1 /*
2 * Copyright (c) 2016, Alliance for Open Media. All rights reserved
3 *
4 * This source code is subject to the terms of the BSD 2 Clause License and
5 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6 * was not distributed with this source code in the LICENSE file, you can
7 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8 * Media Patent License 1.0 was not distributed with this source code in the
9 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10 */
11
12 #ifndef AOM_AV1_ENCODER_TEMPORAL_FILTER_H_
13 #define AOM_AV1_ENCODER_TEMPORAL_FILTER_H_
14
15 #include <stdbool.h>
16
17 #ifdef __cplusplus
18 extern "C" {
19 #endif
20 /*!\cond */
21 struct AV1_COMP;
22 struct AV1EncoderConfig;
23 struct ThreadData;
24 // TODO(any): These two variables are only used in avx2, sse2, sse4
25 // implementations, where the block size is still hard coded. This should be
26 // fixed to align with the c implementation.
27 #define BH 32
28 #define BW 32
29
30 // Block size used in temporal filtering.
31 #define TF_BLOCK_SIZE BLOCK_32X32
32
33 // Window size for temporal filtering.
34 #define TF_WINDOW_LENGTH 5
35
36 // Hyper-parameters used to compute filtering weight. These hyper-parameters can
37 // be tuned for a better performance.
38 // 0. A scale factor used in temporal filtering to raise the filter weight from
39 // `double` with range [0, 1] to `int` with range [0, 1000].
40 #define TF_WEIGHT_SCALE 1000
41 // 1. Weight factor used to balance the weighted-average between window error
42 // and block error. The weight is for window error while the weight for block
43 // error is always set as 1.
44 #define TF_WINDOW_BLOCK_BALANCE_WEIGHT 5
45 // 2. Threshold for using q to adjust the filtering weight. Concretely, when
46 // using a small q (high bitrate), we would like to reduce the filtering
47 // strength such that more detailed information can be preserved. Hence, when
48 // q is smaller than this threshold, we will adjust the filtering weight
49 // based on the q-value.
50 #define TF_Q_DECAY_THRESHOLD 20
51 // 3. Normalization factor used to normalize the motion search error. Since the
52 // motion search error can be large and uncontrollable, we will simply
53 // normalize it before using it to compute the filtering weight.
54 #define TF_SEARCH_ERROR_NORM_WEIGHT 20
55 // 4. Threshold for using `arnr_strength` to adjust the filtering strength.
56 // Concretely, users can use `arnr_strength` arguments to control the
57 // strength of temporal filtering. When `arnr_strength` is small enough (
58 // i.e., smaller than this threshold), we will adjust the filtering weight
59 // based on the strength value.
60 #define TF_STRENGTH_THRESHOLD 4
61 // 5. Threshold for using motion search distance to adjust the filtering weight.
62 // Concretely, larger motion search vector leads to a higher probability of
63 // unreliable search. Hence, we would like to reduce the filtering strength
64 // when the distance is large enough. Considering that the distance actually
65 // relies on the frame size, this threshold is also a resolution-based
66 // threshold. Taking 720p videos as an instance, if this field equals to 0.1,
67 // then the actual threshold will be 720 * 0.1 = 72. Similarly, the threshold
68 // for 360p videos will be 360 * 0.1 = 36.
69 #define TF_SEARCH_DISTANCE_THRESHOLD 0.1
70 // 6. Threshold to identify if the q is in a relative high range.
71 // Above this cutoff q, a stronger filtering is applied.
72 // For a high q, the quantization throws away more information, and thus a
73 // stronger filtering is less likely to distort the encoded quality, while a
74 // stronger filtering could reduce bit rates.
75 // Ror a low q, more details are expected to be retained. Filtering is thus
76 // more conservative.
77 #define TF_QINDEX_CUTOFF 128
78
79 #define NOISE_ESTIMATION_EDGE_THRESHOLD 50
80
81 // Sum and SSE source vs filtered frame difference returned by
82 // temporal filter.
