1 /*
2 * Copyright (c) 2016, Alliance for Open Media. All rights reserved
3 *
4 * This source code is subject to the terms of the BSD 2 Clause License and
5 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6 * was not distributed with this source code in the LICENSE file, you can
7 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8 * Media Patent License 1.0 was not distributed with this source code in the
9 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10 */
11
12 #include "config/aom_dsp_rtcd.h"
13 #include "config/av1_rtcd.h"
14
15 #include "av1/common/enums.h"
16 #include "av1/common/av1_txfm.h"
17 #include "av1/common/av1_inv_txfm1d.h"
18 #include "av1/common/av1_inv_txfm1d_cfg.h"
19
av1_highbd_iwht4x4_16_add_c(const tran_low_t * input,uint8_t * dest8,int stride,int bd)20 void av1_highbd_iwht4x4_16_add_c(const tran_low_t *input, uint8_t *dest8,
21 int stride, int bd) {
22 /* 4-point reversible, orthonormal inverse Walsh-Hadamard in 3.5 adds,
23 0.5 shifts per pixel. */
24 int i;
25 tran_low_t output[16];
26 tran_low_t a1, b1, c1, d1, e1;
27 const tran_low_t *ip = input;
28 tran_low_t *op = output;
29 uint16_t *dest = CONVERT_TO_SHORTPTR(dest8);
30
31 for (i = 0; i < 4; i++) {
32 a1 = ip[0] >> UNIT_QUANT_SHIFT;
33 c1 = ip[1] >> UNIT_QUANT_SHIFT;
34 d1 = ip[2] >> UNIT_QUANT_SHIFT;
35 b1 = ip[3] >> UNIT_QUANT_SHIFT;
36 a1 += c1;
37 d1 -= b1;
38 e1 = (a1 - d1) >> 1;
39 b1 = e1 - b1;
40 c1 = e1 - c1;
41 a1 -= b1;
42 d1 += c1;
43
44 op[0] = a1;
45 op[1] = b1;
46 op[2] = c1;
47 op[3] = d1;
48 ip += 4;
49 op += 4;
50 }
51
52 ip = output;
53 for (i = 0; i < 4; i++) {
54 a1 = ip[4 * 0];
55 c1 = ip[4 * 1];
56 d1 = ip[4 * 2];
57 b1 = ip[4 * 3];
58 a1 += c1;
59 d1 -= b1;
60 e1 = (a1 - d1) >> 1;
61 b1 = e1 - b1;
62 c1 = e1 - c1;
63 a1 -= b1;
64 d1 += c1;
65
66 range_check_value(a1, bd + 1);
67 range_check_value(b1, bd + 1);
68 range_check_value(c1, bd + 1);
69 range_check_value(d1, bd + 1);
70
71 dest[stride * 0] = highbd_clip_pixel_add(dest[stride * 0], a1, bd);
72 dest[stride * 1] = highbd_clip_pixel_add(dest[stride * 1], b1, bd);
73 dest[stride * 2] = highbd_clip_pixel_add(dest[stride * 2], c1, bd);
74 dest[stride * 3] = highbd_clip_pixel_add(dest[stride * 3], d1, bd);
75
76 ip++;
77 dest++;
78 }
79 }
80
av1_highbd_iwht4x4_1_add_c(const tran_low_t * in,uint8_t * dest8,int dest_stride,int bd)81 void av1_highbd_iwht4x4_1_add_c(const tran_low_t *in, uint8_t *dest8,
82 int dest_stride, int bd) {
83 int i;
84 tran_low_t a1, e1;
85 tran_low_t tmp[4];
86 const tran_low_t *ip = in;
87 tran_low_t *op = tmp;
88 uint16_t *dest = CONVERT_TO_SHORTPTR(dest8);
89 (void)bd;
90
91 a1 = ip[0] >> UNIT_QUANT_SHIFT;
92 e1 = a1 >> 1;
93 a1 -= e1;
94 op[0] = a1;
95 op[1] = op[2] = op[3] = e1;
96
97 ip = tmp;
98 for (i = 0; i < 4; i++) {
99 e1 = ip[0] >> 1;
100 a1 = ip[0] - e1;
101 dest[dest_stride * 0] =
102 highbd_clip_pixel_add(dest[dest_stride * 0], a1, bd);
103 dest[dest_stride * 1] =
104 highbd_clip_pixel_add(dest[dest_stride * 1], e1, bd);
105 dest[dest_stride * 2] =
106 highbd_clip_pixel_add(dest[dest_stride * 2], e1, bd);
