1 //====- X86SpeculativeLoadHardening.cpp - A Spectre v1 mitigation ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 ///
10 /// Provide a pass which mitigates speculative execution attacks which operate
11 /// by speculating incorrectly past some predicate (a type check, bounds check,
12 /// or other condition) to reach a load with invalid inputs and leak the data
13 /// accessed by that load using a side channel out of the speculative domain.
14 ///
15 /// For details on the attacks, see the first variant in both the Project Zero
16 /// writeup and the Spectre paper:
17 /// https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html
18 /// https://spectreattack.com/spectre.pdf
19 ///
20 //===----------------------------------------------------------------------===//
21
22 #include "X86.h"
23 #include "X86InstrBuilder.h"
24 #include "X86InstrInfo.h"
25 #include "X86Subtarget.h"
26 #include "llvm/ADT/ArrayRef.h"
27 #include "llvm/ADT/DenseMap.h"
28 #include "llvm/ADT/Optional.h"
29 #include "llvm/ADT/STLExtras.h"
30 #include "llvm/ADT/ScopeExit.h"
31 #include "llvm/ADT/SmallPtrSet.h"
32 #include "llvm/ADT/SmallSet.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/ADT/SparseBitVector.h"
35 #include "llvm/ADT/Statistic.h"
36 #include "llvm/CodeGen/MachineBasicBlock.h"
37 #include "llvm/CodeGen/MachineConstantPool.h"
38 #include "llvm/CodeGen/MachineFunction.h"
39 #include "llvm/CodeGen/MachineFunctionPass.h"
40 #include "llvm/CodeGen/MachineInstr.h"
41 #include "llvm/CodeGen/MachineInstrBuilder.h"
42 #include "llvm/CodeGen/MachineModuleInfo.h"
43 #include "llvm/CodeGen/MachineOperand.h"
44 #include "llvm/CodeGen/MachineRegisterInfo.h"
45 #include "llvm/CodeGen/MachineSSAUpdater.h"
46 #include "llvm/CodeGen/TargetInstrInfo.h"
47 #include "llvm/CodeGen/TargetRegisterInfo.h"
48 #include "llvm/CodeGen/TargetSchedule.h"
49 #include "llvm/CodeGen/TargetSubtargetInfo.h"
50 #include "llvm/IR/DebugLoc.h"
51 #include "llvm/MC/MCSchedule.h"
52 #include "llvm/Pass.h"
53 #include "llvm/Support/CommandLine.h"
54 #include "llvm/Support/Debug.h"
55 #include "llvm/Support/raw_ostream.h"
56 #include <algorithm>
57 #include <cassert>
58 #include <iterator>
59 #include <utility>
60
61 using namespace llvm;
62
63 #define PASS_KEY "x86-slh"
64 #define DEBUG_TYPE PASS_KEY
65
66 STATISTIC(NumCondBranchesTraced, "Number of conditional branches traced");
67 STATISTIC(NumBranchesUntraced, "Number of branches unable to trace");
68 STATISTIC(NumAddrRegsHardened,
69 "Number of address mode used registers hardaned");
70 STATISTIC(NumPostLoadRegsHardened,
71 "Number of post-load register values hardened");
72 STATISTIC(NumCallsOrJumpsHardened,
73 "Number of calls or jumps requiring extra hardening");
74 STATISTIC(NumInstsInserted, "Number of instructions inserted");
75 STATISTIC(NumLFENCEsInserted, "Number of lfence instructions inserted");
76
77 static cl::opt<bool> EnableSpeculativeLoadHardening(
78 "x86-speculative-load-hardening",
79 cl::desc("Force enable speculative load hardening"), cl::init(false),
80 cl::Hidden);
81
82 static cl::opt<bool> HardenEdgesWithLFENCE(
83 PASS_KEY "-lfence",
84 cl::desc(
85 "Use LFENCE along each conditional edge to harden against speculative "
86 "loads rather than conditional movs and poisoned pointers."),
87 cl::init(false), cl::Hidden);
88
89 static cl::opt<bool> EnablePostLoadHardening(
90 PASS_KEY "-post-load",
91 cl::desc("Harden the value loaded *after* it is loaded by "
92 "flushing the loaded bits to 1. This is hard to do "
93 "in general but can be done easily for GPRs."),
94 cl::init(true), cl::Hidden);
95
96 static cl::opt<bool> FenceCallAndRet(
97 PASS_KEY "-fence-call-and-ret",
98 cl::desc("Use a full speculation fence to harden both call and ret edges "
99 "rather than a lighter weight mitigation."),
100 cl::init(false), cl::Hidden);
101
102 static cl::opt<bool> HardenInterprocedurally(
103 PASS_KEY "-ip",
104 cl::desc("Harden interprocedurally by passing our state in and out of "
105 "functions in the high bits of the stack pointer."),
106 cl::init(true), cl::Hidden);
107
108 static cl::opt<bool>
109 HardenLoads(PASS_KEY "-loads",
110 cl::desc("Sanitize loads from memory. When disable, no "
111 "significant security is provided."),
112 cl::init(true), cl::Hidden);
113
114 static cl::opt<bool> HardenIndirectCallsAndJumps(
115 PASS_KEY "-indirect",
116 cl::desc("Harden indirect calls and jumps against using speculatively "
117 "stored attacker controlled addresses. This is designed to "
118 "mitigate Spectre v1.2 style attacks."),
119 cl::init(true), cl::Hidden);
120
121 namespace {
122
123 class X86SpeculativeLoadHardeningPass : public MachineFunctionPass {
124 public:
X86SpeculativeLoadHardeningPass()125 X86SpeculativeLoadHardeningPass() : MachineFunctionPass(ID) { }
126
getPassName() const127 StringRef getPassName() const override {
128 return "X86 speculative load hardening";
129 }
130 bool runOnMachineFunction(MachineFunction &MF) override;
131 void getAnalysisUsage(AnalysisUsage &AU) const override;
132
133 /// Pass identification, replacement for typeid.
134 static char ID;
135
136 private:
137 /// The information about a block's conditional terminators needed to trace
138 /// our predicate state through the exiting edges.
139 struct BlockCondInfo {
140 MachineBasicBlock *MBB;
141
142 // We mostly have one conditional branch, and in extremely rare cases have
143 // two. Three and more are so rare as to be unimportant for compile time.
144 SmallVector<MachineInstr *, 2> CondBrs;
145
146 MachineInstr *UncondBr;
147 };
148
149 /// Manages the predicate state traced through the program.
150 struct PredState {
151 unsigned InitialReg = 0;
152 unsigned PoisonReg = 0;
153
154 const TargetRegisterClass *RC;
155 MachineSSAUpdater SSA;
156
PredState__anon539656ff0111::X86SpeculativeLoadHardeningPass::PredState157 PredState(MachineFunction &MF, const TargetRegisterClass *RC)
158 : RC(RC), SSA(MF) {}
159 };
160
161 const X86Subtarget *Subtarget = nullptr;
162 MachineRegisterInfo *MRI = nullptr;
163 const X86InstrInfo *TII = nullptr;
164 const TargetRegisterInfo *TRI = nullptr;
165
166 Optional<PredState> PS;
167
168 void hardenEdgesWithLFENCE(MachineFunction &MF);
169
170 SmallVector<BlockCondInfo, 16> collectBlockCondInfo(MachineFunction &MF);
171
172 SmallVector<MachineInstr *, 16>
173 tracePredStateThroughCFG(MachineFunction &MF, ArrayRef<BlockCondInfo> Infos);
174
175 void unfoldCallAndJumpLoads(MachineFunction &MF);
176
177 SmallVector<MachineInstr *, 16>
178 tracePredStateThroughIndirectBranches(MachineFunction &MF);
179
180 void tracePredStateThroughBlocksAndHarden(MachineFunction &MF);
181
182 unsigned saveEFLAGS(MachineBasicBlock &MBB,
183 MachineBasicBlock::iterator InsertPt, DebugLoc Loc);
184 void restoreEFLAGS(MachineBasicBlock &MBB,
185 MachineBasicBlock::iterator InsertPt, DebugLoc Loc,
186 unsigned OFReg);
187
188 void mergePredStateIntoSP(MachineBasicBlock &MBB,
189 MachineBasicBlock::iterator InsertPt, DebugLoc Loc,
190 unsigned PredStateReg);
191 unsigned extractPredStateFromSP(MachineBasicBlock &MBB,
192 MachineBasicBlock::iterator InsertPt,
193 DebugLoc Loc);
194
195 void
196 hardenLoadAddr(MachineInstr &MI, MachineOperand &BaseMO,
197 MachineOperand &IndexMO,
198 SmallDenseMap<unsigned, unsigned, 32> &AddrRegToHardenedReg);
199 MachineInstr *
200 sinkPostLoadHardenedInst(MachineInstr &MI,
201 SmallPtrSetImpl<MachineInstr *> &HardenedInstrs);
202 bool canHardenRegister(unsigned Reg);
203 unsigned hardenValueInRegister(unsigned Reg, MachineBasicBlock &MBB,
204 MachineBasicBlock::iterator InsertPt,
205 DebugLoc Loc);
206 unsigned hardenPostLoad(MachineInstr &MI);
207 void hardenReturnInstr(MachineInstr &MI);
208 void tracePredStateThroughCall(MachineInstr &MI);
209 void hardenIndirectCallOrJumpInstr(
210 MachineInstr &MI,
211 SmallDenseMap<unsigned, unsigned, 32> &AddrRegToHardenedReg);
212 };
213
214 } // end anonymous namespace
215
216 char X86SpeculativeLoadHardeningPass::ID = 0;
217
getAnalysisUsage(AnalysisUsage & AU) const218 void X86SpeculativeLoadHardeningPass::getAnalysisUsage(
219 AnalysisUsage &AU) const {
220 MachineFunctionPass::getAnalysisUsage(AU);
221 }
222
splitEdge(MachineBasicBlock & MBB,MachineBasicBlock & Succ,int SuccCount,MachineInstr * Br,MachineInstr * & UncondBr,const X86InstrInfo & TII)223 static MachineBasicBlock &splitEdge(MachineBasicBlock &MBB,
224 MachineBasicBlock &Succ, int SuccCount,
225 MachineInstr *Br, MachineInstr *&UncondBr,
226 const X86InstrInfo &TII) {
227 assert(!Succ.isEHPad() && "Shouldn't get edges to EH pads!");
228
229 MachineFunction &MF = *MBB.getParent();
230
231 MachineBasicBlock &NewMBB = *MF.CreateMachineBasicBlock();
232
233 // We have to insert the new block immediately after the current one as we
234 // don't know what layout-successor relationships the successor has and we
235 // may not be able to (and generally don't want to) try to fix those up.
236 MF.insert(std::next(MachineFunction::iterator(&MBB)), &NewMBB);
237
238 // Update the branch instruction if necessary.
239 if (Br) {
240 assert(Br->getOperand(0).getMBB() == &Succ &&
241 "Didn't start with the right target!");
242 Br->getOperand(0).setMBB(&NewMBB);
243
244 // If this successor was reached through a branch rather than fallthrough,
245 // we might have *broken* fallthrough and so need to inject a new
246 // unconditional branch.
247 if (!UncondBr) {
248 MachineBasicBlock &OldLayoutSucc =
249 *std::next(MachineFunction::iterator(&NewMBB));
250 assert(MBB.isSuccessor(&OldLayoutSucc) &&
251 "Without an unconditional branch, the old layout successor should "
252 "be an actual successor!");
253 auto BrBuilder =
254 BuildMI(&MBB, DebugLoc(), TII.get(X86::JMP_1)).addMBB(&OldLayoutSucc);
255 // Update the unconditional branch now that we've added one.
256 UncondBr = &*BrBuilder;
257 }
258
259 // Insert unconditional "jump Succ" instruction in the new block if
260 // necessary.
261 if (!NewMBB.isLayoutSuccessor(&Succ)) {
262 SmallVector<MachineOperand, 4> Cond;
263 TII.insertBranch(NewMBB, &Succ, nullptr, Cond, Br->getDebugLoc());
264 }
265 } else {
266 assert(!UncondBr &&
267 "Cannot have a branchless successor and an unconditional branch!");
268 assert(NewMBB.isLayoutSuccessor(&Succ) &&
269 "A non-branch successor must have been a layout successor before "
270 "and now is a layout successor of the new block.");
271 }
272
273 // If this is the only edge to the successor, we can just replace it in the
274 // CFG. Otherwise we need to add a new entry in the CFG for the new
275 // successor.
276 if (SuccCount == 1) {
277 MBB.replaceSuccessor(&Succ, &NewMBB);
278 } else {
279 MBB.splitSuccessor(&Succ, &NewMBB);
280 }
281
282 // Hook up the edge from the new basic block to the old successor in the CFG.
283 NewMBB.addSuccessor(&Succ);
284
285 // Fix PHI nodes in Succ so they refer to NewMBB instead of MBB.
286 for (MachineInstr &MI : Succ) {
287 if (!MI.isPHI())
288 break;
289 for (int OpIdx = 1, NumOps = MI.getNumOperands(); OpIdx < NumOps;
290 OpIdx += 2) {
291 MachineOperand &OpV = MI.getOperand(OpIdx);
292 MachineOperand &OpMBB = MI.getOperand(OpIdx + 1);
293 assert(OpMBB.isMBB() && "Block operand to a PHI is not a block!");
294 if (OpMBB.getMBB() != &MBB)
295 continue;
296
297 // If this is the last edge to the succesor, just replace MBB in the PHI
298 if (SuccCount == 1) {
299 OpMBB.setMBB(&NewMBB);
300 break;
301 }
302
303 // Otherwise, append a new pair of operands for the new incoming edge.
304 MI.addOperand(MF, OpV);
305 MI.addOperand(MF, MachineOperand::CreateMBB(&NewMBB));
306 break;
307 }
308 }
309
310 // Inherit live-ins from the successor
311 for (auto &LI : Succ.liveins())
312 NewMBB.addLiveIn(LI);
313
314 LLVM_DEBUG(dbgs() << " Split edge from '" << MBB.getName() << "' to '"
315 << Succ.getName() << "'.\n");
316 return NewMBB;
317 }
318
319 /// Removing duplicate PHI operands to leave the PHI in a canonical and
320 /// predictable form.
321 ///
322 /// FIXME: It's really frustrating that we have to do this, but SSA-form in MIR
323 /// isn't what you might expect. We may have multiple entries in PHI nodes for
324 /// a single predecessor. This makes CFG-updating extremely complex, so here we
325 /// simplify all PHI nodes to a model even simpler than the IR's model: exactly
326 /// one entry per predecessor, regardless of how many edges there are.
canonicalizePHIOperands(MachineFunction & MF)327 static void canonicalizePHIOperands(MachineFunction &MF) {
328 SmallPtrSet<MachineBasicBlock *, 4> Preds;
329 SmallVector<int, 4> DupIndices;
330 for (auto &MBB : MF)
331 for (auto &MI : MBB) {
332 if (!MI.isPHI())
333 break;
334
335 // First we scan the operands of the PHI looking for duplicate entries
336 // a particular predecessor. We retain the operand index of each duplicate
337 // entry found.
338 for (int OpIdx = 1, NumOps = MI.getNumOperands(); OpIdx < NumOps;
339 OpIdx += 2)
340 if (!Preds.insert(MI.getOperand(OpIdx + 1).getMBB()).second)
341 DupIndices.push_back(OpIdx);
342
343 // Now walk the duplicate indices, removing both the block and value. Note
344 // that these are stored as a vector making this element-wise removal
345 // :w
346 // potentially quadratic.
347 //
348 // FIXME: It is really frustrating that we have to use a quadratic
349 // removal algorithm here. There should be a better way, but the use-def
350 // updates required make that impossible using the public API.
351 //
352 // Note that we have to process these backwards so that we don't
353 // invalidate other indices with each removal.
354 while (!DupIndices.empty()) {
355 int OpIdx = DupIndices.pop_back_val();
356 // Remove both the block and value operand, again in reverse order to
357 // preserve indices.
