////////////////////////////////////////////////////
587 
588 // Computes an unnormalized half kernel (right side). Returns the summation of all the half
589 // kernel values.
make_unnormalized_half_kernel(float * halfKernel,int halfKernelSize,float sigma)590 static float make_unnormalized_half_kernel(float* halfKernel, int halfKernelSize, float sigma) {
591     const float invSigma = 1.f / sigma;
592     const float b = -0.5f * invSigma * invSigma;
593     float tot = 0.0f;
594     // Compute half kernel values at half pixel steps out from the center.
595     float t = 0.5f;
596     for (int i = 0; i < halfKernelSize; ++i) {
597         float value = expf(t * t * b);
598         tot += value;
599         halfKernel[i] = value;
600         t += 1.f;
601     }
602     return tot;
603 }
604 
605 // Create a Gaussian half-kernel (right side) and a summed area table given a sigma and number
606 // of discrete steps. The half kernel is normalized to sum to 0.5.
make_half_kernel_and_summed_table(float * halfKernel,float * summedHalfKernel,int halfKernelSize,float sigma)607 static void make_half_kernel_and_summed_table(float* halfKernel,
608                                               float* summedHalfKernel,
609                                               int halfKernelSize,
610                                               float sigma) {
611     // The half kernel should sum to 0.5 not 1.0.
612     const float tot = 2.f * make_unnormalized_half_kernel(halfKernel, halfKernelSize, sigma);
613     float sum = 0.f;
614     for (int i = 0; i < halfKernelSize; ++i) {
615         halfKernel[i] /= tot;
616         sum += halfKernel[i];
617         summedHalfKernel[i] = sum;
618     }
619 }
620 
621 // Applies the 1D half kernel vertically at points along the x axis to a circle centered at the
622 // origin with radius circleR.
apply_kernel_in_y(float * results,int numSteps,float firstX,float circleR,int halfKernelSize,const float * summedHalfKernelTable)623 void apply_kernel_in_y(float* results,
624                        int numSteps,
625                        float firstX,
626                        float circleR,
627                        int halfKernelSize,
628                        const float* summedHalfKernelTable) {
629     float x = firstX;
630     for (int i = 0; i < numSteps; ++i, x += 1.f) {
631         if (x < -circleR || x > circleR) {
632             results[i] = 0;
633             continue;
634         }
635         float y = sqrtf(circleR * circleR - x * x);
636         // In the column at x we exit the circle at +y and -y
637         // The summed table entry j is actually reflects an offset of j + 0.5.
638         y -= 0.5f;
639         int yInt = SkScalarFloorToInt(y);
640         SkASSERT(yInt >= -1);
641         if (y < 0) {
642             results[i] = (y + 0.5f) * summedHalfKernelTable[0];
643         } else if (yInt >= halfKernelSize - 1) {
644             results[i] = 0.5f;
645         } else {
646             float yFrac = y - yInt;
647             results[i] = (1.f - yFrac) * summedHalfKernelTable[yInt] +
648                          yFrac * summedHalfKernelTable[yInt + 1];
649         }
650     }
651 }
652 
653 // Apply a Gaussian at point (evalX, 0) to a circle centered at the origin with radius circleR.
654 // This relies on having a half kernel computed for the Gaussian and a table of applications of
655 // the half kernel in y to columns at (evalX - halfKernel, evalX - halfKernel + 1, ..., evalX +
656 // halfKernel) passed in as yKernelEvaluations.
eval_at(float evalX,float circleR,const float * halfKernel,int halfKernelSize,const float * yKernelEvaluations)657 static uint8_t eval_at(float evalX,
658                        float circleR,
659                        const float* halfKernel,
660                        int halfKernelSize,
661                        const float* yKernelEvaluations) {
662     float acc = 0;
663 
664     float x = evalX - halfKernelSize;
665     for (int i = 0; i < halfKernelSize; ++i, x += 1.f) {
666         if (x < -circleR || x > circleR) {
667             continue;
668         }
669         float verticalEval = yKernelEvaluations[i];
670         acc += verticalEval * halfKernel[halfKernelSize - i - 1];
671     }
672     for (int i = 0; i < halfKernelSize; ++i, x += 1.f) {
673         if (x < -circleR || x > circleR) {
674             continue;
675         }
676         float verticalEval = yKernelEvaluations[i + halfKernelSize];
677         acc += verticalEval * halfKernel[i];
678     }
679     // Since we applied a half kernel in y we multiply acc by 2 (the circle is symmetric about
680     // the x axis).
681     return SkUnitScalarClampToByte(2.f * acc);
682 }
683 
684 // This function creates a profile of a blurred circle. It does this by computing a kernel for
685 // half the Gaussian and a matching summed area table. The summed area table is used to compute
686 // an array of vertical applications of the half kernel to the circle along the x axis. The
687 // table of y evaluations has 2 * k + n entries where k is the size of the half kernel and n is
688 // the size of the profile being computed. Then for each of the n profile entries we walk out k
689 // steps in each horizontal direction multiplying the corresponding y evaluation by the half
690 // kernel entry and sum these values to compute the profile entry.
create_circle_profile(uint8_t * weights,float sigma,float circleR,int profileTextureWidth)691 static void create_circle_profile(uint8_t* weights,
692                                   float sigma,
693                                   float circleR,
694                                   int profileTextureWidth) {
695     const int numSteps = profileTextureWidth;
696 
697     // The full kernel is 6 sigmas wide.
698     int halfKernelSize = SkScalarCeilToInt(6.0f * sigma);
699     // round up to next multiple of 2 and then divide by 2
700     halfKernelSize = ((halfKernelSize + 1) & ~1) >> 1;
701 
702     // Number of x steps at which to apply kernel in y to cover all the profile samples in x.
703     int numYSteps = numSteps + 2 * halfKernelSize;
704 
705     AutoTArray<float> bulkAlloc(halfKernelSize + halfKernelSize + numYSteps);
706     float* halfKernel = bulkAlloc.get();
707     float* summedKernel = bulkAlloc.get() + halfKernelSize;
708     float* yEvals = bulkAlloc.get() + 2 * halfKernelSize;
709     make_half_kernel_and_summed_table(halfKernel, summedKernel, halfKernelSize, sigma);
710 
711     float firstX = -halfKernelSize + 0.5f;
712     apply_kernel_in_y(yEvals, numYSteps, firstX, circleR, halfKernelSize, summedKernel);
713 
714     for (int i = 0; i < numSteps - 1; ++i) {
715         float evalX = i + 0.5f;
716         weights[i] = eval_at(evalX, circleR, halfKernel, halfKernelSize, yEvals + i);
717     }
718     // Ensure the tail of the Gaussian goes to zero.
719     weights[numSteps - 1] = 0;
720 }
721 
create_half_plane_profile(uint8_t * profile,int profileWidth)722 static void create_half_plane_profile(uint8_t* profile, int profileWidth) {
723     SkASSERT(!(profileWidth & 0x1));
724     // The full kernel is 6 sigmas wide.
