• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2016, Alliance for Open Media. All rights reserved
3  *
4  * This source code is subject to the terms of the BSD 2 Clause License and
5  * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6  * was not distributed with this source code in the LICENSE file, you can
7  * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8  * Media Patent License 1.0 was not distributed with this source code in the
9  * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10  */
11 
12 #include "config/aom_dsp_rtcd.h"
13 #include "config/av1_rtcd.h"
14 
15 #include "av1/common/enums.h"
16 #include "av1/common/av1_txfm.h"
17 #include "av1/common/av1_inv_txfm1d.h"
18 #include "av1/common/av1_inv_txfm1d_cfg.h"
19 
av1_highbd_iwht4x4_16_add_c(const tran_low_t * input,uint8_t * dest8,int stride,int bd)20 void av1_highbd_iwht4x4_16_add_c(const tran_low_t *input, uint8_t *dest8,
21                                  int stride, int bd) {
22   /* 4-point reversible, orthonormal inverse Walsh-Hadamard in 3.5 adds,
23      0.5 shifts per pixel. */
24   int i;
25   tran_low_t output[16];
26   tran_low_t a1, b1, c1, d1, e1;
27   const tran_low_t *ip = input;
28   tran_low_t *op = output;
29   uint16_t *dest = CONVERT_TO_SHORTPTR(dest8);
30 
31   for (i = 0; i < 4; i++) {
32     a1 = ip[0] >> UNIT_QUANT_SHIFT;
33     c1 = ip[1] >> UNIT_QUANT_SHIFT;
34     d1 = ip[2] >> UNIT_QUANT_SHIFT;
35     b1 = ip[3] >> UNIT_QUANT_SHIFT;
36     a1 += c1;
37     d1 -= b1;
38     e1 = (a1 - d1) >> 1;
39     b1 = e1 - b1;
40     c1 = e1 - c1;
41     a1 -= b1;
42     d1 += c1;
43 
44     op[0] = a1;
45     op[1] = b1;
46     op[2] = c1;
47     op[3] = d1;
48     ip += 4;
49     op += 4;
50   }
51 
52   ip = output;
53   for (i = 0; i < 4; i++) {
54     a1 = ip[4 * 0];
55     c1 = ip[4 * 1];
56     d1 = ip[4 * 2];
57     b1 = ip[4 * 3];
58     a1 += c1;
59     d1 -= b1;
60     e1 = (a1 - d1) >> 1;
61     b1 = e1 - b1;
62     c1 = e1 - c1;
63     a1 -= b1;
64     d1 += c1;
65 
66     range_check_value(a1, bd + 1);
67     range_check_value(b1, bd + 1);
68     range_check_value(c1, bd + 1);
69     range_check_value(d1, bd + 1);
70 
71     dest[stride * 0] = highbd_clip_pixel_add(dest[stride * 0], a1, bd);
72     dest[stride * 1] = highbd_clip_pixel_add(dest[stride * 1], b1, bd);
73     dest[stride * 2] = highbd_clip_pixel_add(dest[stride * 2], c1, bd);
74     dest[stride * 3] = highbd_clip_pixel_add(dest[stride * 3], d1, bd);
75 
76     ip++;
77     dest++;
78   }
79 }
80 
av1_highbd_iwht4x4_1_add_c(const tran_low_t * in,uint8_t * dest8,int dest_stride,int bd)81 void av1_highbd_iwht4x4_1_add_c(const tran_low_t *in, uint8_t *dest8,
82                                 int dest_stride, int bd) {
83   int i;
84   tran_low_t a1, e1;
85   tran_low_t tmp[4];
86   const tran_low_t *ip = in;
87   tran_low_t *op = tmp;
88   uint16_t *dest = CONVERT_TO_SHORTPTR(dest8);
89   (void)bd;
90 
91   a1 = ip[0] >> UNIT_QUANT_SHIFT;
92   e1 = a1 >> 1;
93   a1 -= e1;
94   op[0] = a1;
95   op[1] = op[2] = op[3] = e1;
96 
97   ip = tmp;
98   for (i = 0; i < 4; i++) {
99     e1 = ip[0] >> 1;
100     a1 = ip[0] - e1;
101     dest[dest_stride * 0] =
102         highbd_clip_pixel_add(dest[dest_stride * 0], a1, bd);
103     dest[dest_stride * 1] =
104         highbd_clip_pixel_add(dest[dest_stride * 1], e1, bd);
105     dest[dest_stride * 2] =
