• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2015 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #include "include/core/SkAlphaType.h"
9 #include "include/core/SkBlendMode.h"
10 #include "include/core/SkColor.h"
11 #include "include/core/SkColorSpace.h"
12 #include "include/core/SkMatrix.h"
13 #include "include/core/SkPath.h"
14 #include "include/core/SkPathTypes.h"
15 #include "include/core/SkPoint.h"
16 #include "include/core/SkRect.h"
17 #include "include/core/SkRefCnt.h"
18 #include "include/core/SkScalar.h"
19 #include "include/core/SkString.h"
20 #include "include/core/SkStrokeRec.h"
21 #include "include/core/SkSurfaceProps.h"
22 #include "include/core/SkTileMode.h"
23 #include "include/core/SkTypes.h"
24 #include "include/effects/SkGradientShader.h"
25 #include "include/gpu/GpuTypes.h"
26 #include "include/gpu/GrDirectContext.h"
27 #include "include/gpu/GrTypes.h"
28 #include "include/private/base/SkFloatBits.h"
29 #include "include/private/base/SkTemplates.h"
30 #include "include/private/gpu/ganesh/GrTypesPriv.h"
31 #include "src/base/SkArenaAlloc.h"
32 #include "src/base/SkRandom.h"
33 #include "src/core/SkPathPriv.h"
34 #include "src/gpu/SkBackingFit.h"
35 #include "src/gpu/ganesh/GrColorInfo.h"
36 #include "src/gpu/ganesh/GrEagerVertexAllocator.h"
37 #include "src/gpu/ganesh/GrFragmentProcessor.h"
38 #include "src/gpu/ganesh/GrPaint.h"
39 #include "src/gpu/ganesh/GrStyle.h"
40 #include "src/gpu/ganesh/GrUserStencilSettings.h"
41 #include "src/gpu/ganesh/PathRenderer.h"
42 #include "src/gpu/ganesh/SurfaceDrawContext.h"
43 #include "src/gpu/ganesh/effects/GrPorterDuffXferProcessor.h"
44 #include "src/gpu/ganesh/geometry/GrAATriangulator.h"
45 #include "src/gpu/ganesh/geometry/GrInnerFanTriangulator.h"
46 #include "src/gpu/ganesh/geometry/GrStyledShape.h"
47 #include "src/gpu/ganesh/geometry/GrTriangulator.h"
48 #include "src/gpu/ganesh/ops/TriangulatingPathRenderer.h"
49 #include "src/shaders/SkShaderBase.h"
50 #include "tests/CtsEnforcement.h"
51 #include "tests/Test.h"
52 #include "tools/ToolUtils.h"
53 
54 #include <cmath>
55 #include <cstddef>
56 #include <initializer_list>
57 #include <map>
58 #include <memory>
59 #include <utility>
60 
61 using namespace skia_private;
62 
63 class GrRecordingContext;
64 class SkShader;
65 struct GrContextOptions;
66 
67 #if !defined(SK_ENABLE_OPTIMIZE_SIZE)
68 
69 /*
70  * These tests pass by not crashing, hanging or asserting in Debug.
71  */
72 
73 using CreatePathFn = SkPath(*)();
74 
75 CreatePathFn kNonEdgeAAPaths[] = {
76     // Tests active edges made inactive by splitting.
77     // Also tests active edge list forced into an invalid ordering by
78     // splitting (mopped up in cleanup_active_edges()).
__anon7111d3d00102() 79     []() -> SkPath {
80         SkPath path;
81         path.moveTo(229.127044677734375f,  67.34100341796875f);
82         path.lineTo(187.8097381591796875f, -6.7729740142822265625f);
83         path.lineTo(171.411407470703125f,  50.94266510009765625f);
84         path.lineTo(245.5253753662109375f,  9.6253643035888671875f);
85         path.moveTo(208.4683990478515625f, 30.284009933471679688f);
86         path.lineTo(171.411407470703125f,  50.94266510009765625f);
87         path.lineTo(187.8097381591796875f, -6.7729740142822265625f);
88         return path;
89     },
90 
91     // Intersections which fall exactly on the current vertex, and require
92     // a restart of the intersection checking.
__anon7111d3d00202() 93     []() -> SkPath {
94         SkPath path;
95         path.moveTo(314.483551025390625f, 486.246002197265625f);
96         path.lineTo(385.41949462890625f,  532.8087158203125f);
97         path.lineTo(373.232879638671875f, 474.05938720703125f);
98         path.lineTo(326.670166015625f,    544.995361328125f);
99         path.moveTo(349.951507568359375f, 509.52734375f);
100         path.lineTo(373.232879638671875f, 474.05938720703125f);
101         path.lineTo(385.41949462890625f,  532.8087158203125f);
102         return path;
103     },
104 
105     // Tests active edges which are removed by splitting.
__anon7111d3d00302() 106     []() -> SkPath {
107         SkPath path;
108         path.moveTo(343.107391357421875f, 613.62176513671875f);
109         path.lineTo(426.632415771484375f, 628.5740966796875f);
110         path.lineTo(392.3460693359375f,   579.33544921875f);
111         path.lineTo(377.39373779296875f,  662.86041259765625f);
112         path.moveTo(384.869873046875f,    621.097900390625f);
113         path.lineTo(392.3460693359375f,   579.33544921875f);
114         path.lineTo(426.632415771484375f, 628.5740966796875f);
115         return path;
116     },
117 
118     // Collinear edges merged in set_top().
119     // Also, an intersection between left and right enclosing edges which
120     // falls above the current vertex.
__anon7111d3d00402() 121     []() -> SkPath {
122         SkPath path;
123         path.moveTo(545.95751953125f,    791.69854736328125f);
124         path.lineTo(612.05816650390625f, 738.494140625f);
125         path.lineTo(552.4056396484375f,  732.0460205078125f);
126         path.lineTo(605.61004638671875f, 798.14666748046875f);
127         path.moveTo(579.00787353515625f, 765.0963134765625f);
128         path.lineTo(552.4056396484375f,  732.0460205078125f);
129         path.lineTo(612.05816650390625f, 738.494140625f);
130         return path;
131     },
132 
133     // Tests active edges which are made inactive by set_top().
__anon7111d3d00502() 134     []() -> SkPath {
135         SkPath path;
136         path.moveTo(819.2725830078125f,  751.77447509765625f);
137         path.lineTo(820.70904541015625f, 666.933837890625f);
138         path.lineTo(777.57049560546875f, 708.63592529296875f);
139         path.lineTo(862.4111328125f,     710.0723876953125f);
140         path.moveTo(819.99078369140625f, 709.3541259765625f);
141         path.lineTo(777.57049560546875f, 708.63592529296875f);
142         path.lineTo(820.70904541015625f, 666.933837890625f);
143         return path;
144     },
145 
__anon7111d3d00602() 146     []() -> SkPath {
147         SkPath path;
148         path.moveTo(823.33209228515625f, 749.052734375f);
149         path.lineTo(823.494873046875f,   664.20013427734375f);
150         path.lineTo(780.9871826171875f,  706.5450439453125f);
151         path.lineTo(865.8397216796875f,  706.70782470703125f);
152         path.moveTo(823.4134521484375f,  706.6263427734375f);
153         path.lineTo(780.9871826171875f,  706.5450439453125f);
154         path.lineTo(823.494873046875f,   664.20013427734375f);
155         return path;
156     },
157 
__anon7111d3d00702() 158     []() -> SkPath {
159         SkPath path;
160         path.moveTo(954.862548828125f,   562.8349609375f);
161         path.lineTo(899.32818603515625f, 498.679443359375f);
162         path.lineTo(895.017578125f,      558.52435302734375f);
163         path.lineTo(959.17315673828125f, 502.990081787109375f);
164         path.moveTo(927.0953369140625f,  530.7572021484375f);
165         path.lineTo(895.017578125f,      558.52435302734375f);
166         path.lineTo(899.32818603515625f, 498.679443359375f);
167         return path;
168     },
169 
__anon7111d3d00802() 170     []() -> SkPath {
171         SkPath path;
172         path.moveTo(958.5330810546875f,  547.35516357421875f);
173         path.lineTo(899.93109130859375f, 485.989013671875f);
174         path.lineTo(898.54901123046875f, 545.97308349609375f);
175         path.lineTo(959.9151611328125f,  487.37109375f);
176         path.moveTo(929.2320556640625f,  516.67205810546875f);
177         path.lineTo(898.54901123046875f, 545.97308349609375f);
178         path.lineTo(899.93109130859375f, 485.989013671875f);
179         return path;
180     },
181 
__anon7111d3d00902() 182     []() -> SkPath {
183         SkPath path;
184         path.moveTo(389.8609619140625f,   369.326873779296875f);
185         path.lineTo(470.6290283203125f,   395.33697509765625f);
186         path.lineTo(443.250030517578125f, 341.9478759765625f);
187         path.lineTo(417.239959716796875f, 422.7159423828125f);
188         path.moveTo(430.244964599609375f, 382.3319091796875f);
189         path.lineTo(443.250030517578125f, 341.9478759765625f);
190         path.lineTo(470.6290283203125f,   395.33697509765625f);
191         return path;
192     },
193 
__anon7111d3d00a02() 194     []() -> SkPath {
195         SkPath path;
196         path.moveTo(20, 20);
197         path.lineTo(50, 80);
198         path.lineTo(20, 80);
199         path.moveTo(80, 50);
200         path.lineTo(50, 50);
201         path.lineTo(20, 50);
202         return path;
203     },
204 
__anon7111d3d00b02() 205     []() -> SkPath {
206         SkPath path;
207         path.moveTo(257.19439697265625f, 320.876617431640625f);
208         path.lineTo(190.113037109375f,   320.58978271484375f);
209         path.lineTo(203.64404296875f,    293.8145751953125f);
210         path.moveTo(203.357177734375f,   360.896026611328125f);
211         path.lineTo(216.88824462890625f, 334.120819091796875f);
212         path.lineTo(230.41925048828125f, 307.345611572265625f);
213         return path;
214     },
215 
216     // A degenerate segments case, where both upper and lower segments of
217     // a split edge must remain active.
__anon7111d3d00c02() 218     []() -> SkPath {
219         SkPath path;
220         path.moveTo(231.9331207275390625f, 306.2012939453125f);
221         path.lineTo(191.4859161376953125f, 306.04547119140625f);
222         path.lineTo(231.0659332275390625f, 300.2642822265625f);
223         path.moveTo(189.946807861328125f,  302.072265625f);
224         path.lineTo(179.79705810546875f,   294.859771728515625f);
225         path.lineTo(191.0016021728515625f, 296.165679931640625f);
226         path.moveTo(150.8942108154296875f, 304.900146484375f);
227         path.lineTo(179.708892822265625f,  297.849029541015625f);
228         path.lineTo(190.4742279052734375f, 299.11895751953125f);
229         return path;
230     },
231 
232     // Handle the case where edge.dist(edge.fTop) != 0.0.
__anon7111d3d00d02() 233     []() -> SkPath {
234         SkPath path;
235         path.moveTo(                  0.0f,  400.0f);
236         path.lineTo(                138.0f,  202.0f);
237         path.lineTo(                  0.0f,  202.0f);
238         path.moveTo( 12.62693023681640625f,  250.57464599609375f);
239         path.lineTo(  8.13896942138671875f,  254.556884765625f);
240         path.lineTo(-18.15641021728515625f,  220.40203857421875f);
241         path.lineTo(-15.986493110656738281f, 219.6513519287109375f);
242         path.moveTo( 36.931194305419921875f, 282.485504150390625f);
243         path.lineTo( 15.617521286010742188f, 261.2901611328125f);
244         path.lineTo( 10.3829498291015625f,   252.565765380859375f);
245         path.lineTo(-16.165292739868164062f, 222.646026611328125f);
246         return path;
247     },
248 
249     // A degenerate segments case which exercises inactive edges being
250     // made active by splitting.