725     float sigma = profileWidth / 6.f;
726     int halfKernelSize = profileWidth / 2;
727 
728     AutoTArray<float> halfKernel(halfKernelSize);
729 
730     // The half kernel should sum to 0.5.
731     const float tot = 2.f * make_unnormalized_half_kernel(halfKernel.get(), halfKernelSize, sigma);
732     float sum = 0.f;
733     // Populate the profile from the right edge to the middle.
734     for (int i = 0; i < halfKernelSize; ++i) {
735         halfKernel[halfKernelSize - i - 1] /= tot;
736         sum += halfKernel[halfKernelSize - i - 1];
737         profile[profileWidth - i - 1] = SkUnitScalarClampToByte(sum);
738     }
739     // Populate the profile from the middle to the left edge (by flipping the half kernel and
740     // continuing the summation).
741     for (int i = 0; i < halfKernelSize; ++i) {
742         sum += halfKernel[i];
743         profile[halfKernelSize - i - 1] = SkUnitScalarClampToByte(sum);
744     }
745     // Ensure tail goes to 0.
746     profile[profileWidth - 1] = 0;
747 }
748 
create_profile_effect(GrRecordingContext * rContext,const SkRect & circle,float sigma,float * solidRadius,float * textureRadius)749 static std::unique_ptr<GrFragmentProcessor> create_profile_effect(GrRecordingContext* rContext,
750                                                                   const SkRect& circle,
751                                                                   float sigma,
752                                                                   float* solidRadius,
753                                                                   float* textureRadius) {
754     float circleR = circle.width() / 2.0f;
755     if (!sk_float_isfinite(circleR) || circleR < SK_ScalarNearlyZero) {
756         return nullptr;
757     }
758 
759     auto threadSafeCache = rContext->priv().threadSafeCache();
760 
761     // Profile textures are cached by the ratio of sigma to circle radius and by the size of the
762     // profile texture (binned by powers of 2).
763     SkScalar sigmaToCircleRRatio = sigma / circleR;
764     // When sigma is really small this becomes a equivalent to convolving a Gaussian with a
765     // half-plane. Similarly, in the extreme high ratio cases circle becomes a point WRT to the
766     // Guassian and the profile texture is a just a Gaussian evaluation. However, we haven't yet
767     // implemented this latter optimization.
768     sigmaToCircleRRatio = std::min(sigmaToCircleRRatio, 8.f);
769     SkFixed sigmaToCircleRRatioFixed;
770     static const SkScalar kHalfPlaneThreshold = 0.1f;
771     bool useHalfPlaneApprox = false;
772     if (sigmaToCircleRRatio <= kHalfPlaneThreshold) {
773         useHalfPlaneApprox = true;
774         sigmaToCircleRRatioFixed = 0;
775         *solidRadius = circleR - 3 * sigma;
776         *textureRadius = 6 * sigma;
777     } else {
778         // Convert to fixed point for the key.
779         sigmaToCircleRRatioFixed = SkScalarToFixed(sigmaToCircleRRatio);
780         // We shave off some bits to reduce the number of unique entries. We could probably
781         // shave off more than we do.
782         sigmaToCircleRRatioFixed &= ~0xff;
783         sigmaToCircleRRatio = SkFixedToScalar(sigmaToCircleRRatioFixed);
784         sigma = circleR * sigmaToCircleRRatio;
785         *solidRadius = 0;
786         *textureRadius = circleR + 3 * sigma;
787     }
788 
789     static constexpr int kProfileTextureWidth = 512;
790     // This would be kProfileTextureWidth/textureRadius if it weren't for the fact that we do
791     // the calculation of the profile coord in a coord space that has already been scaled by
792     // 1 / textureRadius. This is done to avoid overflow in length().
793     SkMatrix texM = SkMatrix::Scale(kProfileTextureWidth, 1.f);
794 
795     static const skgpu::UniqueKey::Domain kDomain = skgpu::UniqueKey::GenerateDomain();
796     skgpu::UniqueKey key;
797     skgpu::UniqueKey::Builder builder(&key, kDomain, 1, "1-D Circular Blur");
798     builder[0] = sigmaToCircleRRatioFixed;
799     builder.finish();
800 
801     GrSurfaceProxyView profileView = threadSafeCache->find(key);
802     if (profileView) {
803         SkASSERT(profileView.asTextureProxy());
804         SkASSERT(profileView.origin() == kTopLeft_GrSurfaceOrigin);
805         return GrTextureEffect::Make(std::move(profileView), kPremul_SkAlphaType, texM);
806     }
807 
808     SkBitmap bm;
809     if (!bm.tryAllocPixels(SkImageInfo::MakeA8(kProfileTextureWidth, 1))) {
810         return nullptr;
811     }
812 
813     if (useHalfPlaneApprox) {
814         create_half_plane_profile(bm.getAddr8(0, 0), kProfileTextureWidth);
815     } else {
816         // Rescale params to the size of the texture we're creating.
817         SkScalar scale = kProfileTextureWidth / *textureRadius;
818         create_circle_profile(
819                 bm.getAddr8(0, 0), sigma * scale, circleR * scale, kProfileTextureWidth);
820     }
821     bm.setImmutable();
822 
823     profileView = std::get<0>(GrMakeUncachedBitmapProxyView(rContext, bm));
824     if (!profileView) {
825         return nullptr;
826     }
827 
828     profileView = threadSafeCache->add(key, profileView);
829     return GrTextureEffect::Make(std::move(profileView), kPremul_SkAlphaType, texM);
830 }
831 
make_circle_blur(GrRecordingContext * context,const SkRect & circle,float sigma)832 static std::unique_ptr<GrFragmentProcessor> make_circle_blur(GrRecordingContext* context,
833                                                              const SkRect& circle,
834                                                              float sigma) {
835     if (SkGpuBlurUtils::IsEffectivelyZeroSigma(sigma)) {
836         return nullptr;
837     }
838 
839     float solidRadius;
840     float textureRadius;
841     std::unique_ptr<GrFragmentProcessor> profile =
842             create_profile_effect(context, circle, sigma, &solidRadius, &textureRadius);
843     if (!profile) {
844         return nullptr;
845     }
846 
847     static const SkRuntimeEffect* effect = SkMakeRuntimeEffect(SkRuntimeEffect::MakeForShader,
848         "uniform shader blurProfile;"
849         "uniform half4 circleData;"
850 
851         "half4 main(float2 xy) {"
852             // We just want to compute "(length(vec) - circleData.z + 0.5) * circleData.w" but need
853             // to rearrange to avoid passing large values to length() that would overflow.