83 typedef struct {
84 int64_t sum;
85 int64_t sse;
86 } FRAME_DIFF;
87
88 /*!\endcond */
89
90 /*!
91 * \brief Parameters related to temporal filtering.
92 */
93 typedef struct {
94 /*!
95 * Frame buffers used for temporal filtering.
96 */
97 YV12_BUFFER_CONFIG *frames[MAX_LAG_BUFFERS];
98 /*!
99 * Number of frames in the frame buffer.
100 */
101 int num_frames;
102
103 /*!
104 * Output filtered frame
105 */
106 YV12_BUFFER_CONFIG *output_frame;
107
108 /*!
109 * Index of the frame to be filtered.
110 */
111 int filter_frame_idx;
112 /*!
113 * Whether to accumulate diff for show existing condition check.
114 */
115 int compute_frame_diff;
116 /*!
117 * Frame scaling factor.
118 */
119 struct scale_factors sf;
120 /*!
121 * Estimated noise levels for each plane in the frame.
122 */
123 double noise_levels[MAX_MB_PLANE];
124 /*!
125 * Number of pixels in the temporal filtering block across all planes.
126 */
127 int num_pels;
128 /*!
129 * Number of temporal filtering block rows.
130 */
131 int mb_rows;
132 /*!
133 * Number of temporal filtering block columns.
134 */
135 int mb_cols;
136 /*!
137 * Whether the frame is high-bitdepth or not.
138 */
139 int is_highbitdepth;
140 /*!
141 * Quantization factor used in temporal filtering.
142 */
143 int q_factor;
144 } TemporalFilterCtx;
145
146 /*!
147 * buffer count in TEMPORAL_FILTER_INFO
148 * Currently we only apply filtering on KEY and ARF after
149 * define_gf_group(). Hence, the count is two.
150 */
151 #define TF_INFO_BUF_COUNT 2
152
153 /*!
154 * \brief Temporal filter info for a gop
155 */
156 typedef struct TEMPORAL_FILTER_INFO {
157 /*!
158 * A flag indicate whether temporal filter shoud be applied.
159 * This flag will stored the result of
160 * av1_is_temporal_filter_on()
161 */
162 int is_temporal_filter_on;
163 /*!
164 * buffers used for temporal filtering in a GOP
165 * index 0 for key frame and index 1 for ARF
166 */
167 YV12_BUFFER_CONFIG tf_buf[TF_INFO_BUF_COUNT];
168
169 /*!
170 * buffers used for temporal filtering for
171 * INTNL_ARF_UPDATE
172 * Check av1_gop_is_second_arf() for the
173 * definition of second_arf in detail
174 */
175 YV12_BUFFER_CONFIG tf_buf_second_arf;
176 /*!
177 * whether to show the buffer directly or not.
178 */
179 FRAME_DIFF frame_diff[TF_INFO_BUF_COUNT];
180 /*!
181 * the corresponding gf_index for the buffer.
182 */
183 int tf_buf_gf_index[TF_INFO_BUF_COUNT];
184 /*!
185 * the display_index offset between next show frame and the frames in the GOP
186 */
187 int tf_buf_display_index_offset[TF_INFO_BUF_COUNT];
188 /*!
189 * whether the buf is valid or not.
190 */
191 int tf_buf_valid[TF_INFO_BUF_COUNT];
192 } TEMPORAL_FILTER_INFO;
193
194 /*!\brief Check whether we should apply temporal filter at all.
