1 // Copyright 2012 Google Inc. All Rights Reserved.
2 //
3 // Use of this source code is governed by a BSD-style license
4 // that can be found in the COPYING file in the root of the source
5 // tree. An additional intellectual property rights grant can be found
6 // in the file PATENTS. All contributing project authors may
7 // be found in the AUTHORS file in the root of the source tree.
8 // -----------------------------------------------------------------------------
9 //
10 // Author: Jyrki Alakuijala (jyrki@google.com)
11 //
12
13 #include "src/enc/backward_references_enc.h"
14
15 #include <assert.h>
16 #include <float.h>
17 #include <math.h>
18
19 #include "src/dsp/dsp.h"
20 #include "src/dsp/lossless.h"
21 #include "src/dsp/lossless_common.h"
22 #include "src/enc/histogram_enc.h"
23 #include "src/enc/vp8i_enc.h"
24 #include "src/utils/color_cache_utils.h"
25 #include "src/utils/utils.h"
26 #include "src/webp/encode.h"
27
28 #define MIN_BLOCK_SIZE 256 // minimum block size for backward references
29
30 #define MAX_ENTROPY (1e30f)
31
32 // 1M window (4M bytes) minus 120 special codes for short distances.
33 #define WINDOW_SIZE ((1 << WINDOW_SIZE_BITS) - 120)
34
35 // Minimum number of pixels for which it is cheaper to encode a
36 // distance + length instead of each pixel as a literal.
37 #define MIN_LENGTH 4
38
39 // -----------------------------------------------------------------------------
40
41 static const uint8_t plane_to_code_lut[128] = {
42 96, 73, 55, 39, 23, 13, 5, 1, 255, 255, 255, 255, 255, 255, 255, 255,
43 101, 78, 58, 42, 26, 16, 8, 2, 0, 3, 9, 17, 27, 43, 59, 79,
44 102, 86, 62, 46, 32, 20, 10, 6, 4, 7, 11, 21, 33, 47, 63, 87,
45 105, 90, 70, 52, 37, 28, 18, 14, 12, 15, 19, 29, 38, 53, 71, 91,
46 110, 99, 82, 66, 48, 35, 30, 24, 22, 25, 31, 36, 49, 67, 83, 100,
47 115, 108, 94, 76, 64, 50, 44, 40, 34, 41, 45, 51, 65, 77, 95, 109,
48 118, 113, 103, 92, 80, 68, 60, 56, 54, 57, 61, 69, 81, 93, 104, 114,
49 119, 116, 111, 106, 97, 88, 84, 74, 72, 75, 85, 89, 98, 107, 112, 117
50 };
51
52 extern int VP8LDistanceToPlaneCode(int xsize, int dist);
VP8LDistanceToPlaneCode(int xsize,int dist)53 int VP8LDistanceToPlaneCode(int xsize, int dist) {
54 const int yoffset = dist / xsize;
55 const int xoffset = dist - yoffset * xsize;
56 if (xoffset <= 8 && yoffset < 8) {
57 return plane_to_code_lut[yoffset * 16 + 8 - xoffset] + 1;
58 } else if (xoffset > xsize - 8 && yoffset < 7) {
59 return plane_to_code_lut[(yoffset + 1) * 16 + 8 + (xsize - xoffset)] + 1;
60 }
61 return dist + 120;
62 }
63
64 // Returns the exact index where array1 and array2 are different. For an index
65 // inferior or equal to best_len_match, the return value just has to be strictly
66 // inferior to best_len_match. The current behavior is to return 0 if this index
67 // is best_len_match, and the index itself otherwise.
68 // If no two elements are the same, it returns max_limit.
FindMatchLength(const uint32_t * const array1,const uint32_t * const array2,int best_len_match,int max_limit)69 static WEBP_INLINE int FindMatchLength(const uint32_t* const array1,
70 const uint32_t* const array2,
71 int best_len_match, int max_limit) {
72 // Before 'expensive' linear match, check if the two arrays match at the
73 // current best length index.
