• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- X86DisassemblerTables.cpp - Disassembler tables ----------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file is part of the X86 Disassembler Emitter.
11 // It contains the implementation of the disassembler tables.
12 // Documentation for the disassembler emitter in general can be found in
13 //  X86DisasemblerEmitter.h.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "X86DisassemblerTables.h"
18 #include "X86DisassemblerShared.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/Support/ErrorHandling.h"
21 #include "llvm/Support/Format.h"
22 #include <map>
23 
24 using namespace llvm;
25 using namespace X86Disassembler;
26 
27 /// stringForContext - Returns a string containing the name of a particular
28 ///   InstructionContext, usually for diagnostic purposes.
29 ///
30 /// @param insnContext  - The instruction class to transform to a string.
31 /// @return           - A statically-allocated string constant that contains the
32 ///                     name of the instruction class.
stringForContext(InstructionContext insnContext)33 static inline const char* stringForContext(InstructionContext insnContext) {
34   switch (insnContext) {
35   default:
36     llvm_unreachable("Unhandled instruction class");
37 #define ENUM_ENTRY(n, r, d)   case n: return #n; break;
38 #define ENUM_ENTRY_K_B(n, r, d) ENUM_ENTRY(n, r, d) ENUM_ENTRY(n##_K_B, r, d)\
39         ENUM_ENTRY(n##_KZ, r, d) ENUM_ENTRY(n##_K, r, d) ENUM_ENTRY(n##_B, r, d)\
40         ENUM_ENTRY(n##_KZ_B, r, d)
41   INSTRUCTION_CONTEXTS
42 #undef ENUM_ENTRY
43 #undef ENUM_ENTRY_K_B
44   }
45 }
46 
47 /// stringForOperandType - Like stringForContext, but for OperandTypes.
stringForOperandType(OperandType type)48 static inline const char* stringForOperandType(OperandType type) {
49   switch (type) {
50   default:
51     llvm_unreachable("Unhandled type");
52 #define ENUM_ENTRY(i, d) case i: return #i;
53   TYPES
54 #undef ENUM_ENTRY
55   }
56 }
57 
58 /// stringForOperandEncoding - like stringForContext, but for
59 ///   OperandEncodings.
stringForOperandEncoding(OperandEncoding encoding)60 static inline const char* stringForOperandEncoding(OperandEncoding encoding) {
61   switch (encoding) {
62   default:
63     llvm_unreachable("Unhandled encoding");
64 #define ENUM_ENTRY(i, d) case i: return #i;
65   ENCODINGS
66 #undef ENUM_ENTRY
67   }
68 }
69 
70 /// inheritsFrom - Indicates whether all instructions in one class also belong
71 ///   to another class.
72 ///
73 /// @param child  - The class that may be the subset
74 /// @param parent - The class that may be the superset
75 /// @return       - True if child is a subset of parent, false otherwise.
inheritsFrom(InstructionContext child,InstructionContext parent,bool VEX_LIG=false,bool AdSize64=false)76 static inline bool inheritsFrom(InstructionContext child,
77                                 InstructionContext parent,
78                                 bool VEX_LIG = false, bool AdSize64 = false) {
79   if (child == parent)
80     return true;
81 
82   switch (parent) {
83   case IC:
84     return(inheritsFrom(child, IC_64BIT, AdSize64) ||
85            inheritsFrom(child, IC_OPSIZE) ||
86            inheritsFrom(child, IC_ADSIZE) ||
87            inheritsFrom(child, IC_XD) ||
88            inheritsFrom(child, IC_XS));
89   case IC_64BIT:
90     return(inheritsFrom(child, IC_64BIT_REXW)   ||
91            inheritsFrom(child, IC_64BIT_OPSIZE) ||
92            (!AdSize64 && inheritsFrom(child, IC_64BIT_ADSIZE)) ||
93            inheritsFrom(child, IC_64BIT_XD)     ||
94            inheritsFrom(child, IC_64BIT_XS));
95   case IC_OPSIZE:
96     return inheritsFrom(child, IC_64BIT_OPSIZE) ||
97            inheritsFrom(child, IC_OPSIZE_ADSIZE);
98   case IC_ADSIZE:
99     return inheritsFrom(child, IC_OPSIZE_ADSIZE);