106         highbd_clip_pixel_add(dest[dest_stride * 2], e1, bd);
107     dest[dest_stride * 3] =
108         highbd_clip_pixel_add(dest[dest_stride * 3], e1, bd);
109     ip++;
110     dest++;
111   }
112 }
113 
inv_txfm_type_to_func(TXFM_TYPE txfm_type)114 static INLINE TxfmFunc inv_txfm_type_to_func(TXFM_TYPE txfm_type) {
115   switch (txfm_type) {
116     case TXFM_TYPE_DCT4: return av1_idct4;
117     case TXFM_TYPE_DCT8: return av1_idct8;
118     case TXFM_TYPE_DCT16: return av1_idct16;
119     case TXFM_TYPE_DCT32: return av1_idct32;
120     case TXFM_TYPE_DCT64: return av1_idct64;
121     case TXFM_TYPE_ADST4: return av1_iadst4;
122     case TXFM_TYPE_ADST8: return av1_iadst8;
123     case TXFM_TYPE_ADST16: return av1_iadst16;
124     case TXFM_TYPE_IDENTITY4: return av1_iidentity4_c;
125     case TXFM_TYPE_IDENTITY8: return av1_iidentity8_c;
126     case TXFM_TYPE_IDENTITY16: return av1_iidentity16_c;
127     case TXFM_TYPE_IDENTITY32: return av1_iidentity32_c;
128     default: assert(0); return NULL;
129   }
130 }
131 
132 static const int8_t inv_shift_4x4[2] = { 0, -4 };
133 static const int8_t inv_shift_8x8[2] = { -1, -4 };
134 static const int8_t inv_shift_16x16[2] = { -2, -4 };
135 static const int8_t inv_shift_32x32[2] = { -2, -4 };
136 static const int8_t inv_shift_64x64[2] = { -2, -4 };
137 static const int8_t inv_shift_4x8[2] = { 0, -4 };
138 static const int8_t inv_shift_8x4[2] = { 0, -4 };
139 static const int8_t inv_shift_8x16[2] = { -1, -4 };
140 static const int8_t inv_shift_16x8[2] = { -1, -4 };
141 static const int8_t inv_shift_16x32[2] = { -1, -4 };
142 static const int8_t inv_shift_32x16[2] = { -1, -4 };
143 static const int8_t inv_shift_32x64[2] = { -1, -4 };
144 static const int8_t inv_shift_64x32[2] = { -1, -4 };
145 static const int8_t inv_shift_4x16[2] = { -1, -4 };
146 static const int8_t inv_shift_16x4[2] = { -1, -4 };
147 static const int8_t inv_shift_8x32[2] = { -2, -4 };
148 static const int8_t inv_shift_32x8[2] = { -2, -4 };
149 static const int8_t inv_shift_16x64[2] = { -2, -4 };
150 static const int8_t inv_shift_64x16[2] = { -2, -4 };
151 
152 const int8_t *av1_inv_txfm_shift_ls[TX_SIZES_ALL] = {
153   inv_shift_4x4,   inv_shift_8x8,   inv_shift_16x16, inv_shift_32x32,
154   inv_shift_64x64, inv_shift_4x8,   inv_shift_8x4,   inv_shift_8x16,
155   inv_shift_16x8,  inv_shift_16x32, inv_shift_32x16, inv_shift_32x64,
156   inv_shift_64x32, inv_shift_4x16,  inv_shift_16x4,  inv_shift_8x32,
157   inv_shift_32x8,  inv_shift_16x64, inv_shift_64x16,
158 };
159 
160 static const int8_t iadst4_range[7] = { 0, 1, 0, 0, 0, 0, 0 };
161 
av1_get_inv_txfm_cfg(TX_TYPE tx_type,TX_SIZE tx_size,TXFM_2D_FLIP_CFG * cfg)162 void av1_get_inv_txfm_cfg(TX_TYPE tx_type, TX_SIZE tx_size,
163                           TXFM_2D_FLIP_CFG *cfg) {
164   assert(cfg != NULL);
165   cfg->tx_size = tx_size;
166   av1_zero(cfg->stage_range_col);
167   av1_zero(cfg->stage_range_row);
168   set_flip_cfg(tx_type, cfg);
169   const TX_TYPE_1D tx_type_1d_col = vtx_tab[tx_type];
170   const TX_TYPE_1D tx_type_1d_row = htx_tab[tx_type];
171   cfg->shift = av1_inv_txfm_shift_ls[tx_size];
172   const int txw_idx = get_txw_idx(tx_size);
173   const int txh_idx = get_txh_idx(tx_size);
174   cfg->cos_bit_col = INV_COS_BIT;
175   cfg->cos_bit_row = INV_COS_BIT;
176   cfg->txfm_type_col = av1_txfm_type_ls[txh_idx][tx_type_1d_col];