74 if (array1[best_len_match] != array2[best_len_match]) return 0;
75
76 return VP8LVectorMismatch(array1, array2, max_limit);
77 }
78
79 // -----------------------------------------------------------------------------
80 // VP8LBackwardRefs
81
82 struct PixOrCopyBlock {
83 PixOrCopyBlock* next_; // next block (or NULL)
84 PixOrCopy* start_; // data start
85 int size_; // currently used size
86 };
87
88 extern void VP8LClearBackwardRefs(VP8LBackwardRefs* const refs);
VP8LClearBackwardRefs(VP8LBackwardRefs * const refs)89 void VP8LClearBackwardRefs(VP8LBackwardRefs* const refs) {
90 assert(refs != NULL);
91 if (refs->tail_ != NULL) {
92 *refs->tail_ = refs->free_blocks_; // recycle all blocks at once
93 }
94 refs->free_blocks_ = refs->refs_;
95 refs->tail_ = &refs->refs_;
96 refs->last_block_ = NULL;
97 refs->refs_ = NULL;
98 }
99
VP8LBackwardRefsClear(VP8LBackwardRefs * const refs)100 void VP8LBackwardRefsClear(VP8LBackwardRefs* const refs) {
101 assert(refs != NULL);
102 VP8LClearBackwardRefs(refs);
103 while (refs->free_blocks_ != NULL) {
104 PixOrCopyBlock* const next = refs->free_blocks_->next_;
105 WebPSafeFree(refs->free_blocks_);
106 refs->free_blocks_ = next;
107 }
108 }
109
110 // Swaps the content of two VP8LBackwardRefs.
BackwardRefsSwap(VP8LBackwardRefs * const refs1,VP8LBackwardRefs * const refs2)111 static void BackwardRefsSwap(VP8LBackwardRefs* const refs1,
112 VP8LBackwardRefs* const refs2) {
113 const int point_to_refs1 =
114 (refs1->tail_ != NULL && refs1->tail_ == &refs1->refs_);
115 const int point_to_refs2 =
116 (refs2->tail_ != NULL && refs2->tail_ == &refs2->refs_);
117 const VP8LBackwardRefs tmp = *refs1;
118 *refs1 = *refs2;
119 *refs2 = tmp;
120 if (point_to_refs2) refs1->tail_ = &refs1->refs_;
121 if (point_to_refs1) refs2->tail_ = &refs2->refs_;
122 }
123
VP8LBackwardRefsInit(VP8LBackwardRefs * const refs,int block_size)124 void VP8LBackwardRefsInit(VP8LBackwardRefs* const refs, int block_size) {
125 assert(refs != NULL);
126 memset(refs, 0, sizeof(*refs));
127 refs->tail_ = &refs->refs_;
128 refs->block_size_ =
129 (block_size < MIN_BLOCK_SIZE) ? MIN_BLOCK_SIZE : block_size;
130 }
131
VP8LRefsCursorInit(const VP8LBackwardRefs * const refs)132 VP8LRefsCursor VP8LRefsCursorInit(const VP8LBackwardRefs* const refs) {
133 VP8LRefsCursor c;
134 c.cur_block_ = refs->refs_;
135 if (refs->refs_ != NULL) {
136 c.cur_pos = c.cur_block_->start_;
137 c.last_pos_ = c.cur_pos + c.cur_block_->size_;
138 } else {
139 c.cur_pos = NULL;
140 c.last_pos_ = NULL;
141 }
142 return c;
143 }
144
VP8LRefsCursorNextBlock(VP8LRefsCursor * const c)145 void VP8LRefsCursorNextBlock(VP8LRefsCursor* const c) {
146 PixOrCopyBlock* const b = c->cur_block_->next_;
147 c->cur_pos = (b == NULL) ? NULL : b->start_;
148 c->last_pos_ = (b == NULL) ? NULL : b->start_ + b->size_;
149 c->cur_block_ = b;
150 }
151
152 // Create a new block, either from the free list or allocated
BackwardRefsNewBlock(VP8LBackwardRefs * const refs)153 static PixOrCopyBlock* BackwardRefsNewBlock(VP8LBackwardRefs* const refs) {
154 PixOrCopyBlock* b = refs->free_blocks_;
155 if (b == NULL) { // allocate new memory chunk
156 const size_t total_size =
157 sizeof(*b) + refs->block_size_ * sizeof(*b->start_);
158 b = (PixOrCopyBlock*)WebPSafeMalloc(1ULL, total_size);
159 if (b == NULL) {
160 refs->error_ |= 1;
161 return NULL;
162 }
163 b->start_ = (PixOrCopy*)((uint8_t*)b + sizeof(*b)); // not always aligned
164 } else { // recycle from free-list
165 refs->free_blocks_ = b->next_;
166 }
167 *refs->tail_ = b;
168 refs->tail_ = &b->next_;
169 refs->last_block_ = b;
170 b->next_ = NULL;
171 b->size_ = 0;
172 return b;
173 }
174
175 // Return 1 on success, 0 on error.