100   case IC_OPSIZE_ADSIZE:
101     return false;
102   case IC_64BIT_ADSIZE:
103     return inheritsFrom(child, IC_64BIT_OPSIZE_ADSIZE);
104   case IC_64BIT_OPSIZE_ADSIZE:
105     return false;
106   case IC_XD:
107     return inheritsFrom(child, IC_64BIT_XD);
108   case IC_XS:
109     return inheritsFrom(child, IC_64BIT_XS);
110   case IC_XD_OPSIZE:
111     return inheritsFrom(child, IC_64BIT_XD_OPSIZE);
112   case IC_XS_OPSIZE:
113     return inheritsFrom(child, IC_64BIT_XS_OPSIZE);
114   case IC_64BIT_REXW:
115     return(inheritsFrom(child, IC_64BIT_REXW_XS) ||
116            inheritsFrom(child, IC_64BIT_REXW_XD) ||
117            inheritsFrom(child, IC_64BIT_REXW_OPSIZE) ||
118            (!AdSize64 && inheritsFrom(child, IC_64BIT_REXW_ADSIZE)));
119   case IC_64BIT_OPSIZE:
120     return inheritsFrom(child, IC_64BIT_REXW_OPSIZE) ||
121            (!AdSize64 && inheritsFrom(child, IC_64BIT_OPSIZE_ADSIZE)) ||
122            (!AdSize64 && inheritsFrom(child, IC_64BIT_REXW_ADSIZE));
123   case IC_64BIT_XD:
124     return(inheritsFrom(child, IC_64BIT_REXW_XD));
125   case IC_64BIT_XS:
126     return(inheritsFrom(child, IC_64BIT_REXW_XS));
127   case IC_64BIT_XD_OPSIZE:
128   case IC_64BIT_XS_OPSIZE:
129     return false;
130   case IC_64BIT_REXW_XD:
131   case IC_64BIT_REXW_XS:
132   case IC_64BIT_REXW_OPSIZE:
133   case IC_64BIT_REXW_ADSIZE:
134     return false;
135   case IC_VEX:
136     return (VEX_LIG && inheritsFrom(child, IC_VEX_L_W)) ||
137            inheritsFrom(child, IC_VEX_W) ||
138            (VEX_LIG && inheritsFrom(child, IC_VEX_L));
139   case IC_VEX_XS:
140     return (VEX_LIG && inheritsFrom(child, IC_VEX_L_W_XS)) ||
141            inheritsFrom(child, IC_VEX_W_XS) ||
142            (VEX_LIG && inheritsFrom(child, IC_VEX_L_XS));
143   case IC_VEX_XD:
144     return (VEX_LIG && inheritsFrom(child, IC_VEX_L_W_XD)) ||
145            inheritsFrom(child, IC_VEX_W_XD) ||
146            (VEX_LIG && inheritsFrom(child, IC_VEX_L_XD));
147   case IC_VEX_OPSIZE:
148     return (VEX_LIG && inheritsFrom(child, IC_VEX_L_W_OPSIZE)) ||
149            inheritsFrom(child, IC_VEX_W_OPSIZE) ||
150            (VEX_LIG && inheritsFrom(child, IC_VEX_L_OPSIZE));
151   case IC_VEX_W:
152     return VEX_LIG && inheritsFrom(child, IC_VEX_L_W);
153   case IC_VEX_W_XS:
154     return VEX_LIG && inheritsFrom(child, IC_VEX_L_W_XS);
155   case IC_VEX_W_XD:
156     return VEX_LIG && inheritsFrom(child, IC_VEX_L_W_XD);
157   case IC_VEX_W_OPSIZE:
158     return VEX_LIG && inheritsFrom(child, IC_VEX_L_W_OPSIZE);
159   case IC_VEX_L:
160     return inheritsFrom(child, IC_VEX_L_W);
161   case IC_VEX_L_XS:
162     return inheritsFrom(child, IC_VEX_L_W_XS);
163   case IC_VEX_L_XD:
164     return inheritsFrom(child, IC_VEX_L_W_XD);
165   case IC_VEX_L_OPSIZE:
166     return inheritsFrom(child, IC_VEX_L_W_OPSIZE);
167   case IC_VEX_L_W:
168   case IC_VEX_L_W_XS:
169   case IC_VEX_L_W_XD:
170   case IC_VEX_L_W_OPSIZE:
171     return false;
172   case IC_EVEX:
173     return inheritsFrom(child, IC_EVEX_W) ||
174            inheritsFrom(child, IC_EVEX_L_W);
175   case IC_EVEX_XS:
176     return inheritsFrom(child, IC_EVEX_W_XS) ||
177            inheritsFrom(child, IC_EVEX_L_W_XS);
178   case IC_EVEX_XD:
179     return inheritsFrom(child, IC_EVEX_W_XD) ||
180            inheritsFrom(child, IC_EVEX_L_W_XD);
181   case IC_EVEX_OPSIZE:
182     return inheritsFrom(child, IC_EVEX_W_OPSIZE) ||
183            inheritsFrom(child, IC_EVEX_L_W_OPSIZE);
184   case IC_EVEX_B:
185     return false;
186   case IC_EVEX_W:
187   case IC_EVEX_W_XS:
188   case IC_EVEX_W_XD:
189   case IC_EVEX_W_OPSIZE:
190     return false;
191   case IC_EVEX_L:
192   case IC_EVEX_L_K_B:
193   case IC_EVEX_L_KZ_B:
194   case IC_EVEX_L_B:
195   case IC_EVEX_L_XS:
196   case IC_EVEX_L_XD:
197   case IC_EVEX_L_OPSIZE:
198     return false;