107 dest[dest_stride * 3] =
108 highbd_clip_pixel_add(dest[dest_stride * 3], e1, bd);
109 ip++;
110 dest++;
111 }
112 }
113
inv_txfm_type_to_func(TXFM_TYPE txfm_type)114 static INLINE TxfmFunc inv_txfm_type_to_func(TXFM_TYPE txfm_type) {
115 switch (txfm_type) {
116 case TXFM_TYPE_DCT4: return av1_idct4;
117 case TXFM_TYPE_DCT8: return av1_idct8;
118 case TXFM_TYPE_DCT16: return av1_idct16;
119 case TXFM_TYPE_DCT32: return av1_idct32;
120 case TXFM_TYPE_DCT64: return av1_idct64;
121 case TXFM_TYPE_ADST4: return av1_iadst4;
122 case TXFM_TYPE_ADST8: return av1_iadst8;
123 case TXFM_TYPE_ADST16: return av1_iadst16;
124 case TXFM_TYPE_IDENTITY4: return av1_iidentity4_c;
125 case TXFM_TYPE_IDENTITY8: return av1_iidentity8_c;
126 case TXFM_TYPE_IDENTITY16: return av1_iidentity16_c;
127 case TXFM_TYPE_IDENTITY32: return av1_iidentity32_c;
128 default: assert(0); return NULL;
129 }
130 }
131
132 static const int8_t inv_shift_4x4[2] = { 0, -4 };
133 static const int8_t inv_shift_8x8[2] = { -1, -4 };
134 static const int8_t inv_shift_16x16[2] = { -2, -4 };
135 static const int8_t inv_shift_32x32[2] = { -2, -4 };
136 static const int8_t inv_shift_64x64[2] = { -2, -4 };
137 static const int8_t inv_shift_4x8[2] = { 0, -4 };
138 static const int8_t inv_shift_8x4[2] = { 0, -4 };
139 static const int8_t inv_shift_8x16[2] = { -1, -4 };
140 static const int8_t inv_shift_16x8[2] = { -1, -4 };
141 static const int8_t inv_shift_16x32[2] = { -1, -4 };
142 static const int8_t inv_shift_32x16[2] = { -1, -4 };
143 static const int8_t inv_shift_32x64[2] = { -1, -4 };
144 static const int8_t inv_shift_64x32[2] = { -1, -4 };
145 static const int8_t inv_shift_4x16[2] = { -1, -4 };
146 static const int8_t inv_shift_16x4[2] = { -1, -4 };
147 static const int8_t inv_shift_8x32[2] = { -2, -4 };
148 static const int8_t inv_shift_32x8[2] = { -2, -4 };
149 static const int8_t inv_shift_16x64[2] = { -2, -4 };
150 static const int8_t inv_shift_64x16[2] = { -2, -4 };
151
152 const int8_t *av1_inv_txfm_shift_ls[TX_SIZES_ALL] = {
153 inv_shift_4x4, inv_shift_8x8, inv_shift_16x16, inv_shift_32x32,
154 inv_shift_64x64, inv_shift_4x8, inv_shift_8x4, inv_shift_8x16,
155 inv_shift_16x8, inv_shift_16x32, inv_shift_32x16, inv_shift_32x64,
156 inv_shift_64x32, inv_shift_4x16, inv_shift_16x4, inv_shift_8x32,
157 inv_shift_32x8, inv_shift_16x64, inv_shift_64x16,
158 };
159
160 static const int8_t iadst4_range[7] = { 0, 1, 0, 0, 0, 0, 0 };
161
av1_get_inv_txfm_cfg(TX_TYPE tx_type,TX_SIZE tx_size,TXFM_2D_FLIP_CFG * cfg)162 void av1_get_inv_txfm_cfg(TX_TYPE tx_type, TX_SIZE tx_size,
163 TXFM_2D_FLIP_CFG *cfg) {
164 assert(cfg != NULL);
165 cfg->tx_size = tx_size;
166 av1_zero(cfg->stage_range_col);
167 av1_zero(cfg->stage_range_row);
168 set_flip_cfg(tx_type, cfg);
169 const TX_TYPE_1D tx_type_1d_col = vtx_tab[tx_type];
170 const TX_TYPE_1D tx_type_1d_row = htx_tab[tx_type];
171 cfg->shift = av1_inv_txfm_shift_ls[tx_size];
172 const int txw_idx = get_txw_idx(tx_size);
173 const int txh_idx = get_txh_idx(tx_size);
174 cfg->cos_bit_col = INV_COS_BIT;