__anon7111d3d00e02() 251     []() -> SkPath {
252         SkPath path;
253         path.moveTo(690.62127685546875f, 509.25555419921875f);
254         path.lineTo(99.336181640625f,    511.71405029296875f);
255         path.lineTo(708.362548828125f,   512.4349365234375f);
256         path.lineTo(729.9940185546875f,  516.3114013671875f);
257         path.lineTo(738.708984375f,      518.76995849609375f);
258         path.lineTo(678.3463134765625f,  510.0819091796875f);
259         path.lineTo(681.21795654296875f, 504.81378173828125f);
260         path.moveTo(758.52764892578125f, 521.55963134765625f);
261         path.lineTo(719.1549072265625f,  514.50372314453125f);
262         path.lineTo(689.59063720703125f, 512.0628662109375f);
263         path.lineTo(679.78216552734375f, 507.447845458984375f);
264         return path;
265     },
266 
267     // Tests vertices which become "orphaned" (ie., no connected edges)
268     // after simplification.
__anon7111d3d00f02() 269     []() -> SkPath {
270         SkPath path;
271         path.moveTo(217.326019287109375f, 166.4752960205078125f);
272         path.lineTo(226.279266357421875f, 170.929473876953125f);
273         path.lineTo(234.3973388671875f,   177.0623626708984375f);
274         path.lineTo(262.0921630859375f,   188.746124267578125f);
275         path.moveTo(196.23638916015625f,  174.0722198486328125f);
276         path.lineTo(416.15277099609375f,  180.138214111328125f);
277         path.lineTo(192.651947021484375f, 304.0228271484375f);
278         return path;
279     },
280 
__anon7111d3d01002() 281     []() -> SkPath {
282         SkPath path;
283         path.moveTo(    0.0f,   0.0f);
284         path.lineTo(10000.0f,   0.0f);
285         path.lineTo(    0.0f,  -1.0f);
286         path.lineTo(10000.0f,   0.000001f);
287         path.lineTo(    0.0f, -30.0f);
288         return path;
289     },
290 
291     // Reduction of Nebraska-StateSeal.svg. Floating point error causes the
292     // same edge to be added to more than one poly on the same side.
__anon7111d3d01102() 293     []() -> SkPath {
294         SkPath path;
295         path.moveTo(170.8199920654296875,   491.86700439453125);
296         path.lineTo(173.7649993896484375,    489.7340087890625);
297         path.lineTo(174.1450958251953125,  498.545989990234375);
298         path.lineTo( 171.998992919921875,   500.88201904296875);
299         path.moveTo(168.2922515869140625,   498.66265869140625);
300         path.lineTo(169.8589935302734375,   497.94500732421875);
301         path.lineTo(                 172,   500.88299560546875);
302         path.moveTo( 169.555267333984375,   490.70111083984375);
303         path.lineTo(173.7649993896484375,    489.7340087890625);
304         path.lineTo(  170.82000732421875,   491.86700439453125);
305         return path;
306     },
307 
308     // A shape with a vertex collinear to the right hand edge.
309     // This messes up find_enclosing_edges.
__anon7111d3d01202() 310     []() -> SkPath {
311         SkPath path;
312         path.moveTo(80, 20);
313         path.lineTo(80, 60);
314         path.lineTo(20, 60);
315         path.moveTo(80, 50);
316         path.lineTo(80, 80);
317         path.lineTo(20, 80);
318         return path;
319     },
320 
321     // Exercises the case where an edge becomes collinear with *two* of its
322     // adjacent neighbour edges after splitting.
323     // This is a reduction from
324     // http://mooooo.ooo/chebyshev-sine-approximation/horner_ulp.svg
__anon7111d3d01302() 325     []() -> SkPath {
326         SkPath path;
327         path.moveTo(  351.99298095703125,         348.23046875);
328         path.lineTo(  351.91876220703125,         347.33984375);
329         path.lineTo(  351.91876220703125,          346.1953125);
330         path.lineTo(  351.90313720703125,           347.734375);
331         path.lineTo(  351.90313720703125,          346.1328125);
332         path.lineTo(  351.87579345703125,         347.93359375);
333         path.lineTo(  351.87579345703125,           345.484375);
334         path.lineTo(  351.86407470703125,          347.7890625);
335         path.lineTo(  351.86407470703125,          346.2109375);
336         path.lineTo(  351.84844970703125,   347.63763427734375);
337         path.lineTo(  351.84454345703125,   344.19232177734375);
338         path.lineTo(  351.78204345703125,    346.9483642578125);
339         path.lineTo( 351.758636474609375,      347.18310546875);
340         path.lineTo(  351.75469970703125,               346.75);
341         path.lineTo(  351.75469970703125,            345.46875);
342         path.lineTo(         352.5546875,            345.46875);
343         path.lineTo(        352.55078125,         347.01953125);
344         path.lineTo(  351.75079345703125,   347.02313232421875);
345         path.lineTo(  351.74688720703125,   346.15203857421875);
346         path.lineTo(  351.74688720703125,  347.646148681640625);
347         path.lineTo(         352.5390625,         346.94140625);
348         path.lineTo(  351.73907470703125,   346.94268798828125);
349         path.lineTo(  351.73516845703125,   344.48565673828125);
350         path.lineTo(          352.484375,         346.73828125);
351         path.lineTo(  351.68438720703125,    346.7401123046875);
352         path.lineTo(         352.4765625,           346.546875);
353         path.lineTo(  351.67657470703125,   346.54937744140625);
354         path.lineTo(        352.47265625,         346.75390625);
355         path.lineTo(  351.67266845703125,  346.756622314453125);
356         path.lineTo(  351.66876220703125,  345.612091064453125);
357         return path;
358     },
359 
360     // A path which contains out-of-range colinear intersections.
__anon7111d3d01402() 361     []() -> SkPath {
362         SkPath path;
363         path.moveTo(                   0, 63.39080047607421875);
364         path.lineTo(-0.70804601907730102539, 63.14350128173828125);
365         path.lineTo(-7.8608899287380243391e-17, 64.14080047607421875);
366         path.moveTo(                   0, 64.14080047607421875);
367         path.lineTo(44.285900115966796875, 64.14080047607421875);
368         path.lineTo(                   0, 62.64080047607421875);
369         path.moveTo(21.434900283813476562, -0.24732701480388641357);
370         path.lineTo(-0.70804601907730102539, 63.14350128173828125);
371         path.lineTo(0.70804601907730102539,  63.6381988525390625);
372         return path;
373     },
374 
375     // A path which results in infs and nans when conics are converted to quads.
__anon7111d3d01502() 376     []() -> SkPath {
377          SkPath path;
378          path.moveTo(-2.20883e+37f, -1.02892e+37f);
379          path.conicTo(-2.00958e+38f, -9.36107e+37f, -1.7887e+38f, -8.33215e+37f, 0.707107f);
380          path.conicTo(-1.56782e+38f, -7.30323e+37f, 2.20883e+37f, 1.02892e+37f, 0.707107f);
381          path.conicTo(2.00958e+38f, 9.36107e+37f, 1.7887e+38f, 8.33215e+37f, 0.707107f);
382          path.conicTo(1.56782e+38f, 7.30323e+37f, -2.20883e+37f, -1.02892e+37f, 0.707107f);
383          return path;
384     },
385 
386     // A quad which generates a huge number of points (>2B) when uniformly
387     // linearized. This should not hang or OOM.
__anon7111d3d01602() 388     []() -> SkPath {
389         SkPath path;
390         path.moveTo(10, 0);
391         path.lineTo(0, 0);
392         path.quadTo(10, 0, 0, 8315084722602508288);
393         return path;
394     },
395 
396     // A path which hangs during simplification. It produces an edge which is
397     // to the left of its own endpoints, which causes an infinite loop in the
398     // right-enclosing-edge splitting.
__anon7111d3d01702() 399     []() -> SkPath {
400         SkPath path;
401         path.moveTo(0.75001740455627441406,     23.051967620849609375);
402         path.lineTo(5.8471612930297851562,      22.731662750244140625);
403         path.lineTo(10.749670028686523438,      22.253145217895507812);
404         path.lineTo(13.115868568420410156,      22.180681228637695312);
405         path.lineTo(15.418928146362304688,      22.340015411376953125);
406         path.lineTo(  17.654022216796875,       22.82159423828125);
407         path.lineTo(19.81632232666015625,       23.715869903564453125);
408         path.lineTo(40,                         0);
409         path.lineTo(5.5635203441547955577e-15,  0);
410         path.lineTo(5.5635203441547955577e-15,  47);
411         path.lineTo(-1.4210854715202003717e-14, 21.713298797607421875);
412         path.lineTo(0.75001740455627441406,     21.694292068481445312);
413         path.lineTo(0.75001740455627441406,     23.051967620849609375);
414         return path;
415     },
416 
417     // Reduction from skbug.com/7911 that causes a crash due to splitting a
418     // zombie edge.
__anon7111d3d01802() 419     []() -> SkPath {
420         SkPath path;
421         path.moveTo(                   0, 1.0927740941146660348e+24);
422         path.lineTo(2.9333931225865729333e+32,             16476101);
423         path.lineTo(1.0927731573659435417e+24, 1.0927740941146660348e+24);
424         path.lineTo(1.0927740941146660348e+24, 3.7616281094287041715e-37);
425         path.lineTo(1.0927740941146660348e+24, 1.0927740941146660348e+24);
426         path.lineTo(1.3061803026169399536e-33, 1.0927740941146660348e+24);
427         path.lineTo(4.7195362919941370727e-16, -8.4247545146051822591e+32);
428         return path;
429     },
430 
431     // From crbug.com/844873. Crashes trying to merge a zombie edge.
__anon7111d3d01902() 432     []() -> SkPath {
433         SkPath path;
434         path.moveTo( 316.000579833984375, -4338355948977389568);
435         path.lineTo(1.5069369808623501312e+20, 75180972320904708096.0);
436         path.lineTo(1.5069369808623501312e+20, 75180972320904708096.0);
437         path.lineTo(  771.21014404296875, -4338355948977389568.0);
438         path.lineTo( 316.000579833984375, -4338355948977389568.0);
439         path.moveTo(       354.208984375, -4338355948977389568.0);
440         path.lineTo(  773.00177001953125, -4338355948977389568.0);
441         path.lineTo(1.5069369808623501312e+20, 75180972320904708096.0);
442         path.lineTo(1.5069369808623501312e+20, 75180972320904708096.0);
443         path.lineTo(       354.208984375, -4338355948977389568.0);
444         return path;
445     },
446 
447     // From crbug.com/844873. Hangs repeatedly splitting alternate vertices.
__anon7111d3d01a02() 448     []() -> SkPath {
449         SkPath path;
450         path.moveTo(10, -1e+20f);
451         path.lineTo(11, 25000);
452         path.lineTo(10, 25000);
453         path.lineTo(11, 25010);
454         return path;
455     },
456 
457     // Reduction from circular_arcs_stroke_and_fill_round GM which
458     // repeatedly splits on the opposite edge from case 34 above.