BackwardRefsClone(const VP8LBackwardRefs * const from,VP8LBackwardRefs * const to)176 static int BackwardRefsClone(const VP8LBackwardRefs* const from,
177 VP8LBackwardRefs* const to) {
178 const PixOrCopyBlock* block_from = from->refs_;
179 VP8LClearBackwardRefs(to);
180 while (block_from != NULL) {
181 PixOrCopyBlock* const block_to = BackwardRefsNewBlock(to);
182 if (block_to == NULL) return 0;
183 memcpy(block_to->start_, block_from->start_,
184 block_from->size_ * sizeof(PixOrCopy));
185 block_to->size_ = block_from->size_;
186 block_from = block_from->next_;
187 }
188 return 1;
189 }
190
191 extern void VP8LBackwardRefsCursorAdd(VP8LBackwardRefs* const refs,
192 const PixOrCopy v);
VP8LBackwardRefsCursorAdd(VP8LBackwardRefs * const refs,const PixOrCopy v)193 void VP8LBackwardRefsCursorAdd(VP8LBackwardRefs* const refs,
194 const PixOrCopy v) {
195 PixOrCopyBlock* b = refs->last_block_;
196 if (b == NULL || b->size_ == refs->block_size_) {
197 b = BackwardRefsNewBlock(refs);
198 if (b == NULL) return; // refs->error_ is set
199 }
200 b->start_[b->size_++] = v;
201 }
202
203 // -----------------------------------------------------------------------------
204 // Hash chains
205
VP8LHashChainInit(VP8LHashChain * const p,int size)206 int VP8LHashChainInit(VP8LHashChain* const p, int size) {
207 assert(p->size_ == 0);
208 assert(p->offset_length_ == NULL);
209 assert(size > 0);
210 p->offset_length_ =
211 (uint32_t*)WebPSafeMalloc(size, sizeof(*p->offset_length_));
212 if (p->offset_length_ == NULL) return 0;
213 p->size_ = size;
214
215 return 1;
216 }
217
VP8LHashChainClear(VP8LHashChain * const p)218 void VP8LHashChainClear(VP8LHashChain* const p) {
219 assert(p != NULL);
220 WebPSafeFree(p->offset_length_);
221
222 p->size_ = 0;
223 p->offset_length_ = NULL;
224 }
225
226 // -----------------------------------------------------------------------------
227
228 static const uint32_t kHashMultiplierHi = 0xc6a4a793u;
229 static const uint32_t kHashMultiplierLo = 0x5bd1e996u;
230
231 static WEBP_UBSAN_IGNORE_UNSIGNED_OVERFLOW WEBP_INLINE
GetPixPairHash64(const uint32_t * const argb)232 uint32_t GetPixPairHash64(const uint32_t* const argb) {
233 uint32_t key;
234 key = argb[1] * kHashMultiplierHi;
235 key += argb[0] * kHashMultiplierLo;
236 key = key >> (32 - HASH_BITS);
237 return key;
238 }
239
240 // Returns the maximum number of hash chain lookups to do for a
241 // given compression quality. Return value in range [8, 86].