177   if (cfg->txfm_type_col == TXFM_TYPE_ADST4) {
178     memcpy(cfg->stage_range_col, iadst4_range, sizeof(iadst4_range));
179   }
180   cfg->txfm_type_row = av1_txfm_type_ls[txw_idx][tx_type_1d_row];
181   if (cfg->txfm_type_row == TXFM_TYPE_ADST4) {
182     memcpy(cfg->stage_range_row, iadst4_range, sizeof(iadst4_range));
183   }
184   cfg->stage_num_col = av1_txfm_stage_num_list[cfg->txfm_type_col];
185   cfg->stage_num_row = av1_txfm_stage_num_list[cfg->txfm_type_row];
186 }
187 
av1_gen_inv_stage_range(int8_t * stage_range_col,int8_t * stage_range_row,const TXFM_2D_FLIP_CFG * cfg,TX_SIZE tx_size,int bd)188 void av1_gen_inv_stage_range(int8_t *stage_range_col, int8_t *stage_range_row,
189                              const TXFM_2D_FLIP_CFG *cfg, TX_SIZE tx_size,
190                              int bd) {
191   const int fwd_shift = inv_start_range[tx_size];
192   const int8_t *shift = cfg->shift;
193   int8_t opt_range_row, opt_range_col;
194   if (bd == 8) {
195     opt_range_row = 16;
196     opt_range_col = 16;
197   } else if (bd == 10) {
198     opt_range_row = 18;
199     opt_range_col = 16;
200   } else {
201     assert(bd == 12);
202     opt_range_row = 20;
203     opt_range_col = 18;
204   }
205   // i < MAX_TXFM_STAGE_NUM will mute above array bounds warning
206   for (int i = 0; i < cfg->stage_num_row && i < MAX_TXFM_STAGE_NUM; ++i) {
207     int real_range_row = cfg->stage_range_row[i] + fwd_shift + bd + 1;
208     (void)real_range_row;
209     if (cfg->txfm_type_row == TXFM_TYPE_ADST4 && i == 1) {
210       // the adst4 may use 1 extra bit on top of opt_range_row at stage 1
211       // so opt_range_row >= real_range_row will not hold
212       stage_range_row[i] = opt_range_row;
213     } else {
214       assert(opt_range_row >= real_range_row);
215       stage_range_row[i] = opt_range_row;
216     }
217   }
218   // i < MAX_TXFM_STAGE_NUM will mute above array bounds warning
219   for (int i = 0; i < cfg->stage_num_col && i < MAX_TXFM_STAGE_NUM; ++i) {
220     int real_range_col =
221         cfg->stage_range_col[i] + fwd_shift + shift[0] + bd + 1;
222     (void)real_range_col;
223     if (cfg->txfm_type_col == TXFM_TYPE_ADST4 && i == 1) {
224       // the adst4 may use 1 extra bit on top of opt_range_col at stage 1
225       // so opt_range_col >= real_range_col will not hold
226       stage_range_col[i] = opt_range_col;
227     } else {
228       assert(opt_range_col >= real_range_col);
229       stage_range_col[i] = opt_range_col;
230     }
231   }
232 }
233 
inv_txfm2d_add_c(const int32_t * input,uint16_t * output,int stride,TXFM_2D_FLIP_CFG * cfg,int32_t * txfm_buf,TX_SIZE tx_size,int bd)234 static INLINE void inv_txfm2d_add_c(const int32_t *input, uint16_t *output,
235                                     int stride, TXFM_2D_FLIP_CFG *cfg,
236                                     int32_t *txfm_buf, TX_SIZE tx_size,
237                                     int bd) {
238   // Note when assigning txfm_size_col, we use the txfm_size from the
239   // row configuration and vice versa. This is intentionally done to
240   // accurately perform rectangular transforms. When the transform is
241   // rectangular, the number of columns will be the same as the
242   // txfm_size stored in the row cfg struct. It will make no difference
243   // for square transforms.