199   case IC_EVEX_L_W:
200   case IC_EVEX_L_W_XS:
201   case IC_EVEX_L_W_XD:
202   case IC_EVEX_L_W_OPSIZE:
203     return false;
204   case IC_EVEX_L2:
205   case IC_EVEX_L2_XS:
206   case IC_EVEX_L2_XD:
207   case IC_EVEX_L2_OPSIZE:
208     return false;
209   case IC_EVEX_L2_W:
210   case IC_EVEX_L2_W_XS:
211   case IC_EVEX_L2_W_XD:
212   case IC_EVEX_L2_W_OPSIZE:
213     return false;
214   case IC_EVEX_K:
215     return inheritsFrom(child, IC_EVEX_W_K) ||
216            inheritsFrom(child, IC_EVEX_L_W_K);
217   case IC_EVEX_XS_K:
218   case IC_EVEX_XS_K_B:
219   case IC_EVEX_XS_KZ_B:
220     return inheritsFrom(child, IC_EVEX_W_XS_K) ||
221            inheritsFrom(child, IC_EVEX_L_W_XS_K);
222   case IC_EVEX_XD_K:
223   case IC_EVEX_XD_K_B:
224   case IC_EVEX_XD_KZ_B:
225     return inheritsFrom(child, IC_EVEX_W_XD_K) ||
226            inheritsFrom(child, IC_EVEX_L_W_XD_K);
227   case IC_EVEX_XS_B:
228   case IC_EVEX_XD_B:
229   case IC_EVEX_K_B:
230   case IC_EVEX_KZ:
231     return false;
232   case IC_EVEX_XS_KZ:
233     return inheritsFrom(child, IC_EVEX_W_XS_KZ) ||
234            inheritsFrom(child, IC_EVEX_L_W_XS_KZ);
235   case IC_EVEX_XD_KZ:
236     return inheritsFrom(child, IC_EVEX_W_XD_KZ) ||
237            inheritsFrom(child, IC_EVEX_L_W_XD_KZ);
238   case IC_EVEX_KZ_B:
239   case IC_EVEX_OPSIZE_K:
240   case IC_EVEX_OPSIZE_B:
241   case IC_EVEX_OPSIZE_K_B:
242   case IC_EVEX_OPSIZE_KZ:
243   case IC_EVEX_OPSIZE_KZ_B:
244     return false;
245   case IC_EVEX_W_K:
246   case IC_EVEX_W_B:
247   case IC_EVEX_W_K_B:
248   case IC_EVEX_W_KZ_B:
249   case IC_EVEX_W_XS_K:
250   case IC_EVEX_W_XD_K:
251   case IC_EVEX_W_OPSIZE_K:
252   case IC_EVEX_W_OPSIZE_B:
253   case IC_EVEX_W_OPSIZE_K_B:
254     return false;
255   case IC_EVEX_L_K:
256   case IC_EVEX_L_XS_K:
257   case IC_EVEX_L_XD_K:
258   case IC_EVEX_L_XD_B:
259   case IC_EVEX_L_XD_K_B:
260   case IC_EVEX_L_OPSIZE_K:
261   case IC_EVEX_L_OPSIZE_B:
262   case IC_EVEX_L_OPSIZE_K_B:
263     return false;
264   case IC_EVEX_W_KZ:
265   case IC_EVEX_W_XS_KZ:
266   case IC_EVEX_W_XD_KZ:
267   case IC_EVEX_W_XS_B:
268   case IC_EVEX_W_XD_B:
269   case IC_EVEX_W_XS_K_B:
270   case IC_EVEX_W_XD_K_B:
271   case IC_EVEX_W_XS_KZ_B:
272   case IC_EVEX_W_XD_KZ_B:
273   case IC_EVEX_W_OPSIZE_KZ:
274   case IC_EVEX_W_OPSIZE_KZ_B:
275     return false;
276   case IC_EVEX_L_KZ:
277   case IC_EVEX_L_XS_KZ:
278   case IC_EVEX_L_XS_B:
279   case IC_EVEX_L_XS_K_B:
280   case IC_EVEX_L_XS_KZ_B:
281   case IC_EVEX_L_XD_KZ:
282   case IC_EVEX_L_XD_KZ_B:
283   case IC_EVEX_L_OPSIZE_KZ:
284   case IC_EVEX_L_OPSIZE_KZ_B:
285     return false;
286   case IC_EVEX_L_W_K:
287   case IC_EVEX_L_W_B:
288   case IC_EVEX_L_W_K_B:
289   case IC_EVEX_L_W_XS_K:
290   case IC_EVEX_L_W_XS_B:
291   case IC_EVEX_L_W_XS_K_B:
292   case IC_EVEX_L_W_XS_KZ:
293   case IC_EVEX_L_W_XS_KZ_B:
294   case IC_EVEX_L_W_OPSIZE_K:
295   case IC_EVEX_L_W_OPSIZE_B:
296   case IC_EVEX_L_W_OPSIZE_K_B:
297   case IC_EVEX_L_W_KZ:
298   case IC_EVEX_L_W_KZ_B:
299   case IC_EVEX_L_W_XD_K:
300   case IC_EVEX_L_W_XD_B:
301   case IC_EVEX_L_W_XD_K_B:
302   case IC_EVEX_L_W_XD_KZ:
303   case IC_EVEX_L_W_XD_KZ_B:
304   case IC_EVEX_L_W_OPSIZE_KZ:
305   case IC_EVEX_L_W_OPSIZE_KZ_B:
306     return false;
307   case IC_EVEX_L2_K:
308   case IC_EVEX_L2_B:
309   case IC_EVEX_L2_K_B:
310   case IC_EVEX_L2_KZ_B:
311   case IC_EVEX_L2_XS_K:
312   case IC_EVEX_L2_XS_K_B:
313   case IC_EVEX_L2_XS_B:
314   case IC_EVEX_L2_XD_B:
315   case IC_EVEX_L2_XD_K:
316   case IC_EVEX_L2_XD_K_B:
317   case IC_EVEX_L2_OPSIZE_K:
318   case IC_EVEX_L2_OPSIZE_B:
319   case IC_EVEX_L2_OPSIZE_K_B:
320   case IC_EVEX_L2_KZ:
321   case IC_EVEX_L2_XS_KZ:
322   case IC_EVEX_L2_XS_KZ_B:
323   case IC_EVEX_L2_XD_KZ:
324   case IC_EVEX_L2_XD_KZ_B:
325   case IC_EVEX_L2_OPSIZE_KZ:
326   case IC_EVEX_L2_OPSIZE_KZ_B:
327     return false;
328   case IC_EVEX_L2_W_K:
329   case IC_EVEX_L2_W_B:
330   case IC_EVEX_L2_W_K_B:
331   case IC_EVEX_L2_W_KZ_B:
332   case IC_EVEX_L2_W_XS_K:
333   case IC_EVEX_L2_W_XS_B:
334   case IC_EVEX_L2_W_XS_K_B:
335   case IC_EVEX_L2_W_XD_K:
336   case IC_EVEX_L2_W_XD_B:
337   case IC_EVEX_L2_W_OPSIZE_K:
338   case IC_EVEX_L2_W_OPSIZE_B:
339   case IC_EVEX_L2_W_OPSIZE_K_B:
340   case IC_EVEX_L2_W_KZ:
341   case IC_EVEX_L2_W_XS_KZ:
342   case IC_EVEX_L2_W_XS_KZ_B:
343   case IC_EVEX_L2_W_XD_KZ:
344   case IC_EVEX_L2_W_XD_K_B:
345   case IC_EVEX_L2_W_XD_KZ_B:
346   case IC_EVEX_L2_W_OPSIZE_KZ:
347   case IC_EVEX_L2_W_OPSIZE_KZ_B:
348     return false;
349   default:
350     errs() << "Unknown instruction class: " <<
351       stringForContext((InstructionContext)parent) << "\n";
352     llvm_unreachable("Unknown instruction class");
353   }
354 }
355 
356 /// outranks - Indicates whether, if an instruction has two different applicable
357 ///   classes, which class should be preferred when performing decode.  This
358 ///   imposes a total ordering (ties are resolved toward "lower")
359 ///
360 /// @param upper  - The class that may be preferable
361 /// @param lower  - The class that may be less preferable
362 /// @return       - True if upper is to be preferred, false otherwise.
outranks(InstructionContext upper,InstructionContext lower)363 static inline bool outranks(InstructionContext upper,
364                             InstructionContext lower) {
365   assert(upper < IC_max);
366   assert(lower < IC_max);
367 
368 #define ENUM_ENTRY(n, r, d) r,
369 #define ENUM_ENTRY_K_B(n, r, d) ENUM_ENTRY(n, r, d) \
370   ENUM_ENTRY(n##_K_B, r, d) ENUM_ENTRY(n##_KZ_B, r, d) \
371   ENUM_ENTRY(n##_KZ, r, d) ENUM_ENTRY(n##_K, r, d) ENUM_ENTRY(n##_B, r, d)
372   static int ranks[IC_max] = {
373     INSTRUCTION_CONTEXTS
374   };
375 #undef ENUM_ENTRY
376 #undef ENUM_ENTRY_K_B
377 
378   return (ranks[upper] > ranks[lower]);
379 }
380 
381 /// getDecisionType - Determines whether a ModRM decision with 255 entries can
382 ///   be compacted by eliminating redundant information.
383 ///
384 /// @param decision - The decision to be compacted.
385 /// @return         - The compactest available representation for the decision.
getDecisionType(ModRMDecision & decision)386 static ModRMDecisionType getDecisionType(ModRMDecision &decision) {
387   bool satisfiesOneEntry = true;
388   bool satisfiesSplitRM = true;
389   bool satisfiesSplitReg = true;
390   bool satisfiesSplitMisc = true;
391 
392   for (unsigned index = 0; index < 256; ++index) {
393     if (decision.instructionIDs[index] != decision.instructionIDs[0])
394       satisfiesOneEntry = false;
395 
396     if (((index & 0xc0) == 0xc0) &&
397        (decision.instructionIDs[index] != decision.instructionIDs[0xc0]))
398       satisfiesSplitRM = false;
399 
400     if (((index & 0xc0) != 0xc0) &&
401        (decision.instructionIDs[index] != decision.instructionIDs[0x00]))
402       satisfiesSplitRM = false;
403 
404     if (((index & 0xc0) == 0xc0) &&
405        (decision.instructionIDs[index] != decision.instructionIDs[index&0xf8]))
406       satisfiesSplitReg = false;
407 
408     if (((index & 0xc0) != 0xc0) &&
409        (decision.instructionIDs[index] != decision.instructionIDs[index&0x38]))
410       satisfiesSplitMisc = false;
411   }
412 
413   if (satisfiesOneEntry)
414     return MODRM_ONEENTRY;
415 
416   if (satisfiesSplitRM)
417     return MODRM_SPLITRM;
418 
419   if (satisfiesSplitReg && satisfiesSplitMisc)
420     return MODRM_SPLITREG;
421 
422   if (satisfiesSplitMisc)
423     return MODRM_SPLITMISC;
424 
425   return MODRM_FULL;
426 }
427 
428 /// stringForDecisionType - Returns a statically-allocated string corresponding
429 ///   to a particular decision type.
430 ///
431 /// @param dt - The decision type.