GetMaxItersForQuality(int quality)242 static int GetMaxItersForQuality(int quality) {
243 return 8 + (quality * quality) / 128;
244 }
245
GetWindowSizeForHashChain(int quality,int xsize)246 static int GetWindowSizeForHashChain(int quality, int xsize) {
247 const int max_window_size = (quality > 75) ? WINDOW_SIZE
248 : (quality > 50) ? (xsize << 8)
249 : (quality > 25) ? (xsize << 6)
250 : (xsize << 4);
251 assert(xsize > 0);
252 return (max_window_size > WINDOW_SIZE) ? WINDOW_SIZE : max_window_size;
253 }
254
MaxFindCopyLength(int len)255 static WEBP_INLINE int MaxFindCopyLength(int len) {
256 return (len < MAX_LENGTH) ? len : MAX_LENGTH;
257 }
258
VP8LHashChainFill(VP8LHashChain * const p,int quality,const uint32_t * const argb,int xsize,int ysize,int low_effort,const WebPPicture * const pic,int percent_range,int * const percent)259 int VP8LHashChainFill(VP8LHashChain* const p, int quality,
260 const uint32_t* const argb, int xsize, int ysize,
261 int low_effort, const WebPPicture* const pic,
262 int percent_range, int* const percent) {
263 const int size = xsize * ysize;
264 const int iter_max = GetMaxItersForQuality(quality);
265 const uint32_t window_size = GetWindowSizeForHashChain(quality, xsize);
266 int remaining_percent = percent_range;
267 int percent_start = *percent;
268 int pos;
269 int argb_comp;
270 uint32_t base_position;
271 int32_t* hash_to_first_index;
272 // Temporarily use the p->offset_length_ as a hash chain.
273 int32_t* chain = (int32_t*)p->offset_length_;
274 assert(size > 0);
275 assert(p->size_ != 0);
276 assert(p->offset_length_ != NULL);
277
278 if (size <= 2) {
279 p->offset_length_[0] = p->offset_length_[size - 1] = 0;
280 return 1;
281 }
282
283 hash_to_first_index =
284 (int32_t*)WebPSafeMalloc(HASH_SIZE, sizeof(*hash_to_first_index));
285 if (hash_to_first_index == NULL) {
286 WebPEncodingSetError(pic, VP8_ENC_ERROR_OUT_OF_MEMORY);
287 return 0;
288 }
289
290 percent_range = remaining_percent / 2;
291 remaining_percent -= percent_range;
292
293 // Set the int32_t array to -1.
294 memset(hash_to_first_index, 0xff, HASH_SIZE * sizeof(*hash_to_first_index));
295 // Fill the chain linking pixels with the same hash.
296 argb_comp = (argb[0] == argb[1]);
297 for (pos = 0; pos < size - 2;) {
298 uint32_t hash_code;
299 const int argb_comp_next = (argb[pos + 1] == argb[pos + 2]);
300 if (argb_comp && argb_comp_next) {
301 // Consecutive pixels with the same color will share the same hash.
302 // We therefore use a different hash: the color and its repetition
303 // length.
304 uint32_t tmp[2];
305 uint32_t len = 1;
306 tmp[0] = argb[pos];
307 // Figure out how far the pixels are the same.
308 // The last pixel has a different 64 bit hash, as its next pixel does
309 // not have the same color, so we just need to get to the last pixel equal
310 // to its follower.
311 while (pos + (int)len + 2 < size && argb[pos + len + 2] == argb[pos]) {
312 ++len;
313 }
314 if (len > MAX_LENGTH) {
315 // Skip the pixels that match for distance=1 and length>MAX_LENGTH
316 // because they are linked to their predecessor and we automatically
317 // check that in the main for loop below. Skipping means setting no
318 // predecessor in the chain, hence -1.