175 cfg->cos_bit_row = INV_COS_BIT;
176 cfg->txfm_type_col = av1_txfm_type_ls[txh_idx][tx_type_1d_col];
177 if (cfg->txfm_type_col == TXFM_TYPE_ADST4) {
178 memcpy(cfg->stage_range_col, iadst4_range, sizeof(iadst4_range));
179 }
180 cfg->txfm_type_row = av1_txfm_type_ls[txw_idx][tx_type_1d_row];
181 if (cfg->txfm_type_row == TXFM_TYPE_ADST4) {
182 memcpy(cfg->stage_range_row, iadst4_range, sizeof(iadst4_range));
183 }
184 cfg->stage_num_col = av1_txfm_stage_num_list[cfg->txfm_type_col];
185 cfg->stage_num_row = av1_txfm_stage_num_list[cfg->txfm_type_row];
186 }
187
av1_gen_inv_stage_range(int8_t * stage_range_col,int8_t * stage_range_row,const TXFM_2D_FLIP_CFG * cfg,TX_SIZE tx_size,int bd)188 void av1_gen_inv_stage_range(int8_t *stage_range_col, int8_t *stage_range_row,
189 const TXFM_2D_FLIP_CFG *cfg, TX_SIZE tx_size,
190 int bd) {
191 const int fwd_shift = inv_start_range[tx_size];
192 const int8_t *shift = cfg->shift;
193 int8_t opt_range_row, opt_range_col;
194 if (bd == 8) {
195 opt_range_row = 16;
196 opt_range_col = 16;
197 } else if (bd == 10) {
198 opt_range_row = 18;
199 opt_range_col = 16;
200 } else {
201 assert(bd == 12);
202 opt_range_row = 20;
203 opt_range_col = 18;
204 }
205 // i < MAX_TXFM_STAGE_NUM will mute above array bounds warning
206 for (int i = 0; i < cfg->stage_num_row && i < MAX_TXFM_STAGE_NUM; ++i) {
207 int real_range_row = cfg->stage_range_row[i] + fwd_shift + bd + 1;
208 (void)real_range_row;
209 if (cfg->txfm_type_row == TXFM_TYPE_ADST4 && i == 1) {
210 // the adst4 may use 1 extra bit on top of opt_range_row at stage 1
211 // so opt_range_row >= real_range_row will not hold
212 stage_range_row[i] = opt_range_row;
213 } else {
214 assert(opt_range_row >= real_range_row);
215 stage_range_row[i] = opt_range_row;
216 }
217 }
218 // i < MAX_TXFM_STAGE_NUM will mute above array bounds warning
219 for (int i = 0; i < cfg->stage_num_col && i < MAX_TXFM_STAGE_NUM; ++i) {
220 int real_range_col =
221 cfg->stage_range_col[i] + fwd_shift + shift[0] + bd + 1;
222 (void)real_range_col;
223 if (cfg->txfm_type_col == TXFM_TYPE_ADST4 && i == 1) {
224 // the adst4 may use 1 extra bit on top of opt_range_col at stage 1
225 // so opt_range_col >= real_range_col will not hold
226 stage_range_col[i] = opt_range_col;
227 } else {
228 assert(opt_range_col >= real_range_col);
229 stage_range_col[i] = opt_range_col;
230 }
231 }
232 }
233
inv_txfm2d_add_c(const int32_t * input,uint16_t * output,int stride,TXFM_2D_FLIP_CFG * cfg,int32_t * txfm_buf,TX_SIZE tx_size,int bd)234 static INLINE void inv_txfm2d_add_c(const int32_t *input, uint16_t *output,
235 int stride, TXFM_2D_FLIP_CFG *cfg,
236 int32_t *txfm_buf, TX_SIZE tx_size,
237 int bd) {
238 // Note when assigning txfm_size_col, we use the txfm_size from the
239 // row configuration and vice versa. This is intentionally done to
240 // accurately perform rectangular transforms. When the transform is
241 // rectangular, the number of columns will be the same as the
242 // txfm_size stored in the row cfg struct. It will make no difference
243 // for square transforms.