__anon7111d3d01b02() 459     []() -> SkPath {
460         SkPath path;
461         path.moveTo(               16.25, 26.495191574096679688);
462         path.lineTo(32.420825958251953125, 37.377376556396484375);
463         path.lineTo(25.176382064819335938, 39.31851959228515625);
464         path.moveTo(                  20,                   20);
465         path.lineTo(28.847436904907226562, 37.940830230712890625);
466         path.lineTo(25.17638397216796875, 39.31851959228515625);
467         return path;
468     },
469 
470     // Reduction from crbug.com/843135 where an intersection is found
471     // below the bottom of both intersected edges.
__anon7111d3d01c02() 472     []() -> SkPath {
473         SkPath path;
474         path.moveTo(-2791476679359332352,  2608107002026524672);
475         path.lineTo(                   0, 11.95427703857421875);
476         path.lineTo(-2781824066779086848,  2599088532777598976);
477         path.lineTo(          -7772.6875,                 7274);
478         return path;
479     },
480 
481     // Reduction from crbug.com/843135. Exercises a case where an intersection is missed.
482     // This causes bad ordering in the active edge list.
__anon7111d3d01d02() 483     []() -> SkPath {
484         SkPath path;
485         path.moveTo(-1.0662557646016024569e+23, 9.9621425197286319718e+22);
486         path.lineTo(                -121806400,                 113805032);
487         path.lineTo(                -120098872,                 112209680);
488         path.lineTo( 6.2832999862817380468e-36,     2.9885697364807128906);
489         return path;
490     },
491 
492     // Reduction from crbug.com/851409. Exercises collinear last vertex.
__anon7111d3d01e02() 493     []() -> SkPath {
494         SkPath path;
495         path.moveTo(2072553216, 0);
496         path.lineTo(2072553216, 1);
497         path.lineTo(2072553472, -13.5);
498         path.lineTo(2072553216, 0);
499         path.lineTo(2072553472, -6.5);
500         return path;
501     },
502 
503     // Another reduction from crbug.com/851409. Exercises two sequential collinear edges.
__anon7111d3d01f02() 504     []() -> SkPath {
505         SkPath path;
506         path.moveTo(2072553216, 0);
507         path.lineTo(2072553216, 1);
508         path.lineTo(2072553472, -13);
509         path.lineTo(2072553216, 0);
510         path.lineTo(2072553472, -6);
511         path.lineTo(2072553472, -13);
512         return path;
513     },
514 
515     // Reduction from crbug.com/860655. Cause is three collinear edges discovered during
516     // sanitize_contours pass, before the vertices have been found coincident.
__anon7111d3d02002() 517     []() -> SkPath {
518         SkPath path;
519         path.moveTo(   32572426382475264,    -3053391034974208);
520         path.lineTo(           521289856,            -48865776);
521         path.lineTo(           130322464,            -12215873);
522         path.moveTo(   32572426382475264,    -3053391034974208);
523         path.lineTo(           521289856,            -48865776);
524         path.lineTo(           130322464,            -12215873);
525         path.moveTo(   32572426382475264,    -3053391034974208);
526         path.lineTo(   32114477642022912,    -3010462031544320);
527         path.lineTo(   32111784697528320,    -3010209702215680);
528         return path;
529     },
530 };
531 
532 #if defined(SK_GANESH)
533 
534 // A simple concave path. Test this with a non-invertible matrix.
create_path_17()535 static SkPath create_path_17() {
536     SkPath path;
537     path.moveTo(20, 20);
538     path.lineTo(80, 20);
539     path.lineTo(30, 30);
540     path.lineTo(20, 80);
541     return path;
542 }
543 
544 // An intersection above the first vertex in the mesh.
545 // Reduction from http://crbug.com/730687
create_path_20()546 static SkPath create_path_20() {
547     SkPath path;
548     path.moveTo(           2822128.5,  235.026336669921875);
549     path.lineTo(          2819349.25, 235.3623504638671875);
550     path.lineTo(          -340558688, 23.83478546142578125);
551     path.lineTo(          -340558752, 25.510419845581054688);
552     path.lineTo(          -340558720, 27.18605804443359375);
553     return path;
554 }
555 
556 // An intersection whose result is NaN (due to rounded-to-inf endpoint).
create_path_21()557 static SkPath create_path_21() {
558     SkPath path;
559     path.moveTo(1.7889142061167663539e+38, 39338463358011572224.0);
560     path.lineTo(  1647.4193115234375,       -522.603515625);
561     path.lineTo(    1677.74560546875,   -529.0028076171875);
562     path.lineTo(    1678.29541015625,   -528.7847900390625);
563     path.lineTo(  1637.5167236328125,  -519.79266357421875);
564     path.lineTo(  1647.4193115234375,       -522.603515625);
565     return path;
566 }
567 
568 // An edge collapse event which also collapses a neighbour, requiring
569 // its event to be removed.
create_path_25()570 static SkPath create_path_25() {
571     SkPath path;
572     path.moveTo( 43.44110107421875,  148.15106201171875);
573     path.lineTo( 44.64471435546875,  148.16748046875);
574     path.lineTo( 46.35009765625,     147.403076171875);
575     path.lineTo( 46.45404052734375,  148.34906005859375);
576     path.lineTo( 45.0400390625,      148.54205322265625);
577     path.lineTo( 44.624053955078125, 148.9810791015625);
578     path.lineTo( 44.59405517578125,  149.16107177734375);
579     path.lineTo( 44.877044677734375, 149.62005615234375);
580     path.lineTo(144.373016357421875,  68.8070068359375);
581     return path;
582 }
583 
584 // An edge collapse event causes an edge to become collinear, requiring
585 // its event to be removed.
create_path_26()586 static SkPath create_path_26() {
587     SkPath path;
588     path.moveTo( 43.44110107421875,  148.15106201171875);
589     path.lineTo( 44.64471435546875,  148.16748046875);
590     path.lineTo( 46.35009765625,     147.403076171875);
591     path.lineTo( 46.45404052734375,  148.34906005859375);
592     path.lineTo( 45.0400390625,      148.54205322265625);
593     path.lineTo( 44.624053955078125, 148.9810791015625);
594     path.lineTo( 44.59405517578125,  149.16107177734375);
595     path.lineTo( 44.877044677734375, 149.62005615234375);
596     path.lineTo(144.373016357421875,  68.8070068359375);
597     return path;
598 }
599 
600 // A path which results in non-finite points when stroked and bevelled for AA.
create_path_27()601 static SkPath create_path_27() {
602      SkPath path;
603      path.moveTo(8.5027233009104409507e+37, 1.7503381025241130639e+37);
604      path.lineTo(7.0923661737711584874e+37, 1.4600074517285415699e+37);
605      path.lineTo(7.0848733446033294691e+37, 1.4584649744781838604e+37);
606      path.lineTo(-2.0473916115129349496e+37, -4.2146796450364162012e+36);
607      path.lineTo(2.0473912312177548811e+37, 4.2146815465123165435e+36);
608      return path;
609 }
610 
611 // AA stroking this path produces intersection failures on bevelling.
612 // This should skip the point, but not assert.
create_path_28()613 static SkPath create_path_28() {
614     SkPath path;
615     path.moveTo(-7.5952312625177475154e+21, -2.6819185100266674911e+24);
616     path.lineTo(  1260.3787841796875,   1727.7947998046875);
617     path.lineTo(  1260.5567626953125,   1728.0386962890625);
618     path.lineTo(1.1482511310557754163e+21, 4.054538502765980051e+23);
619     path.lineTo(-7.5952312625177475154e+21, -2.6819185100266674911e+24);
620     return path;
621 }
622 
623 // A path with vertices which become infinite on AA stroking. Should not crash or assert.
create_path_31()624 static SkPath create_path_31() {
625     SkPath path;
626     path.moveTo(2.0257809259190991347e+36,  -1244080640);
627     path.conicTo(2.0257809259190991347e+36, -1244080640,
628                  2.0257809259190991347e+36, 0.10976474732160568237, 0.70710676908493041992);
629     path.lineTo(-10036566016, -1954718402215936);
630     path.conicTo(-1.1375507718551896064e+20, -1954721086570496,
631                  10036566016, -1954721086570496, 0.70710676908493041992);
632     return path;
633 }
634 
635 // Reduction from crbug.com/851914.
create_path_38()636 static SkPath create_path_38() {
637     SkPath path;
638     path.moveTo(14.400531768798828125, 17.711114883422851562);
639     path.lineTo(14.621990203857421875,   171563104293879808);
640     path.lineTo(14.027951240539550781,   872585759381520384);
641     path.lineTo( 14.0216827392578125,   872665817571917824);
642     path.lineTo(7.699314117431640625,    -3417320793833472);
643     path.moveTo(11.606547355651855469,       17.40966796875);
644     path.lineTo( 7642114886926860288, 21.08358001708984375);
645     path.lineTo(11.606547355651855469, 21.08358001708984375);
646     return path;
647 }
648 
649 // Reduction from crbug.com/860453. Tests a case where a "missing" intersection
650 // requires the active edge list to go out-of-order.
create_path_41()651 static SkPath create_path_41() {
652     SkPath path;
653     path.moveTo(72154931603311689728.0,   330.95965576171875);
654     path.lineTo(24053266013925408768.0,       78.11376953125);
655     path.lineTo(1.2031099003292404941e+20,  387.168731689453125);
656     path.lineTo(68859835992355373056.0,   346.55047607421875);
657     path.lineTo(76451708695451009024.0,     337.780029296875);
658     path.moveTo(-20815817797613387776.0, 18065700622522384384.0);
659     path.lineTo(-72144121204987396096.0,  142.855804443359375);
660     path.lineTo(72144121204987396096.0,  325.184783935546875);
661     path.lineTo(1.2347242901040791552e+20, 18065700622522384384.0);
662     return path;
663 }
664 
665 // Reduction from crbug.com/866319. Cause is edges that are collinear when tested from
666 // one side, but non-collinear when tested from the other.
create_path_43()667 static SkPath create_path_43() {
668     SkPath path;
669     path.moveTo(     307316821852160,      -28808363114496);
670     path.lineTo(     307165222928384,      -28794154909696);
671     path.lineTo(     307013691113472,      -28779948802048);
672     path.lineTo(     306862159298560,      -28765744791552);
673     path.lineTo(     306870313025536,      -28766508154880);
674     path.lineTo(     307049695019008,      -28783327313920);
675     path.lineTo(     307408660332544,      -28816974020608);
676     return path;
677 }
678 
679 // Reduction from crbug.com/966696
create_path_44()680 static SkPath create_path_44() {
681     SkPath path;
682     path.moveTo(114.4606170654296875,       186.443878173828125);
683     path.lineTo( 91.5394744873046875,       185.4189453125);
684     path.lineTo(306.45538330078125,        3203.986083984375);
685     path.moveTo(16276206965409972224.0,     815.59393310546875);
686     path.lineTo(-3.541605062372533207e+20,  487.7236328125);
687     path.lineTo(-3.541605062372533207e+20,  168.204071044921875);
688     path.lineTo(16276206965409972224.0,     496.07427978515625);
689     path.moveTo(-3.541605062372533207e+20,  167.00958251953125);
690     path.lineTo(-3.541605062372533207e+20,  488.32086181640625);
691     path.lineTo(16276206965409972224.0,     816.78839111328125);
692     path.lineTo(16276206965409972224.0,     495.47705078125);
693     return path;
694 }
695 
696 // Reduction from crbug.com/966274.
create_path_45()697 static SkPath create_path_45() {
698     SkPath path;
699     path.moveTo(        706471854080,         379003666432);
700     path.lineTo(        706503180288,         379020443648);
701     path.lineTo(        706595717120,         379070087168);
702     path.lineTo(        706626060288,         379086372864);
703     path.lineTo(        706656141312,         379102527488);
704     path.lineTo(        706774171648,         379165835264);
705     path.lineTo(        706803073024,         379181334528);
706     path.lineTo(        706831712256,         379196702720);
707     path.lineTo(        706860154880,         379211939840);
708     path.lineTo(        706888335360,         379227078656);
709     path.lineTo(        706916253696,         379242053632);
710     path.lineTo(        706956820480,         379263811584);
711     path.lineTo(        706929098752,         379248934912);
712     path.lineTo(        706901114880,         379233927168);
713     path.lineTo(        706872934400,         379218821120);
714     path.lineTo(        706844491776,         379203551232);
715     path.lineTo(        706815787008,         379188183040);
716     path.lineTo(        706786885632,         379172651008);
717     path.lineTo(        706757722112,         379156987904);
718     path.lineTo(        706728296448,         379141226496);
719     path.lineTo(        706698608640,         379125301248);
720     path.lineTo(        706668724224,         379109244928);
721     path.lineTo(        706638577664,         379093090304);
722     path.lineTo(        706608168960,         379076771840);
723     path.lineTo(        706484174848,         379010252800);
724     return path;
725 }
726 
727 // Reduction from crbug.com/969359. Inf generated by intersections
728 // causes NaN in subsequent intersections, leading to assert or hang.