319 memset(chain + pos, 0xff, (len - MAX_LENGTH) * sizeof(*chain));
320 pos += len - MAX_LENGTH;
321 len = MAX_LENGTH;
322 }
323 // Process the rest of the hash chain.
324 while (len) {
325 tmp[1] = len--;
326 hash_code = GetPixPairHash64(tmp);
327 chain[pos] = hash_to_first_index[hash_code];
328 hash_to_first_index[hash_code] = pos++;
329 }
330 argb_comp = 0;
331 } else {
332 // Just move one pixel forward.
333 hash_code = GetPixPairHash64(argb + pos);
334 chain[pos] = hash_to_first_index[hash_code];
335 hash_to_first_index[hash_code] = pos++;
336 argb_comp = argb_comp_next;
337 }
338
339 if (!WebPReportProgress(
340 pic, percent_start + percent_range * pos / (size - 2), percent)) {
341 WebPSafeFree(hash_to_first_index);
342 return 0;
343 }
344 }
345 // Process the penultimate pixel.
346 chain[pos] = hash_to_first_index[GetPixPairHash64(argb + pos)];
347
348 WebPSafeFree(hash_to_first_index);
349
350 percent_start += percent_range;
351 if (!WebPReportProgress(pic, percent_start, percent)) return 0;
352 percent_range = remaining_percent;
353
354 // Find the best match interval at each pixel, defined by an offset to the
355 // pixel and a length. The right-most pixel cannot match anything to the right
356 // (hence a best length of 0) and the left-most pixel nothing to the left
357 // (hence an offset of 0).
358 assert(size > 2);
359 p->offset_length_[0] = p->offset_length_[size - 1] = 0;
360 for (base_position = size - 2; base_position > 0;) {
361 const int max_len = MaxFindCopyLength(size - 1 - base_position);
362 const uint32_t* const argb_start = argb + base_position;
363 int iter = iter_max;
364 int best_length = 0;
365 uint32_t best_distance = 0;
366 uint32_t best_argb;
367 const int min_pos =
368 (base_position > window_size) ? base_position - window_size : 0;
369 const int length_max = (max_len < 256) ? max_len : 256;
370 uint32_t max_base_position;
371
372 pos = chain[base_position];
373 if (!low_effort) {
374 int curr_length;
375 // Heuristic: use the comparison with the above line as an initialization.
376 if (base_position >= (uint32_t)xsize) {
377 curr_length = FindMatchLength(argb_start - xsize, argb_start,
378 best_length, max_len);
379 if (curr_length > best_length) {
380 best_length = curr_length;
381 best_distance = xsize;
382 }
383 --iter;
384 }
385 // Heuristic: compare to the previous pixel.
386 curr_length =
387 FindMatchLength(argb_start - 1, argb_start, best_length, max_len);
388 if (curr_length > best_length) {
389 best_length = curr_length;
390 best_distance = 1;
391 }
392 --iter;
393 // Skip the for loop if we already have the maximum.
394 if (best_length == MAX_LENGTH) pos = min_pos - 1;
395 }
396 best_argb = argb_start[best_length];
397
398 for (; pos >= min_pos && --iter; pos = chain[pos]) {
399 int curr_length;
400 assert(base_position > (uint32_t)pos);
401
402 if (argb[pos + best_length] != best_argb) continue;
403
404 curr_length = VP8LVectorMismatch(argb + pos, argb_start, max_len);
405 if (best_length < curr_length) {
406 best_length = curr_length;
407 best_distance = base_position - pos;
408 best_argb = argb_start[best_length];
409 // Stop if we have reached a good enough length.
410 if (best_length >= length_max) break;
411 }
412 }
413 // We have the best match but in case the two intervals continue matching
414 // to the left, we have the best matches for the left-extended pixels.
415 max_base_position = base_position;
416 while (1) {
417 assert(best_length <= MAX_LENGTH);
418 assert(best_distance <= WINDOW_SIZE);
419 p->offset_length_[base_position] =
420 (best_distance << MAX_LENGTH_BITS) | (uint32_t)best_length;
421 --base_position;
422 // Stop if we don't have a match or if we are out of bounds.