244 const int txfm_size_col = tx_size_wide[cfg->tx_size];
245 const int txfm_size_row = tx_size_high[cfg->tx_size];
246 // Take the shift from the larger dimension in the rectangular case.
247 const int8_t *shift = cfg->shift;
248 const int rect_type = get_rect_tx_log_ratio(txfm_size_col, txfm_size_row);
249 int8_t stage_range_row[MAX_TXFM_STAGE_NUM];
250 int8_t stage_range_col[MAX_TXFM_STAGE_NUM];
251 assert(cfg->stage_num_row <= MAX_TXFM_STAGE_NUM);
252 assert(cfg->stage_num_col <= MAX_TXFM_STAGE_NUM);
253 av1_gen_inv_stage_range(stage_range_col, stage_range_row, cfg, tx_size, bd);
254
255 const int8_t cos_bit_col = cfg->cos_bit_col;
256 const int8_t cos_bit_row = cfg->cos_bit_row;
257 const TxfmFunc txfm_func_col = inv_txfm_type_to_func(cfg->txfm_type_col);
258 const TxfmFunc txfm_func_row = inv_txfm_type_to_func(cfg->txfm_type_row);
259
260 // txfm_buf's length is txfm_size_row * txfm_size_col + 2 *
261 // AOMMAX(txfm_size_row, txfm_size_col)
262 // it is used for intermediate data buffering
263 const int buf_offset = AOMMAX(txfm_size_row, txfm_size_col);
264 int32_t *temp_in = txfm_buf;
265 int32_t *temp_out = temp_in + buf_offset;
266 int32_t *buf = temp_out + buf_offset;
267 int32_t *buf_ptr = buf;
268 int c, r;
269
270 // Rows
271 for (r = 0; r < txfm_size_row; ++r) {
272 if (abs(rect_type) == 1) {
273 for (c = 0; c < txfm_size_col; ++c) {
274 temp_in[c] = round_shift((int64_t)input[c] * NewInvSqrt2, NewSqrt2Bits);
275 }
276 clamp_buf(temp_in, txfm_size_col, bd + 8);
277 txfm_func_row(temp_in, buf_ptr, cos_bit_row, stage_range_row);
278 } else {
279 for (c = 0; c < txfm_size_col; ++c) {
280 temp_in[c] = input[c];
281 }
282 clamp_buf(temp_in, txfm_size_col, bd + 8);
283 txfm_func_row(temp_in, buf_ptr, cos_bit_row, stage_range_row);
284 }
285 av1_round_shift_array(buf_ptr, txfm_size_col, -shift[0]);
286 input += txfm_size_col;
287 buf_ptr += txfm_size_col;
288 }
289
290 // Columns
291 for (c = 0; c < txfm_size_col; ++c) {
292 if (cfg->lr_flip == 0) {
293 for (r = 0; r < txfm_size_row; ++r)
294 temp_in[r] = buf[r * txfm_size_col + c];
295 } else {
296 // flip left right
297 for (r = 0; r < txfm_size_row; ++r)
298 temp_in[r] = buf[r * txfm_size_col + (txfm_size_col - c - 1)];
299 }
300 clamp_buf(temp_in, txfm_size_row, AOMMAX(bd + 6, 16));
301 txfm_func_col(temp_in, temp_out, cos_bit_col, stage_range_col);
302 av1_round_shift_array(temp_out, txfm_size_row, -shift[1]);
303 if (cfg->ud_flip == 0) {
304 for (r = 0; r < txfm_size_row; ++r) {
305 output[r * stride + c] =
306 highbd_clip_pixel_add(output[r * stride + c], temp_out[r], bd);
307 }
308 } else {
309 // flip upside down
310 for (r = 0; r < txfm_size_row; ++r) {
311 output[r * stride + c] = highbd_clip_pixel_add(
312 output[r * stride + c], temp_out[txfm_size_row - r - 1], bd);
313 }
314 }
315 }
316 }
317
inv_txfm2d_add_facade(const int32_t * input,uint16_t * output,int stride,int32_t * txfm_buf,TX_TYPE tx_type,TX_SIZE tx_size,int bd)318 static INLINE void inv_txfm2d_add_facade(const int32_t *input, uint16_t *output,
319 int stride, int32_t *txfm_buf,
320 TX_TYPE tx_type, TX_SIZE tx_size,
321 int bd) {
322 TXFM_2D_FLIP_CFG cfg;
323 av1_get_inv_txfm_cfg(tx_type, tx_size, &cfg);
324 // Forward shift sum uses larger square size, to be consistent with what
325 // av1_gen_inv_stage_range() does for inverse shifts.