854             "half2 vec = half2((sk_FragCoord.xy - circleData.xy) * circleData.w);"
855             "half dist = length(vec) + (0.5 - circleData.z) * circleData.w;"
856             "return blurProfile.eval(half2(dist, 0.5)).aaaa;"
857         "}"
858     );
859 
860     SkV4 circleData = {circle.centerX(), circle.centerY(), solidRadius, 1.f / textureRadius};
861     auto circleBlurFP = GrSkSLFP::Make(effect, "CircleBlur", /*inputFP=*/nullptr,
862                                        GrSkSLFP::OptFlags::kCompatibleWithCoverageAsAlpha,
863                                        "blurProfile", GrSkSLFP::IgnoreOptFlags(std::move(profile)),
864                                        "circleData", circleData);
865     // Modulate blur with the input color.
866     return GrBlendFragmentProcessor::Make<SkBlendMode::kModulate>(std::move(circleBlurFP),
867                                                                   /*dst=*/nullptr);
868 }
869 
870 ///////////////////////////////////////////////////////////////////////////////
871 //  Rect Blur
872 ///////////////////////////////////////////////////////////////////////////////
873 
make_rect_integral_fp(GrRecordingContext * rContext,float sixSigma)874 static std::unique_ptr<GrFragmentProcessor> make_rect_integral_fp(GrRecordingContext* rContext,
875                                                                   float sixSigma) {
876     SkASSERT(!SkGpuBlurUtils::IsEffectivelyZeroSigma(sixSigma / 6.f));
877     auto threadSafeCache = rContext->priv().threadSafeCache();
878 
879     int width = SkGpuBlurUtils::CreateIntegralTable(sixSigma, nullptr);
880 
881     static const skgpu::UniqueKey::Domain kDomain = skgpu::UniqueKey::GenerateDomain();
882     skgpu::UniqueKey key;
883     skgpu::UniqueKey::Builder builder(&key, kDomain, 1, "Rect Blur Mask");
884     builder[0] = width;
885     builder.finish();
886 
887     SkMatrix m = SkMatrix::Scale(width / sixSigma, 1.f);
888 
889     GrSurfaceProxyView view = threadSafeCache->find(key);
890 
891     if (view) {
892         SkASSERT(view.origin() == kTopLeft_GrSurfaceOrigin);
893         return GrTextureEffect::Make(
894                 std::move(view), kPremul_SkAlphaType, m, GrSamplerState::Filter::kLinear);
895     }
896 
897     SkBitmap bitmap;
898     if (!SkGpuBlurUtils::CreateIntegralTable(sixSigma, &bitmap)) {
899         return {};
900     }
901 
902     view = std::get<0>(GrMakeUncachedBitmapProxyView(rContext, bitmap));
903     if (!view) {
904         return {};
905     }
906 
907     view = threadSafeCache->add(key, view);
908 
909     SkASSERT(view.origin() == kTopLeft_GrSurfaceOrigin);
910     return GrTextureEffect::Make(
911             std::move(view), kPremul_SkAlphaType, m, GrSamplerState::Filter::kLinear);
912 }
913 
make_rect_blur(GrRecordingContext * context,const GrShaderCaps & caps,const SkRect & srcRect,const SkMatrix & viewMatrix,float transformedSigma)914 static std::unique_ptr<GrFragmentProcessor> make_rect_blur(GrRecordingContext* context,
915                                                            const GrShaderCaps& caps,
916                                                            const SkRect& srcRect,
917                                                            const SkMatrix& viewMatrix,
918                                                            float transformedSigma) {
919     SkASSERT(viewMatrix.preservesRightAngles());
920     SkASSERT(srcRect.isSorted());
921 
922     if (SkGpuBlurUtils::IsEffectivelyZeroSigma(transformedSigma)) {
923         // No need to blur the rect
924         return nullptr;
925     }
926 
927     SkMatrix invM;
928     SkRect rect;
929     if (viewMatrix.rectStaysRect()) {
930         invM = SkMatrix::I();
931         // We can do everything in device space when the src rect projects to a rect in device space
932         SkAssertResult(viewMatrix.mapRect(&rect, srcRect));
933     } else {
934         // The view matrix may scale, perhaps anisotropically. But we want to apply our device space
935         // "transformedSigma" to the delta of frag coord from the rect edges. Factor out the scaling
936         // to define a space that is purely rotation/translation from device space (and scale from
937         // src space) We'll meet in the middle: pre-scale the src rect to be in this space and then
938         // apply the inverse of the rotation/translation portion to the frag coord.
939         SkMatrix m;
940         SkSize scale;
941         if (!viewMatrix.decomposeScale(&scale, &m)) {
942             return nullptr;
943         }
944         if (!m.invert(&invM)) {
945             return nullptr;
946         }
947         rect = {srcRect.left() * scale.width(),
948                 srcRect.top() * scale.height(),
949                 srcRect.right() * scale.width(),
950                 srcRect.bottom() * scale.height()};
951     }
952 
953     if (!caps.fFloatIs32Bits) {
954         // We promote the math that gets us into the Gaussian space to full float when the rect
955         // coords are large. If we don't have full float then fail. We could probably clip the rect
956         // to an outset device bounds instead.
957         if (SkScalarAbs(rect.fLeft) > 16000.f || SkScalarAbs(rect.fTop) > 16000.f ||
958             SkScalarAbs(rect.fRight) > 16000.f || SkScalarAbs(rect.fBottom) > 16000.f) {
959             return nullptr;
960         }
961     }
962 
963     const float sixSigma = 6 * transformedSigma;
964     std::unique_ptr<GrFragmentProcessor> integral = make_rect_integral_fp(context, sixSigma);
965     if (!integral) {
966         return nullptr;
967     }
968 
969     // In the fast variant we think of the midpoint of the integral texture as aligning with the
970     // closest rect edge both in x and y. To simplify texture coord calculation we inset the rect so
971     // that the edge of the inset rect corresponds to t = 0 in the texture. It actually simplifies
972     // things a bit in the !isFast case, too.
973     float threeSigma = sixSigma / 2;
974     SkRect insetRect = {rect.left() + threeSigma,
975                         rect.top() + threeSigma,
976                         rect.right() - threeSigma,
977                         rect.bottom() - threeSigma};
978 
979     // In our fast variant we find the nearest horizontal and vertical edges and for each do a
980     // lookup in the integral texture for each and multiply them. When the rect is less than 6 sigma
981     // wide then things aren't so simple and we have to consider both the left and right edge of the
982     // rectangle (and similar in y).
983     bool isFast = insetRect.isSorted();
984 
985     static const SkRuntimeEffect* effect = SkMakeRuntimeEffect(SkRuntimeEffect::MakeForShader,
986         // Effect that is a LUT for integral of normal distribution. The value at x:[0,6*sigma] is
987         // the integral from -inf to (3*sigma - x). I.e. x is mapped from [0, 6*sigma] to
988         // [3*sigma to -3*sigma]. The flip saves a reversal in the shader.
989         "uniform shader integral;"
990 
991         "uniform float4 rect;"
992         "uniform int isFast;"  // specialized
993 
994         "half4 main(float2 pos) {"
995             "half xCoverage, yCoverage;"
996             "if (bool(isFast)) {"
997                 // Get the smaller of the signed distance from the frag coord to the left and right
998                 // edges and similar for y.