432 /// @return   - A pointer to the statically-allocated string (e.g.,
433 ///             "MODRM_ONEENTRY" for MODRM_ONEENTRY).
stringForDecisionType(ModRMDecisionType dt)434 static const char* stringForDecisionType(ModRMDecisionType dt) {
435 #define ENUM_ENTRY(n) case n: return #n;
436   switch (dt) {
437     default:
438       llvm_unreachable("Unknown decision type");
439     MODRMTYPES
440   };
441 #undef ENUM_ENTRY
442 }
443 
DisassemblerTables()444 DisassemblerTables::DisassemblerTables() {
445   unsigned i;
446 
447   for (i = 0; i < array_lengthof(Tables); i++) {
448     Tables[i] = new ContextDecision;
449     memset(Tables[i], 0, sizeof(ContextDecision));
450   }
451 
452   HasConflicts = false;
453 }
454 
~DisassemblerTables()455 DisassemblerTables::~DisassemblerTables() {
456   unsigned i;
457 
458   for (i = 0; i < array_lengthof(Tables); i++)
459     delete Tables[i];
460 }
461 
emitModRMDecision(raw_ostream & o1,raw_ostream & o2,unsigned & i1,unsigned & i2,unsigned & ModRMTableNum,ModRMDecision & decision) const462 void DisassemblerTables::emitModRMDecision(raw_ostream &o1, raw_ostream &o2,
463                                            unsigned &i1, unsigned &i2,
464                                            unsigned &ModRMTableNum,
465                                            ModRMDecision &decision) const {
466   static uint32_t sTableNumber = 0;
467   static uint32_t sEntryNumber = 1;
468   ModRMDecisionType dt = getDecisionType(decision);
469 
470   if (dt == MODRM_ONEENTRY && decision.instructionIDs[0] == 0)
471   {
472     o2.indent(i2) << "{ /* ModRMDecision */" << "\n";
473     i2++;
474 
475     o2.indent(i2) << stringForDecisionType(dt) << "," << "\n";
476     o2.indent(i2) << 0 << " /* EmptyTable */\n";
477 
478     i2--;
479     o2.indent(i2) << "}";
480     return;
481   }
482 
483   std::vector<unsigned> ModRMDecision;
484 
485   switch (dt) {
486     default:
487       llvm_unreachable("Unknown decision type");
488     case MODRM_ONEENTRY:
489       ModRMDecision.push_back(decision.instructionIDs[0]);
490       break;
491     case MODRM_SPLITRM:
492       ModRMDecision.push_back(decision.instructionIDs[0x00]);
493       ModRMDecision.push_back(decision.instructionIDs[0xc0]);
494       break;
495     case MODRM_SPLITREG:
496       for (unsigned index = 0; index < 64; index += 8)
497         ModRMDecision.push_back(decision.instructionIDs[index]);
498       for (unsigned index = 0xc0; index < 256; index += 8)
499         ModRMDecision.push_back(decision.instructionIDs[index]);
500       break;
501     case MODRM_SPLITMISC:
502       for (unsigned index = 0; index < 64; index += 8)
503         ModRMDecision.push_back(decision.instructionIDs[index]);
504       for (unsigned index = 0xc0; index < 256; ++index)
505         ModRMDecision.push_back(decision.instructionIDs[index]);
506       break;
507     case MODRM_FULL:
508       for (unsigned index = 0; index < 256; ++index)
509         ModRMDecision.push_back(decision.instructionIDs[index]);
510       break;
511   }
512 
513   unsigned &EntryNumber = ModRMTable[ModRMDecision];
514   if (EntryNumber == 0) {
515     EntryNumber = ModRMTableNum;
516 
517     ModRMTableNum += ModRMDecision.size();
518     o1 << "/* Table" << EntryNumber << " */\n";
519     i1++;
520     for (std::vector<unsigned>::const_iterator I = ModRMDecision.begin(),
521            E = ModRMDecision.end(); I != E; ++I) {
522       o1.indent(i1 * 2) << format("0x%hx", *I) << ", /* "
523                         << InstructionSpecifiers[*I].name << " */\n";
524     }
525     i1--;
526   }
527 
528   o2.indent(i2) << "{ /* struct ModRMDecision */" << "\n";
529   i2++;
530 
531   o2.indent(i2) << stringForDecisionType(dt) << "," << "\n";
532   o2.indent(i2) << EntryNumber << " /* Table" << EntryNumber << " */\n";
533 
534   i2--;
535   o2.indent(i2) << "}";
536 
537   switch (dt) {
538     default:
539       llvm_unreachable("Unknown decision type");
540     case MODRM_ONEENTRY:
541       sEntryNumber += 1;
542       break;
543     case MODRM_SPLITRM:
544       sEntryNumber += 2;
545       break;
546     case MODRM_SPLITREG:
547       sEntryNumber += 16;
548       break;
549     case MODRM_SPLITMISC:
550       sEntryNumber += 8 + 64;
551       break;
552     case MODRM_FULL:
553       sEntryNumber += 256;
554       break;
555   }
556 
557   // We assume that the index can fit into uint16_t.