358 MI.RemoveOperand(OpIdx + 1);
359 MI.RemoveOperand(OpIdx);
360 }
361
362 Preds.clear();
363 }
364 }
365
366 /// Helper to scan a function for loads vulnerable to misspeculation that we
367 /// want to harden.
368 ///
369 /// We use this to avoid making changes to functions where there is nothing we
370 /// need to do to harden against misspeculation.
hasVulnerableLoad(MachineFunction & MF)371 static bool hasVulnerableLoad(MachineFunction &MF) {
372 for (MachineBasicBlock &MBB : MF) {
373 for (MachineInstr &MI : MBB) {
374 // Loads within this basic block after an LFENCE are not at risk of
375 // speculatively executing with invalid predicates from prior control
376 // flow. So break out of this block but continue scanning the function.
377 if (MI.getOpcode() == X86::LFENCE)
378 break;
379
380 // Looking for loads only.
381 if (!MI.mayLoad())
382 continue;
383
384 // An MFENCE is modeled as a load but isn't vulnerable to misspeculation.
385 if (MI.getOpcode() == X86::MFENCE)
386 continue;
387
388 // We found a load.
389 return true;
390 }
391 }
392
393 // No loads found.
394 return false;
395 }
396
runOnMachineFunction(MachineFunction & MF)397 bool X86SpeculativeLoadHardeningPass::runOnMachineFunction(
398 MachineFunction &MF) {
399 LLVM_DEBUG(dbgs() << "********** " << getPassName() << " : " << MF.getName()
400 << " **********\n");
401
402 // Only run if this pass is forced enabled or we detect the relevant function
403 // attribute requesting SLH.
404 if (!EnableSpeculativeLoadHardening &&
405 !MF.getFunction().hasFnAttribute(Attribute::SpeculativeLoadHardening))
406 return false;
407
408 Subtarget = &MF.getSubtarget<X86Subtarget>();
409 MRI = &MF.getRegInfo();
410 TII = Subtarget->getInstrInfo();
411 TRI = Subtarget->getRegisterInfo();
412
413 // FIXME: Support for 32-bit.
414 PS.emplace(MF, &X86::GR64_NOSPRegClass);
415
416 if (MF.begin() == MF.end())
417 // Nothing to do for a degenerate empty function...
418 return false;
419
420 // We support an alternative hardening technique based on a debug flag.
421 if (HardenEdgesWithLFENCE) {
422 hardenEdgesWithLFENCE(MF);
423 return true;
424 }
425
426 // Create a dummy debug loc to use for all the generated code here.
427 DebugLoc Loc;
428
429 MachineBasicBlock &Entry = *MF.begin();
430 auto EntryInsertPt = Entry.SkipPHIsLabelsAndDebug(Entry.begin());
431
432 // Do a quick scan to see if we have any checkable loads.
433 bool HasVulnerableLoad = hasVulnerableLoad(MF);
434
435 // See if we have any conditional branching blocks that we will need to trace
436 // predicate state through.
437 SmallVector<BlockCondInfo, 16> Infos = collectBlockCondInfo(MF);
438
439 // If we have no interesting conditions or loads, nothing to do here.
440 if (!HasVulnerableLoad && Infos.empty())
441 return true;
442
443 // The poison value is required to be an all-ones value for many aspects of
444 // this mitigation.
445 const int PoisonVal = -1;
446 PS->PoisonReg = MRI->createVirtualRegister(PS->RC);
447 BuildMI(Entry, EntryInsertPt, Loc, TII->get(X86::MOV64ri32), PS->PoisonReg)
448 .addImm(PoisonVal);
449 ++NumInstsInserted;
450
451 // If we have loads being hardened and we've asked for call and ret edges to
452 // get a full fence-based mitigation, inject that fence.
453 if (HasVulnerableLoad && FenceCallAndRet) {
454 // We need to insert an LFENCE at the start of the function to suspend any
455 // incoming misspeculation from the caller. This helps two-fold: the caller
456 // may not have been protected as this code has been, and this code gets to
457 // not take any specific action to protect across calls.
458 // FIXME: We could skip this for functions which unconditionally return
459 // a constant.
460 BuildMI(Entry, EntryInsertPt, Loc, TII->get(X86::LFENCE));
461 ++NumInstsInserted;
462 ++NumLFENCEsInserted;
463 }
464
465 // If we guarded the entry with an LFENCE and have no conditionals to protect
466 // in blocks, then we're done.
467 if (FenceCallAndRet && Infos.empty())
468 // We may have changed the function's code at this point to insert fences.
469 return true;
470
471 // For every basic block in the function which can b
472 if (HardenInterprocedurally && !FenceCallAndRet) {
473 // Set up the predicate state by extracting it from the incoming stack
474 // pointer so we pick up any misspeculation in our caller.
475 PS->InitialReg = extractPredStateFromSP(Entry, EntryInsertPt, Loc);
476 } else {
477 // Otherwise, just build the predicate state itself by zeroing a register
478 // as we don't need any initial state.
479 PS->InitialReg = MRI->createVirtualRegister(PS->RC);
480 Register PredStateSubReg = MRI->createVirtualRegister(&X86::GR32RegClass);
481 auto ZeroI = BuildMI(Entry, EntryInsertPt, Loc, TII->get(X86::MOV32r0),
482 PredStateSubReg);
483 ++NumInstsInserted;
484 MachineOperand *ZeroEFLAGSDefOp =
485 ZeroI->findRegisterDefOperand(X86::EFLAGS);
486 assert(ZeroEFLAGSDefOp && ZeroEFLAGSDefOp->isImplicit() &&
487 "Must have an implicit def of EFLAGS!");
488 ZeroEFLAGSDefOp->setIsDead(true);
489 BuildMI(Entry, EntryInsertPt, Loc, TII->get(X86::SUBREG_TO_REG),
490 PS->InitialReg)
491 .addImm(0)
492 .addReg(PredStateSubReg)
493 .addImm(X86::sub_32bit);
494 }
495
496 // We're going to need to trace predicate state throughout the function's
497 // CFG. Prepare for this by setting up our initial state of PHIs with unique
498 // predecessor entries and all the initial predicate state.
499 canonicalizePHIOperands(MF);
500
501 // Track the updated values in an SSA updater to rewrite into SSA form at the
502 // end.
503 PS->SSA.Initialize(PS->InitialReg);
504 PS->SSA.AddAvailableValue(&Entry, PS->InitialReg);
505
506 // Trace through the CFG.
507 auto CMovs = tracePredStateThroughCFG(MF, Infos);
508
509 // We may also enter basic blocks in this function via exception handling
510 // control flow. Here, if we are hardening interprocedurally, we need to
511 // re-capture the predicate state from the throwing code. In the Itanium ABI,
512 // the throw will always look like a call to __cxa_throw and will have the
513 // predicate state in the stack pointer, so extract fresh predicate state from
514 // the stack pointer and make it available in SSA.
515 // FIXME: Handle non-itanium ABI EH models.
516 if (HardenInterprocedurally) {
517 for (MachineBasicBlock &MBB : MF) {
518 assert(!MBB.isEHScopeEntry() && "Only Itanium ABI EH supported!");
519 assert(!MBB.isEHFuncletEntry() && "Only Itanium ABI EH supported!");
520 assert(!MBB.isCleanupFuncletEntry() && "Only Itanium ABI EH supported!");
521 if (!MBB.isEHPad())
522 continue;
523 PS->SSA.AddAvailableValue(
524 &MBB,
525 extractPredStateFromSP(MBB, MBB.SkipPHIsAndLabels(MBB.begin()), Loc));
526 }
527 }
528
529 if (HardenIndirectCallsAndJumps) {
530 // If we are going to harden calls and jumps we need to unfold their memory
531 // operands.
532 unfoldCallAndJumpLoads(MF);
533
534 // Then we trace predicate state through the indirect branches.
535 auto IndirectBrCMovs = tracePredStateThroughIndirectBranches(MF);
536 CMovs.append(IndirectBrCMovs.begin(), IndirectBrCMovs.end());
537 }
538
539 // Now that we have the predicate state available at the start of each block
540 // in the CFG, trace it through each block, hardening vulnerable instructions
541 // as we go.
542 tracePredStateThroughBlocksAndHarden(MF);
543
544 // Now rewrite all the uses of the pred state using the SSA updater to insert
545 // PHIs connecting the state between blocks along the CFG edges.
546 for (MachineInstr *CMovI : CMovs)
547 for (MachineOperand &Op : CMovI->operands()) {
548 if (!Op.isReg() || Op.getReg() != PS->InitialReg)
549 continue;
550
551 PS->SSA.RewriteUse(Op);
552 }
553
554 LLVM_DEBUG(dbgs() << "Final speculative load hardened function:\n"; MF.dump();
555 dbgs() << "\n"; MF.verify(this));
556 return true;
557 }
558
559 /// Implements the naive hardening approach of putting an LFENCE after every
560 /// potentially mis-predicted control flow construct.
561 ///
562 /// We include this as an alternative mostly for the purpose of comparison. The
563 /// performance impact of this is expected to be extremely severe and not
564 /// practical for any real-world users.
hardenEdgesWithLFENCE(MachineFunction & MF)565 void X86SpeculativeLoadHardeningPass::hardenEdgesWithLFENCE(
566 MachineFunction &MF) {
567 // First, we scan the function looking for blocks that are reached along edges
568 // that we might want to harden.
569 SmallSetVector<MachineBasicBlock *, 8> Blocks;
570 for (MachineBasicBlock &MBB : MF) {
571 // If there are no or only one successor, nothing to do here.
572 if (MBB.succ_size() <= 1)
573 continue;
574
575 // Skip blocks unless their terminators start with a branch. Other
576 // terminators don't seem interesting for guarding against misspeculation.
577 auto TermIt = MBB.getFirstTerminator();
578 if (TermIt == MBB.end() || !TermIt->isBranch())
579 continue;
580
581 // Add all the non-EH-pad succossors to the blocks we want to harden. We
582 // skip EH pads because there isn't really a condition of interest on
583 // entering.
584 for (MachineBasicBlock *SuccMBB : MBB.successors())
585 if (!SuccMBB->isEHPad())
586 Blocks.insert(SuccMBB);
587 }
588
589 for (MachineBasicBlock *MBB : Blocks) {
590 auto InsertPt = MBB->SkipPHIsAndLabels(MBB->begin());
591 BuildMI(*MBB, InsertPt, DebugLoc(), TII->get(X86::LFENCE));
592 ++NumInstsInserted;
593 ++NumLFENCEsInserted;
594 }
595 }
596
597 SmallVector<X86SpeculativeLoadHardeningPass::BlockCondInfo, 16>
collectBlockCondInfo(MachineFunction & MF)598 X86SpeculativeLoadHardeningPass::collectBlockCondInfo(MachineFunction &MF) {
599 SmallVector<BlockCondInfo, 16> Infos;
600
601 // Walk the function and build up a summary for each block's conditions that
602 // we need to trace through.
603 for (MachineBasicBlock &MBB : MF) {
604 // If there are no or only one successor, nothing to do here.
605 if (MBB.succ_size() <= 1)
606 continue;
607
608 // We want to reliably handle any conditional branch terminators in the
609 // MBB, so we manually analyze the branch. We can handle all of the
610 // permutations here, including ones that analyze branch cannot.
611 //
612 // The approach is to walk backwards across the terminators, resetting at
613 // any unconditional non-indirect branch, and track all conditional edges
614 // to basic blocks as well as the fallthrough or unconditional successor
615 // edge. For each conditional edge, we track the target and the opposite
616 // condition code in order to inject a "no-op" cmov into that successor
617 // that will harden the predicate. For the fallthrough/unconditional
618 // edge, we inject a separate cmov for each conditional branch with
619 // matching condition codes. This effectively implements an "and" of the
620 // condition flags, even if there isn't a single condition flag that would
621 // directly implement that. We don't bother trying to optimize either of
622 // these cases because if such an optimization is possible, LLVM should
623 // have optimized the conditional *branches* in that way already to reduce
624 // instruction count. This late, we simply assume the minimal number of
625 // branch instructions is being emitted and use that to guide our cmov
626 // insertion.
627
628 BlockCondInfo Info = {&MBB, {}, nullptr};
629
630 // Now walk backwards through the terminators and build up successors they
631 // reach and the conditions.
632 for (MachineInstr &MI : llvm::reverse(MBB)) {
633 // Once we've handled all the terminators, we're done.
634 if (!MI.isTerminator())
635 break;
636
637 // If we see a non-branch terminator, we can't handle anything so bail.
638 if (!MI.isBranch()) {
639 Info.CondBrs.clear();
640 break;
641 }
642
643 // If we see an unconditional branch, reset our state, clear any
644 // fallthrough, and set this is the "else" successor.
645 if (MI.getOpcode() == X86::JMP_1) {
646 Info.CondBrs.clear();
647 Info.UncondBr = &MI;
648 continue;
649 }
650
651 // If we get an invalid condition, we have an indirect branch or some
652 // other unanalyzable "fallthrough" case. We model this as a nullptr for
653 // the destination so we can still guard any conditional successors.
654 // Consider code sequences like:
655 // ```
656 // jCC L1
657 // jmpq *%rax
658 // ```
659 // We still want to harden the edge to `L1`.
660 if (X86::getCondFromBranch(MI) == X86::COND_INVALID) {
661 Info.CondBrs.clear();
662 Info.UncondBr = &MI;
663 continue;
664 }
665
666 // We have a vanilla conditional branch, add it to our list.
667 Info.CondBrs.push_back(&MI);
668 }
669 if (Info.CondBrs.empty()) {
670 ++NumBranchesUntraced;
671 LLVM_DEBUG(dbgs() << "WARNING: unable to secure successors of block:\n";
672 MBB.dump());
673 continue;
674 }
675
676 Infos.push_back(Info);
677 }
678
679 return Infos;
680 }
681
682 /// Trace the predicate state through the CFG, instrumenting each conditional
683 /// branch such that misspeculation through an edge will poison the predicate
684 /// state.
685 ///
686 /// Returns the list of inserted CMov instructions so that they can have their
687 /// uses of the predicate state rewritten into proper SSA form once it is
688 /// complete.
689 SmallVector<MachineInstr *, 16>
tracePredStateThroughCFG(MachineFunction & MF,ArrayRef<BlockCondInfo> Infos)690 X86SpeculativeLoadHardeningPass::tracePredStateThroughCFG(
691 MachineFunction &MF, ArrayRef<BlockCondInfo> Infos) {
692 // Collect the inserted cmov instructions so we can rewrite their uses of the
693 // predicate state into SSA form.
694 SmallVector<MachineInstr *, 16> CMovs;
695
696 // Now walk all of the basic blocks looking for ones that end in conditional
697 // jumps where we need to update this register along each edge.
698 for (const BlockCondInfo &Info : Infos) {
699 MachineBasicBlock &MBB = *Info.MBB;
700 const SmallVectorImpl<MachineInstr *> &CondBrs = Info.CondBrs;
701 MachineInstr *UncondBr = Info.UncondBr;
702
703 LLVM_DEBUG(dbgs() << "Tracing predicate through block: " << MBB.getName()
704 << "\n");
705 ++NumCondBranchesTraced;
706
707 // Compute the non-conditional successor as either the target of any
708 // unconditional branch or the layout successor.
709 MachineBasicBlock *UncondSucc =
710 UncondBr ? (UncondBr->getOpcode() == X86::JMP_1
711 ? UncondBr->getOperand(0).getMBB()
712 : nullptr)
713 : &*std::next(MachineFunction::iterator(&MBB));
714
715 // Count how many edges there are to any given successor.
716 SmallDenseMap<MachineBasicBlock *, int> SuccCounts;
717 if (UncondSucc)
718 ++SuccCounts[UncondSucc];
719 for (auto *CondBr : CondBrs)
720 ++SuccCounts[CondBr->getOperand(0).getMBB()];
721
722 // A lambda to insert cmov instructions into a block checking all of the
723 // condition codes in a sequence.