729 
create_path_46()730 static SkPath create_path_46() {
731     SkPath path;
732     path.moveTo(1.0321827899075254821e+37, -5.1199920965387697886e+37);
733     path.lineTo(-1.0321827899075254821e+37, 5.1199920965387697886e+37);
734     path.lineTo(-1.0425214946728668754e+37, 4.5731834042267216669e+37);
735     path.moveTo(-9.5077331762291841872e+36, 8.1304868292377430302e+37);
736     path.lineTo(9.5077331762291841872e+36, -8.1304868292377430302e+37);
737     path.lineTo(1.0795449417808426232e+37, 1.2246856113744539311e+37);
738     path.moveTo(-165.8018341064453125,           -44.859375);
739     path.lineTo(-9.558702871563160835e+36, -7.9814405281448285475e+37);
740     path.lineTo(-9.4147814283168490381e+36, -8.3935116522790983488e+37);
741     return path;
742 }
743 
744 // Reduction from crbug.com/1245359
create_path_47()745 static SkPath create_path_47() {
746     SkPath path;
747     path.setFillType(SkPathFillType::kWinding);
748     path.moveTo(SkBits2Float(0xdfb80000), SkBits2Float(0x4cb9b4a5)); // -2.65172e+19f,  9.73632e+07f
749     path.lineTo(SkBits2Float(0xdfb80000), SkBits2Float(0xe396b530)); // -2.65172e+19f, -5.56014e+21f
750     path.lineTo(SkBits2Float(0x5fb80000), SkBits2Float(0xe396b530)); //  2.65172e+19f, -5.56014e+21f
751     path.lineTo(SkBits2Float(0x5fb80000), SkBits2Float(0x6396b530)); //  2.65172e+19f,  5.56014e+21f
752     path.lineTo(SkBits2Float(0x4cc07742), SkBits2Float(0x6396b530)); //  1.00908e+08f,  5.56014e+21f
753     path.lineTo(SkBits2Float(0xdfb80000), SkBits2Float(0x6396b530)); // -2.65172e+19f,  5.56014e+21f
754     path.lineTo(SkBits2Float(0xdfb80000), SkBits2Float(0xe396b530)); // -2.65172e+19f, -5.56014e+21f
755     path.lineTo(SkBits2Float(0x4cc07742), SkBits2Float(0xe396b530)); //  1.00908e+08f, -5.56014e+21f
756     path.lineTo(SkBits2Float(0x4cc079c8), SkBits2Float(0xe396b530)); //  1.00913e+08f, -5.56014e+21f
757     path.lineTo(SkBits2Float(0x4cc079c8), SkBits2Float(0x4cb9b4a5)); //  1.00913e+08f,  9.73632e+07f
758     path.lineTo(SkBits2Float(0xdfb80000), SkBits2Float(0x4cb9b4a5)); // -2.65172e+19f,  9.73632e+07f
759     path.lineTo(SkBits2Float(0xdfb80000), SkBits2Float(0x4cb74d74)); // -2.65172e+19f,  9.61033e+07f
760     path.lineTo(SkBits2Float(0x4cc079c8), SkBits2Float(0x4cb74d74)); //  1.00913e+08f,  9.61033e+07f
761     path.lineTo(SkBits2Float(0x4cc079c8), SkBits2Float(0x6396b530)); //  1.00913e+08f,  5.56014e+21f
762     path.lineTo(SkBits2Float(0x4cc07742), SkBits2Float(0x6396b530)); //  1.00908e+08f,  5.56014e+21f
763     path.lineTo(SkBits2Float(0x4cc07742), SkBits2Float(0x4cb74d74)); //  1.00908e+08f,  9.61033e+07f
764     path.lineTo(SkBits2Float(0x5fb80000), SkBits2Float(0x4cb74d74)); //  2.65172e+19f,  9.61033e+07f
765     path.lineTo(SkBits2Float(0x5fb80000), SkBits2Float(0x6396b530)); //  2.65172e+19f,  5.56014e+21f
766     path.lineTo(SkBits2Float(0xdfb80000), SkBits2Float(0x6396b530)); // -2.65172e+19f,  5.56014e+21f
767     path.lineTo(SkBits2Float(0xdfb80000), SkBits2Float(0x4cb9b4a5)); // -2.65172e+19f,  9.73632e+07f
768     path.close();
769 
770     path.moveTo(SkBits2Float(0xdfb39e51), SkBits2Float(0xe282c5bd)); // -2.58857e+19f, -1.20616e+21f
771     path.lineTo(SkBits2Float(0xdf8a47ec), SkBits2Float(0xe3b90de5)); // -1.99284e+19f, -6.8273e+21f
772     path.lineTo(SkBits2Float(0x5eb8b548), SkBits2Float(0xe391e278)); //  6.65481e+18f, -5.38219e+21f
773     path.quadTo(SkBits2Float(0x5eaa9855), SkBits2Float(0xe392a246),  //  6.14633e+18f, -5.40984e+21f
774                 SkBits2Float(0x5e9c5925), SkBits2Float(0xe39344a0)); //  5.63304e+18f, -5.43323e+21f
775     path.quadTo(SkBits2Float(0x5e89eefd), SkBits2Float(0xe3941678),  //  4.96958e+18f, -5.46347e+21f
776                 SkBits2Float(0x5e6ead5a), SkBits2Float(0xe394b6a4)); //  4.29963e+18f, -5.48656e+21f
777     path.quadTo(SkBits2Float(0x5e6c0307), SkBits2Float(0xe394c21f),  //  4.25161e+18f, -5.48821e+21f
778                 SkBits2Float(0x5e694ef2), SkBits2Float(0xe394cd7f)); //  4.20291e+18f, -5.48985e+21f
779     path.quadTo(SkBits2Float(0x5e67eeaa), SkBits2Float(0xe394d349),  //  4.17812e+18f, -5.49069e+21f
780                 SkBits2Float(0x5e669614), SkBits2Float(0xe394d8e2)); //  4.15387e+18f, -5.49149e+21f
781     path.quadTo(SkBits2Float(0x5e6534d4), SkBits2Float(0xe394de9e),  //  4.12901e+18f, -5.49232e+21f
782                 SkBits2Float(0x5e63d6a7), SkBits2Float(0xe394e43c)); //  4.10437e+18f, -5.49313e+21f
783     path.quadTo(SkBits2Float(0x5e610d59), SkBits2Float(0xe394efad),  //  4.05418e+18f, -5.49478e+21f
784                 SkBits2Float(0x5e5e43cb), SkBits2Float(0xe394fad6)); //  4.00397e+18f, -5.49639e+21f
785     path.quadTo(SkBits2Float(0x5e5b6ac0), SkBits2Float(0xe395063d),  //  3.95267e+18f, -5.49803e+21f
786                 SkBits2Float(0x5e5895ab), SkBits2Float(0xe3951148)); //  3.90164e+18f, -5.49962e+21f
787     path.quadTo(SkBits2Float(0x5e55b52e), SkBits2Float(0xe3951c7f),  //  3.84982e+18f, -5.50124e+21f
788                 SkBits2Float(0x5e52cb8e), SkBits2Float(0xe395278b)); //  3.79735e+18f, -5.50283e+21f
789     path.quadTo(SkBits2Float(0x5e514f61), SkBits2Float(0xe3952d2d),  //  3.7706e+18f,  -5.50364e+21f
790                 SkBits2Float(0x5e4fdbc5), SkBits2Float(0xe395329a)); //  3.74445e+18f, -5.50442e+21f
791     path.lineTo(SkBits2Float(0x5e4fdbc5), SkBits2Float(0xe395329a)); //  3.74445e+18f, -5.50442e+21f
792     path.lineTo(SkBits2Float(0x5e4fdbc5), SkBits2Float(0xe395329a)); //  3.74445e+18f, -5.50442e+21f
793     path.lineTo(SkBits2Float(0x5e4fdbc5), SkBits2Float(0xe395329a)); //  3.74445e+18f, -5.50442e+21f
794     path.lineTo(SkBits2Float(0x5e4fdbc5), SkBits2Float(0xe395329a)); //  3.74445e+18f, -5.50442e+21f
795     path.lineTo(SkBits2Float(0x5e4fdbc5), SkBits2Float(0xe395329a)); //  3.74445e+18f, -5.50442e+21f
796     path.lineTo(SkBits2Float(0x5e4fdbc5), SkBits2Float(0xe395329a)); //  3.74445e+18f, -5.50442e+21f
797     path.lineTo(SkBits2Float(0x5e4fdbc5), SkBits2Float(0xe395329a)); //  3.74445e+18f, -5.50442e+21f
798     path.lineTo(SkBits2Float(0x5e4fdbc5), SkBits2Float(0xe395329a)); //  3.74445e+18f, -5.50442e+21f
799     path.lineTo(SkBits2Float(0x5e4fdbc5), SkBits2Float(0xe395329a)); //  3.74445e+18f, -5.50442e+21f
800     path.lineTo(SkBits2Float(0xdfb80000), SkBits2Float(0xe396b530)); // -2.65172e+19f, -5.56014e+21f
801     path.lineTo(SkBits2Float(0x5fb80000), SkBits2Float(0xe396b530)); //  2.65172e+19f, -5.56014e+21f
802     path.lineTo(SkBits2Float(0x5fb80000), SkBits2Float(0x4cc8d35d)); //  2.65172e+19f,  1.0529e+08f
803     path.lineTo(SkBits2Float(0xdfe2ba48), SkBits2Float(0x63512f2f)); // -3.26749e+19f,  3.85877e+21f
804     path.lineTo(SkBits2Float(0xdf7f64f6), SkBits2Float(0xe3b9b457)); // -1.84031e+19f, -6.85129e+21f
805     path.lineTo(SkBits2Float(0xdfb80000), SkBits2Float(0x4cc8d35d)); // -2.65172e+19f,  1.0529e+08f
806     path.lineTo(SkBits2Float(0xdfb80000), SkBits2Float(0x4cbbf2a2)); // -2.65172e+19f,  9.85388e+07f
807     path.lineTo(SkBits2Float(0x4cc079c8), SkBits2Float(0x4cbbf2a2)); //  1.00913e+08f,  9.85388e+07f
808     path.lineTo(SkBits2Float(0x4cc079c8), SkBits2Float(0x6396b530)); //  1.00913e+08f,  5.56014e+21f
809     path.lineTo(SkBits2Float(0x4cc07742), SkBits2Float(0x6396b530)); //  1.00908e+08f,  5.56014e+21f
810     path.lineTo(SkBits2Float(0x4cc07742), SkBits2Float(0x4cbbf2a2)); //  1.00908e+08f,  9.85388e+07f
811     path.lineTo(SkBits2Float(0x5fb80000), SkBits2Float(0x4cbbf2a2)); //  2.65172e+19f,  9.85388e+07f
812     path.lineTo(SkBits2Float(0xdeb8b548), SkBits2Float(0x6391e278)); // -6.65481e+18f,  5.38219e+21f
813     path.lineTo(SkBits2Float(0x4cc07488), SkBits2Float(0x4ccb2302)); //  1.00902e+08f,  1.06502e+08f
814     path.lineTo(SkBits2Float(0x5fb39e51), SkBits2Float(0x6282c5bd)); //  2.58857e+19f,  1.20616e+21f
815     path.lineTo(SkBits2Float(0x5fb39e51), SkBits2Float(0x6282c5bd)); //  2.58857e+19f,  1.20616e+21f
816     path.lineTo(SkBits2Float(0x5f8bb406), SkBits2Float(0x63b3cfe4)); //  2.01334e+19f,  6.63389e+21f
817     path.lineTo(SkBits2Float(0xdfdb889b), SkBits2Float(0x6364da0b)); // -3.16381e+19f,  4.22157e+21f