244   const int txfm_size_col = tx_size_wide[cfg->tx_size];
245   const int txfm_size_row = tx_size_high[cfg->tx_size];
246   // Take the shift from the larger dimension in the rectangular case.
247   const int8_t *shift = cfg->shift;
248   const int rect_type = get_rect_tx_log_ratio(txfm_size_col, txfm_size_row);
249   int8_t stage_range_row[MAX_TXFM_STAGE_NUM];
250   int8_t stage_range_col[MAX_TXFM_STAGE_NUM];
251   assert(cfg->stage_num_row <= MAX_TXFM_STAGE_NUM);
252   assert(cfg->stage_num_col <= MAX_TXFM_STAGE_NUM);
253   av1_gen_inv_stage_range(stage_range_col, stage_range_row, cfg, tx_size, bd);
254 
255   const int8_t cos_bit_col = cfg->cos_bit_col;
256   const int8_t cos_bit_row = cfg->cos_bit_row;
257   const TxfmFunc txfm_func_col = inv_txfm_type_to_func(cfg->txfm_type_col);
258   const TxfmFunc txfm_func_row = inv_txfm_type_to_func(cfg->txfm_type_row);
259 
260   // txfm_buf's length is  txfm_size_row * txfm_size_col + 2 *
261   // AOMMAX(txfm_size_row, txfm_size_col)
262   // it is used for intermediate data buffering
263   const int buf_offset = AOMMAX(txfm_size_row, txfm_size_col);
264   int32_t *temp_in = txfm_buf;
265   int32_t *temp_out = temp_in + buf_offset;
266   int32_t *buf = temp_out + buf_offset;
267   int32_t *buf_ptr = buf;
268   int c, r;
269 
270   // Rows
271   for (r = 0; r < txfm_size_row; ++r) {
272     if (abs(rect_type) == 1) {
273       for (c = 0; c < txfm_size_col; ++c) {
274         temp_in[c] = round_shift((int64_t)input[c] * NewInvSqrt2, NewSqrt2Bits);
275       }
276       clamp_buf(temp_in, txfm_size_col, bd + 8);
277       txfm_func_row(temp_in, buf_ptr, cos_bit_row, stage_range_row);
278     } else {
279       for (c = 0; c < txfm_size_col; ++c) {
280         temp_in[c] = input[c];
281       }
282       clamp_buf(temp_in, txfm_size_col, bd + 8);
283       txfm_func_row(temp_in, buf_ptr, cos_bit_row, stage_range_row);
284     }
285     av1_round_shift_array(buf_ptr, txfm_size_col, -shift[0]);
286     input += txfm_size_col;
287     buf_ptr += txfm_size_col;
288   }
289 
290   // Columns
291   for (c = 0; c < txfm_size_col; ++c) {
292     if (cfg->lr_flip == 0) {
293       for (r = 0; r < txfm_size_row; ++r)
294         temp_in[r] = buf[r * txfm_size_col + c];
295     } else {
296       // flip left right
297       for (r = 0; r < txfm_size_row; ++r)
298         temp_in[r] = buf[r * txfm_size_col + (txfm_size_col - c - 1)];
299     }
300     clamp_buf(temp_in, txfm_size_row, AOMMAX(bd + 6, 16));
301     txfm_func_col(temp_in, temp_out, cos_bit_col, stage_range_col);
302     av1_round_shift_array(temp_out, txfm_size_row, -shift[1]);
303     if (cfg->ud_flip == 0) {
304       for (r = 0; r < txfm_size_row; ++r) {
305         output[r * stride + c] =
306             highbd_clip_pixel_add(output[r * stride + c], temp_out[r], bd);
307       }
308     } else {
309       // flip upside down
310       for (r = 0; r < txfm_size_row; ++r) {
311         output[r * stride + c] = highbd_clip_pixel_add(
312             output[r * stride + c], temp_out[txfm_size_row - r - 1], bd);
313       }
314     }
315   }
316 }
317 
inv_txfm2d_add_facade(const int32_t * input,uint16_t * output,int stride,int32_t * txfm_buf,TX_TYPE tx_type,TX_SIZE tx_size,int bd)318 static INLINE void inv_txfm2d_add_facade(const int32_t *input, uint16_t *output,
319                                          int stride, int32_t *txfm_buf,
320                                          TX_TYPE tx_type, TX_SIZE tx_size,
321                                          int bd) {
322   TXFM_2D_FLIP_CFG cfg;
323   av1_get_inv_txfm_cfg(tx_type, tx_size, &cfg);
324   // Forward shift sum uses larger square size, to be consistent with what
325   // av1_gen_inv_stage_range() does for inverse shifts.