195 * \param[in] oxcf AV1 encoder config
196 *
197 * \return 1: temporal filter is on 0: temporal is off
198 */
199 int av1_is_temporal_filter_on(const struct AV1EncoderConfig *oxcf);
200
201 /*!\brief Allocate buffers for TEMPORAL_FILTER_INFO
202 * \param[in,out] tf_info Temporal filter info for a gop
203 * \param[in,out] cpi Top level encoder instance structure
204 */
205 void av1_tf_info_alloc(TEMPORAL_FILTER_INFO *tf_info,
206 const struct AV1_COMP *cpi);
207
208 /*!\brief Free buffers for TEMPORAL_FILTER_INFO
209 * \param[in,out] tf_info Temporal filter info for a gop
210 */
211 void av1_tf_info_free(TEMPORAL_FILTER_INFO *tf_info);
212
213 /*!\brief Reset validity of tf_buf in TEMPORAL_FILTER_INFO
214 * \param[in,out] tf_info Temporal filter info for a gop
215 */
216 void av1_tf_info_reset(TEMPORAL_FILTER_INFO *tf_info);
217
218 /*!\brief Apply temporal filter for key frame and ARF in a gop
219 * \param[in,out] tf_info Temporal filter info for a gop
220 * \param[in,out] cpi Top level encoder instance structure
221 * \param[in] gf_group GF/ARF group data structure
222 */
223 void av1_tf_info_filtering(TEMPORAL_FILTER_INFO *tf_info, struct AV1_COMP *cpi,
224 const GF_GROUP *gf_group);
225
226 /*!\brief Get a filtered buffer from TEMPORAL_FILTER_INFO
227 * \param[in,out] tf_info Temporal filter info for a gop
228 * \param[in] gf_index gf_index for the target buffer
229 * \param[out] show_tf_buf whether the target buffer can be shown
230 * directly
231 */
232 YV12_BUFFER_CONFIG *av1_tf_info_get_filtered_buf(TEMPORAL_FILTER_INFO *tf_info,
233 int gf_index,
234 FRAME_DIFF *frame_diff);
235
236 /*!\cond */
237
238 // Data related to temporal filtering.
239 typedef struct {
240 // Source vs filtered frame error.
241 FRAME_DIFF diff;
242 // Pointer to temporary block info used to store state in temporal filtering
243 // process.
244 MB_MODE_INFO *tmp_mbmi;
245 // Pointer to accumulator buffer used in temporal filtering process.
246 uint32_t *accum;
247 // Pointer to count buffer used in temporal filtering process.
248 uint16_t *count;
249 // Pointer to predictor used in temporal filtering process.
250 uint8_t *pred;
251 } TemporalFilterData;
252
253 // Data related to temporal filter multi-thread synchronization.
254 typedef struct {
255 #if CONFIG_MULTITHREAD
256 // Mutex lock used for dispatching jobs.
257 pthread_mutex_t *mutex_;
258 #endif // CONFIG_MULTITHREAD
259 // Next temporal filter block row to be filtered.
260 int next_tf_row;
261 } AV1TemporalFilterSync;
262
263 // Estimates noise level from a given frame using a single plane (Y, U, or V).
264 // This is an adaptation of the mehtod in the following paper:
265 // Shen-Chuan Tai, Shih-Ming Yang, "A fast method for image noise
266 // estimation using Laplacian operator and adaptive edge detection",
267 // Proc. 3rd International Symposium on Communications, Control and
268 // Signal Processing, 2008, St Julians, Malta.
269 // Inputs:
270 // frame: Pointer to the frame to estimate noise level from.
271 // plane: Index of the plane used for noise estimation. Commonly, 0 for
272 // Y-plane, 1 for U-plane, and 2 for V-plane.
273 // bit_depth: Actual bit-depth instead of the encoding bit-depth of the frame.
274 // Returns:
275 // The estimated noise, or -1.0 if there are too few smooth pixels.
276 double av1_estimate_noise_from_single_plane(const YV12_BUFFER_CONFIG *frame,
277 const int plane,
278 const int bit_depth,
279 const int edge_thresh);
280 /*!\endcond */
281
282 /*!\brief Does temporal filter for a given macroblock row.
283 *
284 * \ingroup src_frame_proc
285 * \param[in] cpi Top level encoder instance structure
286 * \param[in] td Pointer to thread data
287 * \param[in] mb_row Macroblock row to be filtered
288 filtering
289 *
290 * \remark Nothing will be returned, but the contents of td->diff will be
291 modified.
292 */
293 void av1_tf_do_filtering_row(struct AV1_COMP *cpi, struct ThreadData *td,
294 int mb_row);
295
296 /*!\brief Performs temporal filtering if needed on a source frame.