818     path.lineTo(SkBits2Float(0xdfb39e51), SkBits2Float(0xe282c5bd)); // -2.58857e+19f, -1.20616e+21f
819     path.close();
820     return path;
821 }
822 
823 static std::unique_ptr<GrFragmentProcessor>
create_linear_gradient_processor(GrRecordingContext * rContext,const SkMatrix & ctm)824 create_linear_gradient_processor(GrRecordingContext* rContext, const SkMatrix& ctm) {
825     SkPoint pts[2] = { {0, 0}, {1, 1} };
826     SkColor colors[2] = { SK_ColorGREEN, SK_ColorBLUE };
827     sk_sp<SkShader> shader = SkGradientShader::MakeLinear(
828         pts, colors, nullptr, std::size(colors), SkTileMode::kClamp);
829     GrColorInfo colorInfo(GrColorType::kRGBA_8888, kPremul_SkAlphaType, nullptr);
830     SkSurfaceProps props; // default props for testing
831     return as_SB(shader)->asRootFragmentProcessor({rContext, &colorInfo, props}, ctm);
832 }
833 
test_path(GrRecordingContext * rContext,skgpu::v1::SurfaceDrawContext * sdc,const SkPath & path,const SkMatrix & matrix=SkMatrix::I (),GrAAType aaType=GrAAType::kNone,std::unique_ptr<GrFragmentProcessor> fp=nullptr)834 static void test_path(GrRecordingContext* rContext,
835                       skgpu::v1::SurfaceDrawContext* sdc,
836                       const SkPath& path,
837                       const SkMatrix& matrix = SkMatrix::I(),
838                       GrAAType aaType = GrAAType::kNone,
839                       std::unique_ptr<GrFragmentProcessor> fp = nullptr) {
840     skgpu::v1::TriangulatingPathRenderer pr;
841     pr.setMaxVerbCount(100);
842 
843     GrPaint paint;
844     paint.setXPFactory(GrPorterDuffXPFactory::Get(SkBlendMode::kSrc));
845     if (fp) {
846         paint.setColorFragmentProcessor(std::move(fp));
847     }
848 
849     SkIRect clipConservativeBounds = SkIRect::MakeWH(sdc->width(), sdc->height());
850     GrStyle style(SkStrokeRec::kFill_InitStyle);
851     GrStyledShape shape(path, style);
852     skgpu::v1::PathRenderer::DrawPathArgs args{rContext,
853                                                std::move(paint),
854                                                &GrUserStencilSettings::kUnused,
855                                                sdc,
856                                                nullptr,
857                                                &clipConservativeBounds,
858                                                &matrix,
859                                                &shape,
860                                                aaType,
861                                                false};
862     pr.drawPath(args);
863 }
864 
DEF_GANESH_TEST_FOR_ALL_CONTEXTS(TriangulatingPathRendererTests,reporter,ctxInfo,CtsEnforcement::kNever)865 DEF_GANESH_TEST_FOR_ALL_CONTEXTS(TriangulatingPathRendererTests,
866                                  reporter,
867                                  ctxInfo,
868                                  CtsEnforcement::kNever) {
869     auto ctx = ctxInfo.directContext();
870     auto sdc = skgpu::v1::SurfaceDrawContext::Make(
871             ctx, GrColorType::kRGBA_8888, nullptr, SkBackingFit::kApprox, {800, 800},
872             SkSurfaceProps(),/*label=*/{}, 1, GrMipmapped::kNo, GrProtected::kNo,
873             kTopLeft_GrSurfaceOrigin);
874     if (!sdc) {
875         return;
876     }
877 
878     ctx->flushAndSubmit();
879     // Adding discard to appease vulkan validation warning about loading uninitialized data on draw
880     sdc->discard();
881 
882     for (CreatePathFn createPath : kNonEdgeAAPaths) {
883         test_path(ctx, sdc.get(), createPath());
884     }
885     SkMatrix nonInvertibleMatrix = SkMatrix::Scale(0, 0);
886     std::unique_ptr<GrFragmentProcessor> fp(create_linear_gradient_processor(ctx, SkMatrix()));
887     test_path(ctx, sdc.get(), create_path_17(), nonInvertibleMatrix, GrAAType::kCoverage,
888               std::move(fp));
889     test_path(ctx, sdc.get(), create_path_20(), SkMatrix(), GrAAType::kCoverage);
890     test_path(ctx, sdc.get(), create_path_21(), SkMatrix(), GrAAType::kCoverage);
891     test_path(ctx, sdc.get(), create_path_25(), SkMatrix(), GrAAType::kCoverage);
892     test_path(ctx, sdc.get(), create_path_26(), SkMatrix(), GrAAType::kCoverage);
893     test_path(ctx, sdc.get(), create_path_27(), SkMatrix(), GrAAType::kCoverage);
894     test_path(ctx, sdc.get(), create_path_28(), SkMatrix(), GrAAType::kCoverage);
895     test_path(ctx, sdc.get(), create_path_31(), SkMatrix(), GrAAType::kCoverage);
896     test_path(ctx, sdc.get(), create_path_38(), SkMatrix(), GrAAType::kCoverage);
897     test_path(ctx, sdc.get(), create_path_41(), SkMatrix(), GrAAType::kCoverage);
898     test_path(ctx, sdc.get(), create_path_43(), SkMatrix(), GrAAType::kCoverage);
899     test_path(ctx, sdc.get(), create_path_44(), SkMatrix(), GrAAType::kCoverage);
900     test_path(ctx, sdc.get(), create_path_45(), SkMatrix(), GrAAType::kCoverage);
901     test_path(ctx, sdc.get(), create_path_46(), SkMatrix(), GrAAType::kCoverage);
902     test_path(ctx, sdc.get(), create_path_47(), SkMatrix(), GrAAType::kCoverage);
903 }
904 
905 #endif // defined(SK_GANESH)
906 
907 namespace {
908 
909 class SimpleVertexAllocator : public GrEagerVertexAllocator {
910 public:
lock(size_t stride,int eagerCount)911     void* lock(size_t stride, int eagerCount) override {
912         SkASSERT(!fPoints);
913         SkASSERT(stride == sizeof(SkPoint));
914         fPoints.reset(eagerCount);
915         return fPoints;
916     }
unlock(int actualCount)917     void unlock(int actualCount) override {}
operator [](int idx) const918     SkPoint operator[](int idx) const { return fPoints[idx]; }
919     AutoTMalloc<SkPoint> fPoints;
920 };
921 
922 class SimplerVertexAllocator : public GrEagerVertexAllocator {
923 public:
lock(size_t stride,int eagerCount)924     void* lock(size_t stride, int eagerCount) override {
925         size_t allocSize = eagerCount * stride;
926         if (allocSize > fVertexAllocSize) {
927             fVertexData.reset(allocSize);
928         }
929         return fVertexData;
930     }
931 
unlock(int)932     void unlock(int) override {}
933 
934     AutoTMalloc<char> fVertexData;
935     size_t fVertexAllocSize = 0;
936 };
937 
938 }  // namespace
939 
940 struct Edge {
reverseEdge941     Edge reverse() const { return {fP1, fP0}; }
942     SkPoint fP0, fP1;
943 };
944 
operator <(const Edge & a,const Edge & b)945 static bool operator<(const Edge& a, const Edge& b) {
946     if (a.fP0.fX != b.fP0.fX) {
947         return a.fP0.fX < b.fP0.fX;
948     }
949     if (a.fP0.fY != b.fP0.fY) {
950         return a.fP0.fY < b.fP0.fY;
951     }
952     if (a.fP1.fX != b.fP1.fX) {
953         return a.fP1.fX < b.fP1.fX;
954     }
955     if (a.fP1.fY != b.fP1.fY) {
956         return a.fP1.fY < b.fP1.fY;
957     }
958     return false;
959 }
960 
961 using EdgeMap = std::map<Edge, int>;
962 
add_edge(EdgeMap & edgeMap,SkPoint p0,SkPoint p1)963 static void add_edge(EdgeMap& edgeMap, SkPoint p0, SkPoint p1) {
964     Edge edge{p0, p1};
965     // First check if this edge already exists in reverse.
966     auto reverseIter = edgeMap.find(edge.reverse());
967     if (reverseIter != edgeMap.end()) {
968         --reverseIter->second;
969     } else {
970         ++edgeMap[edge];
971     }
972 }
973 
add_tri_edges(skiatest::Reporter * r,EdgeMap & edgeMap,const SkPoint pts[3])974 static void add_tri_edges(skiatest::Reporter* r, EdgeMap& edgeMap, const SkPoint pts[3]) {
975     for (int i = 0; i < 3; ++i) {
976         SkPoint p0=pts[i], p1=pts[(i+1)%3];
977         // The triangulator shouldn't output degenerate triangles.
978         REPORTER_ASSERT(r, p0 != p1);
979         add_edge(edgeMap, p0, p1);
980     }
981 }
982 
simplify(const EdgeMap & edges,SkPathFillType fillType)983 static EdgeMap simplify(const EdgeMap& edges, SkPathFillType fillType) {
984     // Prune out the edges whose count went to zero, and reverse the edges whose count is negative.
985     EdgeMap simplifiedEdges;
986     for (auto [edge, count] : edges) {
987         // We should only have one ordering of any given edge.