724 auto BuildCheckingBlockForSuccAndConds =
725 [&](MachineBasicBlock &MBB, MachineBasicBlock &Succ, int SuccCount,
726 MachineInstr *Br, MachineInstr *&UncondBr,
727 ArrayRef<X86::CondCode> Conds) {
728 // First, we split the edge to insert the checking block into a safe
729 // location.
730 auto &CheckingMBB =
731 (SuccCount == 1 && Succ.pred_size() == 1)
732 ? Succ
733 : splitEdge(MBB, Succ, SuccCount, Br, UncondBr, *TII);
734
735 bool LiveEFLAGS = Succ.isLiveIn(X86::EFLAGS);
736 if (!LiveEFLAGS)
737 CheckingMBB.addLiveIn(X86::EFLAGS);
738
739 // Now insert the cmovs to implement the checks.
740 auto InsertPt = CheckingMBB.begin();
741 assert((InsertPt == CheckingMBB.end() || !InsertPt->isPHI()) &&
742 "Should never have a PHI in the initial checking block as it "
743 "always has a single predecessor!");
744
745 // We will wire each cmov to each other, but need to start with the
746 // incoming pred state.
747 unsigned CurStateReg = PS->InitialReg;
748
749 for (X86::CondCode Cond : Conds) {
750 int PredStateSizeInBytes = TRI->getRegSizeInBits(*PS->RC) / 8;
751 auto CMovOp = X86::getCMovOpcode(PredStateSizeInBytes);
752
753 Register UpdatedStateReg = MRI->createVirtualRegister(PS->RC);
754 // Note that we intentionally use an empty debug location so that
755 // this picks up the preceding location.
756 auto CMovI = BuildMI(CheckingMBB, InsertPt, DebugLoc(),
757 TII->get(CMovOp), UpdatedStateReg)
758 .addReg(CurStateReg)
759 .addReg(PS->PoisonReg)
760 .addImm(Cond);
761 // If this is the last cmov and the EFLAGS weren't originally
762 // live-in, mark them as killed.
763 if (!LiveEFLAGS && Cond == Conds.back())
764 CMovI->findRegisterUseOperand(X86::EFLAGS)->setIsKill(true);
765
766 ++NumInstsInserted;
767 LLVM_DEBUG(dbgs() << " Inserting cmov: "; CMovI->dump();
768 dbgs() << "\n");
769
770 // The first one of the cmovs will be using the top level
771 // `PredStateReg` and need to get rewritten into SSA form.
772 if (CurStateReg == PS->InitialReg)
773 CMovs.push_back(&*CMovI);
774
775 // The next cmov should start from this one's def.
776 CurStateReg = UpdatedStateReg;
777 }
778
779 // And put the last one into the available values for SSA form of our
780 // predicate state.
781 PS->SSA.AddAvailableValue(&CheckingMBB, CurStateReg);
782 };
783
784 std::vector<X86::CondCode> UncondCodeSeq;
785 for (auto *CondBr : CondBrs) {
786 MachineBasicBlock &Succ = *CondBr->getOperand(0).getMBB();
787 int &SuccCount = SuccCounts[&Succ];
788
789 X86::CondCode Cond = X86::getCondFromBranch(*CondBr);
790 X86::CondCode InvCond = X86::GetOppositeBranchCondition(Cond);
791 UncondCodeSeq.push_back(Cond);
792
793 BuildCheckingBlockForSuccAndConds(MBB, Succ, SuccCount, CondBr, UncondBr,
794 {InvCond});
795
796 // Decrement the successor count now that we've split one of the edges.
797 // We need to keep the count of edges to the successor accurate in order
798 // to know above when to *replace* the successor in the CFG vs. just
799 // adding the new successor.
800 --SuccCount;
801 }
802
803 // Since we may have split edges and changed the number of successors,
804 // normalize the probabilities. This avoids doing it each time we split an
805 // edge.
806 MBB.normalizeSuccProbs();
807
808 // Finally, we need to insert cmovs into the "fallthrough" edge. Here, we
809 // need to intersect the other condition codes. We can do this by just
810 // doing a cmov for each one.
811 if (!UncondSucc)
812 // If we have no fallthrough to protect (perhaps it is an indirect jump?)
813 // just skip this and continue.
814 continue;
815
816 assert(SuccCounts[UncondSucc] == 1 &&
817 "We should never have more than one edge to the unconditional "
818 "successor at this point because every other edge must have been "
819 "split above!");
820
821 // Sort and unique the codes to minimize them.
822 llvm::sort(UncondCodeSeq);
823 UncondCodeSeq.erase(std::unique(UncondCodeSeq.begin(), UncondCodeSeq.end()),
824 UncondCodeSeq.end());
825
826 // Build a checking version of the successor.
827 BuildCheckingBlockForSuccAndConds(MBB, *UncondSucc, /*SuccCount*/ 1,
828 UncondBr, UncondBr, UncondCodeSeq);
829 }
830
831 return CMovs;
832 }
833
834 /// Compute the register class for the unfolded load.
835 ///
836 /// FIXME: This should probably live in X86InstrInfo, potentially by adding
837 /// a way to unfold into a newly created vreg rather than requiring a register
838 /// input.
839 static const TargetRegisterClass *
getRegClassForUnfoldedLoad(MachineFunction & MF,const X86InstrInfo & TII,unsigned Opcode)840 getRegClassForUnfoldedLoad(MachineFunction &MF, const X86InstrInfo &TII,
841 unsigned Opcode) {
842 unsigned Index;
843 unsigned UnfoldedOpc = TII.getOpcodeAfterMemoryUnfold(
844 Opcode, /*UnfoldLoad*/ true, /*UnfoldStore*/ false, &Index);
845 const MCInstrDesc &MCID = TII.get(UnfoldedOpc);
846 return TII.getRegClass(MCID, Index, &TII.getRegisterInfo(), MF);
847 }
848
unfoldCallAndJumpLoads(MachineFunction & MF)849 void X86SpeculativeLoadHardeningPass::unfoldCallAndJumpLoads(
850 MachineFunction &MF) {
851 for (MachineBasicBlock &MBB : MF)
852 for (auto MII = MBB.instr_begin(), MIE = MBB.instr_end(); MII != MIE;) {
853 // Grab a reference and increment the iterator so we can remove this
854 // instruction if needed without disturbing the iteration.
855 MachineInstr &MI = *MII++;
856
857 // Must either be a call or a branch.
858 if (!MI.isCall() && !MI.isBranch())
859 continue;
860 // We only care about loading variants of these instructions.
861 if (!MI.mayLoad())
862 continue;
863
864 switch (MI.getOpcode()) {
865 default: {
866 LLVM_DEBUG(
867 dbgs() << "ERROR: Found an unexpected loading branch or call "
868 "instruction:\n";
869 MI.dump(); dbgs() << "\n");
870 report_fatal_error("Unexpected loading branch or call!");
871 }
872
873 case X86::FARCALL16m:
874 case X86::FARCALL32m:
875 case X86::FARCALL64:
876 case X86::FARJMP16m:
877 case X86::FARJMP32m:
878 case X86::FARJMP64:
879 // We cannot mitigate far jumps or calls, but we also don't expect them
880 // to be vulnerable to Spectre v1.2 style attacks.
881 continue;
882
883 case X86::CALL16m:
884 case X86::CALL16m_NT:
885 case X86::CALL32m:
886 case X86::CALL32m_NT:
887 case X86::CALL64m:
888 case X86::CALL64m_NT:
889 case X86::JMP16m:
890 case X86::JMP16m_NT:
891 case X86::JMP32m:
892 case X86::JMP32m_NT:
893 case X86::JMP64m:
894 case X86::JMP64m_NT:
895 case X86::TAILJMPm64:
896 case X86::TAILJMPm64_REX:
897 case X86::TAILJMPm:
898 case X86::TCRETURNmi64:
899 case X86::TCRETURNmi: {
900 // Use the generic unfold logic now that we know we're dealing with
901 // expected instructions.
902 // FIXME: We don't have test coverage for all of these!
903 auto *UnfoldedRC = getRegClassForUnfoldedLoad(MF, *TII, MI.getOpcode());
904 if (!UnfoldedRC) {
905 LLVM_DEBUG(dbgs()
906 << "ERROR: Unable to unfold load from instruction:\n";
907 MI.dump(); dbgs() << "\n");
908 report_fatal_error("Unable to unfold load!");
909 }
910 Register Reg = MRI->createVirtualRegister(UnfoldedRC);
911 SmallVector<MachineInstr *, 2> NewMIs;
912 // If we were able to compute an unfolded reg class, any failure here
913 // is just a programming error so just assert.
914 bool Unfolded =
915 TII->unfoldMemoryOperand(MF, MI, Reg, /*UnfoldLoad*/ true,
916 /*UnfoldStore*/ false, NewMIs);
917 (void)Unfolded;
918 assert(Unfolded &&
919 "Computed unfolded register class but failed to unfold");
920 // Now stitch the new instructions into place and erase the old one.
921 for (auto *NewMI : NewMIs)
922 MBB.insert(MI.getIterator(), NewMI);
923 MI.eraseFromParent();
924 LLVM_DEBUG({
925 dbgs() << "Unfolded load successfully into:\n";
926 for (auto *NewMI : NewMIs) {
927 NewMI->dump();
928 dbgs() << "\n";
929 }
930 });
931 continue;
932 }
933 }
934 llvm_unreachable("Escaped switch with default!");
935 }
936 }
937
938 /// Trace the predicate state through indirect branches, instrumenting them to
939 /// poison the state if a target is reached that does not match the expected
940 /// target.
941 ///
942 /// This is designed to mitigate Spectre variant 1 attacks where an indirect
943 /// branch is trained to predict a particular target and then mispredicts that
944 /// target in a way that can leak data. Despite using an indirect branch, this
945 /// is really a variant 1 style attack: it does not steer execution to an
946 /// arbitrary or attacker controlled address, and it does not require any
947 /// special code executing next to the victim. This attack can also be mitigated
948 /// through retpolines, but those require either replacing indirect branches
949 /// with conditional direct branches or lowering them through a device that
950 /// blocks speculation. This mitigation can replace these retpoline-style
951 /// mitigations for jump tables and other indirect branches within a function
952 /// when variant 2 isn't a risk while allowing limited speculation. Indirect
953 /// calls, however, cannot be mitigated through this technique without changing
954 /// the ABI in a fundamental way.
955 SmallVector<MachineInstr *, 16>
tracePredStateThroughIndirectBranches(MachineFunction & MF)956 X86SpeculativeLoadHardeningPass::tracePredStateThroughIndirectBranches(
957 MachineFunction &MF) {
958 // We use the SSAUpdater to insert PHI nodes for the target addresses of
959 // indirect branches. We don't actually need the full power of the SSA updater
960 // in this particular case as we always have immediately available values, but
961 // this avoids us having to re-implement the PHI construction logic.
962 MachineSSAUpdater TargetAddrSSA(MF);
963 TargetAddrSSA.Initialize(MRI->createVirtualRegister(&X86::GR64RegClass));
964
965 // Track which blocks were terminated with an indirect branch.
966 SmallPtrSet<MachineBasicBlock *, 4> IndirectTerminatedMBBs;
967
968 // We need to know what blocks end up reached via indirect branches. We
969 // expect this to be a subset of those whose address is taken and so track it
970 // directly via the CFG.
971 SmallPtrSet<MachineBasicBlock *, 4> IndirectTargetMBBs;
972
973 // Walk all the blocks which end in an indirect branch and make the
974 // target address available.
975 for (MachineBasicBlock &MBB : MF) {
976 // Find the last terminator.
977 auto MII = MBB.instr_rbegin();
978 while (MII != MBB.instr_rend() && MII->isDebugInstr())
979 ++MII;
980 if (MII == MBB.instr_rend())
981 continue;
982 MachineInstr &TI = *MII;
983 if (!TI.isTerminator() || !TI.isBranch())
984 // No terminator or non-branch terminator.
985 continue;
986
987 unsigned TargetReg;
988
989 switch (TI.getOpcode()) {
990 default:
991 // Direct branch or conditional branch (leading to fallthrough).
992 continue;
993
994 case X86::FARJMP16m:
995 case X86::FARJMP32m:
996 case X86::FARJMP64:
997 // We cannot mitigate far jumps or calls, but we also don't expect them
998 // to be vulnerable to Spectre v1.2 or v2 (self trained) style attacks.
999 continue;
1000
1001 case X86::JMP16m:
1002 case X86::JMP16m_NT:
1003 case X86::JMP32m:
1004 case X86::JMP32m_NT:
1005 case X86::JMP64m:
1006 case X86::JMP64m_NT:
1007 // Mostly as documentation.
1008 report_fatal_error("Memory operand jumps should have been unfolded!");
1009
1010 case X86::JMP16r:
1011 report_fatal_error(
1012 "Support for 16-bit indirect branches is not implemented.");
1013 case X86::JMP32r:
1014 report_fatal_error(
1015 "Support for 32-bit indirect branches is not implemented.");
1016
1017 case X86::JMP64r:
1018 TargetReg = TI.getOperand(0).getReg();
1019 }
1020
1021 // We have definitely found an indirect branch. Verify that there are no
1022 // preceding conditional branches as we don't yet support that.
1023 if (llvm::any_of(MBB.terminators(), [&](MachineInstr &OtherTI) {
1024 return !OtherTI.isDebugInstr() && &OtherTI != &TI;
1025 })) {
1026 LLVM_DEBUG({
1027 dbgs() << "ERROR: Found other terminators in a block with an indirect "
1028 "branch! This is not yet supported! Terminator sequence:\n";
1029 for (MachineInstr &MI : MBB.terminators()) {
1030 MI.dump();
1031 dbgs() << '\n';
1032 }
1033 });
1034 report_fatal_error("Unimplemented terminator sequence!");
1035 }
1036
1037 // Make the target register an available value for this block.
1038 TargetAddrSSA.AddAvailableValue(&MBB, TargetReg);
1039 IndirectTerminatedMBBs.insert(&MBB);
1040
1041 // Add all the successors to our target candidates.
1042 for (MachineBasicBlock *Succ : MBB.successors())
1043 IndirectTargetMBBs.insert(Succ);
1044 }
1045
1046 // Keep track of the cmov instructions we insert so we can return them.
1047 SmallVector<MachineInstr *, 16> CMovs;
1048
1049 // If we didn't find any indirect branches with targets, nothing to do here.
1050 if (IndirectTargetMBBs.empty())
1051 return CMovs;
1052
1053 // We found indirect branches and targets that need to be instrumented to
1054 // harden loads within them. Walk the blocks of the function (to get a stable
1055 // ordering) and instrument each target of an indirect branch.
1056 for (MachineBasicBlock &MBB : MF) {
1057 // Skip the blocks that aren't candidate targets.
1058 if (!IndirectTargetMBBs.count(&MBB))
1059 continue;
1060
1061 // We don't expect EH pads to ever be reached via an indirect branch. If
1062 // this is desired for some reason, we could simply skip them here rather
1063 // than asserting.
1064 assert(!MBB.isEHPad() &&
1065 "Unexpected EH pad as target of an indirect branch!");
1066
1067 // We should never end up threading EFLAGS into a block to harden
1068 // conditional jumps as there would be an additional successor via the
1069 // indirect branch. As a consequence, all such edges would be split before
1070 // reaching here, and the inserted block will handle the EFLAGS-based
1071 // hardening.
1072 assert(!MBB.isLiveIn(X86::EFLAGS) &&
1073 "Cannot check within a block that already has live-in EFLAGS!");
1074
1075 // We can't handle having non-indirect edges into this block unless this is
1076 // the only successor and we can synthesize the necessary target address.
1077 for (MachineBasicBlock *Pred : MBB.predecessors()) {
1078 // If we've already handled this by extracting the target directly,
1079 // nothing to do.
1080 if (IndirectTerminatedMBBs.count(Pred))
1081 continue;
1082
1083 // Otherwise, we have to be the only successor. We generally expect this
1084 // to be true as conditional branches should have had a critical edge
1085 // split already. We don't however need to worry about EH pad successors
1086 // as they'll happily ignore the target and their hardening strategy is
1087 // resilient to all ways in which they could be reached speculatively.