999                 // The integral texture goes "backwards" (from 3*sigma to -3*sigma), So, the below
1000                 // computations align the left edge of the integral texture with the inset rect's
1001                 // edge extending outward 6 * sigma from the inset rect.
1002                 "half2 xy = max(half2(rect.LT - pos), half2(pos - rect.RB));"
1003                 "xCoverage = integral.eval(half2(xy.x, 0.5)).a;"
1004                 "yCoverage = integral.eval(half2(xy.y, 0.5)).a;"
1005             "} else {"
1006                 // We just consider just the x direction here. In practice we compute x and y
1007                 // separately and multiply them together.
1008                 // We define our coord system so that the point at which we're evaluating a kernel
1009                 // defined by the normal distribution (K) at 0. In this coord system let L be left
1010                 // edge and R be the right edge of the rectangle.
1011                 // We can calculate C by integrating K with the half infinite ranges outside the
1012                 // L to R range and subtracting from 1:
1013                 //   C = 1 - <integral of K from from -inf to  L> - <integral of K from R to inf>
1014                 // K is symmetric about x=0 so:
1015                 //   C = 1 - <integral of K from from -inf to  L> - <integral of K from -inf to -R>
1016 
1017                 // The integral texture goes "backwards" (from 3*sigma to -3*sigma) which is
1018                 // factored in to the below calculations.
1019                 // Also, our rect uniform was pre-inset by 3 sigma from the actual rect being
1020                 // blurred, also factored in.
1021                 "half4 rect = half4(half2(rect.LT - pos), half2(pos - rect.RB));"
1022                 "xCoverage = 1 - integral.eval(half2(rect.L, 0.5)).a"
1023                               "- integral.eval(half2(rect.R, 0.5)).a;"
1024                 "yCoverage = 1 - integral.eval(half2(rect.T, 0.5)).a"
1025                               "- integral.eval(half2(rect.B, 0.5)).a;"
1026             "}"
1027             "return half4(xCoverage * yCoverage);"
1028         "}"
1029     );
1030 
1031     std::unique_ptr<GrFragmentProcessor> fp =
1032             GrSkSLFP::Make(effect, "RectBlur", /*inputFP=*/nullptr,
1033                            GrSkSLFP::OptFlags::kCompatibleWithCoverageAsAlpha,
1034                            "integral", GrSkSLFP::IgnoreOptFlags(std::move(integral)),
1035                            "rect", insetRect,
1036                            "isFast", GrSkSLFP::Specialize<int>(isFast));
1037     // Modulate blur with the input color.
1038     fp = GrBlendFragmentProcessor::Make<SkBlendMode::kModulate>(std::move(fp),
1039                                                                 /*dst=*/nullptr);
1040     if (!invM.isIdentity()) {
1041         fp = GrMatrixEffect::Make(invM, std::move(fp));
1042     }
1043     return GrFragmentProcessor::DeviceSpace(std::move(fp));
1044 }
1045 
1046 ///////////////////////////////////////////////////////////////////////////////
1047 //  RRect Blur
1048 ///////////////////////////////////////////////////////////////////////////////
1049 
1050 static constexpr auto kBlurredRRectMaskOrigin = kTopLeft_GrSurfaceOrigin;
1051 
make_blurred_rrect_key(skgpu::UniqueKey * key,const SkRRect & rrectToDraw,float xformedSigma)1052 static void make_blurred_rrect_key(skgpu::UniqueKey* key,
1053                                    const SkRRect& rrectToDraw,
1054                                    float xformedSigma) {
1055     SkASSERT(!SkGpuBlurUtils::IsEffectivelyZeroSigma(xformedSigma));
1056     static const skgpu::UniqueKey::Domain kDomain = skgpu::UniqueKey::GenerateDomain();
1057 
1058     skgpu::UniqueKey::Builder builder(key, kDomain, 9, "RoundRect Blur Mask");
1059     builder[0] = SkScalarCeilToInt(xformedSigma - 1 / 6.0f);
1060 
1061     int index = 1;
1062     // TODO: this is overkill for _simple_ circular rrects
1063     for (auto c : {SkRRect::kUpperLeft_Corner,
1064                    SkRRect::kUpperRight_Corner,
1065                    SkRRect::kLowerRight_Corner,
1066                    SkRRect::kLowerLeft_Corner}) {
1067         SkASSERT(SkScalarIsInt(rrectToDraw.radii(c).fX) && SkScalarIsInt(rrectToDraw.radii(c).fY));
1068         builder[index++] = SkScalarCeilToInt(rrectToDraw.radii(c).fX);
1069         builder[index++] = SkScalarCeilToInt(rrectToDraw.radii(c).fY);
1070     }
1071     builder.finish();
1072 }
1073 
fillin_view_on_gpu(GrDirectContext * dContext,const GrSurfaceProxyView & lazyView,sk_sp<GrThreadSafeCache::Trampoline> trampoline,const SkRRect & rrectToDraw,const SkISize & dimensions,float xformedSigma)1074 static bool fillin_view_on_gpu(GrDirectContext* dContext,
1075                                const GrSurfaceProxyView& lazyView,
1076                                sk_sp<GrThreadSafeCache::Trampoline> trampoline,
1077                                const SkRRect& rrectToDraw,
1078                                const SkISize& dimensions,
1079                                float xformedSigma) {
1080 #if defined(SK_GANESH)
1081     SkASSERT(!SkGpuBlurUtils::IsEffectivelyZeroSigma(xformedSigma));
1082 
1083     // We cache blur masks. Use default surface props here so we can use the same cached mask
1084     // regardless of the final dst surface.
1085     SkSurfaceProps defaultSurfaceProps;
1086 
1087     std::unique_ptr<skgpu::v1::SurfaceDrawContext> sdc =
1088             skgpu::v1::SurfaceDrawContext::MakeWithFallback(dContext,
1089                                                             GrColorType::kAlpha_8,
1090                                                             nullptr,
1091                                                             SkBackingFit::kExact,
1092                                                             dimensions,
1093                                                             defaultSurfaceProps,
1094                                                             1,
1095                                                             GrMipmapped::kNo,
1096                                                             GrProtected::kNo,
1097                                                             kBlurredRRectMaskOrigin);
1098     if (!sdc) {
1099         return false;
1100     }
1101 
1102     GrPaint paint;
1103 
1104     sdc->clear(SK_PMColor4fTRANSPARENT);
1105     sdc->drawRRect(nullptr,
1106                    std::move(paint),
1107                    GrAA::kYes,
1108                    SkMatrix::I(),
1109                    rrectToDraw,
1110                    GrStyle::SimpleFill());
1111 
1112     GrSurfaceProxyView srcView = sdc->readSurfaceView();
1113     SkASSERT(srcView.asTextureProxy());
1114     auto rtc2 = SkGpuBlurUtils::GaussianBlur(dContext,
1115                                              std::move(srcView),
1116                                              sdc->colorInfo().colorType(),
1117                                              sdc->colorInfo().alphaType(),
1118                                              nullptr,
1119                                              SkIRect::MakeSize(dimensions),
1120                                              SkIRect::MakeSize(dimensions),
1121                                              xformedSigma,
1122                                              xformedSigma,
1123                                              SkTileMode::kClamp,
1124                                              SkBackingFit::kExact);
1125     if (!rtc2 || !rtc2->readSurfaceView()) {
1126         return false;
1127     }
1128 
1129     auto view = rtc2->readSurfaceView();
1130     SkASSERT(view.swizzle() == lazyView.swizzle());
1131     SkASSERT(view.origin() == lazyView.origin());
1132     trampoline->fProxy = view.asTextureProxyRef();
1133 
1134     return true;
1135 #else
1136     return false;
1137 #endif
1138 }
1139 
1140 // Evaluate the vertical blur at the specified 'y' value given the location of the top of the
1141 // rrect.