326 inv_txfm2d_add_c(input, output, stride, &cfg, txfm_buf, tx_size, bd);
327 }
328
av1_inv_txfm2d_add_4x8_c(const int32_t * input,uint16_t * output,int stride,TX_TYPE tx_type,int bd)329 void av1_inv_txfm2d_add_4x8_c(const int32_t *input, uint16_t *output,
330 int stride, TX_TYPE tx_type, int bd) {
331 DECLARE_ALIGNED(32, int, txfm_buf[4 * 8 + 8 + 8]);
332 inv_txfm2d_add_facade(input, output, stride, txfm_buf, tx_type, TX_4X8, bd);
333 }
334
av1_inv_txfm2d_add_8x4_c(const int32_t * input,uint16_t * output,int stride,TX_TYPE tx_type,int bd)335 void av1_inv_txfm2d_add_8x4_c(const int32_t *input, uint16_t *output,
336 int stride, TX_TYPE tx_type, int bd) {
337 DECLARE_ALIGNED(32, int, txfm_buf[8 * 4 + 8 + 8]);
338 inv_txfm2d_add_facade(input, output, stride, txfm_buf, tx_type, TX_8X4, bd);
339 }
340
av1_inv_txfm2d_add_8x16_c(const int32_t * input,uint16_t * output,int stride,TX_TYPE tx_type,int bd)341 void av1_inv_txfm2d_add_8x16_c(const int32_t *input, uint16_t *output,
342 int stride, TX_TYPE tx_type, int bd) {
343 DECLARE_ALIGNED(32, int, txfm_buf[8 * 16 + 16 + 16]);
344 inv_txfm2d_add_facade(input, output, stride, txfm_buf, tx_type, TX_8X16, bd);
345 }
346
av1_inv_txfm2d_add_16x8_c(const int32_t * input,uint16_t * output,int stride,TX_TYPE tx_type,int bd)347 void av1_inv_txfm2d_add_16x8_c(const int32_t *input, uint16_t *output,
348 int stride, TX_TYPE tx_type, int bd) {
349 DECLARE_ALIGNED(32, int, txfm_buf[16 * 8 + 16 + 16]);
350 inv_txfm2d_add_facade(input, output, stride, txfm_buf, tx_type, TX_16X8, bd);
351 }
352
av1_inv_txfm2d_add_16x32_c(const int32_t * input,uint16_t * output,int stride,TX_TYPE tx_type,int bd)353 void av1_inv_txfm2d_add_16x32_c(const int32_t *input, uint16_t *output,
354 int stride, TX_TYPE tx_type, int bd) {
355 DECLARE_ALIGNED(32, int, txfm_buf[16 * 32 + 32 + 32]);
356 inv_txfm2d_add_facade(input, output, stride, txfm_buf, tx_type, TX_16X32, bd);
357 }
358
av1_inv_txfm2d_add_32x16_c(const int32_t * input,uint16_t * output,int stride,TX_TYPE tx_type,int bd)359 void av1_inv_txfm2d_add_32x16_c(const int32_t *input, uint16_t *output,
360 int stride, TX_TYPE tx_type, int bd) {
361 DECLARE_ALIGNED(32, int, txfm_buf[32 * 16 + 32 + 32]);
362 inv_txfm2d_add_facade(input, output, stride, txfm_buf, tx_type, TX_32X16, bd);
363 }
364
av1_inv_txfm2d_add_4x4_c(const int32_t * input,uint16_t * output,int stride,TX_TYPE tx_type,int bd)365 void av1_inv_txfm2d_add_4x4_c(const int32_t *input, uint16_t *output,
366 int stride, TX_TYPE tx_type, int bd) {
367 DECLARE_ALIGNED(32, int, txfm_buf[4 * 4 + 4 + 4]);
368 inv_txfm2d_add_facade(input, output, stride, txfm_buf, tx_type, TX_4X4, bd);
369 }
370
av1_inv_txfm2d_add_8x8_c(const int32_t * input,uint16_t * output,int stride,TX_TYPE tx_type,int bd)371 void av1_inv_txfm2d_add_8x8_c(const int32_t *input, uint16_t *output,
372 int stride, TX_TYPE tx_type, int bd) {
373 DECLARE_ALIGNED(32, int, txfm_buf[8 * 8 + 8 + 8]);