297 * For example to create a filtered alternate reference frame (ARF)
298 *
299 * In this function, the lookahead index is different from the 0-based
300 * real index. For example, if we want to filter the first frame in the
301 * pre-fetched buffer `cpi->lookahead`, the lookahead index will be -1 instead
302 * of 0. More concretely, 0 indicates the first LOOKAHEAD frame, which is the
303 * second frame in the pre-fetched buffer. Another example: if we want to filter
304 * the 17-th frame, which is an ARF, the lookahead index is 15 instead of 16.
305 * Futhermore, negative number is used for key frame in one-pass mode, where key
306 * frame is filtered with the frames before it instead of after it. For example,
307 * -15 means to filter the 17-th frame, which is a key frame in one-pass mode.
308 *
309 * \ingroup src_frame_proc
310 * \param[in] cpi Top level encoder instance
311 * structure
312 * \param[in] filter_frame_lookahead_idx The index of the
313 * to-filter frame in the lookahead
314 * buffer cpi->lookahead.
315 * \param[in] gf_frame_index Index of GOP
316 * \param[in,out] frame_diff structure of sse and sum of the
317 * filtered frame.
318 * \param[out] output_frame Ouput filtered frame.
319 */
320 void av1_temporal_filter(struct AV1_COMP *cpi,
321 const int filter_frame_lookahead_idx,
322 int gf_frame_index, FRAME_DIFF *frame_diff,
323 YV12_BUFFER_CONFIG *output_frame);
324
325 /*!\brief Check whether a filtered frame can be show directly
326 *
327 * This function will use the filtered frame's sse and current q index
328 * to make decision.
329 *
330 * \ingroup src_frame_proc
331 * \param[in] frame filtered frame's buffer
332 * \param[in] frame_diff structure of sse and sum of the
333 * filtered frame.
334 * \param[in] q_index q_index used for this frame
335 * \param[in] bit_depth bit depth
336 * \return return 1 if this frame can be shown directly, otherwise
337 * return 0
338 */
339 int av1_check_show_filtered_frame(const YV12_BUFFER_CONFIG *frame,
340 const FRAME_DIFF *frame_diff, int q_index,
341 aom_bit_depth_t bit_depth);
342
343 /*!\cond */
344 // Helper function to get `q` used for encoding.
345 int av1_get_q(const struct AV1_COMP *cpi);
346
347 // Allocates memory for members of TemporalFilterData.
348 // Inputs:
349 // tf_data: Pointer to the structure containing temporal filter related data.
350 // num_pels: Number of pixels in the block across all planes.
351 // is_high_bitdepth: Whether the frame is high-bitdepth or not.
352 // Returns:
353 // Nothing will be returned. But the contents of tf_data will be modified.
tf_alloc_and_reset_data(TemporalFilterData * tf_data,int num_pels,int is_high_bitdepth)354 static AOM_INLINE bool tf_alloc_and_reset_data(TemporalFilterData *tf_data,
355 int num_pels,
356 int is_high_bitdepth) {
357 tf_data->tmp_mbmi = (MB_MODE_INFO *)malloc(sizeof(*tf_data->tmp_mbmi));
358 memset(tf_data->tmp_mbmi, 0, sizeof(*tf_data->tmp_mbmi));
359 tf_data->accum =
360 (uint32_t *)aom_memalign(16, num_pels * sizeof(*tf_data->accum));
361 tf_data->count =
362 (uint16_t *)aom_memalign(16, num_pels * sizeof(*tf_data->count));
363 memset(&tf_data->diff, 0, sizeof(tf_data->diff));
364 if (is_high_bitdepth)
365 tf_data->pred = CONVERT_TO_BYTEPTR(
366 aom_memalign(32, num_pels * 2 * sizeof(*tf_data->pred)));
367 else
368 tf_data->pred =
369 (uint8_t *)aom_memalign(32, num_pels * sizeof(*tf_data->pred));
370 if (!(tf_data->accum && tf_data->count && tf_data->pred)) {
371 aom_free(tf_data->accum);
372 aom_free(tf_data->count);
373 aom_free(tf_data->pred);
374 return false;
375 }
376 return true;
377 }
378
379 // Setup macroblockd params for temporal filtering process.