558   assert(sEntryNumber < 65536U &&
559          "Index into ModRMDecision is too large for uint16_t!");
560 
561   ++sTableNumber;
562 }
563 
emitOpcodeDecision(raw_ostream & o1,raw_ostream & o2,unsigned & i1,unsigned & i2,unsigned & ModRMTableNum,OpcodeDecision & decision) const564 void DisassemblerTables::emitOpcodeDecision(raw_ostream &o1, raw_ostream &o2,
565                                             unsigned &i1, unsigned &i2,
566                                             unsigned &ModRMTableNum,
567                                             OpcodeDecision &decision) const {
568   o2.indent(i2) << "{ /* struct OpcodeDecision */" << "\n";
569   i2++;
570   o2.indent(i2) << "{" << "\n";
571   i2++;
572 
573   for (unsigned index = 0; index < 256; ++index) {
574     o2.indent(i2);
575 
576     o2 << "/* 0x" << format("%02hhx", index) << " */" << "\n";
577 
578     emitModRMDecision(o1, o2, i1, i2, ModRMTableNum,
579                       decision.modRMDecisions[index]);
580 
581     if (index <  255)
582       o2 << ",";
583 
584     o2 << "\n";
585   }
586 
587   i2--;
588   o2.indent(i2) << "}" << "\n";
589   i2--;
590   o2.indent(i2) << "}" << "\n";
591 }
592 
emitContextDecision(raw_ostream & o1,raw_ostream & o2,unsigned & i1,unsigned & i2,unsigned & ModRMTableNum,ContextDecision & decision,const char * name) const593 void DisassemblerTables::emitContextDecision(raw_ostream &o1, raw_ostream &o2,
594                                              unsigned &i1, unsigned &i2,
595                                              unsigned &ModRMTableNum,
596                                              ContextDecision &decision,
597                                              const char* name) const {
598   o2.indent(i2) << "static const struct ContextDecision " << name << " = {\n";
599   i2++;
600   o2.indent(i2) << "{ /* opcodeDecisions */" << "\n";
601   i2++;
602 
603   for (unsigned index = 0; index < IC_max; ++index) {
604     o2.indent(i2) << "/* ";
605     o2 << stringForContext((InstructionContext)index);
606     o2 << " */";
607     o2 << "\n";
608 
609     emitOpcodeDecision(o1, o2, i1, i2, ModRMTableNum,
610                        decision.opcodeDecisions[index]);
611 
612     if (index + 1 < IC_max)
613       o2 << ", ";
614   }
615 
616   i2--;
617   o2.indent(i2) << "}" << "\n";
618   i2--;
619   o2.indent(i2) << "};" << "\n";
620 }
621 
emitInstructionInfo(raw_ostream & o,unsigned & i) const622 void DisassemblerTables::emitInstructionInfo(raw_ostream &o,
623                                              unsigned &i) const {
624   unsigned NumInstructions = InstructionSpecifiers.size();
625 
626   o << "static const struct OperandSpecifier x86OperandSets[]["
627     << X86_MAX_OPERANDS << "] = {\n";
628 
629   typedef SmallVector<std::pair<OperandEncoding, OperandType>,
630                       X86_MAX_OPERANDS> OperandListTy;
631   std::map<OperandListTy, unsigned> OperandSets;
632 
633   unsigned OperandSetNum = 0;
634   for (unsigned Index = 0; Index < NumInstructions; ++Index) {
635     OperandListTy OperandList;
636 
637     for (unsigned OperandIndex = 0; OperandIndex < X86_MAX_OPERANDS;
638          ++OperandIndex) {
639       OperandEncoding Encoding = (OperandEncoding)InstructionSpecifiers[Index]
640                                  .operands[OperandIndex].encoding;
641       OperandType Type = (OperandType)InstructionSpecifiers[Index]
642                          .operands[OperandIndex].type;
643       OperandList.push_back(std::make_pair(Encoding, Type));
644     }
645     unsigned &N = OperandSets[OperandList];
646     if (N != 0) continue;
647 
648     N = ++OperandSetNum;
649 
650     o << "  { /* " << (OperandSetNum - 1) << " */\n";
651     for (unsigned i = 0, e = OperandList.size(); i != e; ++i) {
652       const char *Encoding = stringForOperandEncoding(OperandList[i].first);
653       const char *Type     = stringForOperandType(OperandList[i].second);
654       o << "    { " << Encoding << ", " << Type << " },\n";
655     }
656     o << "  },\n";
657   }
658   o << "};" << "\n\n";
659 
660   o.indent(i * 2) << "static const struct InstructionSpecifier ";
661   o << INSTRUCTIONS_STR "[" << InstructionSpecifiers.size() << "] = {\n";
662 
663   i++;
664 
665   for (unsigned index = 0; index < NumInstructions; ++index) {
666     o.indent(i * 2) << "{ /* " << index << " */\n";
667     i++;
668 
669     OperandListTy OperandList;
670     for (unsigned OperandIndex = 0; OperandIndex < X86_MAX_OPERANDS;
671          ++OperandIndex) {
672       OperandEncoding Encoding = (OperandEncoding)InstructionSpecifiers[index]
673                                  .operands[OperandIndex].encoding;
674       OperandType Type = (OperandType)InstructionSpecifiers[index]
675                          .operands[OperandIndex].type;
676       OperandList.push_back(std::make_pair(Encoding, Type));
677     }
678     o.indent(i * 2) << (OperandSets[OperandList] - 1) << ",\n";
679 
680     o.indent(i * 2) << "/* " << InstructionSpecifiers[index].name << " */\n";