374 inv_txfm2d_add_facade(input, output, stride, txfm_buf, tx_type, TX_8X8, bd);
375 }
376
av1_inv_txfm2d_add_16x16_c(const int32_t * input,uint16_t * output,int stride,TX_TYPE tx_type,int bd)377 void av1_inv_txfm2d_add_16x16_c(const int32_t *input, uint16_t *output,
378 int stride, TX_TYPE tx_type, int bd) {
379 DECLARE_ALIGNED(32, int, txfm_buf[16 * 16 + 16 + 16]);
380 inv_txfm2d_add_facade(input, output, stride, txfm_buf, tx_type, TX_16X16, bd);
381 }
382
av1_inv_txfm2d_add_32x32_c(const int32_t * input,uint16_t * output,int stride,TX_TYPE tx_type,int bd)383 void av1_inv_txfm2d_add_32x32_c(const int32_t *input, uint16_t *output,
384 int stride, TX_TYPE tx_type, int bd) {
385 DECLARE_ALIGNED(32, int, txfm_buf[32 * 32 + 32 + 32]);
386 inv_txfm2d_add_facade(input, output, stride, txfm_buf, tx_type, TX_32X32, bd);
387 }
388
av1_inv_txfm2d_add_64x64_c(const int32_t * input,uint16_t * output,int stride,TX_TYPE tx_type,int bd)389 void av1_inv_txfm2d_add_64x64_c(const int32_t *input, uint16_t *output,
390 int stride, TX_TYPE tx_type, int bd) {
391 // TODO(urvang): Can the same array be reused, instead of using a new array?
392 // Remap 32x32 input into a modified 64x64 by:
393 // - Copying over these values in top-left 32x32 locations.
394 // - Setting the rest of the locations to 0.
395 int32_t mod_input[64 * 64];
396 for (int row = 0; row < 32; ++row) {
397 memcpy(mod_input + row * 64, input + row * 32, 32 * sizeof(*mod_input));
398 memset(mod_input + row * 64 + 32, 0, 32 * sizeof(*mod_input));
399 }
400 memset(mod_input + 32 * 64, 0, 32 * 64 * sizeof(*mod_input));
401 DECLARE_ALIGNED(32, int, txfm_buf[64 * 64 + 64 + 64]);
402 inv_txfm2d_add_facade(mod_input, output, stride, txfm_buf, tx_type, TX_64X64,
403 bd);
404 }
405
av1_inv_txfm2d_add_64x32_c(const int32_t * input,uint16_t * output,int stride,TX_TYPE tx_type,int bd)406 void av1_inv_txfm2d_add_64x32_c(const int32_t *input, uint16_t *output,
407 int stride, TX_TYPE tx_type, int bd) {
408 // Remap 32x32 input into a modified 64x32 by:
409 // - Copying over these values in top-left 32x32 locations.
410 // - Setting the rest of the locations to 0.
411 int32_t mod_input[64 * 32];
412 for (int row = 0; row < 32; ++row) {
413 memcpy(mod_input + row * 64, input + row * 32, 32 * sizeof(*mod_input));
414 memset(mod_input + row * 64 + 32, 0, 32 * sizeof(*mod_input));
415 }
416 DECLARE_ALIGNED(32, int, txfm_buf[64 * 32 + 64 + 64]);
417 inv_txfm2d_add_facade(mod_input, output, stride, txfm_buf, tx_type, TX_64X32,
418 bd);
419 }
420
av1_inv_txfm2d_add_32x64_c(const int32_t * input,uint16_t * output,int stride,TX_TYPE tx_type,int bd)421 void av1_inv_txfm2d_add_32x64_c(const int32_t *input, uint16_t *output,
422 int stride, TX_TYPE tx_type, int bd) {
423 // Remap 32x32 input into a modified 32x64 input by:
424 // - Copying over these values in top-left 32x32 locations.
425 // - Setting the rest of the locations to 0.