1088 if (!llvm::all_of(Pred->successors(), [&](MachineBasicBlock *Succ) {
1089 return Succ->isEHPad() || Succ == &MBB;
1090 })) {
1091 LLVM_DEBUG({
1092 dbgs() << "ERROR: Found conditional entry to target of indirect "
1093 "branch!\n";
1094 Pred->dump();
1095 MBB.dump();
1096 });
1097 report_fatal_error("Cannot harden a conditional entry to a target of "
1098 "an indirect branch!");
1099 }
1100
1101 // Now we need to compute the address of this block and install it as a
1102 // synthetic target in the predecessor. We do this at the bottom of the
1103 // predecessor.
1104 auto InsertPt = Pred->getFirstTerminator();
1105 Register TargetReg = MRI->createVirtualRegister(&X86::GR64RegClass);
1106 if (MF.getTarget().getCodeModel() == CodeModel::Small &&
1107 !Subtarget->isPositionIndependent()) {
1108 // Directly materialize it into an immediate.
1109 auto AddrI = BuildMI(*Pred, InsertPt, DebugLoc(),
1110 TII->get(X86::MOV64ri32), TargetReg)
1111 .addMBB(&MBB);
1112 ++NumInstsInserted;
1113 (void)AddrI;
1114 LLVM_DEBUG(dbgs() << " Inserting mov: "; AddrI->dump();
1115 dbgs() << "\n");
1116 } else {
1117 auto AddrI = BuildMI(*Pred, InsertPt, DebugLoc(), TII->get(X86::LEA64r),
1118 TargetReg)
1119 .addReg(/*Base*/ X86::RIP)
1120 .addImm(/*Scale*/ 1)
1121 .addReg(/*Index*/ 0)
1122 .addMBB(&MBB)
1123 .addReg(/*Segment*/ 0);
1124 ++NumInstsInserted;
1125 (void)AddrI;
1126 LLVM_DEBUG(dbgs() << " Inserting lea: "; AddrI->dump();
1127 dbgs() << "\n");
1128 }
1129 // And make this available.
1130 TargetAddrSSA.AddAvailableValue(Pred, TargetReg);
1131 }
1132
1133 // Materialize the needed SSA value of the target. Note that we need the
1134 // middle of the block as this block might at the bottom have an indirect
1135 // branch back to itself. We can do this here because at this point, every
1136 // predecessor of this block has an available value. This is basically just
1137 // automating the construction of a PHI node for this target.
1138 unsigned TargetReg = TargetAddrSSA.GetValueInMiddleOfBlock(&MBB);
1139
1140 // Insert a comparison of the incoming target register with this block's
1141 // address. This also requires us to mark the block as having its address
1142 // taken explicitly.
1143 MBB.setHasAddressTaken();
1144 auto InsertPt = MBB.SkipPHIsLabelsAndDebug(MBB.begin());
1145 if (MF.getTarget().getCodeModel() == CodeModel::Small &&
1146 !Subtarget->isPositionIndependent()) {
1147 // Check directly against a relocated immediate when we can.
1148 auto CheckI = BuildMI(MBB, InsertPt, DebugLoc(), TII->get(X86::CMP64ri32))
1149 .addReg(TargetReg, RegState::Kill)
1150 .addMBB(&MBB);
1151 ++NumInstsInserted;
1152 (void)CheckI;
1153 LLVM_DEBUG(dbgs() << " Inserting cmp: "; CheckI->dump(); dbgs() << "\n");
1154 } else {
1155 // Otherwise compute the address into a register first.
1156 Register AddrReg = MRI->createVirtualRegister(&X86::GR64RegClass);
1157 auto AddrI =
1158 BuildMI(MBB, InsertPt, DebugLoc(), TII->get(X86::LEA64r), AddrReg)
1159 .addReg(/*Base*/ X86::RIP)
1160 .addImm(/*Scale*/ 1)
1161 .addReg(/*Index*/ 0)
1162 .addMBB(&MBB)
1163 .addReg(/*Segment*/ 0);
1164 ++NumInstsInserted;
1165 (void)AddrI;
1166 LLVM_DEBUG(dbgs() << " Inserting lea: "; AddrI->dump(); dbgs() << "\n");
1167 auto CheckI = BuildMI(MBB, InsertPt, DebugLoc(), TII->get(X86::CMP64rr))
1168 .addReg(TargetReg, RegState::Kill)
1169 .addReg(AddrReg, RegState::Kill);
1170 ++NumInstsInserted;
1171 (void)CheckI;
1172 LLVM_DEBUG(dbgs() << " Inserting cmp: "; CheckI->dump(); dbgs() << "\n");
1173 }
1174
1175 // Now cmov over the predicate if the comparison wasn't equal.
1176 int PredStateSizeInBytes = TRI->getRegSizeInBits(*PS->RC) / 8;
1177 auto CMovOp = X86::getCMovOpcode(PredStateSizeInBytes);
1178 Register UpdatedStateReg = MRI->createVirtualRegister(PS->RC);
1179 auto CMovI =
1180 BuildMI(MBB, InsertPt, DebugLoc(), TII->get(CMovOp), UpdatedStateReg)
1181 .addReg(PS->InitialReg)
1182 .addReg(PS->PoisonReg)
1183 .addImm(X86::COND_NE);
1184 CMovI->findRegisterUseOperand(X86::EFLAGS)->setIsKill(true);
1185 ++NumInstsInserted;
1186 LLVM_DEBUG(dbgs() << " Inserting cmov: "; CMovI->dump(); dbgs() << "\n");
1187 CMovs.push_back(&*CMovI);
1188
1189 // And put the new value into the available values for SSA form of our
1190 // predicate state.
1191 PS->SSA.AddAvailableValue(&MBB, UpdatedStateReg);
1192 }
1193
1194 // Return all the newly inserted cmov instructions of the predicate state.
1195 return CMovs;
1196 }
1197
1198 /// Returns true if the instruction has no behavior (specified or otherwise)
1199 /// that is based on the value of any of its register operands
1200 ///
1201 /// A classical example of something that is inherently not data invariant is an
1202 /// indirect jump -- the destination is loaded into icache based on the bits set
1203 /// in the jump destination register.
1204 ///
1205 /// FIXME: This should become part of our instruction tables.
isDataInvariant(MachineInstr & MI)1206 static bool isDataInvariant(MachineInstr &MI) {
1207 switch (MI.getOpcode()) {
1208 default:
1209 // By default, assume that the instruction is not data invariant.
1210 return false;
1211
1212 // Some target-independent operations that trivially lower to data-invariant
1213 // instructions.
1214 case TargetOpcode::COPY:
1215 case TargetOpcode::INSERT_SUBREG:
1216 case TargetOpcode::SUBREG_TO_REG:
1217 return true;
1218
1219 // On x86 it is believed that imul is constant time w.r.t. the loaded data.
1220 // However, they set flags and are perhaps the most surprisingly constant
1221 // time operations so we call them out here separately.
1222 case X86::IMUL16rr:
1223 case X86::IMUL16rri8:
1224 case X86::IMUL16rri:
1225 case X86::IMUL32rr:
1226 case X86::IMUL32rri8:
1227 case X86::IMUL32rri:
1228 case X86::IMUL64rr:
1229 case X86::IMUL64rri32:
1230 case X86::IMUL64rri8:
1231
1232 // Bit scanning and counting instructions that are somewhat surprisingly
1233 // constant time as they scan across bits and do other fairly complex
1234 // operations like popcnt, but are believed to be constant time on x86.
1235 // However, these set flags.
1236 case X86::BSF16rr:
1237 case X86::BSF32rr:
1238 case X86::BSF64rr:
1239 case X86::BSR16rr:
1240 case X86::BSR32rr:
1241 case X86::BSR64rr:
1242 case X86::LZCNT16rr:
1243 case X86::LZCNT32rr:
1244 case X86::LZCNT64rr:
1245 case X86::POPCNT16rr:
1246 case X86::POPCNT32rr:
1247 case X86::POPCNT64rr:
1248 case X86::TZCNT16rr:
1249 case X86::TZCNT32rr:
1250 case X86::TZCNT64rr:
1251
1252 // Bit manipulation instructions are effectively combinations of basic
1253 // arithmetic ops, and should still execute in constant time. These also
1254 // set flags.
1255 case X86::BLCFILL32rr:
1256 case X86::BLCFILL64rr:
1257 case X86::BLCI32rr:
1258 case X86::BLCI64rr:
1259 case X86::BLCIC32rr:
1260 case X86::BLCIC64rr:
1261 case X86::BLCMSK32rr:
1262 case X86::BLCMSK64rr:
1263 case X86::BLCS32rr:
1264 case X86::BLCS64rr:
1265 case X86::BLSFILL32rr:
1266 case X86::BLSFILL64rr:
1267 case X86::BLSI32rr:
1268 case X86::BLSI64rr:
1269 case X86::BLSIC32rr:
1270 case X86::BLSIC64rr:
1271 case X86::BLSMSK32rr:
1272 case X86::BLSMSK64rr:
1273 case X86::BLSR32rr:
1274 case X86::BLSR64rr:
1275 case X86::TZMSK32rr:
1276 case X86::TZMSK64rr:
1277
1278 // Bit extracting and clearing instructions should execute in constant time,
1279 // and set flags.
1280 case X86::BEXTR32rr:
1281 case X86::BEXTR64rr:
1282 case X86::BEXTRI32ri:
1283 case X86::BEXTRI64ri:
1284 case X86::BZHI32rr:
1285 case X86::BZHI64rr:
1286
1287 // Shift and rotate.
1288 case X86::ROL8r1: case X86::ROL16r1: case X86::ROL32r1: case X86::ROL64r1:
1289 case X86::ROL8rCL: case X86::ROL16rCL: case X86::ROL32rCL: case X86::ROL64rCL:
1290 case X86::ROL8ri: case X86::ROL16ri: case X86::ROL32ri: case X86::ROL64ri:
1291 case X86::ROR8r1: case X86::ROR16r1: case X86::ROR32r1: case X86::ROR64r1:
1292 case X86::ROR8rCL: case X86::ROR16rCL: case X86::ROR32rCL: case X86::ROR64rCL:
1293 case X86::ROR8ri: case X86::ROR16ri: case X86::ROR32ri: case X86::ROR64ri:
1294 case X86::SAR8r1: case X86::SAR16r1: case X86::SAR32r1: case X86::SAR64r1:
1295 case X86::SAR8rCL: case X86::SAR16rCL: case X86::SAR32rCL: case X86::SAR64rCL:
1296 case X86::SAR8ri: case X86::SAR16ri: case X86::SAR32ri: case X86::SAR64ri:
1297 case X86::SHL8r1: case X86::SHL16r1: case X86::SHL32r1: case X86::SHL64r1:
1298 case X86::SHL8rCL: case X86::SHL16rCL: case X86::SHL32rCL: case X86::SHL64rCL:
1299 case X86::SHL8ri: case X86::SHL16ri: case X86::SHL32ri: case X86::SHL64ri:
1300 case X86::SHR8r1: case X86::SHR16r1: case X86::SHR32r1: case X86::SHR64r1:
1301 case X86::SHR8rCL: case X86::SHR16rCL: case X86::SHR32rCL: case X86::SHR64rCL:
1302 case X86::SHR8ri: case X86::SHR16ri: case X86::SHR32ri: case X86::SHR64ri:
1303 case X86::SHLD16rrCL: case X86::SHLD32rrCL: case X86::SHLD64rrCL:
1304 case X86::SHLD16rri8: case X86::SHLD32rri8: case X86::SHLD64rri8:
1305 case X86::SHRD16rrCL: case X86::SHRD32rrCL: case X86::SHRD64rrCL:
1306 case X86::SHRD16rri8: case X86::SHRD32rri8: case X86::SHRD64rri8:
1307
1308 // Basic arithmetic is constant time on the input but does set flags.
1309 case X86::ADC8rr: case X86::ADC8ri:
1310 case X86::ADC16rr: case X86::ADC16ri: case X86::ADC16ri8:
1311 case X86::ADC32rr: case X86::ADC32ri: case X86::ADC32ri8:
1312 case X86::ADC64rr: case X86::ADC64ri8: case X86::ADC64ri32:
1313 case X86::ADD8rr: case X86::ADD8ri:
1314 case X86::ADD16rr: case X86::ADD16ri: case X86::ADD16ri8:
1315 case X86::ADD32rr: case X86::ADD32ri: case X86::ADD32ri8:
1316 case X86::ADD64rr: case X86::ADD64ri8: case X86::ADD64ri32:
1317 case X86::AND8rr: case X86::AND8ri:
1318 case X86::AND16rr: case X86::AND16ri: case X86::AND16ri8:
1319 case X86::AND32rr: case X86::AND32ri: case X86::AND32ri8:
1320 case X86::AND64rr: case X86::AND64ri8: case X86::AND64ri32:
1321 case X86::OR8rr: case X86::OR8ri:
1322 case X86::OR16rr: case X86::OR16ri: case X86::OR16ri8:
1323 case X86::OR32rr: case X86::OR32ri: case X86::OR32ri8:
1324 case X86::OR64rr: case X86::OR64ri8: case X86::OR64ri32:
1325 case X86::SBB8rr: case X86::SBB8ri:
1326 case X86::SBB16rr: case X86::SBB16ri: case X86::SBB16ri8:
1327 case X86::SBB32rr: case X86::SBB32ri: case X86::SBB32ri8:
1328 case X86::SBB64rr: case X86::SBB64ri8: case X86::SBB64ri32:
1329 case X86::SUB8rr: case X86::SUB8ri:
1330 case X86::SUB16rr: case X86::SUB16ri: case X86::SUB16ri8:
1331 case X86::SUB32rr: case X86::SUB32ri: case X86::SUB32ri8:
1332 case X86::SUB64rr: case X86::SUB64ri8: case X86::SUB64ri32:
1333 case X86::XOR8rr: case X86::XOR8ri:
1334 case X86::XOR16rr: case X86::XOR16ri: case X86::XOR16ri8:
1335 case X86::XOR32rr: case X86::XOR32ri: case X86::XOR32ri8:
1336 case X86::XOR64rr: case X86::XOR64ri8: case X86::XOR64ri32:
1337 // Arithmetic with just 32-bit and 64-bit variants and no immediates.
1338 case X86::ADCX32rr: case X86::ADCX64rr:
1339 case X86::ADOX32rr: case X86::ADOX64rr:
1340 case X86::ANDN32rr: case X86::ANDN64rr:
1341 // Unary arithmetic operations.
1342 case X86::DEC8r: case X86::DEC16r: case X86::DEC32r: case X86::DEC64r:
1343 case X86::INC8r: case X86::INC16r: case X86::INC32r: case X86::INC64r:
1344 case X86::NEG8r: case X86::NEG16r: case X86::NEG32r: case X86::NEG64r:
1345 // Check whether the EFLAGS implicit-def is dead. We assume that this will
1346 // always find the implicit-def because this code should only be reached
1347 // for instructions that do in fact implicitly def this.
1348 if (!MI.findRegisterDefOperand(X86::EFLAGS)->isDead()) {
1349 // If we would clobber EFLAGS that are used, just bail for now.
1350 LLVM_DEBUG(dbgs() << " Unable to harden post-load due to EFLAGS: ";
1351 MI.dump(); dbgs() << "\n");
1352 return false;
1353 }
1354
1355 // Otherwise, fallthrough to handle these the same as instructions that
1356 // don't set EFLAGS.
1357 LLVM_FALLTHROUGH;
1358
1359 // Unlike other arithmetic, NOT doesn't set EFLAGS.
1360 case X86::NOT8r: case X86::NOT16r: case X86::NOT32r: case X86::NOT64r:
1361
1362 // Various move instructions used to zero or sign extend things. Note that we
1363 // intentionally don't support the _NOREX variants as we can't handle that
1364 // register constraint anyways.
