• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //
2 // Copyright © 2020-2021, 2023 Arm Ltd. All rights reserved.
3 // SPDX-License-Identifier: MIT
4 //
5 #pragma once
6 
7 #include <CommonTestUtils.hpp>
8 
9 #include <ResolveType.hpp>
10 
11 #include <armnn/INetwork.hpp>
12 
13 #include <armnn/utility/NumericCast.hpp>
14 
15 #include <doctest/doctest.h>
16 
17 #include <vector>
18 
19 namespace
20 {
21 
22 template<armnn::DataType ArmnnTypeInput>
CreateElementwiseUnaryNetwork(const TensorShape & inputShape,const TensorShape & outputShape,UnaryOperation operation,const float qScale=1.0f,const int32_t qOffset=0)23 INetworkPtr CreateElementwiseUnaryNetwork(const TensorShape& inputShape,
24                                           const TensorShape& outputShape,
25                                           UnaryOperation operation,
26                                           const float qScale = 1.0f,
27                                           const int32_t qOffset = 0)
28 {
29     using namespace armnn;
30 
31     INetworkPtr net(INetwork::Create());
32 
33     ElementwiseUnaryDescriptor descriptor(operation);
34     IConnectableLayer* elementwiseUnaryLayer = net->AddElementwiseUnaryLayer(descriptor, "elementwiseUnary");
35 
36     TensorInfo inputTensorInfo(inputShape, ArmnnTypeInput, qScale, qOffset, true);
37     IConnectableLayer* input = net->AddInputLayer(armnn::numeric_cast<LayerBindingId>(0));
38     Connect(input, elementwiseUnaryLayer, inputTensorInfo, 0, 0);
39 
40     TensorInfo outputTensorInfo(outputShape, ArmnnTypeInput, qScale, qOffset);
41     IConnectableLayer* output = net->AddOutputLayer(0, "output");
42     Connect(elementwiseUnaryLayer, output, outputTensorInfo, 0, 0);
43 
44     return net;
45 }
46 
47 template<armnn::DataType ArmnnInType,
48          typename TInput = armnn::ResolveType<ArmnnInType>>
ElementwiseUnarySimpleEndToEnd(const std::vector<BackendId> & backends,UnaryOperation operation)49 void ElementwiseUnarySimpleEndToEnd(const std::vector<BackendId>& backends,
50                                     UnaryOperation operation)
51 {
52     using namespace armnn;
53 
54     const float   qScale  = IsQuantizedType<TInput>() ? 0.25f : 1.0f;
55     const int32_t qOffset = IsQuantizedType<TInput>() ? 50    : 0;
56 
57     const TensorShape& inputShape  = { 2, 2, 2, 2 };
58     const TensorShape& outputShape = { 2, 2, 2, 2 };
59 
60     // Builds up the structure of the network
61     INetworkPtr net = CreateElementwiseUnaryNetwork<ArmnnInType>(inputShape, outputShape, operation, qScale, qOffset);
62 
63     CHECK(net);
64 
65     std::vector<float> input;
66     std::vector<float> expectedOutput;
67     switch(operation)
68     {
69         case UnaryOperation::Abs:
70             input = { 1, -1, 1, 1,  5, -5, 5, 5,
71                       -3, 3, 3, 3,  4, 4, -4, 4 };
72             expectedOutput = { 1.f, 1.f, 1.f, 1.f, 5.f, 5.f, 5.f, 5.f,
73                                3.f, 3.f, 3.f, 3.f, 4.f, 4.f, 4.f, 4.f };
74             break;
75         case UnaryOperation::Rsqrt:
76             input = { 1, 1, 1, 1,  5, 5, 5, 5,
77                       3, 3, 3, 3,  4, 4, 4, 4 };
78             expectedOutput = { 1.f, 1.f, 1.f, 1.f, 0.447214f, 0.447214f, 0.447214f, 0.447214f,
79                                0.57735f, 0.57735f, 0.57735f, 0.57735f, 0.5f, 0.5f, 0.5f, 0.5f };
80             break;
81         default:
82             input = { 1, -1, 1, 1,  5, -5, 5, 5,
83                       -3, 3, 3, 3,  4, 4, -4, 4 };
84             expectedOutput = { 1.f, 1.f, 1.f, 1.f, 5.f, 5.f, 5.f, 5.f,
85                                3.f, 3.f, 3.f, 3.f, 4.f, 4.f, 4.f, 4.f };
86             break;
87     }
88 
89 
90     // quantize data
91     std::vector<TInput> qInputData      = armnnUtils::QuantizedVector<TInput>(input, qScale, qOffset);
92     std::vector<TInput> qExpectedOutput = armnnUtils::QuantizedVector<TInput>(expectedOutput, qScale, qOffset);
93 
94     std::map<int, std::vector<TInput>> inputTensorData    = {{ 0, qInputData }};
95     std::map<int, std::vector<TInput>> expectedOutputData = {{ 0, qExpectedOutput }};
96 
97     EndToEndLayerTestImpl<ArmnnInType, ArmnnInType>(move(net), inputTensorData, expectedOutputData, backends);
98 }
99 
100 } // anonymous namespace
101