423 if (best_distance == 0 || base_position == 0) break;
424 // Stop if we cannot extend the matching intervals to the left.
425 if (base_position < best_distance ||
426 argb[base_position - best_distance] != argb[base_position]) {
427 break;
428 }
429 // Stop if we are matching at its limit because there could be a closer
430 // matching interval with the same maximum length. Then again, if the
431 // matching interval is as close as possible (best_distance == 1), we will
432 // never find anything better so let's continue.
433 if (best_length == MAX_LENGTH && best_distance != 1 &&
434 base_position + MAX_LENGTH < max_base_position) {
435 break;
436 }
437 if (best_length < MAX_LENGTH) {
438 ++best_length;
439 max_base_position = base_position;
440 }
441 }
442
443 if (!WebPReportProgress(pic,
444 percent_start + percent_range *
445 (size - 2 - base_position) /
446 (size - 2),
447 percent)) {
448 return 0;
449 }
450 }
451
452 return WebPReportProgress(pic, percent_start + percent_range, percent);
453 }
454
AddSingleLiteral(uint32_t pixel,int use_color_cache,VP8LColorCache * const hashers,VP8LBackwardRefs * const refs)455 static WEBP_INLINE void AddSingleLiteral(uint32_t pixel, int use_color_cache,
456 VP8LColorCache* const hashers,
457 VP8LBackwardRefs* const refs) {
458 PixOrCopy v;
459 if (use_color_cache) {
460 const uint32_t key = VP8LColorCacheGetIndex(hashers, pixel);
461 if (VP8LColorCacheLookup(hashers, key) == pixel) {
462 v = PixOrCopyCreateCacheIdx(key);
463 } else {
464 v = PixOrCopyCreateLiteral(pixel);
465 VP8LColorCacheSet(hashers, key, pixel);
466 }
467 } else {
468 v = PixOrCopyCreateLiteral(pixel);
469 }
470 VP8LBackwardRefsCursorAdd(refs, v);
471 }
472
BackwardReferencesRle(int xsize,int ysize,const uint32_t * const argb,int cache_bits,VP8LBackwardRefs * const refs)473 static int BackwardReferencesRle(int xsize, int ysize,
474 const uint32_t* const argb,
475 int cache_bits, VP8LBackwardRefs* const refs) {
476 const int pix_count = xsize * ysize;
477 int i, k;
478 const int use_color_cache = (cache_bits > 0);
479 VP8LColorCache hashers;
480
481 if (use_color_cache && !VP8LColorCacheInit(&hashers, cache_bits)) {
482 return 0;
483 }
484 VP8LClearBackwardRefs(refs);
485 // Add first pixel as literal.
486 AddSingleLiteral(argb[0], use_color_cache, &hashers, refs);
487 i = 1;
488 while (i < pix_count) {
489 const int max_len = MaxFindCopyLength(pix_count - i);
490 const int rle_len = FindMatchLength(argb + i, argb + i - 1, 0, max_len);
491 const int prev_row_len = (i < xsize) ? 0 :
492 FindMatchLength(argb + i, argb + i - xsize, 0, max_len);
493 if (rle_len >= prev_row_len && rle_len >= MIN_LENGTH) {
494 VP8LBackwardRefsCursorAdd(refs, PixOrCopyCreateCopy(1, rle_len));
495 // We don't need to update the color cache here since it is always the
496 // same pixel being copied, and that does not change the color cache
497 // state.