426 int32_t mod_input[32 * 64];
427 memcpy(mod_input, input, 32 * 32 * sizeof(*mod_input));
428 memset(mod_input + 32 * 32, 0, 32 * 32 * sizeof(*mod_input));
429 DECLARE_ALIGNED(32, int, txfm_buf[64 * 32 + 64 + 64]);
430 inv_txfm2d_add_facade(mod_input, output, stride, txfm_buf, tx_type, TX_32X64,
431 bd);
432 }
433
av1_inv_txfm2d_add_16x64_c(const int32_t * input,uint16_t * output,int stride,TX_TYPE tx_type,int bd)434 void av1_inv_txfm2d_add_16x64_c(const int32_t *input, uint16_t *output,
435 int stride, TX_TYPE tx_type, int bd) {
436 // Remap 16x32 input into a modified 16x64 input by:
437 // - Copying over these values in top-left 16x32 locations.
438 // - Setting the rest of the locations to 0.
439 int32_t mod_input[16 * 64];
440 memcpy(mod_input, input, 16 * 32 * sizeof(*mod_input));
441 memset(mod_input + 16 * 32, 0, 16 * 32 * sizeof(*mod_input));
442 DECLARE_ALIGNED(32, int, txfm_buf[16 * 64 + 64 + 64]);
443 inv_txfm2d_add_facade(mod_input, output, stride, txfm_buf, tx_type, TX_16X64,
444 bd);
445 }
446
av1_inv_txfm2d_add_64x16_c(const int32_t * input,uint16_t * output,int stride,TX_TYPE tx_type,int bd)447 void av1_inv_txfm2d_add_64x16_c(const int32_t *input, uint16_t *output,
448 int stride, TX_TYPE tx_type, int bd) {
449 // Remap 32x16 input into a modified 64x16 by:
450 // - Copying over these values in top-left 32x16 locations.
451 // - Setting the rest of the locations to 0.
452 int32_t mod_input[64 * 16];
453 for (int row = 0; row < 16; ++row) {
454 memcpy(mod_input + row * 64, input + row * 32, 32 * sizeof(*mod_input));
455 memset(mod_input + row * 64 + 32, 0, 32 * sizeof(*mod_input));
456 }
457 DECLARE_ALIGNED(32, int, txfm_buf[16 * 64 + 64 + 64]);
458 inv_txfm2d_add_facade(mod_input, output, stride, txfm_buf, tx_type, TX_64X16,
459 bd);
460 }
461
av1_inv_txfm2d_add_4x16_c(const int32_t * input,uint16_t * output,int stride,TX_TYPE tx_type,int bd)462 void av1_inv_txfm2d_add_4x16_c(const int32_t *input, uint16_t *output,
463 int stride, TX_TYPE tx_type, int bd) {
464 DECLARE_ALIGNED(32, int, txfm_buf[4 * 16 + 16 + 16]);
465 inv_txfm2d_add_facade(input, output, stride, txfm_buf, tx_type, TX_4X16, bd);
466 }
467
av1_inv_txfm2d_add_16x4_c(const int32_t * input,uint16_t * output,int stride,TX_TYPE tx_type,int bd)468 void av1_inv_txfm2d_add_16x4_c(const int32_t *input, uint16_t *output,
469 int stride, TX_TYPE tx_type, int bd) {
470 DECLARE_ALIGNED(32, int, txfm_buf[4 * 16 + 16 + 16]);
471 inv_txfm2d_add_facade(input, output, stride, txfm_buf, tx_type, TX_16X4, bd);
472 }
473
av1_inv_txfm2d_add_8x32_c(const int32_t * input,uint16_t * output,int stride,TX_TYPE tx_type,int bd)474 void av1_inv_txfm2d_add_8x32_c(const int32_t *input, uint16_t *output,
475 int stride, TX_TYPE tx_type, int bd) {
476 DECLARE_ALIGNED(32, int, txfm_buf[8 * 32 + 32 + 32]);
477 inv_txfm2d_add_facade(input, output, stride, txfm_buf, tx_type, TX_8X32, bd);
478 }
479
av1_inv_txfm2d_add_32x8_c(const int32_t * input,uint16_t * output,int stride,TX_TYPE tx_type,int bd)480 void av1_inv_txfm2d_add_32x8_c(const int32_t *input, uint16_t *output,
481 int stride, TX_TYPE tx_type, int bd) {
482 DECLARE_ALIGNED(32, int, txfm_buf[8 * 32 + 32 + 32]);
483 inv_txfm2d_add_facade(input, output, stride, txfm_buf, tx_type, TX_32X8, bd);
484 }
485