326   inv_txfm2d_add_c(input, output, stride, &cfg, txfm_buf, tx_size, bd);
327 }
328 
av1_inv_txfm2d_add_4x8_c(const int32_t * input,uint16_t * output,int stride,TX_TYPE tx_type,int bd)329 void av1_inv_txfm2d_add_4x8_c(const int32_t *input, uint16_t *output,
330                               int stride, TX_TYPE tx_type, int bd) {
331   DECLARE_ALIGNED(32, int, txfm_buf[4 * 8 + 8 + 8]);
332   inv_txfm2d_add_facade(input, output, stride, txfm_buf, tx_type, TX_4X8, bd);
333 }
334 
av1_inv_txfm2d_add_8x4_c(const int32_t * input,uint16_t * output,int stride,TX_TYPE tx_type,int bd)335 void av1_inv_txfm2d_add_8x4_c(const int32_t *input, uint16_t *output,
336                               int stride, TX_TYPE tx_type, int bd) {
337   DECLARE_ALIGNED(32, int, txfm_buf[8 * 4 + 8 + 8]);
338   inv_txfm2d_add_facade(input, output, stride, txfm_buf, tx_type, TX_8X4, bd);
339 }
340 
av1_inv_txfm2d_add_8x16_c(const int32_t * input,uint16_t * output,int stride,TX_TYPE tx_type,int bd)341 void av1_inv_txfm2d_add_8x16_c(const int32_t *input, uint16_t *output,
342                                int stride, TX_TYPE tx_type, int bd) {
343   DECLARE_ALIGNED(32, int, txfm_buf[8 * 16 + 16 + 16]);
344   inv_txfm2d_add_facade(input, output, stride, txfm_buf, tx_type, TX_8X16, bd);
345 }
346 
av1_inv_txfm2d_add_16x8_c(const int32_t * input,uint16_t * output,int stride,TX_TYPE tx_type,int bd)347 void av1_inv_txfm2d_add_16x8_c(const int32_t *input, uint16_t *output,
348                                int stride, TX_TYPE tx_type, int bd) {
349   DECLARE_ALIGNED(32, int, txfm_buf[16 * 8 + 16 + 16]);
350   inv_txfm2d_add_facade(input, output, stride, txfm_buf, tx_type, TX_16X8, bd);
351 }
352 
av1_inv_txfm2d_add_16x32_c(const int32_t * input,uint16_t * output,int stride,TX_TYPE tx_type,int bd)353 void av1_inv_txfm2d_add_16x32_c(const int32_t *input, uint16_t *output,
354                                 int stride, TX_TYPE tx_type, int bd) {
355   DECLARE_ALIGNED(32, int, txfm_buf[16 * 32 + 32 + 32]);
356   inv_txfm2d_add_facade(input, output, stride, txfm_buf, tx_type, TX_16X32, bd);
357 }
358 
av1_inv_txfm2d_add_32x16_c(const int32_t * input,uint16_t * output,int stride,TX_TYPE tx_type,int bd)359 void av1_inv_txfm2d_add_32x16_c(const int32_t *input, uint16_t *output,
360                                 int stride, TX_TYPE tx_type, int bd) {
361   DECLARE_ALIGNED(32, int, txfm_buf[32 * 16 + 32 + 32]);
362   inv_txfm2d_add_facade(input, output, stride, txfm_buf, tx_type, TX_32X16, bd);
363 }
364 
av1_inv_txfm2d_add_4x4_c(const int32_t * input,uint16_t * output,int stride,TX_TYPE tx_type,int bd)365 void av1_inv_txfm2d_add_4x4_c(const int32_t *input, uint16_t *output,
366                               int stride, TX_TYPE tx_type, int bd) {
367   DECLARE_ALIGNED(32, int, txfm_buf[4 * 4 + 4 + 4]);
368   inv_txfm2d_add_facade(input, output, stride, txfm_buf, tx_type, TX_4X4, bd);
369 }
370 
av1_inv_txfm2d_add_8x8_c(const int32_t * input,uint16_t * output,int stride,TX_TYPE tx_type,int bd)371 void av1_inv_txfm2d_add_8x8_c(const int32_t *input, uint16_t *output,
372                               int stride, TX_TYPE tx_type, int bd) {
373   DECLARE_ALIGNED(32, int, txfm_buf[8 * 8 + 8 + 8]);