eval_V(float top,int y,const uint8_t * integral,int integralSize,float sixSigma)1142 static uint8_t eval_V(float top, int y, const uint8_t* integral, int integralSize, float sixSigma) {
1143     if (top < 0) {
1144         return 0;  // an empty column
1145     }
1146 
1147     float fT = (top - y - 0.5f) * (integralSize / sixSigma);
1148     if (fT < 0) {
1149         return 255;
1150     } else if (fT >= integralSize - 1) {
1151         return 0;
1152     }
1153 
1154     int lower = (int)fT;
1155     float frac = fT - lower;
1156 
1157     SkASSERT(lower + 1 < integralSize);
1158 
1159     return integral[lower] * (1.0f - frac) + integral[lower + 1] * frac;
1160 }
1161 
1162 // Apply a gaussian 'kernel' horizontally at the specified 'x', 'y' location.
eval_H(int x,int y,const std::vector<float> & topVec,const float * kernel,int kernelSize,const uint8_t * integral,int integralSize,float sixSigma)1163 static uint8_t eval_H(int x,
1164                       int y,
1165                       const std::vector<float>& topVec,
1166                       const float* kernel,
1167                       int kernelSize,
1168                       const uint8_t* integral,
1169                       int integralSize,
1170                       float sixSigma) {
1171     SkASSERT(0 <= x && x < (int)topVec.size());
1172     SkASSERT(kernelSize % 2);
1173 
1174     float accum = 0.0f;
1175 
1176     int xSampleLoc = x - (kernelSize / 2);
1177     for (int i = 0; i < kernelSize; ++i, ++xSampleLoc) {
1178         if (xSampleLoc < 0 || xSampleLoc >= (int)topVec.size()) {
1179             continue;
1180         }
1181 
1182         accum += kernel[i] * eval_V(topVec[xSampleLoc], y, integral, integralSize, sixSigma);
1183     }
1184 
1185     return accum + 0.5f;
1186 }
1187 
1188 // Create a cpu-side blurred-rrect mask that is close to the version the gpu would've produced.
1189 // The match needs to be close bc the cpu- and gpu-generated version must be interchangeable.
create_mask_on_cpu(GrRecordingContext * rContext,const SkRRect & rrectToDraw,const SkISize & dimensions,float xformedSigma)1190 static GrSurfaceProxyView create_mask_on_cpu(GrRecordingContext* rContext,
1191                                              const SkRRect& rrectToDraw,
1192                                              const SkISize& dimensions,
1193                                              float xformedSigma) {
1194     SkASSERT(!SkGpuBlurUtils::IsEffectivelyZeroSigma(xformedSigma));
1195     int radius = SkGpuBlurUtils::SigmaRadius(xformedSigma);
1196     int kernelSize = 2 * radius + 1;
1197 
1198     SkASSERT(kernelSize % 2);
1199     SkASSERT(dimensions.width() % 2);
1200     SkASSERT(dimensions.height() % 2);
1201 
1202     SkVector radii = rrectToDraw.getSimpleRadii();
1203     SkASSERT(SkScalarNearlyEqual(radii.fX, radii.fY));
1204 
1205     const int halfWidthPlus1 = (dimensions.width() / 2) + 1;
1206     const int halfHeightPlus1 = (dimensions.height() / 2) + 1;
1207 
1208     std::unique_ptr<float[]> kernel(new float[kernelSize]);
1209 
1210     SkGpuBlurUtils::Compute1DGaussianKernel(kernel.get(), xformedSigma, radius);
1211 
1212     SkBitmap integral;
1213     if (!SkGpuBlurUtils::CreateIntegralTable(6 * xformedSigma, &integral)) {
1214         return {};
1215     }
1216 
1217     SkBitmap result;
1218     if (!result.tryAllocPixels(SkImageInfo::MakeA8(dimensions.width(), dimensions.height()))) {
1219         return {};
1220     }
1221 
1222     std::vector<float> topVec;
1223     topVec.reserve(dimensions.width());
1224     for (int x = 0; x < dimensions.width(); ++x) {
1225         if (x < rrectToDraw.rect().fLeft || x > rrectToDraw.rect().fRight) {
1226             topVec.push_back(-1);
1227         } else {
1228             if (x + 0.5f < rrectToDraw.rect().fLeft + radii.fX) {  // in the circular section
1229                 float xDist = rrectToDraw.rect().fLeft + radii.fX - x - 0.5f;
1230                 float h = sqrtf(radii.fX * radii.fX - xDist * xDist);
1231                 SkASSERT(0 <= h && h < radii.fY);
1232                 topVec.push_back(rrectToDraw.rect().fTop + radii.fX - h + 3 * xformedSigma);
1233             } else {
1234                 topVec.push_back(rrectToDraw.rect().fTop + 3 * xformedSigma);
1235             }
1236         }
1237     }
1238 
1239     for (int y = 0; y < halfHeightPlus1; ++y) {
1240         uint8_t* scanline = result.getAddr8(0, y);
1241 
1242         for (int x = 0; x < halfWidthPlus1; ++x) {
1243             scanline[x] = eval_H(x,
1244                                  y,
1245                                  topVec,
1246                                  kernel.get(),
1247                                  kernelSize,
1248                                  integral.getAddr8(0, 0),
1249                                  integral.width(),
1250                                  6 * xformedSigma);
1251             scanline[dimensions.width() - x - 1] = scanline[x];
1252         }
1253 
1254         memcpy(result.getAddr8(0, dimensions.height() - y - 1), scanline, result.rowBytes());
1255     }
1256 
1257     result.setImmutable();
1258 
1259     auto view = std::get<0>(GrMakeUncachedBitmapProxyView(rContext, result));
1260     if (!view) {
1261         return {};
1262     }
1263 
1264     SkASSERT(view.origin() == kBlurredRRectMaskOrigin);
1265     return view;
1266 }
1267 
find_or_create_rrect_blur_mask_fp(GrRecordingContext * rContext,const SkRRect & rrectToDraw,const SkISize & dimensions,float xformedSigma)1268 static std::unique_ptr<GrFragmentProcessor> find_or_create_rrect_blur_mask_fp(
1269         GrRecordingContext* rContext,
1270         const SkRRect& rrectToDraw,
1271         const SkISize& dimensions,
1272         float xformedSigma) {
1273     SkASSERT(!SkGpuBlurUtils::IsEffectivelyZeroSigma(xformedSigma));
1274     skgpu::UniqueKey key;
1275     make_blurred_rrect_key(&key, rrectToDraw, xformedSigma);
1276 
1277     auto threadSafeCache = rContext->priv().threadSafeCache();
1278 
1279     // It seems like we could omit this matrix and modify the shader code to not normalize
1280     // the coords used to sample the texture effect. However, the "proxyDims" value in the
1281     // shader is not always the actual the proxy dimensions. This is because 'dimensions' here
1282     // was computed using integer corner radii as determined in
1283     // SkComputeBlurredRRectParams whereas the shader code uses the float radius to compute
1284     // 'proxyDims'. Why it draws correctly with these unequal values is a mystery for the ages.