380 // Inputs:
381 // mbd: Pointer to the block for filtering.
382 // tf_data: Pointer to the structure containing temporal filter related data.
383 // scale: Scaling factor.
384 // Returns:
385 // Nothing will be returned. Contents of mbd will be modified.
tf_setup_macroblockd(MACROBLOCKD * mbd,TemporalFilterData * tf_data,const struct scale_factors * scale)386 static AOM_INLINE void tf_setup_macroblockd(MACROBLOCKD *mbd,
387 TemporalFilterData *tf_data,
388 const struct scale_factors *scale) {
389 mbd->block_ref_scale_factors[0] = scale;
390 mbd->block_ref_scale_factors[1] = scale;
391 mbd->mi = &tf_data->tmp_mbmi;
392 mbd->mi[0]->motion_mode = SIMPLE_TRANSLATION;
393 }
394
395 // Deallocates the memory allocated for members of TemporalFilterData.
396 // Inputs:
397 // tf_data: Pointer to the structure containing temporal filter related data.
398 // is_high_bitdepth: Whether the frame is high-bitdepth or not.
399 // Returns:
400 // Nothing will be returned.
tf_dealloc_data(TemporalFilterData * tf_data,int is_high_bitdepth)401 static AOM_INLINE void tf_dealloc_data(TemporalFilterData *tf_data,
402 int is_high_bitdepth) {
403 if (is_high_bitdepth)
404 tf_data->pred = (uint8_t *)CONVERT_TO_SHORTPTR(tf_data->pred);
405 free(tf_data->tmp_mbmi);
406 aom_free(tf_data->accum);
407 aom_free(tf_data->count);
408 aom_free(tf_data->pred);
409 }
410
411 // Saves the state prior to temporal filter process.
412 // Inputs:
413 // mbd: Pointer to the block for filtering.
414 // input_mbmi: Backup block info to save input state.
415 // input_buffer: Backup buffer pointer to save input state.
416 // num_planes: Number of planes.
417 // Returns:
418 // Nothing will be returned. Contents of input_mbmi and input_buffer will be
419 // modified.
tf_save_state(MACROBLOCKD * mbd,MB_MODE_INFO *** input_mbmi,uint8_t ** input_buffer,int num_planes)420 static INLINE void tf_save_state(MACROBLOCKD *mbd, MB_MODE_INFO ***input_mbmi,
421 uint8_t **input_buffer, int num_planes) {
422 for (int i = 0; i < num_planes; i++) {
423 input_buffer[i] = mbd->plane[i].pre[0].buf;
424 }
425 *input_mbmi = mbd->mi;
426 }
427
428 // Restores the initial state after temporal filter process.
429 // Inputs:
430 // mbd: Pointer to the block for filtering.
431 // input_mbmi: Backup block info from where input state is restored.
432 // input_buffer: Backup buffer pointer from where input state is restored.
433 // num_planes: Number of planes.
434 // Returns:
435 // Nothing will be returned. Contents of mbd will be modified.
tf_restore_state(MACROBLOCKD * mbd,MB_MODE_INFO ** input_mbmi,uint8_t ** input_buffer,int num_planes)436 static INLINE void tf_restore_state(MACROBLOCKD *mbd, MB_MODE_INFO **input_mbmi,
437 uint8_t **input_buffer, int num_planes) {
438 for (int i = 0; i < num_planes; i++) {
439 mbd->plane[i].pre[0].buf = input_buffer[i];
440 }
441 mbd->mi = input_mbmi;
442 }
443
444 /*!\endcond */
445 #ifdef __cplusplus
446 } // extern "C"
447 #endif
448
449 #endif // AOM_AV1_ENCODER_TEMPORAL_FILTER_H_
450