988         SkASSERT(edges.find(edge.reverse()) == edges.end());
989         if (fillType == SkPathFillType::kEvenOdd) {
990             count = abs(count) & 1;
991         }
992         if (count > 0) {
993             simplifiedEdges[edge] = count;
994         } else if (count < 0) {
995             simplifiedEdges[edge.reverse()] = -count;
996         }
997     }
998     return simplifiedEdges;
999 }
1000 
verify_simple_inner_polygons(skiatest::Reporter * r,const char * shapeName,SkPath path)1001 static void verify_simple_inner_polygons(skiatest::Reporter* r, const char* shapeName,
1002                                          SkPath path) {
1003     for (auto fillType : {SkPathFillType::kWinding}) {
1004         path.setFillType(fillType);
1005         SkArenaAlloc arena(GrTriangulator::kArenaDefaultChunkSize);
1006         GrInnerFanTriangulator::BreadcrumbTriangleList breadcrumbs;
1007         SimpleVertexAllocator vertexAlloc;
1008         int vertexCount;
1009         {
1010             bool isLinear;
1011             GrInnerFanTriangulator triangulator(path, &arena);
1012             vertexCount = triangulator.pathToTriangles(&vertexAlloc, &breadcrumbs, &isLinear);
1013         }
1014 
1015         // Count up all the triangulated edges.
1016         EdgeMap trianglePlusBreadcrumbEdges;
1017         for (int i = 0; i < vertexCount; i += 3) {
1018             add_tri_edges(r, trianglePlusBreadcrumbEdges, vertexAlloc.fPoints.data() + i);
1019         }
1020         // Count up all the breadcrumb edges.
1021         int breadcrumbCount = 0;
1022         for (const auto* node = breadcrumbs.head(); node; node = node->fNext) {
1023             add_tri_edges(r, trianglePlusBreadcrumbEdges, node->fPts);
1024             ++breadcrumbCount;
1025         }
1026         REPORTER_ASSERT(r, breadcrumbCount == breadcrumbs.count());
1027         // The triangulated + breadcrumb edges should cancel out to the inner polygon edges.
1028         trianglePlusBreadcrumbEdges = simplify(trianglePlusBreadcrumbEdges, path.getFillType());
1029 
1030         // Build the inner polygon edges.
1031         EdgeMap innerFanEdges;
1032         SkPoint startPoint{}, lastPoint{};
1033         for (auto [verb, pts, w] : SkPathPriv::Iterate(path)) {
1034             switch (verb) {
1035                 case SkPathVerb::kMove:
1036                     if (lastPoint != startPoint) {
1037                         add_edge(innerFanEdges, lastPoint, startPoint);
1038                     }
1039                     lastPoint = startPoint = pts[0];
1040                     continue;
1041                 case SkPathVerb::kClose:
1042                     lastPoint = startPoint;
1043                     break;
1044                 case SkPathVerb::kLine:
1045                     lastPoint = pts[1];
1046                     break;
1047                 case SkPathVerb::kQuad:
1048                 case SkPathVerb::kConic:
1049                     lastPoint = pts[2];
1050                     break;
1051                 case SkPathVerb::kCubic:
1052                     lastPoint = pts[3];
1053                     break;
1054             }
1055             if (pts[0] != lastPoint) {
1056                 add_edge(innerFanEdges, pts[0], lastPoint);
1057             }
1058         }
1059         if (lastPoint != startPoint) {
1060             add_edge(innerFanEdges, lastPoint, startPoint);
1061         }
1062         innerFanEdges = simplify(innerFanEdges, path.getFillType());
1063 
1064         // The triangulated + breadcrumb edges should cancel out to the inner polygon edges. First
1065         // verify that every inner polygon edge can be found in the triangulation.
1066         for (auto [edge, count] : innerFanEdges) {
1067             auto it = trianglePlusBreadcrumbEdges.find(edge);
1068             if (it != trianglePlusBreadcrumbEdges.end()) {
1069                 it->second -= count;
1070                 if (it->second == 0) {
1071                     trianglePlusBreadcrumbEdges.erase(it);
1072                 }
1073                 continue;
1074             }
1075             it = trianglePlusBreadcrumbEdges.find(edge.reverse());
1076             if (it != trianglePlusBreadcrumbEdges.end()) {
1077                 it->second += count;
1078                 if (it->second == 0) {
1079                     trianglePlusBreadcrumbEdges.erase(it);
1080                 }
1081                 continue;
1082             }
1083             ERRORF(r, "error: %s: edge [%g,%g]:[%g,%g] not found in triangulation.",
1084                    shapeName, edge.fP0.fX, edge.fP0.fY, edge.fP1.fX, edge.fP1.fY);
1085             return;
1086         }
1087         // Now verify that there are no spurious edges in the triangulation.
1088         //
1089         // NOTE: The triangulator's definition of wind isn't always correct for edges that run
1090         // exactly parallel to the sweep (either vertical or horizontal edges). This doesn't
1091         // actually matter though because T-junction artifacts don't happen on axis-aligned edges.
1092         // Tolerate spurious edges that (1) come in pairs of 2, and (2) are either exactly
1093         // horizontal or exactly vertical exclusively.
1094         bool hasSpuriousHorz=false, hasSpuriousVert=false;
1095         for (auto [edge, count] : trianglePlusBreadcrumbEdges) {
1096             if (count % 2 == 0) {
1097                 if (edge.fP0.fX == edge.fP1.fX && !hasSpuriousVert) {
1098                     hasSpuriousHorz = true;
1099                     continue;
1100                 }
1101                 if (edge.fP0.fY == edge.fP1.fY && !hasSpuriousHorz) {
1102                     hasSpuriousVert = true;
1103                     continue;
1104                 }
1105             }
1106             ERRORF(r, "error: %s: spurious edge [%g,%g]:[%g,%g] found in triangulation.",
1107                    shapeName, edge.fP0.fX, edge.fP0.fY, edge.fP1.fX, edge.fP1.fY);
1108             return;
1109         }
1110     }
1111 }
1112 
DEF_TEST(GrInnerFanTriangulator,r)1113 DEF_TEST(GrInnerFanTriangulator, r) {
1114     verify_simple_inner_polygons(r, "simple triangle", SkPath().lineTo(1,0).lineTo(0,1));
1115     verify_simple_inner_polygons(r, "simple square", SkPath().lineTo(1,0).lineTo(1,1).lineTo(0,1));
1116     verify_simple_inner_polygons(r,  "concave polygon", SkPath()
1117             .lineTo(1,0).lineTo(.5f,.5f).lineTo(1,1).lineTo(0,1));
1118     verify_simple_inner_polygons(r, "double wound triangle", SkPath()
1119             .lineTo(1,0).lineTo(0,1).lineTo(0,0).lineTo(1,0).lineTo(0,1));
1120     verify_simple_inner_polygons(r, "self-intersecting bowtie", SkPath()
1121             .lineTo(1,0).lineTo(0,1).lineTo(1,1));
1122     verify_simple_inner_polygons(r, "asymmetrical bowtie", SkPath()
1123             .lineTo(1,0).lineTo(0,1).lineTo(.1f,-.1f));
1124     verify_simple_inner_polygons(r, "bowtie with extremely small section", SkPath()
1125             .lineTo(1,0).lineTo(0,1).lineTo(1e-6f,-1e-6f));
1126     verify_simple_inner_polygons(r, "intersecting squares", SkPath()
1127             .lineTo(1,0).lineTo(1,1).lineTo(0,1)
1128             .moveTo(.5f,.5f).lineTo(1.5f,.5f).lineTo(1.5f,1.5f).lineTo(.5f,1.5f).close());
1129     verify_simple_inner_polygons(r, "6-point \"Star of David\"", SkPath()
1130             .moveTo(cosf(-SK_ScalarPI/3), sinf(-SK_ScalarPI/3))
1131             .lineTo(cosf(SK_ScalarPI/3), sinf(SK_ScalarPI/3))
1132             .lineTo(cosf(SK_ScalarPI), sinf(SK_ScalarPI))
1133             .moveTo(cosf(0), sinf(0))
1134             .lineTo(cosf(2*SK_ScalarPI/3), sinf(2*SK_ScalarPI/3))
1135             .lineTo(cosf(-2*SK_ScalarPI/3), sinf(-2*SK_ScalarPI/3)));
1136     verify_simple_inner_polygons(r, "double wound \"Star of David\"", SkPath()
1137             .moveTo(cosf(-SK_ScalarPI/3), sinf(-SK_ScalarPI/3))
1138             .lineTo(cosf(SK_ScalarPI/3), sinf(SK_ScalarPI/3))
1139             .lineTo(cosf(SK_ScalarPI), sinf(SK_ScalarPI))
1140             .lineTo(cosf(-SK_ScalarPI/3), sinf(-SK_ScalarPI/3))
1141             .lineTo(cosf(SK_ScalarPI/3), sinf(SK_ScalarPI/3))
1142             .lineTo(cosf(SK_ScalarPI), sinf(SK_ScalarPI))
1143             .moveTo(cosf(0), sinf(0))
1144             .lineTo(cosf(2*SK_ScalarPI/3), sinf(2*SK_ScalarPI/3))
1145             .lineTo(cosf(-2*SK_ScalarPI/3), sinf(-2*SK_ScalarPI/3)));
1146     verify_simple_inner_polygons(r, "5-point star", ToolUtils::make_star(SkRect::MakeWH(100, 200)));
1147     verify_simple_inner_polygons(r, "\"pointy\" intersecting triangles", SkPath()
1148             .moveTo(0,-100).lineTo(-1e-6f,100).lineTo(1e-6f,100)
1149             .moveTo(-100,0).lineTo(100,1e-6f).lineTo(100,-1e-6f));
1150     verify_simple_inner_polygons(r, "overlapping rects with vertical collinear edges", SkPath()
1151             .moveTo(0,0).lineTo(0,2).lineTo(1,2).lineTo(1,0)
1152             .moveTo(0,1).lineTo(0,3).lineTo(1,3).lineTo(1,1));