1365 case X86::MOVSX16rr8:
1366 case X86::MOVSX32rr8: case X86::MOVSX32rr16:
1367 case X86::MOVSX64rr8: case X86::MOVSX64rr16: case X86::MOVSX64rr32:
1368 case X86::MOVZX16rr8:
1369 case X86::MOVZX32rr8: case X86::MOVZX32rr16:
1370 case X86::MOVZX64rr8: case X86::MOVZX64rr16:
1371 case X86::MOV32rr:
1372
1373 // Arithmetic instructions that are both constant time and don't set flags.
1374 case X86::RORX32ri:
1375 case X86::RORX64ri:
1376 case X86::SARX32rr:
1377 case X86::SARX64rr:
1378 case X86::SHLX32rr:
1379 case X86::SHLX64rr:
1380 case X86::SHRX32rr:
1381 case X86::SHRX64rr:
1382
1383 // LEA doesn't actually access memory, and its arithmetic is constant time.
1384 case X86::LEA16r:
1385 case X86::LEA32r:
1386 case X86::LEA64_32r:
1387 case X86::LEA64r:
1388 return true;
1389 }
1390 }
1391
1392 /// Returns true if the instruction has no behavior (specified or otherwise)
1393 /// that is based on the value loaded from memory or the value of any
1394 /// non-address register operands.
1395 ///
1396 /// For example, if the latency of the instruction is dependent on the
1397 /// particular bits set in any of the registers *or* any of the bits loaded from
1398 /// memory.
1399 ///
1400 /// A classical example of something that is inherently not data invariant is an
1401 /// indirect jump -- the destination is loaded into icache based on the bits set
1402 /// in the jump destination register.
1403 ///
1404 /// FIXME: This should become part of our instruction tables.
isDataInvariantLoad(MachineInstr & MI)1405 static bool isDataInvariantLoad(MachineInstr &MI) {
1406 switch (MI.getOpcode()) {
1407 default:
1408 // By default, assume that the load will immediately leak.
1409 return false;
1410
1411 // On x86 it is believed that imul is constant time w.r.t. the loaded data.
1412 // However, they set flags and are perhaps the most surprisingly constant
1413 // time operations so we call them out here separately.
1414 case X86::IMUL16rm:
1415 case X86::IMUL16rmi8:
1416 case X86::IMUL16rmi:
1417 case X86::IMUL32rm:
1418 case X86::IMUL32rmi8:
1419 case X86::IMUL32rmi:
1420 case X86::IMUL64rm:
1421 case X86::IMUL64rmi32:
1422 case X86::IMUL64rmi8:
1423
1424 // Bit scanning and counting instructions that are somewhat surprisingly
1425 // constant time as they scan across bits and do other fairly complex
1426 // operations like popcnt, but are believed to be constant time on x86.
1427 // However, these set flags.
1428 case X86::BSF16rm:
1429 case X86::BSF32rm:
1430 case X86::BSF64rm:
1431 case X86::BSR16rm:
1432 case X86::BSR32rm:
1433 case X86::BSR64rm:
1434 case X86::LZCNT16rm:
1435 case X86::LZCNT32rm:
1436 case X86::LZCNT64rm:
1437 case X86::POPCNT16rm:
1438 case X86::POPCNT32rm:
1439 case X86::POPCNT64rm:
1440 case X86::TZCNT16rm:
1441 case X86::TZCNT32rm:
1442 case X86::TZCNT64rm:
1443
1444 // Bit manipulation instructions are effectively combinations of basic
1445 // arithmetic ops, and should still execute in constant time. These also
1446 // set flags.
1447 case X86::BLCFILL32rm:
1448 case X86::BLCFILL64rm:
1449 case X86::BLCI32rm:
1450 case X86::BLCI64rm:
1451 case X86::BLCIC32rm:
1452 case X86::BLCIC64rm:
1453 case X86::BLCMSK32rm:
1454 case X86::BLCMSK64rm:
1455 case X86::BLCS32rm:
1456 case X86::BLCS64rm:
1457 case X86::BLSFILL32rm:
1458 case X86::BLSFILL64rm:
1459 case X86::BLSI32rm:
1460 case X86::BLSI64rm:
1461 case X86::BLSIC32rm:
1462 case X86::BLSIC64rm:
1463 case X86::BLSMSK32rm:
1464 case X86::BLSMSK64rm:
1465 case X86::BLSR32rm:
1466 case X86::BLSR64rm:
1467 case X86::TZMSK32rm:
1468 case X86::TZMSK64rm:
1469
1470 // Bit extracting and clearing instructions should execute in constant time,
1471 // and set flags.
1472 case X86::BEXTR32rm:
1473 case X86::BEXTR64rm:
1474 case X86::BEXTRI32mi:
1475 case X86::BEXTRI64mi:
1476 case X86::BZHI32rm:
1477 case X86::BZHI64rm:
1478
1479 // Basic arithmetic is constant time on the input but does set flags.
1480 case X86::ADC8rm:
1481 case X86::ADC16rm:
1482 case X86::ADC32rm:
1483 case X86::ADC64rm:
1484 case X86::ADCX32rm:
1485 case X86::ADCX64rm:
1486 case X86::ADD8rm:
1487 case X86::ADD16rm:
1488 case X86::ADD32rm:
1489 case X86::ADD64rm:
1490 case X86::ADOX32rm:
1491 case X86::ADOX64rm:
1492 case X86::AND8rm:
1493 case X86::AND16rm:
1494 case X86::AND32rm:
1495 case X86::AND64rm:
1496 case X86::ANDN32rm:
1497 case X86::ANDN64rm:
1498 case X86::OR8rm:
1499 case X86::OR16rm:
1500 case X86::OR32rm:
1501 case X86::OR64rm:
1502 case X86::SBB8rm:
1503 case X86::SBB16rm:
1504 case X86::SBB32rm:
1505 case X86::SBB64rm:
1506 case X86::SUB8rm:
1507 case X86::SUB16rm:
1508 case X86::SUB32rm:
1509 case X86::SUB64rm:
1510 case X86::XOR8rm:
1511 case X86::XOR16rm:
1512 case X86::XOR32rm:
1513 case X86::XOR64rm:
1514 // Check whether the EFLAGS implicit-def is dead. We assume that this will
1515 // always find the implicit-def because this code should only be reached
1516 // for instructions that do in fact implicitly def this.
1517 if (!MI.findRegisterDefOperand(X86::EFLAGS)->isDead()) {
1518 // If we would clobber EFLAGS that are used, just bail for now.
1519 LLVM_DEBUG(dbgs() << " Unable to harden post-load due to EFLAGS: ";
1520 MI.dump(); dbgs() << "\n");
1521 return false;
1522 }
1523
1524 // Otherwise, fallthrough to handle these the same as instructions that
1525 // don't set EFLAGS.
1526 LLVM_FALLTHROUGH;
1527
1528 // Integer multiply w/o affecting flags is still believed to be constant
1529 // time on x86. Called out separately as this is among the most surprising
1530 // instructions to exhibit that behavior.
1531 case X86::MULX32rm:
1532 case X86::MULX64rm:
1533
1534 // Arithmetic instructions that are both constant time and don't set flags.
1535 case X86::RORX32mi:
1536 case X86::RORX64mi:
1537 case X86::SARX32rm:
1538 case X86::SARX64rm:
1539 case X86::SHLX32rm:
1540 case X86::SHLX64rm:
1541 case X86::SHRX32rm:
1542 case X86::SHRX64rm:
1543
1544 // Conversions are believed to be constant time and don't set flags.
1545 case X86::CVTTSD2SI64rm: case X86::VCVTTSD2SI64rm: case X86::VCVTTSD2SI64Zrm:
1546 case X86::CVTTSD2SIrm: case X86::VCVTTSD2SIrm: case X86::VCVTTSD2SIZrm:
1547 case X86::CVTTSS2SI64rm: case X86::VCVTTSS2SI64rm: case X86::VCVTTSS2SI64Zrm:
1548 case X86::CVTTSS2SIrm: case X86::VCVTTSS2SIrm: case X86::VCVTTSS2SIZrm:
1549 case X86::CVTSI2SDrm: case X86::VCVTSI2SDrm: case X86::VCVTSI2SDZrm:
1550 case X86::CVTSI2SSrm: case X86::VCVTSI2SSrm: case X86::VCVTSI2SSZrm:
1551 case X86::CVTSI642SDrm: case X86::VCVTSI642SDrm: case X86::VCVTSI642SDZrm:
1552 case X86::CVTSI642SSrm: case X86::VCVTSI642SSrm: case X86::VCVTSI642SSZrm:
1553 case X86::CVTSS2SDrm: case X86::VCVTSS2SDrm: case X86::VCVTSS2SDZrm:
1554 case X86::CVTSD2SSrm: case X86::VCVTSD2SSrm: case X86::VCVTSD2SSZrm:
1555 // AVX512 added unsigned integer conversions.
1556 case X86::VCVTTSD2USI64Zrm:
1557 case X86::VCVTTSD2USIZrm:
1558 case X86::VCVTTSS2USI64Zrm:
1559 case X86::VCVTTSS2USIZrm:
1560 case X86::VCVTUSI2SDZrm:
1561 case X86::VCVTUSI642SDZrm:
1562 case X86::VCVTUSI2SSZrm:
1563 case X86::VCVTUSI642SSZrm:
1564
1565 // Loads to register don't set flags.
1566 case X86::MOV8rm:
1567 case X86::MOV8rm_NOREX:
1568 case X86::MOV16rm:
1569 case X86::MOV32rm:
1570 case X86::MOV64rm:
1571 case X86::MOVSX16rm8:
1572 case X86::MOVSX32rm16:
1573 case X86::MOVSX32rm8:
1574 case X86::MOVSX32rm8_NOREX:
1575 case X86::MOVSX64rm16:
1576 case X86::MOVSX64rm32:
1577 case X86::MOVSX64rm8:
1578 case X86::MOVZX16rm8:
1579 case X86::MOVZX32rm16:
1580 case X86::MOVZX32rm8:
1581 case X86::MOVZX32rm8_NOREX:
1582 case X86::MOVZX64rm16:
1583 case X86::MOVZX64rm8:
1584 return true;
1585 }
1586 }
1587
isEFLAGSLive(MachineBasicBlock & MBB,MachineBasicBlock::iterator I,const TargetRegisterInfo & TRI)1588 static bool isEFLAGSLive(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
1589 const TargetRegisterInfo &TRI) {
1590 // Check if EFLAGS are alive by seeing if there is a def of them or they
1591 // live-in, and then seeing if that def is in turn used.
1592 for (MachineInstr &MI : llvm::reverse(llvm::make_range(MBB.begin(), I))) {
1593 if (MachineOperand *DefOp = MI.findRegisterDefOperand(X86::EFLAGS)) {
1594 // If the def is dead, then EFLAGS is not live.
1595 if (DefOp->isDead())
1596 return false;
1597
1598 // Otherwise we've def'ed it, and it is live.
1599 return true;
1600 }
1601 // While at this instruction, also check if we use and kill EFLAGS
1602 // which means it isn't live.
1603 if (MI.killsRegister(X86::EFLAGS, &TRI))
1604 return false;
1605 }
1606
1607 // If we didn't find anything conclusive (neither definitely alive or
1608 // definitely dead) return whether it lives into the block.
1609 return MBB.isLiveIn(X86::EFLAGS);
1610 }
1611
1612 /// Trace the predicate state through each of the blocks in the function,
1613 /// hardening everything necessary along the way.
1614 ///
1615 /// We call this routine once the initial predicate state has been established
1616 /// for each basic block in the function in the SSA updater. This routine traces
1617 /// it through the instructions within each basic block, and for non-returning
1618 /// blocks informs the SSA updater about the final state that lives out of the
1619 /// block. Along the way, it hardens any vulnerable instruction using the
1620 /// currently valid predicate state. We have to do these two things together
1621 /// because the SSA updater only works across blocks. Within a block, we track
1622 /// the current predicate state directly and update it as it changes.
1623 ///
1624 /// This operates in two passes over each block. First, we analyze the loads in
1625 /// the block to determine which strategy will be used to harden them: hardening
1626 /// the address or hardening the loaded value when loaded into a register
1627 /// amenable to hardening. We have to process these first because the two
1628 /// strategies may interact -- later hardening may change what strategy we wish
1629 /// to use. We also will analyze data dependencies between loads and avoid
1630 /// hardening those loads that are data dependent on a load with a hardened
1631 /// address. We also skip hardening loads already behind an LFENCE as that is
1632 /// sufficient to harden them against misspeculation.
1633 ///
1634 /// Second, we actively trace the predicate state through the block, applying
1635 /// the hardening steps we determined necessary in the first pass as we go.
1636 ///
1637 /// These two passes are applied to each basic block. We operate one block at a
1638 /// time to simplify reasoning about reachability and sequencing.
tracePredStateThroughBlocksAndHarden(MachineFunction & MF)1639 void X86SpeculativeLoadHardeningPass::tracePredStateThroughBlocksAndHarden(
1640 MachineFunction &MF) {
1641 SmallPtrSet<MachineInstr *, 16> HardenPostLoad;
1642 SmallPtrSet<MachineInstr *, 16> HardenLoadAddr;
1643
1644 SmallSet<unsigned, 16> HardenedAddrRegs;
1645
1646 SmallDenseMap<unsigned, unsigned, 32> AddrRegToHardenedReg;
1647
1648 // Track the set of load-dependent registers through the basic block. Because
1649 // the values of these registers have an existing data dependency on a loaded
1650 // value which we would have checked, we can omit any checks on them.
1651 SparseBitVector<> LoadDepRegs;
1652
1653 for (MachineBasicBlock &MBB : MF) {
1654 // The first pass over the block: collect all the loads which can have their
1655 // loaded value hardened and all the loads that instead need their address
1656 // hardened. During this walk we propagate load dependence for address
1657 // hardened loads and also look for LFENCE to stop hardening wherever
1658 // possible. When deciding whether or not to harden the loaded value or not,
1659 // we check to see if any registers used in the address will have been
1660 // hardened at this point and if so, harden any remaining address registers
1661 // as that often successfully re-uses hardened addresses and minimizes
1662 // instructions.
1663 //
1664 // FIXME: We should consider an aggressive mode where we continue to keep as
1665 // many loads value hardened even when some address register hardening would
1666 // be free (due to reuse).
1667 //
1668 // Note that we only need this pass if we are actually hardening loads.
1669 if (HardenLoads)
1670 for (MachineInstr &MI : MBB) {
1671 // We naively assume that all def'ed registers of an instruction have
1672 // a data dependency on all of their operands.
1673 // FIXME: Do a more careful analysis of x86 to build a conservative
1674 // model here.
1675 if (llvm::any_of(MI.uses(), [&](MachineOperand &Op) {
1676 return Op.isReg() && LoadDepRegs.test(Op.getReg());
1677 }))
1678 for (MachineOperand &Def : MI.defs())
1679 if (Def.isReg())
1680 LoadDepRegs.set(Def.getReg());
1681
1682 // Both Intel and AMD are guiding that they will change the semantics of
1683 // LFENCE to be a speculation barrier, so if we see an LFENCE, there is
1684 // no more need to guard things in this block.
1685 if (MI.getOpcode() == X86::LFENCE)
1686 break;
1687
1688 // If this instruction cannot load, nothing to do.
1689 if (!MI.mayLoad())
1690 continue;
1691
1692 // Some instructions which "load" are trivially safe or unimportant.
1693 if (MI.getOpcode() == X86::MFENCE)
1694 continue;
1695
1696 // Extract the memory operand information about this instruction.
1697 // FIXME: This doesn't handle loading pseudo instructions which we often
1698 // could handle with similarly generic logic. We probably need to add an
1699 // MI-layer routine similar to the MC-layer one we use here which maps
1700 // pseudos much like this maps real instructions.