374   inv_txfm2d_add_facade(input, output, stride, txfm_buf, tx_type, TX_8X8, bd);
375 }
376 
av1_inv_txfm2d_add_16x16_c(const int32_t * input,uint16_t * output,int stride,TX_TYPE tx_type,int bd)377 void av1_inv_txfm2d_add_16x16_c(const int32_t *input, uint16_t *output,
378                                 int stride, TX_TYPE tx_type, int bd) {
379   DECLARE_ALIGNED(32, int, txfm_buf[16 * 16 + 16 + 16]);
380   inv_txfm2d_add_facade(input, output, stride, txfm_buf, tx_type, TX_16X16, bd);
381 }
382 
av1_inv_txfm2d_add_32x32_c(const int32_t * input,uint16_t * output,int stride,TX_TYPE tx_type,int bd)383 void av1_inv_txfm2d_add_32x32_c(const int32_t *input, uint16_t *output,
384                                 int stride, TX_TYPE tx_type, int bd) {
385   DECLARE_ALIGNED(32, int, txfm_buf[32 * 32 + 32 + 32]);
386   inv_txfm2d_add_facade(input, output, stride, txfm_buf, tx_type, TX_32X32, bd);
387 }
388 
av1_inv_txfm2d_add_64x64_c(const int32_t * input,uint16_t * output,int stride,TX_TYPE tx_type,int bd)389 void av1_inv_txfm2d_add_64x64_c(const int32_t *input, uint16_t *output,
390                                 int stride, TX_TYPE tx_type, int bd) {
391   // TODO(urvang): Can the same array be reused, instead of using a new array?
392   // Remap 32x32 input into a modified 64x64 by:
393   // - Copying over these values in top-left 32x32 locations.
394   // - Setting the rest of the locations to 0.
395   int32_t mod_input[64 * 64];
396   for (int row = 0; row < 32; ++row) {
397     memcpy(mod_input + row * 64, input + row * 32, 32 * sizeof(*mod_input));
398     memset(mod_input + row * 64 + 32, 0, 32 * sizeof(*mod_input));
399   }
400   memset(mod_input + 32 * 64, 0, 32 * 64 * sizeof(*mod_input));
401   DECLARE_ALIGNED(32, int, txfm_buf[64 * 64 + 64 + 64]);
402   inv_txfm2d_add_facade(mod_input, output, stride, txfm_buf, tx_type, TX_64X64,
403                         bd);
404 }
405 
av1_inv_txfm2d_add_64x32_c(const int32_t * input,uint16_t * output,int stride,TX_TYPE tx_type,int bd)406 void av1_inv_txfm2d_add_64x32_c(const int32_t *input, uint16_t *output,
407                                 int stride, TX_TYPE tx_type, int bd) {
408   // Remap 32x32 input into a modified 64x32 by:
409   // - Copying over these values in top-left 32x32 locations.
410   // - Setting the rest of the locations to 0.
411   int32_t mod_input[64 * 32];
412   for (int row = 0; row < 32; ++row) {
413     memcpy(mod_input + row * 64, input + row * 32, 32 * sizeof(*mod_input));
414     memset(mod_input + row * 64 + 32, 0, 32 * sizeof(*mod_input));
415   }
416   DECLARE_ALIGNED(32, int, txfm_buf[64 * 32 + 64 + 64]);
417   inv_txfm2d_add_facade(mod_input, output, stride, txfm_buf, tx_type, TX_64X32,
418                         bd);
419 }
420 
av1_inv_txfm2d_add_32x64_c(const int32_t * input,uint16_t * output,int stride,TX_TYPE tx_type,int bd)421 void av1_inv_txfm2d_add_32x64_c(const int32_t *input, uint16_t *output,
422                                 int stride, TX_TYPE tx_type, int bd) {
423   // Remap 32x32 input into a modified 32x64 input by:
424   // - Copying over these values in top-left 32x32 locations.
425   // - Setting the rest of the locations to 0.