1153     verify_simple_inner_polygons(r, "overlapping rects with horizontal collinear edges", SkPath()
1154             .lineTo(2,0).lineTo(2,1).lineTo(0,1)
1155             .moveTo(1,0).lineTo(3,0).lineTo(3,1).lineTo(1,1).close());
1156     for (int i = 0; i < (int)std::size(kNonEdgeAAPaths); ++i) {
1157         verify_simple_inner_polygons(r, SkStringPrintf("kNonEdgeAAPaths[%i]", i).c_str(),
1158                                      kNonEdgeAAPaths[i]());
1159     }
1160     SkRandom rand;
1161     for (int i = 0; i < 50; ++i) {
1162         auto randomPath = SkPath().moveTo(rand.nextF(), rand.nextF());
1163         for (int j = 0; j < i; ++j) {
1164             randomPath.lineTo(rand.nextF(), rand.nextF());
1165         }
1166         verify_simple_inner_polygons(r, SkStringPrintf("random_path_%i", i).c_str(), randomPath);
1167     }
1168 }
1169 
test_crbug_1262444(skiatest::Reporter * r)1170 static void test_crbug_1262444(skiatest::Reporter* r) {
1171     SkPath path;
1172 
1173     path.setFillType(SkPathFillType::kWinding);
1174     path.moveTo(SkBits2Float(0x3fe0633f), SkBits2Float(0x3d04a60d));  // 1.75303f, 0.0323849f
1175     path.cubicTo(SkBits2Float(0x3fe27540), SkBits2Float(0x3dff593f), SkBits2Float(0x3fe45241),
1176                  SkBits2Float(0x3e5e2fbb), SkBits2Float(0x3fe55b41), SkBits2Float(
1177                     0x3e9e596d));  // 1.7692f, 0.124682f, 1.78376f, 0.216979f, 1.79185f, 0.309276f
1178     path.cubicTo(SkBits2Float(0x3fe5fa41), SkBits2Float(0x3eb3e79c), SkBits2Float(0x3fe62f41),
1179                  SkBits2Float(0x3ec975cb), SkBits2Float(0x3fe69941), SkBits2Float(
1180                     0x3edfd837));  // 1.7967f, 0.351376f, 1.79832f, 0.393477f, 1.80155f, 0.437196f
1181     path.cubicTo(SkBits2Float(0x3fe70341), SkBits2Float(0x3f064e87), SkBits2Float(0x3fe6ce41),
1182                  SkBits2Float(0x3f1cb0f2), SkBits2Float(0x3fe59041), SkBits2Float(
1183                     0x3f33135e));  // 1.80479f, 0.524636f, 1.80317f, 0.612075f, 1.79346f, 0.699514f
1184     path.cubicTo(SkBits2Float(0x3fe48740), SkBits2Float(0x3f468ef5), SkBits2Float(0x3fe2df40),
1185                  SkBits2Float(0x3f59a06d), SkBits2Float(0x3fe02e3f), SkBits2Float(
1186                     0x3f6cb1e6));  // 1.78538f, 0.775619f, 1.77244f, 0.850104f, 1.75141f, 0.92459f
1187     path.cubicTo(SkBits2Float(0x3fde863f), SkBits2Float(0x3f78b759), SkBits2Float(0x3fdc743e),
1188                  SkBits2Float(0x3f822957), SkBits2Float(0x3fd9c33e), SkBits2Float(
1189                     0x3f87f701));  // 1.73847f, 0.971548f, 1.7223f, 1.01689f, 1.70127f, 1.06223f
1190     path.cubicTo(SkBits2Float(0x3fd98e3e), SkBits2Float(0x3f88611f), SkBits2Float(0x3fd9593e),
1191                  SkBits2Float(0x3f88cb3e), SkBits2Float(0x3fd9243d), SkBits2Float(
1192                     0x3f896a6b));  // 1.69965f, 1.06546f, 1.69804f, 1.0687f, 1.69642f, 1.07356f
1193     path.cubicTo(SkBits2Float(0x3fd63e3c), SkBits2Float(0x3f8fa234), SkBits2Float(0x3fd2ee3b),
1194                  SkBits2Float(0x3f95d9fd), SkBits2Float(0x3fd2ee3b), SkBits2Float(
1195                     0x3f9ce602));  // 1.67377f, 1.12214f, 1.6479f, 1.17071f, 1.6479f, 1.22577f
1196     path.cubicTo(SkBits2Float(0x3fd3233b), SkBits2Float(0x3f9cb0f3), SkBits2Float(0x3fd3583b),
1197                  SkBits2Float(0x3f9cb0f3), SkBits2Float(0x3fd3c23c), SkBits2Float(
1198                     0x3f9c7be4));  // 1.64951f, 1.22415f, 1.65113f, 1.22415f, 1.65437f, 1.22253f
1199     path.cubicTo(SkBits2Float(0x3fd3c23c), SkBits2Float(0x3f9cb0f3), SkBits2Float(0x3fd3c23c),
1200                  SkBits2Float(0x3f9cb0f3), SkBits2Float(0x3fd3c23c), SkBits2Float(
1201                     0x3f9ce602));  // 1.65437f, 1.22415f, 1.65437f, 1.22415f, 1.65437f, 1.22577f
1202     path.cubicTo(SkBits2Float(0x3fd5353c), SkBits2Float(0x3f9c46d4), SkBits2Float(0x3fd6dd3d),
1203                  SkBits2Float(0x3f9bdcb6), SkBits2Float(0x3fd7b13d), SkBits2Float(
1204                     0x3f9ad36a));  // 1.66569f, 1.22091f, 1.67863f, 1.21767f, 1.6851f, 1.20958f
1205     path.cubicTo(SkBits2Float(0x3fda623e), SkBits2Float(0x3f96ae3a), SkBits2Float(0x3fdca93f),
1206                  SkBits2Float(0x3f921eeb), SkBits2Float(0x3fdf253f), SkBits2Float(
1207                     0x3f8dc4ab));  // 1.70612f, 1.17719f, 1.72391f, 1.14157f, 1.74332f, 1.10756f
1208     path.cubicTo(SkBits2Float(0x3fe0983f), SkBits2Float(0x3f8b12e5), SkBits2Float(0x3fe1d640),
1209                  SkBits2Float(0x3f87f700), SkBits2Float(0x3fe3b340), SkBits2Float(
1210                     0x3f857a4a));  // 1.75465f, 1.08651f, 1.76435f, 1.06223f, 1.77891f, 1.04279f
1211     path.cubicTo(SkBits2Float(0x3fe48740), SkBits2Float(0x3f8470fe), SkBits2Float(0x3fe62f40),
1212                  SkBits2Float(0x3f8470fe), SkBits2Float(0x3fe7d741), SkBits2Float(
1213                     0x3f843bef));  // 1.78538f, 1.0347f, 1.79832f, 1.0347f, 1.81126f, 1.03308f
1214     path.cubicTo(SkBits2Float(0x3fe2aa40), SkBits2Float(0x3f943182), SkBits2Float(0x3fda623d),
1215                  SkBits2Float(0x3fa2498e), SkBits2Float(0x3fceff3a), SkBits2Float(
1216                     0x3fae4f01));  // 1.77082f, 1.15776f, 1.70612f, 1.26787f, 1.61716f, 1.36179f
1217     path.cubicTo(SkBits2Float(0x3fce6039), SkBits2Float(0x3faf233e), SkBits2Float(0x3fcd2239),
1218                  SkBits2Float(0x3faf584d), SkBits2Float(0x3fcc1939), SkBits2Float(
1219                     0x3fafc26b));  // 1.61231f, 1.36826f, 1.60261f, 1.36988f, 1.59452f, 1.37312f
1220     path.cubicTo(SkBits2Float(0x3fcc1939), SkBits2Float(0x3faff77a), SkBits2Float(0x3fcc1939),
1221                  SkBits2Float(0x3faff77a), SkBits2Float(0x3fcc4e39), SkBits2Float(
1222                     0x3fb02c89));  // 1.59452f, 1.37474f, 1.59452f, 1.37474f, 1.59614f, 1.37636f
1223     path.cubicTo(SkBits2Float(0x3fcc1939), SkBits2Float(0x3fb02c89), SkBits2Float(0x3fcc1939),
1224                  SkBits2Float(0x3fb02c89), SkBits2Float(0x3fcbe439), SkBits2Float(
1225                     0x3fb02c89));  // 1.59452f, 1.37636f, 1.59452f, 1.37636f, 1.5929f, 1.37636f
1226     path.cubicTo(SkBits2Float(0x3fcbe439), SkBits2Float(0x3fb20a12), SkBits2Float(0x3fcb4539),
1227                  SkBits2Float(0x3fb37d7d), SkBits2Float(0x3fc99d39), SkBits2Float(
1228                     0x3fb3b28c));  // 1.5929f, 1.39093f, 1.58805f, 1.40227f, 1.57511f, 1.40389f
1229     path.cubicTo(SkBits2Float(0x3fc93339), SkBits2Float(0x3fb3e79b), SkBits2Float(0x3fc8c938),
1230                  SkBits2Float(0x3fb41caa), SkBits2Float(0x3fc7f538), SkBits2Float(
1231                     0x3fb41caa));  // 1.57188f, 1.40551f, 1.56864f, 1.40712f, 1.56217f, 1.40712f
1232     path.cubicTo(SkBits2Float(0x3fc7f538), SkBits2Float(0x3fb3e79b), SkBits2Float(0x3fc7f538),
1233                  SkBits2Float(0x3fb3e79b), SkBits2Float(0x3fc7f538), SkBits2Float(
1234                     0x3fb3b28c));  // 1.56217f, 1.40551f, 1.56217f, 1.40551f, 1.56217f, 1.40389f
1235     path.lineTo(SkBits2Float(0x3fc7c038), SkBits2Float(0x3fb3b28c));  // 1.56055f, 1.40389f
1236     path.cubicTo(SkBits2Float(0x3fc7c038), SkBits2Float(0x3fb4f0e7), SkBits2Float(0x3fc7f538),
1237                  SkBits2Float(0x3fb66452), SkBits2Float(0x3fc78b38), SkBits2Float(
1238                     0x3fb76d9e));  // 1.56055f, 1.4136f, 1.56217f, 1.42494f, 1.55894f, 1.43303f
1239     path.cubicTo(SkBits2Float(0x3fc3d137), SkBits2Float(0x3fbe4495), SkBits2Float(0x3fbf4336),
1240                  SkBits2Float(0x3fc4123e), SkBits2Float(0x3fb80434), SkBits2Float(
1241                     0x3fc76331));  // 1.52982f, 1.48647f, 1.49424f, 1.53181f, 1.43763f, 1.55771f
1242     path.cubicTo(SkBits2Float(0x3fb47f33), SkBits2Float(0x3fc90bac), SkBits2Float(0x3fb19932),
1243                  SkBits2Float(0x3fcb5353), SkBits2Float(0x3faf1d31), SkBits2Float(
1244                     0x3fce6f37));  // 1.41013f, 1.57067f, 1.38749f, 1.58848f, 1.36808f, 1.61277f
1245     path.cubicTo(SkBits2Float(0x3fa4592e), SkBits2Float(0x3fdb13d7), SkBits2Float(0x3f974e2a),
1246                  SkBits2Float(0x3fe53bc1), SkBits2Float(0x3f896f25), SkBits2Float(
1247                     0x3fee5a5f));  // 1.28397f, 1.71154f, 1.18207f, 1.79089f, 1.0737f, 1.86213f
1248     path.cubicTo(SkBits2Float(0x3f6b883f), SkBits2Float(0x3ffb691f), SkBits2Float(0x3f42f434),
1249                  SkBits2Float(0x400367b2), SkBits2Float(0x3f184e28), SkBits2Float(
1250                     0x4008611f));  // 0.920048f, 1.96415f, 0.761539f, 2.0532f, 0.594943f, 2.13093f
1251     path.cubicTo(SkBits2Float(0x3f184e28), SkBits2Float(0x4008611f), SkBits2Float(0x3f17e428),
1252                  SkBits2Float(0x4008611f), SkBits2Float(0x3f17e428), SkBits2Float(
1253                     0x40087ba7));  // 0.594943f, 2.13093f, 0.593325f, 2.13093f, 0.593325f, 2.13255f
1254     path.cubicTo(SkBits2Float(0x3effc044), SkBits2Float(0x400b47f5), SkBits2Float(0x3ed08c36),
1255                  SkBits2Float(0x400e2eca), SkBits2Float(0x3e9edc28), SkBits2Float(
1256                     0x401090f9));  // 0.499514f, 2.17627f, 0.40732f, 2.22161f, 0.310273f, 2.25885f