681 
682     i--;
683     o.indent(i * 2) << "},\n";
684   }
685 
686   i--;
687   o.indent(i * 2) << "};" << "\n";
688 }
689 
emitContextTable(raw_ostream & o,unsigned & i) const690 void DisassemblerTables::emitContextTable(raw_ostream &o, unsigned &i) const {
691   const unsigned int tableSize = 16384;
692   o.indent(i * 2) << "static const uint8_t " CONTEXTS_STR
693                      "[" << tableSize << "] = {\n";
694   i++;
695 
696   for (unsigned index = 0; index < tableSize; ++index) {
697     o.indent(i * 2);
698 
699     if (index & ATTR_EVEX) {
700       o << "IC_EVEX";
701       if (index & ATTR_EVEXL2)
702         o << "_L2";
703       else if (index & ATTR_EVEXL)
704         o << "_L";
705       if (index & ATTR_REXW)
706         o << "_W";
707       if (index & ATTR_OPSIZE)
708         o << "_OPSIZE";
709       else if (index & ATTR_XD)
710         o << "_XD";
711       else if (index & ATTR_XS)
712         o << "_XS";
713       if (index & ATTR_EVEXKZ)
714         o << "_KZ";
715       else if (index & ATTR_EVEXK)
716         o << "_K";
717       if (index & ATTR_EVEXB)
718         o << "_B";
719     }
720     else if ((index & ATTR_VEXL) && (index & ATTR_REXW) && (index & ATTR_OPSIZE))
721       o << "IC_VEX_L_W_OPSIZE";
722     else if ((index & ATTR_VEXL) && (index & ATTR_REXW) && (index & ATTR_XD))
723       o << "IC_VEX_L_W_XD";
724     else if ((index & ATTR_VEXL) && (index & ATTR_REXW) && (index & ATTR_XS))
725       o << "IC_VEX_L_W_XS";
726     else if ((index & ATTR_VEXL) && (index & ATTR_REXW))
727       o << "IC_VEX_L_W";
728     else if ((index & ATTR_VEXL) && (index & ATTR_OPSIZE))
729       o << "IC_VEX_L_OPSIZE";
730     else if ((index & ATTR_VEXL) && (index & ATTR_XD))
731       o << "IC_VEX_L_XD";
732     else if ((index & ATTR_VEXL) && (index & ATTR_XS))
733       o << "IC_VEX_L_XS";
734     else if ((index & ATTR_VEX) && (index & ATTR_REXW) && (index & ATTR_OPSIZE))
735       o << "IC_VEX_W_OPSIZE";
736     else if ((index & ATTR_VEX) && (index & ATTR_REXW) && (index & ATTR_XD))
737       o << "IC_VEX_W_XD";
738     else if ((index & ATTR_VEX) && (index & ATTR_REXW) && (index & ATTR_XS))
739       o << "IC_VEX_W_XS";
740     else if (index & ATTR_VEXL)
741       o << "IC_VEX_L";
742     else if ((index & ATTR_VEX) && (index & ATTR_REXW))
743       o << "IC_VEX_W";
744     else if ((index & ATTR_VEX) && (index & ATTR_OPSIZE))
745       o << "IC_VEX_OPSIZE";
746     else if ((index & ATTR_VEX) && (index & ATTR_XD))
747       o << "IC_VEX_XD";
748     else if ((index & ATTR_VEX) && (index & ATTR_XS))
749       o << "IC_VEX_XS";
750     else if (index & ATTR_VEX)
751       o << "IC_VEX";
752     else if ((index & ATTR_64BIT) && (index & ATTR_REXW) && (index & ATTR_XS))
753       o << "IC_64BIT_REXW_XS";
754     else if ((index & ATTR_64BIT) && (index & ATTR_REXW) && (index & ATTR_XD))
755       o << "IC_64BIT_REXW_XD";
756     else if ((index & ATTR_64BIT) && (index & ATTR_REXW) &&
757              (index & ATTR_OPSIZE))
758       o << "IC_64BIT_REXW_OPSIZE";
759     else if ((index & ATTR_64BIT) && (index & ATTR_REXW) &&
760              (index & ATTR_ADSIZE))
761       o << "IC_64BIT_REXW_ADSIZE";
762     else if ((index & ATTR_64BIT) && (index & ATTR_XD) && (index & ATTR_OPSIZE))
763       o << "IC_64BIT_XD_OPSIZE";
764     else if ((index & ATTR_64BIT) && (index & ATTR_XS) && (index & ATTR_OPSIZE))
765       o << "IC_64BIT_XS_OPSIZE";
766     else if ((index & ATTR_64BIT) && (index & ATTR_XS))
767       o << "IC_64BIT_XS";
768     else if ((index & ATTR_64BIT) && (index & ATTR_XD))
769       o << "IC_64BIT_XD";
770     else if ((index & ATTR_64BIT) && (index & ATTR_OPSIZE) &&
771              (index & ATTR_ADSIZE))
772       o << "IC_64BIT_OPSIZE_ADSIZE";
773     else if ((index & ATTR_64BIT) && (index & ATTR_OPSIZE))
774       o << "IC_64BIT_OPSIZE";
775     else if ((index & ATTR_64BIT) && (index & ATTR_ADSIZE))
776       o << "IC_64BIT_ADSIZE";
777     else if ((index & ATTR_64BIT) && (index & ATTR_REXW))
778       o << "IC_64BIT_REXW";
779     else if ((index & ATTR_64BIT))
780       o << "IC_64BIT";
781     else if ((index & ATTR_XS) && (index & ATTR_OPSIZE))
782       o << "IC_XS_OPSIZE";
783     else if ((index & ATTR_XD) && (index & ATTR_OPSIZE))
784       o << "IC_XD_OPSIZE";
785     else if (index & ATTR_XS)
786       o << "IC_XS";
787     else if (index & ATTR_XD)
788       o << "IC_XD";
789     else if ((index & ATTR_OPSIZE) && (index & ATTR_ADSIZE))
790       o << "IC_OPSIZE_ADSIZE";
791     else if (index & ATTR_OPSIZE)
792       o << "IC_OPSIZE";
793     else if (index & ATTR_ADSIZE)
794       o << "IC_ADSIZE";
795     else
796       o << "IC";
797 
798     if (index < tableSize - 1)
799       o << ",";
800     else
801       o << " ";
802 
803     o << " /* " << index << " */";
804 
805     o << "\n";
806   }
807 
808   i--;
809   o.indent(i * 2) << "};" << "\n";
810 }
811 
emitContextDecisions(raw_ostream & o1,raw_ostream & o2,unsigned & i1,unsigned & i2,unsigned & ModRMTableNum) const812 void DisassemblerTables::emitContextDecisions(raw_ostream &o1, raw_ostream &o2,