1285     auto m = SkMatrix::Scale(dimensions.width(), dimensions.height());
1286 
1287     GrSurfaceProxyView view;
1288 
1289     if (GrDirectContext* dContext = rContext->asDirectContext()) {
1290         // The gpu thread gets priority over the recording threads. If the gpu thread is first,
1291         // it crams a lazy proxy into the cache and then fills it in later.
1292         auto [lazyView, trampoline] = GrThreadSafeCache::CreateLazyView(dContext,
1293                                                                         GrColorType::kAlpha_8,
1294                                                                         dimensions,
1295                                                                         kBlurredRRectMaskOrigin,
1296                                                                         SkBackingFit::kExact);
1297         if (!lazyView) {
1298             return nullptr;
1299         }
1300 
1301         view = threadSafeCache->findOrAdd(key, lazyView);
1302         if (view != lazyView) {
1303             SkASSERT(view.asTextureProxy());
1304             SkASSERT(view.origin() == kBlurredRRectMaskOrigin);
1305             return GrTextureEffect::Make(std::move(view), kPremul_SkAlphaType, m);
1306         }
1307 
1308         if (!fillin_view_on_gpu(dContext,
1309                                 lazyView,
1310                                 std::move(trampoline),
1311                                 rrectToDraw,
1312                                 dimensions,
1313                                 xformedSigma)) {
1314             // In this case something has gone disastrously wrong so set up to drop the draw
1315             // that needed this resource and reduce future pollution of the cache.
1316             threadSafeCache->remove(key);
1317             return nullptr;
1318         }
1319     } else {
1320         view = threadSafeCache->find(key);
1321         if (view) {
1322             SkASSERT(view.asTextureProxy());
1323             SkASSERT(view.origin() == kBlurredRRectMaskOrigin);
1324             return GrTextureEffect::Make(std::move(view), kPremul_SkAlphaType, m);
1325         }
1326 
1327         view = create_mask_on_cpu(rContext, rrectToDraw, dimensions, xformedSigma);
1328         if (!view) {
1329             return nullptr;
1330         }
1331 
1332         view = threadSafeCache->add(key, view);
1333     }
1334 
1335     SkASSERT(view.asTextureProxy());
1336     SkASSERT(view.origin() == kBlurredRRectMaskOrigin);
1337     return GrTextureEffect::Make(std::move(view), kPremul_SkAlphaType, m);
1338 }
1339 
make_rrect_blur(GrRecordingContext * context,float sigma,float xformedSigma,const SkRRect & srcRRect,const SkRRect & devRRect)1340 static std::unique_ptr<GrFragmentProcessor> make_rrect_blur(GrRecordingContext* context,
1341                                                             float sigma,
1342                                                             float xformedSigma,
1343                                                             const SkRRect& srcRRect,
1344                                                             const SkRRect& devRRect) {
1345     // Should've been caught up-stream
1346 #ifdef SK_DEBUG
1347     SkASSERTF(!SkRRectPriv::IsCircle(devRRect),
1348               "Unexpected circle. %d\n\t%s\n\t%s",
1349               SkRRectPriv::IsCircle(srcRRect),
1350               srcRRect.dumpToString(true).c_str(),
1351               devRRect.dumpToString(true).c_str());
1352     SkASSERTF(!devRRect.isRect(),
1353               "Unexpected rect. %d\n\t%s\n\t%s",
1354               srcRRect.isRect(),
1355               srcRRect.dumpToString(true).c_str(),
1356               devRRect.dumpToString(true).c_str());
1357 #endif
1358 
1359     // TODO: loosen this up
1360     if (!SkRRectPriv::IsSimpleCircular(devRRect)) {
1361         return nullptr;
1362     }
1363 
1364     if (SkGpuBlurUtils::IsEffectivelyZeroSigma(xformedSigma)) {
1365         return nullptr;
1366     }
1367 
1368     // Make sure we can successfully ninepatch this rrect -- the blur sigma has to be sufficiently
1369     // small relative to both the size of the corner radius and the width (and height) of the rrect.
1370     SkRRect rrectToDraw;
1371     SkISize dimensions;
1372     SkScalar ignored[SkGpuBlurUtils::kBlurRRectMaxDivisions];
1373 
1374     bool ninePatchable = SkGpuBlurUtils::ComputeBlurredRRectParams(srcRRect,
1375                                                                    devRRect,
1376                                                                    sigma,
1377                                                                    xformedSigma,
1378                                                                    &rrectToDraw,
1379                                                                    &dimensions,
1380                                                                    ignored,
1381                                                                    ignored,
1382                                                                    ignored,
1383                                                                    ignored);
1384     if (!ninePatchable) {
1385         return nullptr;
1386     }
1387 
1388     std::unique_ptr<GrFragmentProcessor> maskFP =
1389             find_or_create_rrect_blur_mask_fp(context, rrectToDraw, dimensions, xformedSigma);
1390     if (!maskFP) {
1391         return nullptr;
1392     }
1393 
1394     static const SkRuntimeEffect* effect = SkMakeRuntimeEffect(SkRuntimeEffect::MakeForShader,
1395         "uniform shader ninePatchFP;"
1396 
1397         "uniform half cornerRadius;"
1398         "uniform float4 proxyRect;"
1399         "uniform half blurRadius;"
1400 
1401         "half4 main(float2 xy) {"
1402             // Warp the fragment position to the appropriate part of the 9-patch blur texture by
1403             // snipping out the middle section of the proxy rect.
1404             "float2 translatedFragPosFloat = sk_FragCoord.xy - proxyRect.LT;"
1405             "float2 proxyCenter = (proxyRect.RB - proxyRect.LT) * 0.5;"
1406             "half edgeSize = 2.0 * blurRadius + cornerRadius + 0.5;"
1407 
1408             // Position the fragment so that (0, 0) marks the center of the proxy rectangle.
1409             // Negative coordinates are on the left/top side and positive numbers are on the
1410             // right/bottom.
1411             "translatedFragPosFloat -= proxyCenter;"
1412 
1413             // Temporarily strip off the fragment's sign. x/y are now strictly increasing as we
1414             // move away from the center.