1257     path.cubicTo(SkBits2Float(0x3e5a5832), SkBits2Float(0x4012f328), SkBits2Float(0x3de40030),
1258                  SkBits2Float(0x4014811a), SkBits2Float(0x3c1a7f9e), SkBits2Float(
1259                     0x40158a66));  // 0.213227f, 2.29609f, 0.111328f, 2.32038f, 0.00942984f, 2.33657f
1260     path.lineTo(SkBits2Float(0x3c1a7f9e), SkBits2Float(0x401bf73d));  // 0.00942984f, 2.43697f
1261     path.cubicTo(SkBits2Float(0x3dc98028), SkBits2Float(0x401b580f), SkBits2Float(0x3e3fd82e),
1262                  SkBits2Float(0x401a694b), SkBits2Float(0x3e8ca424), SkBits2Float(
1263                     0x40191068));  // 0.098389f, 2.42725f, 0.187348f, 2.41268f, 0.27469f, 2.39163f
1264     path.cubicTo(SkBits2Float(0x3e94ec27), SkBits2Float(0x4018db59), SkBits2Float(0x3e9d3429),
1265                  SkBits2Float(0x40188bc2), SkBits2Float(0x3ea4a82b), SkBits2Float(
1266                     0x401856b3));  // 0.290864f, 2.38839f, 0.307039f, 2.38353f, 0.321596f, 2.38029f
1267     path.cubicTo(SkBits2Float(0x3eae982e), SkBits2Float(0x4018071c), SkBits2Float(0x3eb95c31),
1268                  SkBits2Float(0x40179cfe), SkBits2Float(0x3ec34c34), SkBits2Float(
1269                     0x40174d67));  // 0.341005f, 2.37543f, 0.362031f, 2.36896f, 0.381441f, 2.3641f
1270     path.cubicTo(SkBits2Float(0x3ec9ec36), SkBits2Float(0x40171858), SkBits2Float(0x3ed08c38),
1271                  SkBits2Float(0x4016c8c1), SkBits2Float(0x3ed8003a), SkBits2Float(
1272                     0x401693b2));  // 0.39438f, 2.36086f, 0.40732f, 2.356f, 0.421877f, 2.35276f
1273     path.cubicTo(SkBits2Float(0x3eda7c3a), SkBits2Float(0x4016792a), SkBits2Float(0x3eddcc3c),
1274                  SkBits2Float(0x40165ea3), SkBits2Float(0x3ee0483c), SkBits2Float(
1275                     0x4016441b));  // 0.426729f, 2.35115f, 0.433199f, 2.34953f, 0.438051f, 2.34791f
1276     path.cubicTo(SkBits2Float(0x3ee2c43d), SkBits2Float(0x40162993), SkBits2Float(0x3ee5403e),
1277                  SkBits2Float(0x40160f0c), SkBits2Float(0x3ee8903f), SkBits2Float(
1278                     0x4015f484));  // 0.442903f, 2.34629f, 0.447756f, 2.34467f, 0.454226f, 2.34305f
1279     path.cubicTo(SkBits2Float(0x3f1c082a), SkBits2Float(0x4012be17), SkBits2Float(0x3f422036),
1280                  SkBits2Float(0x400e63d8), SkBits2Float(0x3f66fa40), SkBits2Float(
1281                     0x40096a6a));  // 0.6095f, 2.29285f, 0.758304f, 2.22484f, 0.902256f, 2.14712f
1282     path.cubicTo(SkBits2Float(0x3f6a4a41), SkBits2Float(0x4009004c), SkBits2Float(0x3f6d3042),
1283                  SkBits2Float(0x4008962d), SkBits2Float(0x3f708043), SkBits2Float(
1284                     0x40081187));  // 0.915196f, 2.14064f, 0.926518f, 2.13417f, 0.939457f, 2.12607f
1285     path.cubicTo(SkBits2Float(0x3f7efe47), SkBits2Float(0x4005feef), SkBits2Float(0x3f868925),
1286                  SkBits2Float(0x4003b748), SkBits2Float(0x3f8d5e28), SkBits2Float(
1287                     0x40015519));  // 0.996067f, 2.09368f, 1.05106f, 2.05806f, 1.10444f, 2.02082f
1288     path.cubicTo(SkBits2Float(0x3f97b82b), SkBits2Float(0x3ffb691d), SkBits2Float(0x3fa1a82e),
1289                  SkBits2Float(0x3ff388da), SkBits2Float(0x3fab9830), SkBits2Float(
1290                     0x3feb7389));  // 1.18531f, 1.96415f, 1.26294f, 1.90261f, 1.34058f, 1.83946f
1291     path.cubicTo(SkBits2Float(0x3fb20332), SkBits2Float(0x3fe6450c), SkBits2Float(0x3fb80434),
1292                  SkBits2Float(0x3fe0e181), SkBits2Float(0x3fbd6635), SkBits2Float(
1293                     0x3fda3f99));  // 1.39072f, 1.79898f, 1.43763f, 1.75688f, 1.47968f, 1.70507f
1294     path.cubicTo(SkBits2Float(0x3fbf4336), SkBits2Float(0x3fd7f7f2), SkBits2Float(0x3fc12037),
1295                  SkBits2Float(0x3fd5b04b), SkBits2Float(0x3fc2fd36), SkBits2Float(
1296                     0x3fd33394));  // 1.49424f, 1.68725f, 1.5088f, 1.66944f, 1.52335f, 1.65001f
1297     path.cubicTo(SkBits2Float(0x3fc5e337), SkBits2Float(0x3fcf7881), SkBits2Float(0x3fc8c938),
1298                  SkBits2Float(0x3fcbbd70), SkBits2Float(0x3fcbaf38), SkBits2Float(
1299                     0x3fc8025d));  // 1.546f, 1.62086f, 1.56864f, 1.59172f, 1.59128f, 1.56257f
1300     path.cubicTo(SkBits2Float(0x3fceff39), SkBits2Float(0x3fc3a81e), SkBits2Float(0x3fd2843b),
1301                  SkBits2Float(0x3fbf18cf), SkBits2Float(0x3fd5d43b), SkBits2Float(
1302                     0x3fbabe8f));  // 1.61716f, 1.52857f, 1.64466f, 1.49294f, 1.67054f, 1.45894f
1303     path.cubicTo(SkBits2Float(0x3fd8503c), SkBits2Float(0x3fb7a2ab), SkBits2Float(0x3fda973d),
1304                  SkBits2Float(0x3fb486c7), SkBits2Float(0x3fdca93e), SkBits2Float(
1305                     0x3fb135d3));  // 1.68995f, 1.43465f, 1.70774f, 1.41036f, 1.72391f, 1.38446f
1306     path.cubicTo(SkBits2Float(0x3fe5c541), SkBits2Float(0x3fa2b3aa), SkBits2Float(0x3feb5c42),
1307                  SkBits2Float(0x3f92be16), SkBits2Float(0x3ff15d44), SkBits2Float(
1308                     0x3f82c882));  // 1.79508f, 1.27111f, 1.83875f, 1.14643f, 1.88566f, 1.02174f
1309     path.cubicTo(SkBits2Float(0x3ff1fc44), SkBits2Float(0x3f812008), SkBits2Float(0x3ff23144),
1310                  SkBits2Float(0x3f7e1adf), SkBits2Float(0x3ff29b44), SkBits2Float(
1311                     0x3f7a5fcc));  // 1.89051f, 1.00879f, 1.89213f, 0.992598f, 1.89536f, 0.978024f
1312     path.cubicTo(SkBits2Float(0x3ff47845), SkBits2Float(0x3f5fd830), SkBits2Float(0x3ff65545),
1313                  SkBits2Float(0x3f455094), SkBits2Float(0x3ff6bf45), SkBits2Float(
1314                     0x3f2a5ed9));  // 1.90992f, 0.874393f, 1.92448f, 0.770761f, 1.92771f, 0.66551f
1315     path.cubicTo(SkBits2Float(0x3ff33a44), SkBits2Float(0x3f0d5a87), SkBits2Float(0x3ff08943),
1316                  SkBits2Float(0x3edf03ee), SkBits2Float(0x3fee7743), SkBits2Float(
1317                     0x3ea352cf));  // 1.90022f, 0.552163f, 1.87919f, 0.435577f, 1.86301f, 0.318991f
1318     path.cubicTo(SkBits2Float(0x3feccf42), SkBits2Float(0x3e5c872d), SkBits2Float(0x3feb9142),
1319                  SkBits2Float(0x3de4d179), SkBits2Float(0x3feaf242), SkBits2Float(
1320                     0x3c04a4ae));  // 1.85008f, 0.215359f, 1.84037f, 0.111728f, 1.83552f, 0.0080959f
1321     path.lineTo(SkBits2Float(0x3fe02e3f), SkBits2Float(0x3c04a4ae));  // 1.75141f, 0.0080959f
1322     path.cubicTo(SkBits2Float(0x3fdff93f), SkBits2Float(0x3c6ec47e), SkBits2Float(0x3fe02e3f),
1323                  SkBits2Float(0x3cb9b545), SkBits2Float(0x3fe0633f), SkBits2Float(
1324                     0x3d04a60d));  // 1.74979f, 0.0145732f, 1.75141f, 0.0226694f, 1.75303f, 0.0323849f
1325     path.close();
1326     path.moveTo(SkBits2Float(0x3fe97f42), SkBits2Float(0x3f7b9e2e));  // 1.8242f, 0.982882f
1327     path.cubicTo(SkBits2Float(0x3fe91542), SkBits2Float(0x3f7eef21), SkBits2Float(0x3fe87642),
1328                  SkBits2Float(0x3f81551a), SkBits2Float(0x3fe7d741), SkBits2Float(
1329                     0x3f82fd94));  // 1.82096f, 0.995836f, 1.81611f, 1.01041f, 1.81126f, 1.02336f
1330     path.cubicTo(SkBits2Float(0x3fe6ce41), SkBits2Float(0x3f81bf39), SkBits2Float(0x3fe66441),
1331                  SkBits2Float(0x3f8080dd), SkBits2Float(0x3fe66441), SkBits2Float(
1332                     0x3f7e1ae4));  // 1.80317f, 1.01365f, 1.79993f, 1.00393f, 1.79993f, 0.992598f
1333     path.cubicTo(SkBits2Float(0x3fe66441), SkBits2Float(0x3f7c726a), SkBits2Float(0x3fe69941),
1334                  SkBits2Float(0x3f7b340e), SkBits2Float(0x3fe6ce41), SkBits2Float(
1335                     0x3f798b95));  // 1.79993f, 0.986121f, 1.80155f, 0.981263f, 1.80317f, 0.974786f
1336     path.cubicTo(SkBits2Float(0x3fe70341), SkBits2Float(0x3f78b758), SkBits2Float(0x3fe76d41),
1337                  SkBits2Float(0x3f770edf), SkBits2Float(0x3fe7d741), SkBits2Float(
1338                     0x3f770edf));  // 1.80479f, 0.971548f, 1.80802f, 0.965071f, 1.81126f, 0.965071f
1339     path.cubicTo(SkBits2Float(0x3fe84141), SkBits2Float(0x3f770edf), SkBits2Float(0x3fe8ab42),
1340                  SkBits2Float(0x3f770edf), SkBits2Float(0x3fe8e041), SkBits2Float(
1341                     0x3f7778fd));  // 1.81449f, 0.965071f, 1.81773f, 0.965071f, 1.81934f, 0.96669f
1342     path.cubicTo(SkBits2Float(0x3fe97f42), SkBits2Float(0x3f77e31b), SkBits2Float(0x3fe9e942),
1343                  SkBits2Float(0x3f798b95), SkBits2Float(0x3fe97f42), SkBits2Float(
1344                     0x3f7b9e2e));  // 1.8242f, 0.968309f, 1.82743f, 0.974786f, 1.8242f, 0.982882f
1345     path.close();
1346 
1347     float kTol = 0.25f;
1348     SkRect clipBounds = SkRect::MakeLTRB(0, 0, 14, 14);
1349     SimplerVertexAllocator alloc;
1350 
1351     int vertexCount = GrAATriangulator::PathToAATriangles(path, kTol, clipBounds, &alloc);
1352     REPORTER_ASSERT(r, vertexCount == 0);
1353 }
1354 
DEF_TEST(TriangulatorBugs,r)1355 DEF_TEST(TriangulatorBugs, r) {
1356     test_crbug_1262444(r);
1357 }
1358 
1359 #endif // SK_ENABLE_OPTIMIZE_SIZE
1360