1701 const MCInstrDesc &Desc = MI.getDesc();
1702 int MemRefBeginIdx = X86II::getMemoryOperandNo(Desc.TSFlags);
1703 if (MemRefBeginIdx < 0) {
1704 LLVM_DEBUG(dbgs()
1705 << "WARNING: unable to harden loading instruction: ";
1706 MI.dump());
1707 continue;
1708 }
1709
1710 MemRefBeginIdx += X86II::getOperandBias(Desc);
1711
1712 MachineOperand &BaseMO =
1713 MI.getOperand(MemRefBeginIdx + X86::AddrBaseReg);
1714 MachineOperand &IndexMO =
1715 MI.getOperand(MemRefBeginIdx + X86::AddrIndexReg);
1716
1717 // If we have at least one (non-frame-index, non-RIP) register operand,
1718 // and neither operand is load-dependent, we need to check the load.
1719 unsigned BaseReg = 0, IndexReg = 0;
1720 if (!BaseMO.isFI() && BaseMO.getReg() != X86::RIP &&
1721 BaseMO.getReg() != X86::NoRegister)
1722 BaseReg = BaseMO.getReg();
1723 if (IndexMO.getReg() != X86::NoRegister)
1724 IndexReg = IndexMO.getReg();
1725
1726 if (!BaseReg && !IndexReg)
1727 // No register operands!
1728 continue;
1729
1730 // If any register operand is dependent, this load is dependent and we
1731 // needn't check it.
1732 // FIXME: Is this true in the case where we are hardening loads after
1733 // they complete? Unclear, need to investigate.
1734 if ((BaseReg && LoadDepRegs.test(BaseReg)) ||
1735 (IndexReg && LoadDepRegs.test(IndexReg)))
1736 continue;
1737
1738 // If post-load hardening is enabled, this load is compatible with
1739 // post-load hardening, and we aren't already going to harden one of the
1740 // address registers, queue it up to be hardened post-load. Notably,
1741 // even once hardened this won't introduce a useful dependency that
1742 // could prune out subsequent loads.
1743 if (EnablePostLoadHardening && isDataInvariantLoad(MI) &&
1744 MI.getDesc().getNumDefs() == 1 && MI.getOperand(0).isReg() &&
1745 canHardenRegister(MI.getOperand(0).getReg()) &&
1746 !HardenedAddrRegs.count(BaseReg) &&
1747 !HardenedAddrRegs.count(IndexReg)) {
1748 HardenPostLoad.insert(&MI);
1749 HardenedAddrRegs.insert(MI.getOperand(0).getReg());
1750 continue;
1751 }
1752
1753 // Record this instruction for address hardening and record its register
1754 // operands as being address-hardened.
1755 HardenLoadAddr.insert(&MI);
1756 if (BaseReg)
1757 HardenedAddrRegs.insert(BaseReg);
1758 if (IndexReg)
1759 HardenedAddrRegs.insert(IndexReg);
1760
1761 for (MachineOperand &Def : MI.defs())
1762 if (Def.isReg())
1763 LoadDepRegs.set(Def.getReg());
1764 }
1765
1766 // Now re-walk the instructions in the basic block, and apply whichever
1767 // hardening strategy we have elected. Note that we do this in a second
1768 // pass specifically so that we have the complete set of instructions for
1769 // which we will do post-load hardening and can defer it in certain
1770 // circumstances.
1771 for (MachineInstr &MI : MBB) {
1772 if (HardenLoads) {
1773 // We cannot both require hardening the def of a load and its address.
1774 assert(!(HardenLoadAddr.count(&MI) && HardenPostLoad.count(&MI)) &&
1775 "Requested to harden both the address and def of a load!");
1776
1777 // Check if this is a load whose address needs to be hardened.
1778 if (HardenLoadAddr.erase(&MI)) {
1779 const MCInstrDesc &Desc = MI.getDesc();
1780 int MemRefBeginIdx = X86II::getMemoryOperandNo(Desc.TSFlags);
1781 assert(MemRefBeginIdx >= 0 && "Cannot have an invalid index here!");
1782
1783 MemRefBeginIdx += X86II::getOperandBias(Desc);
1784
1785 MachineOperand &BaseMO =
1786 MI.getOperand(MemRefBeginIdx + X86::AddrBaseReg);
1787 MachineOperand &IndexMO =
1788 MI.getOperand(MemRefBeginIdx + X86::AddrIndexReg);
1789 hardenLoadAddr(MI, BaseMO, IndexMO, AddrRegToHardenedReg);
1790 continue;
1791 }
1792
1793 // Test if this instruction is one of our post load instructions (and
1794 // remove it from the set if so).
1795 if (HardenPostLoad.erase(&MI)) {
1796 assert(!MI.isCall() && "Must not try to post-load harden a call!");
1797
1798 // If this is a data-invariant load, we want to try and sink any
1799 // hardening as far as possible.
1800 if (isDataInvariantLoad(MI)) {
1801 // Sink the instruction we'll need to harden as far as we can down
1802 // the graph.
1803 MachineInstr *SunkMI = sinkPostLoadHardenedInst(MI, HardenPostLoad);
1804
1805 // If we managed to sink this instruction, update everything so we
1806 // harden that instruction when we reach it in the instruction
1807 // sequence.
1808 if (SunkMI != &MI) {
1809 // If in sinking there was no instruction needing to be hardened,
1810 // we're done.
1811 if (!SunkMI)
1812 continue;
1813
1814 // Otherwise, add this to the set of defs we harden.
1815 HardenPostLoad.insert(SunkMI);
1816 continue;
1817 }
1818 }
1819
1820 unsigned HardenedReg = hardenPostLoad(MI);
1821
1822 // Mark the resulting hardened register as such so we don't re-harden.
1823 AddrRegToHardenedReg[HardenedReg] = HardenedReg;
1824
1825 continue;
1826 }
1827
1828 // Check for an indirect call or branch that may need its input hardened
1829 // even if we couldn't find the specific load used, or were able to
1830 // avoid hardening it for some reason. Note that here we cannot break
1831 // out afterward as we may still need to handle any call aspect of this
1832 // instruction.
1833 if ((MI.isCall() || MI.isBranch()) && HardenIndirectCallsAndJumps)
1834 hardenIndirectCallOrJumpInstr(MI, AddrRegToHardenedReg);
1835 }
1836
1837 // After we finish hardening loads we handle interprocedural hardening if
1838 // enabled and relevant for this instruction.
1839 if (!HardenInterprocedurally)
1840 continue;
1841 if (!MI.isCall() && !MI.isReturn())
1842 continue;
1843
1844 // If this is a direct return (IE, not a tail call) just directly harden
1845 // it.
1846 if (MI.isReturn() && !MI.isCall()) {
1847 hardenReturnInstr(MI);
1848 continue;
1849 }
1850
1851 // Otherwise we have a call. We need to handle transferring the predicate
1852 // state into a call and recovering it after the call returns (unless this
1853 // is a tail call).
1854 assert(MI.isCall() && "Should only reach here for calls!");
1855 tracePredStateThroughCall(MI);
1856 }
1857
1858 HardenPostLoad.clear();
1859 HardenLoadAddr.clear();
1860 HardenedAddrRegs.clear();
1861 AddrRegToHardenedReg.clear();
1862
1863 // Currently, we only track data-dependent loads within a basic block.
1864 // FIXME: We should see if this is necessary or if we could be more
1865 // aggressive here without opening up attack avenues.
1866 LoadDepRegs.clear();
1867 }
1868 }
1869
1870 /// Save EFLAGS into the returned GPR. This can in turn be restored with
1871 /// `restoreEFLAGS`.
1872 ///
1873 /// Note that LLVM can only lower very simple patterns of saved and restored
1874 /// EFLAGS registers. The restore should always be within the same basic block
1875 /// as the save so that no PHI nodes are inserted.
saveEFLAGS(MachineBasicBlock & MBB,MachineBasicBlock::iterator InsertPt,DebugLoc Loc)1876 unsigned X86SpeculativeLoadHardeningPass::saveEFLAGS(
1877 MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertPt,
1878 DebugLoc Loc) {
1879 // FIXME: Hard coding this to a 32-bit register class seems weird, but matches
1880 // what instruction selection does.
1881 Register Reg = MRI->createVirtualRegister(&X86::GR32RegClass);
1882 // We directly copy the FLAGS register and rely on later lowering to clean
1883 // this up into the appropriate setCC instructions.
1884 BuildMI(MBB, InsertPt, Loc, TII->get(X86::COPY), Reg).addReg(X86::EFLAGS);
1885 ++NumInstsInserted;
1886 return Reg;
1887 }
1888
1889 /// Restore EFLAGS from the provided GPR. This should be produced by
1890 /// `saveEFLAGS`.
1891 ///
1892 /// This must be done within the same basic block as the save in order to
1893 /// reliably lower.
restoreEFLAGS(MachineBasicBlock & MBB,MachineBasicBlock::iterator InsertPt,DebugLoc Loc,unsigned Reg)1894 void X86SpeculativeLoadHardeningPass::restoreEFLAGS(
1895 MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertPt, DebugLoc Loc,
1896 unsigned Reg) {
1897 BuildMI(MBB, InsertPt, Loc, TII->get(X86::COPY), X86::EFLAGS).addReg(Reg);
1898 ++NumInstsInserted;
1899 }
1900
1901 /// Takes the current predicate state (in a register) and merges it into the
1902 /// stack pointer. The state is essentially a single bit, but we merge this in
1903 /// a way that won't form non-canonical pointers and also will be preserved
1904 /// across normal stack adjustments.
mergePredStateIntoSP(MachineBasicBlock & MBB,MachineBasicBlock::iterator InsertPt,DebugLoc Loc,unsigned PredStateReg)1905 void X86SpeculativeLoadHardeningPass::mergePredStateIntoSP(
1906 MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertPt, DebugLoc Loc,
1907 unsigned PredStateReg) {
1908 Register TmpReg = MRI->createVirtualRegister(PS->RC);
1909 // FIXME: This hard codes a shift distance based on the number of bits needed
1910 // to stay canonical on 64-bit. We should compute this somehow and support
1911 // 32-bit as part of that.
1912 auto ShiftI = BuildMI(MBB, InsertPt, Loc, TII->get(X86::SHL64ri), TmpReg)
1913 .addReg(PredStateReg, RegState::Kill)
1914 .addImm(47);
1915 ShiftI->addRegisterDead(X86::EFLAGS, TRI);
1916 ++NumInstsInserted;
1917 auto OrI = BuildMI(MBB, InsertPt, Loc, TII->get(X86::OR64rr), X86::RSP)
1918 .addReg(X86::RSP)
1919 .addReg(TmpReg, RegState::Kill);
1920 OrI->addRegisterDead(X86::EFLAGS, TRI);
1921 ++NumInstsInserted;
1922 }
1923
1924 /// Extracts the predicate state stored in the high bits of the stack pointer.
extractPredStateFromSP(MachineBasicBlock & MBB,MachineBasicBlock::iterator InsertPt,DebugLoc Loc)1925 unsigned X86SpeculativeLoadHardeningPass::extractPredStateFromSP(
1926 MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertPt,
1927 DebugLoc Loc) {
1928 Register PredStateReg = MRI->createVirtualRegister(PS->RC);
1929 Register TmpReg = MRI->createVirtualRegister(PS->RC);
1930
1931 // We know that the stack pointer will have any preserved predicate state in
1932 // its high bit. We just want to smear this across the other bits. Turns out,
1933 // this is exactly what an arithmetic right shift does.
1934 BuildMI(MBB, InsertPt, Loc, TII->get(TargetOpcode::COPY), TmpReg)
1935 .addReg(X86::RSP);
1936 auto ShiftI =
1937 BuildMI(MBB, InsertPt, Loc, TII->get(X86::SAR64ri), PredStateReg)
1938 .addReg(TmpReg, RegState::Kill)
1939 .addImm(TRI->getRegSizeInBits(*PS->RC) - 1);
1940 ShiftI->addRegisterDead(X86::EFLAGS, TRI);
1941 ++NumInstsInserted;
1942
1943 return PredStateReg;
1944 }
1945
hardenLoadAddr(MachineInstr & MI,MachineOperand & BaseMO,MachineOperand & IndexMO,SmallDenseMap<unsigned,unsigned,32> & AddrRegToHardenedReg)1946 void X86SpeculativeLoadHardeningPass::hardenLoadAddr(
1947 MachineInstr &MI, MachineOperand &BaseMO, MachineOperand &IndexMO,
1948 SmallDenseMap<unsigned, unsigned, 32> &AddrRegToHardenedReg) {
1949 MachineBasicBlock &MBB = *MI.getParent();
1950 DebugLoc Loc = MI.getDebugLoc();
1951
1952 // Check if EFLAGS are alive by seeing if there is a def of them or they
1953 // live-in, and then seeing if that def is in turn used.
1954 bool EFLAGSLive = isEFLAGSLive(MBB, MI.getIterator(), *TRI);
1955
1956 SmallVector<MachineOperand *, 2> HardenOpRegs;
1957
1958 if (BaseMO.isFI()) {
1959 // A frame index is never a dynamically controllable load, so only
1960 // harden it if we're covering fixed address loads as well.
1961 LLVM_DEBUG(
1962 dbgs() << " Skipping hardening base of explicit stack frame load: ";
1963 MI.dump(); dbgs() << "\n");
1964 } else if (BaseMO.getReg() == X86::RSP) {
1965 // Some idempotent atomic operations are lowered directly to a locked
1966 // OR with 0 to the top of stack(or slightly offset from top) which uses an
1967 // explicit RSP register as the base.
1968 assert(IndexMO.getReg() == X86::NoRegister &&
1969 "Explicit RSP access with dynamic index!");
1970 LLVM_DEBUG(
1971 dbgs() << " Cannot harden base of explicit RSP offset in a load!");
1972 } else if (BaseMO.getReg() == X86::RIP ||
1973 BaseMO.getReg() == X86::NoRegister) {
1974 // For both RIP-relative addressed loads or absolute loads, we cannot
1975 // meaningfully harden them because the address being loaded has no
1976 // dynamic component.
1977 //
1978 // FIXME: When using a segment base (like TLS does) we end up with the
1979 // dynamic address being the base plus -1 because we can't mutate the
1980 // segment register here. This allows the signed 32-bit offset to point at
1981 // valid segment-relative addresses and load them successfully.
1982 LLVM_DEBUG(
1983 dbgs() << " Cannot harden base of "
1984 << (BaseMO.getReg() == X86::RIP ? "RIP-relative" : "no-base")
1985 << " address in a load!");
1986 } else {
1987 assert(BaseMO.isReg() &&
1988 "Only allowed to have a frame index or register base.");
1989 HardenOpRegs.push_back(&BaseMO);
1990 }
1991
1992 if (IndexMO.getReg() != X86::NoRegister &&
1993 (HardenOpRegs.empty() ||
1994 HardenOpRegs.front()->getReg() != IndexMO.getReg()))
1995 HardenOpRegs.push_back(&IndexMO);
1996
1997 assert((HardenOpRegs.size() == 1 || HardenOpRegs.size() == 2) &&
1998 "Should have exactly one or two registers to harden!");
1999 assert((HardenOpRegs.size() == 1 ||
2000 HardenOpRegs[0]->getReg() != HardenOpRegs[1]->getReg()) &&
2001 "Should not have two of the same registers!");
2002
2003 // Remove any registers that have alreaded been checked.
2004 llvm::erase_if(HardenOpRegs, [&](MachineOperand *Op) {
2005 // See if this operand's register has already been checked.
2006 auto It = AddrRegToHardenedReg.find(Op->getReg());
2007 if (It == AddrRegToHardenedReg.end())
2008 // Not checked, so retain this one.
2009 return false;
2010
2011 // Otherwise, we can directly update this operand and remove it.
2012 Op->setReg(It->second);
2013 return true;
2014 });
2015 // If there are none left, we're done.
2016 if (HardenOpRegs.empty())
2017 return;
2018
2019 // Compute the current predicate state.
2020 unsigned StateReg = PS->SSA.GetValueAtEndOfBlock(&MBB);
2021
2022 auto InsertPt = MI.getIterator();
2023
2024 // If EFLAGS are live and we don't have access to instructions that avoid
2025 // clobbering EFLAGS we need to save and restore them. This in turn makes
2026 // the EFLAGS no longer live.