426   int32_t mod_input[32 * 64];
427   memcpy(mod_input, input, 32 * 32 * sizeof(*mod_input));
428   memset(mod_input + 32 * 32, 0, 32 * 32 * sizeof(*mod_input));
429   DECLARE_ALIGNED(32, int, txfm_buf[64 * 32 + 64 + 64]);
430   inv_txfm2d_add_facade(mod_input, output, stride, txfm_buf, tx_type, TX_32X64,
431                         bd);
432 }
433 
av1_inv_txfm2d_add_16x64_c(const int32_t * input,uint16_t * output,int stride,TX_TYPE tx_type,int bd)434 void av1_inv_txfm2d_add_16x64_c(const int32_t *input, uint16_t *output,
435                                 int stride, TX_TYPE tx_type, int bd) {
436   // Remap 16x32 input into a modified 16x64 input by:
437   // - Copying over these values in top-left 16x32 locations.
438   // - Setting the rest of the locations to 0.
439   int32_t mod_input[16 * 64];
440   memcpy(mod_input, input, 16 * 32 * sizeof(*mod_input));
441   memset(mod_input + 16 * 32, 0, 16 * 32 * sizeof(*mod_input));
442   DECLARE_ALIGNED(32, int, txfm_buf[16 * 64 + 64 + 64]);
443   inv_txfm2d_add_facade(mod_input, output, stride, txfm_buf, tx_type, TX_16X64,
444                         bd);
445 }
446 
av1_inv_txfm2d_add_64x16_c(const int32_t * input,uint16_t * output,int stride,TX_TYPE tx_type,int bd)447 void av1_inv_txfm2d_add_64x16_c(const int32_t *input, uint16_t *output,
448                                 int stride, TX_TYPE tx_type, int bd) {
449   // Remap 32x16 input into a modified 64x16 by:
450   // - Copying over these values in top-left 32x16 locations.
451   // - Setting the rest of the locations to 0.
452   int32_t mod_input[64 * 16];
453   for (int row = 0; row < 16; ++row) {
454     memcpy(mod_input + row * 64, input + row * 32, 32 * sizeof(*mod_input));
455     memset(mod_input + row * 64 + 32, 0, 32 * sizeof(*mod_input));
456   }
457   DECLARE_ALIGNED(32, int, txfm_buf[16 * 64 + 64 + 64]);
458   inv_txfm2d_add_facade(mod_input, output, stride, txfm_buf, tx_type, TX_64X16,
459                         bd);
460 }
461 
av1_inv_txfm2d_add_4x16_c(const int32_t * input,uint16_t * output,int stride,TX_TYPE tx_type,int bd)462 void av1_inv_txfm2d_add_4x16_c(const int32_t *input, uint16_t *output,
463                                int stride, TX_TYPE tx_type, int bd) {
464   DECLARE_ALIGNED(32, int, txfm_buf[4 * 16 + 16 + 16]);
465   inv_txfm2d_add_facade(input, output, stride, txfm_buf, tx_type, TX_4X16, bd);
466 }
467 
av1_inv_txfm2d_add_16x4_c(const int32_t * input,uint16_t * output,int stride,TX_TYPE tx_type,int bd)468 void av1_inv_txfm2d_add_16x4_c(const int32_t *input, uint16_t *output,
469                                int stride, TX_TYPE tx_type, int bd) {
470   DECLARE_ALIGNED(32, int, txfm_buf[4 * 16 + 16 + 16]);
471   inv_txfm2d_add_facade(input, output, stride, txfm_buf, tx_type, TX_16X4, bd);
472 }
473 
av1_inv_txfm2d_add_8x32_c(const int32_t * input,uint16_t * output,int stride,TX_TYPE tx_type,int bd)474 void av1_inv_txfm2d_add_8x32_c(const int32_t *input, uint16_t *output,
475                                int stride, TX_TYPE tx_type, int bd) {
476   DECLARE_ALIGNED(32, int, txfm_buf[8 * 32 + 32 + 32]);
477   inv_txfm2d_add_facade(input, output, stride, txfm_buf, tx_type, TX_8X32, bd);
478 }
479 
av1_inv_txfm2d_add_32x8_c(const int32_t * input,uint16_t * output,int stride,TX_TYPE tx_type,int bd)480 void av1_inv_txfm2d_add_32x8_c(const int32_t *input, uint16_t *output,
481                                int stride, TX_TYPE tx_type, int bd) {
482   DECLARE_ALIGNED(32, int, txfm_buf[8 * 32 + 32 + 32]);
483   inv_txfm2d_add_facade(input, output, stride, txfm_buf, tx_type, TX_32X8, bd);
484 }
485