1415             "half2 fragDirection = half2(sign(translatedFragPosFloat));"
1416             "translatedFragPosFloat = abs(translatedFragPosFloat);"
1417 
1418             // Our goal is to snip out the "middle section" of the proxy rect (everything but the
1419             // edge). We've repositioned our fragment position so that (0, 0) is the centerpoint
1420             // and x/y are always positive, so we can subtract here and interpret negative results
1421             // as being within the middle section.
1422             "half2 translatedFragPosHalf = half2(translatedFragPosFloat - (proxyCenter - edgeSize));"
1423 
1424             // Remove the middle section by clamping to zero.
1425             "translatedFragPosHalf = max(translatedFragPosHalf, 0);"
1426 
1427             // Reapply the fragment's sign, so that negative coordinates once again mean left/top
1428             // side and positive means bottom/right side.
1429             "translatedFragPosHalf *= fragDirection;"
1430 
1431             // Offset the fragment so that (0, 0) marks the upper-left again, instead of the center
1432             // point.
1433             "translatedFragPosHalf += half2(edgeSize);"
1434 
1435             "half2 proxyDims = half2(2.0 * edgeSize);"
1436             "half2 texCoord = translatedFragPosHalf / proxyDims;"
1437 
1438             "return ninePatchFP.eval(texCoord).aaaa;"
1439         "}"
1440     );
1441 
1442     float cornerRadius = SkRRectPriv::GetSimpleRadii(devRRect).fX;
1443     float blurRadius = 3.f * SkScalarCeilToScalar(xformedSigma - 1 / 6.0f);
1444     SkRect proxyRect = devRRect.getBounds().makeOutset(blurRadius, blurRadius);
1445 
1446     auto rrectBlurFP = GrSkSLFP::Make(effect, "RRectBlur", /*inputFP=*/nullptr,
1447                                       GrSkSLFP::OptFlags::kCompatibleWithCoverageAsAlpha,
1448                                       "ninePatchFP", GrSkSLFP::IgnoreOptFlags(std::move(maskFP)),
1449                                       "cornerRadius", cornerRadius,
1450                                       "proxyRect", proxyRect,
1451                                       "blurRadius", blurRadius);
1452     // Modulate blur with the input color.
1453     return GrBlendFragmentProcessor::Make<SkBlendMode::kModulate>(std::move(rrectBlurFP),
1454                                                                   /*dst=*/nullptr);
1455 }
1456 
1457 ///////////////////////////////////////////////////////////////////////////////
1458 
directFilterMaskGPU(GrRecordingContext * context,skgpu::v1::SurfaceDrawContext * sdc,GrPaint && paint,const GrClip * clip,const SkMatrix & viewMatrix,const GrStyledShape & shape) const1459 bool SkBlurMaskFilterImpl::directFilterMaskGPU(GrRecordingContext* context,
1460                                                skgpu::v1::SurfaceDrawContext* sdc,
1461                                                GrPaint&& paint,
1462                                                const GrClip* clip,
1463                                                const SkMatrix& viewMatrix,
1464                                                const GrStyledShape& shape) const {
1465     SkASSERT(sdc);
1466 
1467     if (fBlurStyle != kNormal_SkBlurStyle) {
1468         return false;
1469     }
1470 
1471     // TODO: we could handle blurred stroked circles
1472     if (!shape.style().isSimpleFill()) {
1473         return false;
1474     }
1475 
1476     SkScalar xformedSigma = this->computeXformedSigma(viewMatrix);
1477     if (SkGpuBlurUtils::IsEffectivelyZeroSigma(xformedSigma)) {
1478         sdc->drawShape(clip, std::move(paint), GrAA::kYes, viewMatrix, GrStyledShape(shape));
1479         return true;
1480     }
1481 
1482     SkRRect srcRRect;
1483     bool inverted;
1484     if (!shape.asRRect(&srcRRect, nullptr, nullptr, &inverted) || inverted) {
1485         return false;
1486     }
1487 
1488     std::unique_ptr<GrFragmentProcessor> fp;
1489 
1490     SkRRect devRRect;
1491     bool devRRectIsValid = srcRRect.transform(viewMatrix, &devRRect);
1492 
1493     bool devRRectIsCircle = devRRectIsValid && SkRRectPriv::IsCircle(devRRect);
1494 
1495     bool canBeRect = srcRRect.isRect() && viewMatrix.preservesRightAngles();
1496     bool canBeCircle = (SkRRectPriv::IsCircle(srcRRect) && viewMatrix.isSimilarity()) ||
1497                        devRRectIsCircle;
1498 
1499     if (canBeRect || canBeCircle) {
1500         if (canBeRect) {
1501             fp = make_rect_blur(context, *context->priv().caps()->shaderCaps(),
1502                                 srcRRect.rect(), viewMatrix, xformedSigma);
1503         } else {
1504             SkRect devBounds;
1505             if (devRRectIsCircle) {
1506                 devBounds = devRRect.getBounds();
1507             } else {
1508                 SkPoint center = {srcRRect.getBounds().centerX(), srcRRect.getBounds().centerY()};
1509                 viewMatrix.mapPoints(&center, 1);
1510                 SkScalar radius = viewMatrix.mapVector(0, srcRRect.width()/2.f).length();
1511                 devBounds = {center.x() - radius,
1512                              center.y() - radius,
1513                              center.x() + radius,
1514                              center.y() + radius};
1515             }
1516             fp = make_circle_blur(context, devBounds, xformedSigma);
1517         }
1518 
1519         if (!fp) {
1520             return false;
1521         }
1522 
1523         SkRect srcProxyRect = srcRRect.rect();
1524         // Determine how much to outset the src rect to ensure we hit pixels within three sigma.