2027 unsigned FlagsReg = 0;
2028 if (EFLAGSLive && !Subtarget->hasBMI2()) {
2029 EFLAGSLive = false;
2030 FlagsReg = saveEFLAGS(MBB, InsertPt, Loc);
2031 }
2032
2033 for (MachineOperand *Op : HardenOpRegs) {
2034 Register OpReg = Op->getReg();
2035 auto *OpRC = MRI->getRegClass(OpReg);
2036 Register TmpReg = MRI->createVirtualRegister(OpRC);
2037
2038 // If this is a vector register, we'll need somewhat custom logic to handle
2039 // hardening it.
2040 if (!Subtarget->hasVLX() && (OpRC->hasSuperClassEq(&X86::VR128RegClass) ||
2041 OpRC->hasSuperClassEq(&X86::VR256RegClass))) {
2042 assert(Subtarget->hasAVX2() && "AVX2-specific register classes!");
2043 bool Is128Bit = OpRC->hasSuperClassEq(&X86::VR128RegClass);
2044
2045 // Move our state into a vector register.
2046 // FIXME: We could skip this at the cost of longer encodings with AVX-512
2047 // but that doesn't seem likely worth it.
2048 Register VStateReg = MRI->createVirtualRegister(&X86::VR128RegClass);
2049 auto MovI =
2050 BuildMI(MBB, InsertPt, Loc, TII->get(X86::VMOV64toPQIrr), VStateReg)
2051 .addReg(StateReg);
2052 (void)MovI;
2053 ++NumInstsInserted;
2054 LLVM_DEBUG(dbgs() << " Inserting mov: "; MovI->dump(); dbgs() << "\n");
2055
2056 // Broadcast it across the vector register.
2057 Register VBStateReg = MRI->createVirtualRegister(OpRC);
2058 auto BroadcastI = BuildMI(MBB, InsertPt, Loc,
2059 TII->get(Is128Bit ? X86::VPBROADCASTQrr
2060 : X86::VPBROADCASTQYrr),
2061 VBStateReg)
2062 .addReg(VStateReg);
2063 (void)BroadcastI;
2064 ++NumInstsInserted;
2065 LLVM_DEBUG(dbgs() << " Inserting broadcast: "; BroadcastI->dump();
2066 dbgs() << "\n");
2067
2068 // Merge our potential poison state into the value with a vector or.
2069 auto OrI =
2070 BuildMI(MBB, InsertPt, Loc,
2071 TII->get(Is128Bit ? X86::VPORrr : X86::VPORYrr), TmpReg)
2072 .addReg(VBStateReg)
2073 .addReg(OpReg);
2074 (void)OrI;
2075 ++NumInstsInserted;
2076 LLVM_DEBUG(dbgs() << " Inserting or: "; OrI->dump(); dbgs() << "\n");
2077 } else if (OpRC->hasSuperClassEq(&X86::VR128XRegClass) ||
2078 OpRC->hasSuperClassEq(&X86::VR256XRegClass) ||
2079 OpRC->hasSuperClassEq(&X86::VR512RegClass)) {
2080 assert(Subtarget->hasAVX512() && "AVX512-specific register classes!");
2081 bool Is128Bit = OpRC->hasSuperClassEq(&X86::VR128XRegClass);
2082 bool Is256Bit = OpRC->hasSuperClassEq(&X86::VR256XRegClass);
2083 if (Is128Bit || Is256Bit)
2084 assert(Subtarget->hasVLX() && "AVX512VL-specific register classes!");
2085
2086 // Broadcast our state into a vector register.
2087 Register VStateReg = MRI->createVirtualRegister(OpRC);
2088 unsigned BroadcastOp =
2089 Is128Bit ? X86::VPBROADCASTQrZ128r
2090 : Is256Bit ? X86::VPBROADCASTQrZ256r : X86::VPBROADCASTQrZr;
2091 auto BroadcastI =
2092 BuildMI(MBB, InsertPt, Loc, TII->get(BroadcastOp), VStateReg)
2093 .addReg(StateReg);
2094 (void)BroadcastI;
2095 ++NumInstsInserted;
2096 LLVM_DEBUG(dbgs() << " Inserting broadcast: "; BroadcastI->dump();
2097 dbgs() << "\n");
2098
2099 // Merge our potential poison state into the value with a vector or.
2100 unsigned OrOp = Is128Bit ? X86::VPORQZ128rr
2101 : Is256Bit ? X86::VPORQZ256rr : X86::VPORQZrr;
2102 auto OrI = BuildMI(MBB, InsertPt, Loc, TII->get(OrOp), TmpReg)
2103 .addReg(VStateReg)
2104 .addReg(OpReg);
2105 (void)OrI;
2106 ++NumInstsInserted;
2107 LLVM_DEBUG(dbgs() << " Inserting or: "; OrI->dump(); dbgs() << "\n");
2108 } else {
2109 // FIXME: Need to support GR32 here for 32-bit code.
2110 assert(OpRC->hasSuperClassEq(&X86::GR64RegClass) &&
2111 "Not a supported register class for address hardening!");
2112
2113 if (!EFLAGSLive) {
2114 // Merge our potential poison state into the value with an or.
2115 auto OrI = BuildMI(MBB, InsertPt, Loc, TII->get(X86::OR64rr), TmpReg)
2116 .addReg(StateReg)
2117 .addReg(OpReg);
2118 OrI->addRegisterDead(X86::EFLAGS, TRI);
2119 ++NumInstsInserted;
2120 LLVM_DEBUG(dbgs() << " Inserting or: "; OrI->dump(); dbgs() << "\n");
2121 } else {
2122 // We need to avoid touching EFLAGS so shift out all but the least
2123 // significant bit using the instruction that doesn't update flags.
2124 auto ShiftI =
2125 BuildMI(MBB, InsertPt, Loc, TII->get(X86::SHRX64rr), TmpReg)
2126 .addReg(OpReg)
2127 .addReg(StateReg);
2128 (void)ShiftI;
2129 ++NumInstsInserted;
2130 LLVM_DEBUG(dbgs() << " Inserting shrx: "; ShiftI->dump();
2131 dbgs() << "\n");
2132 }
2133 }
2134
2135 // Record this register as checked and update the operand.
2136 assert(!AddrRegToHardenedReg.count(Op->getReg()) &&
2137 "Should not have checked this register yet!");
2138 AddrRegToHardenedReg[Op->getReg()] = TmpReg;
2139 Op->setReg(TmpReg);
2140 ++NumAddrRegsHardened;
2141 }
2142
2143 // And restore the flags if needed.
2144 if (FlagsReg)
2145 restoreEFLAGS(MBB, InsertPt, Loc, FlagsReg);
2146 }
2147
sinkPostLoadHardenedInst(MachineInstr & InitialMI,SmallPtrSetImpl<MachineInstr * > & HardenedInstrs)2148 MachineInstr *X86SpeculativeLoadHardeningPass::sinkPostLoadHardenedInst(
2149 MachineInstr &InitialMI, SmallPtrSetImpl<MachineInstr *> &HardenedInstrs) {
2150 assert(isDataInvariantLoad(InitialMI) &&
2151 "Cannot get here with a non-invariant load!");
2152
2153 // See if we can sink hardening the loaded value.
2154 auto SinkCheckToSingleUse =
2155 [&](MachineInstr &MI) -> Optional<MachineInstr *> {
2156 Register DefReg = MI.getOperand(0).getReg();
2157
2158 // We need to find a single use which we can sink the check. We can
2159 // primarily do this because many uses may already end up checked on their
2160 // own.
2161 MachineInstr *SingleUseMI = nullptr;
2162 for (MachineInstr &UseMI : MRI->use_instructions(DefReg)) {
2163 // If we're already going to harden this use, it is data invariant and
2164 // within our block.
2165 if (HardenedInstrs.count(&UseMI)) {
2166 if (!isDataInvariantLoad(UseMI)) {
2167 // If we've already decided to harden a non-load, we must have sunk
2168 // some other post-load hardened instruction to it and it must itself
2169 // be data-invariant.
2170 assert(isDataInvariant(UseMI) &&
2171 "Data variant instruction being hardened!");
2172 continue;
2173 }
2174
2175 // Otherwise, this is a load and the load component can't be data
2176 // invariant so check how this register is being used.
2177 const MCInstrDesc &Desc = UseMI.getDesc();
2178 int MemRefBeginIdx = X86II::getMemoryOperandNo(Desc.TSFlags);
2179 assert(MemRefBeginIdx >= 0 &&
2180 "Should always have mem references here!");
2181 MemRefBeginIdx += X86II::getOperandBias(Desc);
2182
2183 MachineOperand &BaseMO =
2184 UseMI.getOperand(MemRefBeginIdx + X86::AddrBaseReg);
2185 MachineOperand &IndexMO =
2186 UseMI.getOperand(MemRefBeginIdx + X86::AddrIndexReg);
2187 if ((BaseMO.isReg() && BaseMO.getReg() == DefReg) ||
2188 (IndexMO.isReg() && IndexMO.getReg() == DefReg))
2189 // The load uses the register as part of its address making it not
2190 // invariant.
2191 return {};
2192
2193 continue;
2194 }
2195
2196 if (SingleUseMI)
2197 // We already have a single use, this would make two. Bail.
2198 return {};
2199
2200 // If this single use isn't data invariant, isn't in this block, or has
2201 // interfering EFLAGS, we can't sink the hardening to it.
2202 if (!isDataInvariant(UseMI) || UseMI.getParent() != MI.getParent())
2203 return {};
2204
2205 // If this instruction defines multiple registers bail as we won't harden
2206 // all of them.
2207 if (UseMI.getDesc().getNumDefs() > 1)
2208 return {};
2209
2210 // If this register isn't a virtual register we can't walk uses of sanely,
2211 // just bail. Also check that its register class is one of the ones we
2212 // can harden.
2213 Register UseDefReg = UseMI.getOperand(0).getReg();
2214 if (!Register::isVirtualRegister(UseDefReg) ||
2215 !canHardenRegister(UseDefReg))
2216 return {};
2217
2218 SingleUseMI = &UseMI;
2219 }
2220
2221 // If SingleUseMI is still null, there is no use that needs its own
2222 // checking. Otherwise, it is the single use that needs checking.
2223 return {SingleUseMI};
2224 };
2225
2226 MachineInstr *MI = &InitialMI;
2227 while (Optional<MachineInstr *> SingleUse = SinkCheckToSingleUse(*MI)) {
2228 // Update which MI we're checking now.
2229 MI = *SingleUse;
2230 if (!MI)
2231 break;
2232 }
2233
2234 return MI;
2235 }
2236
canHardenRegister(unsigned Reg)2237 bool X86SpeculativeLoadHardeningPass::canHardenRegister(unsigned Reg) {
2238 auto *RC = MRI->getRegClass(Reg);
2239 int RegBytes = TRI->getRegSizeInBits(*RC) / 8;
2240 if (RegBytes > 8)
2241 // We don't support post-load hardening of vectors.
2242 return false;
2243
2244 unsigned RegIdx = Log2_32(RegBytes);
2245 assert(RegIdx < 4 && "Unsupported register size");
2246
2247 // If this register class is explicitly constrained to a class that doesn't
2248 // require REX prefix, we may not be able to satisfy that constraint when
2249 // emitting the hardening instructions, so bail out here.
2250 // FIXME: This seems like a pretty lame hack. The way this comes up is when we
2251 // end up both with a NOREX and REX-only register as operands to the hardening
2252 // instructions. It would be better to fix that code to handle this situation
2253 // rather than hack around it in this way.
2254 const TargetRegisterClass *NOREXRegClasses[] = {
2255 &X86::GR8_NOREXRegClass, &X86::GR16_NOREXRegClass,
2256 &X86::GR32_NOREXRegClass, &X86::GR64_NOREXRegClass};
2257 if (RC == NOREXRegClasses[RegIdx])
2258 return false;
2259
2260 const TargetRegisterClass *GPRRegClasses[] = {
2261 &X86::GR8RegClass, &X86::GR16RegClass, &X86::GR32RegClass,
2262 &X86::GR64RegClass};
2263 return RC->hasSuperClassEq(GPRRegClasses[RegIdx]);
2264 }
2265
2266 /// Harden a value in a register.
2267 ///
2268 /// This is the low-level logic to fully harden a value sitting in a register
2269 /// against leaking during speculative execution.
2270 ///
2271 /// Unlike hardening an address that is used by a load, this routine is required
2272 /// to hide *all* incoming bits in the register.
2273 ///
2274 /// `Reg` must be a virtual register. Currently, it is required to be a GPR no
2275 /// larger than the predicate state register. FIXME: We should support vector
2276 /// registers here by broadcasting the predicate state.
2277 ///
2278 /// The new, hardened virtual register is returned. It will have the same
2279 /// register class as `Reg`.
hardenValueInRegister(unsigned Reg,MachineBasicBlock & MBB,MachineBasicBlock::iterator InsertPt,DebugLoc Loc)2280 unsigned X86SpeculativeLoadHardeningPass::hardenValueInRegister(
2281 unsigned Reg, MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertPt,
2282 DebugLoc Loc) {
2283 assert(canHardenRegister(Reg) && "Cannot harden this register!");
2284 assert(Register::isVirtualRegister(Reg) && "Cannot harden a physical register!");
2285
2286 auto *RC = MRI->getRegClass(Reg);
2287 int Bytes = TRI->getRegSizeInBits(*RC) / 8;
2288
2289 unsigned StateReg = PS->SSA.GetValueAtEndOfBlock(&MBB);
2290
2291 // FIXME: Need to teach this about 32-bit mode.
2292 if (Bytes != 8) {
2293 unsigned SubRegImms[] = {X86::sub_8bit, X86::sub_16bit, X86::sub_32bit};
2294 unsigned SubRegImm = SubRegImms[Log2_32(Bytes)];
2295 Register NarrowStateReg = MRI->createVirtualRegister(RC);
2296 BuildMI(MBB, InsertPt, Loc, TII->get(TargetOpcode::COPY), NarrowStateReg)
2297 .addReg(StateReg, 0, SubRegImm);
2298 StateReg = NarrowStateReg;
2299 }
2300
2301 unsigned FlagsReg = 0;
2302 if (isEFLAGSLive(MBB, InsertPt, *TRI))
2303 FlagsReg = saveEFLAGS(MBB, InsertPt, Loc);
2304
2305 Register NewReg = MRI->createVirtualRegister(RC);
2306 unsigned OrOpCodes[] = {X86::OR8rr, X86::OR16rr, X86::OR32rr, X86::OR64rr};
2307 unsigned OrOpCode = OrOpCodes[Log2_32(Bytes)];
2308 auto OrI = BuildMI(MBB, InsertPt, Loc, TII->get(OrOpCode), NewReg)
2309 .addReg(StateReg)
2310 .addReg(Reg);
2311 OrI->addRegisterDead(X86::EFLAGS, TRI);
2312 ++NumInstsInserted;
2313 LLVM_DEBUG(dbgs() << " Inserting or: "; OrI->dump(); dbgs() << "\n");
2314
2315 if (FlagsReg)
2316 restoreEFLAGS(MBB, InsertPt, Loc, FlagsReg);
2317
2318 return NewReg;
2319 }
2320
2321 /// Harden a load by hardening the loaded value in the defined register.
2322 ///
2323 /// We can harden a non-leaking load into a register without touching the
2324 /// address by just hiding all of the loaded bits during misspeculation. We use
2325 /// an `or` instruction to do this because we set up our poison value as all
2326 /// ones. And the goal is just for the loaded bits to not be exposed to
2327 /// execution and coercing them to one is sufficient.
2328 ///
2329 /// Returns the newly hardened register.
hardenPostLoad(MachineInstr & MI)2330 unsigned X86SpeculativeLoadHardeningPass::hardenPostLoad(MachineInstr &MI) {
2331 MachineBasicBlock &MBB = *MI.getParent();
2332 DebugLoc Loc = MI.getDebugLoc();
2333
2334 auto &DefOp = MI.getOperand(0);
2335 Register OldDefReg = DefOp.getReg();
2336 auto *DefRC = MRI->getRegClass(OldDefReg);
2337
2338 // Because we want to completely replace the uses of this def'ed value with
2339 // the hardened value, create a dedicated new register that will only be used
2340 // to communicate the unhardened value to the hardening.