813                                               unsigned &i1, unsigned &i2,
814                                               unsigned &ModRMTableNum) const {
815   emitContextDecision(o1, o2, i1, i2, ModRMTableNum, *Tables[0], ONEBYTE_STR);
816   emitContextDecision(o1, o2, i1, i2, ModRMTableNum, *Tables[1], TWOBYTE_STR);
817   emitContextDecision(o1, o2, i1, i2, ModRMTableNum, *Tables[2], THREEBYTE38_STR);
818   emitContextDecision(o1, o2, i1, i2, ModRMTableNum, *Tables[3], THREEBYTE3A_STR);
819   emitContextDecision(o1, o2, i1, i2, ModRMTableNum, *Tables[4], XOP8_MAP_STR);
820   emitContextDecision(o1, o2, i1, i2, ModRMTableNum, *Tables[5], XOP9_MAP_STR);
821   emitContextDecision(o1, o2, i1, i2, ModRMTableNum, *Tables[6], XOPA_MAP_STR);
822 }
823 
emit(raw_ostream & o) const824 void DisassemblerTables::emit(raw_ostream &o) const {
825   unsigned i1 = 0;
826   unsigned i2 = 0;
827 
828   std::string s1;
829   std::string s2;
830 
831   raw_string_ostream o1(s1);
832   raw_string_ostream o2(s2);
833 
834   emitInstructionInfo(o, i2);
835   o << "\n";
836 
837   emitContextTable(o, i2);
838   o << "\n";
839 
840   unsigned ModRMTableNum = 0;
841 
842   o << "static const InstrUID modRMTable[] = {\n";
843   i1++;
844   std::vector<unsigned> EmptyTable(1, 0);
845   ModRMTable[EmptyTable] = ModRMTableNum;
846   ModRMTableNum += EmptyTable.size();
847   o1 << "/* EmptyTable */\n";
848   o1.indent(i1 * 2) << "0x0,\n";
849   i1--;
850   emitContextDecisions(o1, o2, i1, i2, ModRMTableNum);
851 
852   o << o1.str();
853   o << "  0x0\n";
854   o << "};\n";
855   o << "\n";
856   o << o2.str();
857   o << "\n";
858   o << "\n";
859 }
860 
setTableFields(ModRMDecision & decision,const ModRMFilter & filter,InstrUID uid,uint8_t opcode)861 void DisassemblerTables::setTableFields(ModRMDecision     &decision,
862                                         const ModRMFilter &filter,
863                                         InstrUID          uid,
864                                         uint8_t           opcode) {
865   for (unsigned index = 0; index < 256; ++index) {
866     if (filter.accepts(index)) {
867       if (decision.instructionIDs[index] == uid)
868         continue;
869 
870       if (decision.instructionIDs[index] != 0) {
871         InstructionSpecifier &newInfo =
872           InstructionSpecifiers[uid];
873         InstructionSpecifier &previousInfo =
874           InstructionSpecifiers[decision.instructionIDs[index]];
875 
876         if(previousInfo.name == "NOOP" && (newInfo.name == "XCHG16ar" ||
877                                            newInfo.name == "XCHG32ar" ||
878                                            newInfo.name == "XCHG32ar64" ||
879                                            newInfo.name == "XCHG64ar"))
880           continue; // special case for XCHG*ar and NOOP
881 
882         if (outranks(previousInfo.insnContext, newInfo.insnContext))
883           continue;
884 
885         if (previousInfo.insnContext == newInfo.insnContext) {
886           errs() << "Error: Primary decode conflict: ";
887           errs() << newInfo.name << " would overwrite " << previousInfo.name;
888           errs() << "\n";
889           errs() << "ModRM   " << index << "\n";
890           errs() << "Opcode  " << (uint16_t)opcode << "\n";
891           errs() << "Context " << stringForContext(newInfo.insnContext) << "\n";
892           HasConflicts = true;
893         }
894       }
895 
896       decision.instructionIDs[index] = uid;
897     }
898   }
899 }
900 
setTableFields(OpcodeType type,InstructionContext insnContext,uint8_t opcode,const ModRMFilter & filter,InstrUID uid,bool is32bit,bool ignoresVEX_L,unsigned addressSize)901 void DisassemblerTables::setTableFields(OpcodeType          type,
902                                         InstructionContext  insnContext,
903                                         uint8_t             opcode,
904                                         const ModRMFilter   &filter,
905                                         InstrUID            uid,
906                                         bool                is32bit,
907                                         bool                ignoresVEX_L,
908                                         unsigned            addressSize) {
909   ContextDecision &decision = *Tables[type];
910 
911   for (unsigned index = 0; index < IC_max; ++index) {
912     if ((is32bit || addressSize == 16) &&
913         inheritsFrom((InstructionContext)index, IC_64BIT))
914       continue;
915 
916     bool adSize64 = addressSize == 64;
917     if (inheritsFrom((InstructionContext)index,
918                      InstructionSpecifiers[uid].insnContext, ignoresVEX_L,
919                      adSize64))
920       setTableFields(decision.opcodeDecisions[index].modRMDecisions[opcode],
921                      filter,
922                      uid,
923                      opcode);
924   }
925 }
926