1525         SkScalar outsetX = 3.0f*xformedSigma;
1526         SkScalar outsetY = 3.0f*xformedSigma;
1527         if (viewMatrix.isScaleTranslate()) {
1528             outsetX /= SkScalarAbs(viewMatrix.getScaleX());
1529             outsetY /= SkScalarAbs(viewMatrix.getScaleY());
1530         } else {
1531             SkSize scale;
1532             if (!viewMatrix.decomposeScale(&scale, nullptr)) {
1533                 return false;
1534             }
1535             outsetX /= scale.width();
1536             outsetY /= scale.height();
1537         }
1538         srcProxyRect.outset(outsetX, outsetY);
1539 
1540         paint.setCoverageFragmentProcessor(std::move(fp));
1541         sdc->drawRect(clip, std::move(paint), GrAA::kNo, viewMatrix, srcProxyRect);
1542         return true;
1543     }
1544     if (!viewMatrix.isScaleTranslate()) {
1545         return false;
1546     }
1547     if (!devRRectIsValid || !SkRRectPriv::AllCornersCircular(devRRect)) {
1548         return false;
1549     }
1550 
1551     fp = make_rrect_blur(context, fSigma, xformedSigma, srcRRect, devRRect);
1552     if (!fp) {
1553         return false;
1554     }
1555 
1556     if (!this->ignoreXform()) {
1557         SkRect srcProxyRect = srcRRect.rect();
1558         srcProxyRect.outset(3.0f*fSigma, 3.0f*fSigma);
1559         paint.setCoverageFragmentProcessor(std::move(fp));
1560         sdc->drawRect(clip, std::move(paint), GrAA::kNo, viewMatrix, srcProxyRect);
1561     } else {
1562         SkMatrix inverse;
1563         if (!viewMatrix.invert(&inverse)) {
1564             return false;
1565         }
1566 
1567         SkIRect proxyBounds;
1568         float extra=3.f*SkScalarCeilToScalar(xformedSigma-1/6.0f);
1569         devRRect.rect().makeOutset(extra, extra).roundOut(&proxyBounds);
1570 
1571         paint.setCoverageFragmentProcessor(std::move(fp));
1572         sdc->fillPixelsWithLocalMatrix(clip, std::move(paint), proxyBounds, inverse);
1573     }
1574 
1575     return true;
1576 }
1577 
canFilterMaskGPU(const GrStyledShape & shape,const SkIRect & devSpaceShapeBounds,const SkIRect & clipBounds,const SkMatrix & ctm,SkIRect * maskRect) const1578 bool SkBlurMaskFilterImpl::canFilterMaskGPU(const GrStyledShape& shape,
1579                                             const SkIRect& devSpaceShapeBounds,
1580                                             const SkIRect& clipBounds,
1581                                             const SkMatrix& ctm,
1582                                             SkIRect* maskRect) const {
1583     SkScalar xformedSigma = this->computeXformedSigma(ctm);
1584     if (SkGpuBlurUtils::IsEffectivelyZeroSigma(xformedSigma)) {
1585         *maskRect = devSpaceShapeBounds;
1586         return maskRect->intersect(clipBounds);
1587     }
1588 
1589     if (maskRect) {
1590         float sigma3 = 3 * SkScalarToFloat(xformedSigma);
1591 
1592         // Outset srcRect and clipRect by 3 * sigma, to compute affected blur area.
1593         SkIRect clipRect = clipBounds.makeOutset(sigma3, sigma3);
1594         SkIRect srcRect = devSpaceShapeBounds.makeOutset(sigma3, sigma3);
1595 
1596         if (!srcRect.intersect(clipRect)) {
1597             srcRect.setEmpty();
1598         }
1599         *maskRect = srcRect;
1600     }
1601 
1602     // We prefer to blur paths with small blur radii on the CPU.
1603     static const SkScalar kMIN_GPU_BLUR_SIZE  = SkIntToScalar(64);
1604     static const SkScalar kMIN_GPU_BLUR_SIGMA = SkIntToScalar(32);
1605 
1606     if (devSpaceShapeBounds.width() <= kMIN_GPU_BLUR_SIZE &&
1607         devSpaceShapeBounds.height() <= kMIN_GPU_BLUR_SIZE &&
1608         xformedSigma <= kMIN_GPU_BLUR_SIGMA) {
1609         return false;
1610     }
1611 
1612     return true;
1613 }
1614 
filterMaskGPU(GrRecordingContext * context,GrSurfaceProxyView srcView,GrColorType srcColorType,SkAlphaType srcAlphaType,const SkMatrix & ctm,const SkIRect & maskRect) const1615 GrSurfaceProxyView SkBlurMaskFilterImpl::filterMaskGPU(GrRecordingContext* context,
1616                                                        GrSurfaceProxyView srcView,
1617                                                        GrColorType srcColorType,
1618                                                        SkAlphaType srcAlphaType,
1619                                                        const SkMatrix& ctm,
1620                                                        const SkIRect& maskRect) const {
1621     // 'maskRect' isn't snapped to the UL corner but the mask in 'src' is.
1622     const SkIRect clipRect = SkIRect::MakeWH(maskRect.width(), maskRect.height());
1623 
1624     SkScalar xformedSigma = this->computeXformedSigma(ctm);
1625 
1626     // If we're doing a normal blur, we can clobber the pathTexture in the
1627     // gaussianBlur.  Otherwise, we need to save it for later compositing.
1628     bool isNormalBlur = (kNormal_SkBlurStyle == fBlurStyle);
1629     auto srcBounds = SkIRect::MakeSize(srcView.proxy()->dimensions());
1630     auto surfaceDrawContext = SkGpuBlurUtils::GaussianBlur(context,
1631                                                             srcView,
1632                                                             srcColorType,
1633                                                             srcAlphaType,
1634                                                             nullptr,
1635                                                             clipRect,
1636                                                             srcBounds,
1637                                                             xformedSigma,
1638                                                             xformedSigma,
1639                                                             SkTileMode::kClamp);
1640     if (!surfaceDrawContext || !surfaceDrawContext->asTextureProxy()) {
1641         return {};
1642     }
1643 
1644     if (!isNormalBlur) {
1645         GrPaint paint;
1646         // Blend pathTexture over blurTexture.
1647         paint.setCoverageFragmentProcessor(GrTextureEffect::Make(std::move(srcView), srcAlphaType));
1648         if (kInner_SkBlurStyle == fBlurStyle) {
1649             // inner:  dst = dst * src
1650             paint.setCoverageSetOpXPFactory(SkRegion::kIntersect_Op);
1651         } else if (kSolid_SkBlurStyle == fBlurStyle) {
1652             // solid:  dst = src + dst - src * dst
1653             //             = src + (1 - src) * dst
1654             paint.setCoverageSetOpXPFactory(SkRegion::kUnion_Op);
1655         } else if (kOuter_SkBlurStyle == fBlurStyle) {
1656             // outer:  dst = dst * (1 - src)
1657             //             = 0 * src + (1 - src) * dst
1658             paint.setCoverageSetOpXPFactory(SkRegion::kDifference_Op);
1659         } else {
1660             paint.setCoverageSetOpXPFactory(SkRegion::kReplace_Op);
1661         }
1662 
1663         surfaceDrawContext->fillPixelsWithLocalMatrix(nullptr, std::move(paint), clipRect,
1664                                                       SkMatrix::I());
1665     }
1666 
1667     return surfaceDrawContext->readSurfaceView();
1668 }
1669 
1670 #endif // defined(SK_GANESH) && defined(SK_GANESH)
1671 
sk_register_blur_maskfilter_createproc()1672 void sk_register_blur_maskfilter_createproc() { SK_REGISTER_FLATTENABLE(SkBlurMaskFilterImpl); }
1673 
MakeBlur(SkBlurStyle style,SkScalar sigma,bool respectCTM)1674 sk_sp<SkMaskFilter> SkMaskFilter::MakeBlur(SkBlurStyle style, SkScalar sigma, bool respectCTM) {
1675     if (SkScalarIsFinite(sigma) && sigma > 0) {
1676         return sk_sp<SkMaskFilter>(new SkBlurMaskFilterImpl(sigma, style, respectCTM));
1677     }
1678     return nullptr;
1679 }
1680