2341 Register UnhardenedReg = MRI->createVirtualRegister(DefRC);
2342 DefOp.setReg(UnhardenedReg);
2343
2344 // Now harden this register's value, getting a hardened reg that is safe to
2345 // use. Note that we insert the instructions to compute this *after* the
2346 // defining instruction, not before it.
2347 unsigned HardenedReg = hardenValueInRegister(
2348 UnhardenedReg, MBB, std::next(MI.getIterator()), Loc);
2349
2350 // Finally, replace the old register (which now only has the uses of the
2351 // original def) with the hardened register.
2352 MRI->replaceRegWith(/*FromReg*/ OldDefReg, /*ToReg*/ HardenedReg);
2353
2354 ++NumPostLoadRegsHardened;
2355 return HardenedReg;
2356 }
2357
2358 /// Harden a return instruction.
2359 ///
2360 /// Returns implicitly perform a load which we need to harden. Without hardening
2361 /// this load, an attacker my speculatively write over the return address to
2362 /// steer speculation of the return to an attacker controlled address. This is
2363 /// called Spectre v1.1 or Bounds Check Bypass Store (BCBS) and is described in
2364 /// this paper:
2365 /// https://people.csail.mit.edu/vlk/spectre11.pdf
2366 ///
2367 /// We can harden this by introducing an LFENCE that will delay any load of the
2368 /// return address until prior instructions have retired (and thus are not being
2369 /// speculated), or we can harden the address used by the implicit load: the
2370 /// stack pointer.
2371 ///
2372 /// If we are not using an LFENCE, hardening the stack pointer has an additional
2373 /// benefit: it allows us to pass the predicate state accumulated in this
2374 /// function back to the caller. In the absence of a BCBS attack on the return,
2375 /// the caller will typically be resumed and speculatively executed due to the
2376 /// Return Stack Buffer (RSB) prediction which is very accurate and has a high
2377 /// priority. It is possible that some code from the caller will be executed
2378 /// speculatively even during a BCBS-attacked return until the steering takes
2379 /// effect. Whenever this happens, the caller can recover the (poisoned)
2380 /// predicate state from the stack pointer and continue to harden loads.
hardenReturnInstr(MachineInstr & MI)2381 void X86SpeculativeLoadHardeningPass::hardenReturnInstr(MachineInstr &MI) {
2382 MachineBasicBlock &MBB = *MI.getParent();
2383 DebugLoc Loc = MI.getDebugLoc();
2384 auto InsertPt = MI.getIterator();
2385
2386 if (FenceCallAndRet)
2387 // No need to fence here as we'll fence at the return site itself. That
2388 // handles more cases than we can handle here.
2389 return;
2390
2391 // Take our predicate state, shift it to the high 17 bits (so that we keep
2392 // pointers canonical) and merge it into RSP. This will allow the caller to
2393 // extract it when we return (speculatively).
2394 mergePredStateIntoSP(MBB, InsertPt, Loc, PS->SSA.GetValueAtEndOfBlock(&MBB));
2395 }
2396
2397 /// Trace the predicate state through a call.
2398 ///
2399 /// There are several layers of this needed to handle the full complexity of
2400 /// calls.
2401 ///
2402 /// First, we need to send the predicate state into the called function. We do
2403 /// this by merging it into the high bits of the stack pointer.
2404 ///
2405 /// For tail calls, this is all we need to do.
2406 ///
2407 /// For calls where we might return and resume the control flow, we need to
2408 /// extract the predicate state from the high bits of the stack pointer after
2409 /// control returns from the called function.
2410 ///
2411 /// We also need to verify that we intended to return to this location in the
2412 /// code. An attacker might arrange for the processor to mispredict the return
2413 /// to this valid but incorrect return address in the program rather than the
2414 /// correct one. See the paper on this attack, called "ret2spec" by the
2415 /// researchers, here:
2416 /// https://christian-rossow.de/publications/ret2spec-ccs2018.pdf
2417 ///
2418 /// The way we verify that we returned to the correct location is by preserving
2419 /// the expected return address across the call. One technique involves taking
2420 /// advantage of the red-zone to load the return address from `8(%rsp)` where it
2421 /// was left by the RET instruction when it popped `%rsp`. Alternatively, we can
2422 /// directly save the address into a register that will be preserved across the
2423 /// call. We compare this intended return address against the address
2424 /// immediately following the call (the observed return address). If these
2425 /// mismatch, we have detected misspeculation and can poison our predicate
2426 /// state.
tracePredStateThroughCall(MachineInstr & MI)2427 void X86SpeculativeLoadHardeningPass::tracePredStateThroughCall(
2428 MachineInstr &MI) {
2429 MachineBasicBlock &MBB = *MI.getParent();
2430 MachineFunction &MF = *MBB.getParent();
2431 auto InsertPt = MI.getIterator();
2432 DebugLoc Loc = MI.getDebugLoc();
2433
2434 if (FenceCallAndRet) {
2435 if (MI.isReturn())
2436 // Tail call, we don't return to this function.
2437 // FIXME: We should also handle noreturn calls.
2438 return;
2439
2440 // We don't need to fence before the call because the function should fence
2441 // in its entry. However, we do need to fence after the call returns.
2442 // Fencing before the return doesn't correctly handle cases where the return
2443 // itself is mispredicted.
2444 BuildMI(MBB, std::next(InsertPt), Loc, TII->get(X86::LFENCE));
2445 ++NumInstsInserted;
2446 ++NumLFENCEsInserted;
2447 return;
2448 }
2449
2450 // First, we transfer the predicate state into the called function by merging
2451 // it into the stack pointer. This will kill the current def of the state.
2452 unsigned StateReg = PS->SSA.GetValueAtEndOfBlock(&MBB);
2453 mergePredStateIntoSP(MBB, InsertPt, Loc, StateReg);
2454
2455 // If this call is also a return, it is a tail call and we don't need anything
2456 // else to handle it so just return. Also, if there are no further
2457 // instructions and no successors, this call does not return so we can also
2458 // bail.
2459 if (MI.isReturn() || (std::next(InsertPt) == MBB.end() && MBB.succ_empty()))
2460 return;
2461
2462 // Create a symbol to track the return address and attach it to the call
2463 // machine instruction. We will lower extra symbols attached to call
2464 // instructions as label immediately following the call.
2465 MCSymbol *RetSymbol =
2466 MF.getContext().createTempSymbol("slh_ret_addr",
2467 /*AlwaysAddSuffix*/ true);
2468 MI.setPostInstrSymbol(MF, RetSymbol);
2469
2470 const TargetRegisterClass *AddrRC = &X86::GR64RegClass;
2471 unsigned ExpectedRetAddrReg = 0;
2472
2473 // If we have no red zones or if the function returns twice (possibly without
2474 // using the `ret` instruction) like setjmp, we need to save the expected
2475 // return address prior to the call.
2476 if (!Subtarget->getFrameLowering()->has128ByteRedZone(MF) ||
2477 MF.exposesReturnsTwice()) {
2478 // If we don't have red zones, we need to compute the expected return
2479 // address prior to the call and store it in a register that lives across
2480 // the call.
2481 //
2482 // In some ways, this is doubly satisfying as a mitigation because it will
2483 // also successfully detect stack smashing bugs in some cases (typically,
2484 // when a callee-saved register is used and the callee doesn't push it onto
2485 // the stack). But that isn't our primary goal, so we only use it as
2486 // a fallback.
2487 //
2488 // FIXME: It isn't clear that this is reliable in the face of
2489 // rematerialization in the register allocator. We somehow need to force
2490 // that to not occur for this particular instruction, and instead to spill
2491 // or otherwise preserve the value computed *prior* to the call.
2492 //
2493 // FIXME: It is even less clear why MachineCSE can't just fold this when we
2494 // end up having to use identical instructions both before and after the
2495 // call to feed the comparison.
2496 ExpectedRetAddrReg = MRI->createVirtualRegister(AddrRC);
2497 if (MF.getTarget().getCodeModel() == CodeModel::Small &&
2498 !Subtarget->isPositionIndependent()) {
2499 BuildMI(MBB, InsertPt, Loc, TII->get(X86::MOV64ri32), ExpectedRetAddrReg)
2500 .addSym(RetSymbol);
2501 } else {
2502 BuildMI(MBB, InsertPt, Loc, TII->get(X86::LEA64r), ExpectedRetAddrReg)
2503 .addReg(/*Base*/ X86::RIP)
2504 .addImm(/*Scale*/ 1)
2505 .addReg(/*Index*/ 0)
2506 .addSym(RetSymbol)
2507 .addReg(/*Segment*/ 0);
2508 }
2509 }
2510
2511 // Step past the call to handle when it returns.
2512 ++InsertPt;
2513
2514 // If we didn't pre-compute the expected return address into a register, then
2515 // red zones are enabled and the return address is still available on the
2516 // stack immediately after the call. As the very first instruction, we load it
2517 // into a register.
2518 if (!ExpectedRetAddrReg) {
2519 ExpectedRetAddrReg = MRI->createVirtualRegister(AddrRC);
2520 BuildMI(MBB, InsertPt, Loc, TII->get(X86::MOV64rm), ExpectedRetAddrReg)
2521 .addReg(/*Base*/ X86::RSP)
2522 .addImm(/*Scale*/ 1)
2523 .addReg(/*Index*/ 0)
2524 .addImm(/*Displacement*/ -8) // The stack pointer has been popped, so
2525 // the return address is 8-bytes past it.
2526 .addReg(/*Segment*/ 0);
2527 }
2528
2529 // Now we extract the callee's predicate state from the stack pointer.
2530 unsigned NewStateReg = extractPredStateFromSP(MBB, InsertPt, Loc);
2531
2532 // Test the expected return address against our actual address. If we can
2533 // form this basic block's address as an immediate, this is easy. Otherwise
2534 // we compute it.
2535 if (MF.getTarget().getCodeModel() == CodeModel::Small &&
2536 !Subtarget->isPositionIndependent()) {
2537 // FIXME: Could we fold this with the load? It would require careful EFLAGS
2538 // management.
2539 BuildMI(MBB, InsertPt, Loc, TII->get(X86::CMP64ri32))
2540 .addReg(ExpectedRetAddrReg, RegState::Kill)
2541 .addSym(RetSymbol);
2542 } else {
2543 Register ActualRetAddrReg = MRI->createVirtualRegister(AddrRC);
2544 BuildMI(MBB, InsertPt, Loc, TII->get(X86::LEA64r), ActualRetAddrReg)
2545 .addReg(/*Base*/ X86::RIP)
2546 .addImm(/*Scale*/ 1)
2547 .addReg(/*Index*/ 0)
2548 .addSym(RetSymbol)
2549 .addReg(/*Segment*/ 0);
2550 BuildMI(MBB, InsertPt, Loc, TII->get(X86::CMP64rr))
2551 .addReg(ExpectedRetAddrReg, RegState::Kill)
2552 .addReg(ActualRetAddrReg, RegState::Kill);
2553 }
2554
2555 // Now conditionally update the predicate state we just extracted if we ended
2556 // up at a different return address than expected.
2557 int PredStateSizeInBytes = TRI->getRegSizeInBits(*PS->RC) / 8;
2558 auto CMovOp = X86::getCMovOpcode(PredStateSizeInBytes);
2559
2560 Register UpdatedStateReg = MRI->createVirtualRegister(PS->RC);
2561 auto CMovI = BuildMI(MBB, InsertPt, Loc, TII->get(CMovOp), UpdatedStateReg)
2562 .addReg(NewStateReg, RegState::Kill)
2563 .addReg(PS->PoisonReg)
2564 .addImm(X86::COND_NE);
2565 CMovI->findRegisterUseOperand(X86::EFLAGS)->setIsKill(true);
2566 ++NumInstsInserted;
2567 LLVM_DEBUG(dbgs() << " Inserting cmov: "; CMovI->dump(); dbgs() << "\n");
2568
2569 PS->SSA.AddAvailableValue(&MBB, UpdatedStateReg);
2570 }
2571
2572 /// An attacker may speculatively store over a value that is then speculatively
2573 /// loaded and used as the target of an indirect call or jump instruction. This
2574 /// is called Spectre v1.2 or Bounds Check Bypass Store (BCBS) and is described
2575 /// in this paper:
2576 /// https://people.csail.mit.edu/vlk/spectre11.pdf
2577 ///
2578 /// When this happens, the speculative execution of the call or jump will end up
2579 /// being steered to this attacker controlled address. While most such loads
2580 /// will be adequately hardened already, we want to ensure that they are
2581 /// definitively treated as needing post-load hardening. While address hardening
2582 /// is sufficient to prevent secret data from leaking to the attacker, it may
2583 /// not be sufficient to prevent an attacker from steering speculative
2584 /// execution. We forcibly unfolded all relevant loads above and so will always
2585 /// have an opportunity to post-load harden here, we just need to scan for cases
2586 /// not already flagged and add them.
hardenIndirectCallOrJumpInstr(MachineInstr & MI,SmallDenseMap<unsigned,unsigned,32> & AddrRegToHardenedReg)2587 void X86SpeculativeLoadHardeningPass::hardenIndirectCallOrJumpInstr(
2588 MachineInstr &MI,
2589 SmallDenseMap<unsigned, unsigned, 32> &AddrRegToHardenedReg) {
2590 switch (MI.getOpcode()) {
2591 case X86::FARCALL16m:
2592 case X86::FARCALL32m:
2593 case X86::FARCALL64:
2594 case X86::FARJMP16m:
2595 case X86::FARJMP32m:
2596 case X86::FARJMP64:
2597 // We don't need to harden either far calls or far jumps as they are
2598 // safe from Spectre.
2599 return;
2600
2601 default:
2602 break;
2603 }
2604
2605 // We should never see a loading instruction at this point, as those should
2606 // have been unfolded.
2607 assert(!MI.mayLoad() && "Found a lingering loading instruction!");
2608
2609 // If the first operand isn't a register, this is a branch or call
2610 // instruction with an immediate operand which doesn't need to be hardened.
2611 if (!MI.getOperand(0).isReg())
2612 return;
2613
2614 // For all of these, the target register is the first operand of the
2615 // instruction.
2616 auto &TargetOp = MI.getOperand(0);
2617 Register OldTargetReg = TargetOp.getReg();
2618
2619 // Try to lookup a hardened version of this register. We retain a reference
2620 // here as we want to update the map to track any newly computed hardened
2621 // register.
2622 unsigned &HardenedTargetReg = AddrRegToHardenedReg[OldTargetReg];
2623
2624 // If we don't have a hardened register yet, compute one. Otherwise, just use
2625 // the already hardened register.
2626 //
2627 // FIXME: It is a little suspect that we use partially hardened registers that
2628 // only feed addresses. The complexity of partial hardening with SHRX
2629 // continues to pile up. Should definitively measure its value and consider
2630 // eliminating it.
2631 if (!HardenedTargetReg)
2632 HardenedTargetReg = hardenValueInRegister(
2633 OldTargetReg, *MI.getParent(), MI.getIterator(), MI.getDebugLoc());
2634
2635 // Set the target operand to the hardened register.
2636 TargetOp.setReg(HardenedTargetReg);
2637
2638 ++NumCallsOrJumpsHardened;
2639 }
2640
2641 INITIALIZE_PASS_BEGIN(X86SpeculativeLoadHardeningPass, PASS_KEY,
2642 "X86 speculative load hardener", false, false)
2643 INITIALIZE_PASS_END(X86SpeculativeLoadHardeningPass, PASS_KEY,
2644 "X86 speculative load hardener", false, false)
2645
createX86SpeculativeLoadHardeningPass()2646 FunctionPass *llvm::createX86SpeculativeLoadHardeningPass() {
2647 return new X86SpeculativeLoadHardeningPass();
2648 }
2649