498 i += rle_len;
499 } else if (prev_row_len >= MIN_LENGTH) {
500 VP8LBackwardRefsCursorAdd(refs, PixOrCopyCreateCopy(xsize, prev_row_len));
501 if (use_color_cache) {
502 for (k = 0; k < prev_row_len; ++k) {
503 VP8LColorCacheInsert(&hashers, argb[i + k]);
504 }
505 }
506 i += prev_row_len;
507 } else {
508 AddSingleLiteral(argb[i], use_color_cache, &hashers, refs);
509 i++;
510 }
511 }
512 if (use_color_cache) VP8LColorCacheClear(&hashers);
513 return !refs->error_;
514 }
515
BackwardReferencesLz77(int xsize,int ysize,const uint32_t * const argb,int cache_bits,const VP8LHashChain * const hash_chain,VP8LBackwardRefs * const refs)516 static int BackwardReferencesLz77(int xsize, int ysize,
517 const uint32_t* const argb, int cache_bits,
518 const VP8LHashChain* const hash_chain,
519 VP8LBackwardRefs* const refs) {
520 int i;
521 int i_last_check = -1;
522 int ok = 0;
523 int cc_init = 0;
524 const int use_color_cache = (cache_bits > 0);
525 const int pix_count = xsize * ysize;
526 VP8LColorCache hashers;
527
528 if (use_color_cache) {
529 cc_init = VP8LColorCacheInit(&hashers, cache_bits);
530 if (!cc_init) goto Error;
531 }
532 VP8LClearBackwardRefs(refs);
533 for (i = 0; i < pix_count;) {
534 // Alternative#1: Code the pixels starting at 'i' using backward reference.
535 int offset = 0;
536 int len = 0;
537 int j;
538 VP8LHashChainFindCopy(hash_chain, i, &offset, &len);
539 if (len >= MIN_LENGTH) {
540 const int len_ini = len;
541 int max_reach = 0;
542 const int j_max =
543 (i + len_ini >= pix_count) ? pix_count - 1 : i + len_ini;
544 // Only start from what we have not checked already.
545 i_last_check = (i > i_last_check) ? i : i_last_check;
546 // We know the best match for the current pixel but we try to find the
547 // best matches for the current pixel AND the next one combined.
548 // The naive method would use the intervals:
549 // [i,i+len) + [i+len, length of best match at i+len)
550 // while we check if we can use:
551 // [i,j) (where j<=i+len) + [j, length of best match at j)
552 for (j = i_last_check + 1; j <= j_max; ++j) {
553 const int len_j = VP8LHashChainFindLength(hash_chain, j);
554 const int reach =
555 j + (len_j >= MIN_LENGTH ? len_j : 1); // 1 for single literal.
556 if (reach > max_reach) {
557 len = j - i;
558 max_reach = reach;
559 if (max_reach >= pix_count) break;
560 }
561 }
562 } else {
563 len = 1;
564 }
565 // Go with literal or backward reference.
566 assert(len > 0);
567 if (len == 1) {
568 AddSingleLiteral(argb[i], use_color_cache, &hashers, refs);
569 } else {
570 VP8LBackwardRefsCursorAdd(refs, PixOrCopyCreateCopy(offset, len));
571 if (use_color_cache) {
572 for (j = i; j < i + len; ++j) VP8LColorCacheInsert(&hashers, argb[j]);
573 }
574 }
575 i += len;
576 }
577
578 ok = !refs->error_;
579 Error:
580 if (cc_init) VP8LColorCacheClear(&hashers);
581 return ok;
582 }
583
584 // Compute an LZ77 by forcing matches to happen within a given distance cost.
585 // We therefore limit the algorithm to the lowest 32 values in the PlaneCode
586 // definition.
587 #define WINDOW_OFFSETS_SIZE_MAX 32
BackwardReferencesLz77Box(int xsize,int ysize,const uint32_t * const argb,int cache_bits,const VP8LHashChain * const hash_chain_best,VP8LHashChain * hash_chain,VP8LBackwardRefs * const refs)588 static int BackwardReferencesLz77Box(int xsize, int ysize,
589 const uint32_t* const argb, int cache_bits,
590 const VP8LHashChain* const hash_chain_best,
591 VP8LHashChain* hash_chain,
592 VP8LBackwardRefs* const refs) {
593 int i;
594 const int pix_count = xsize * ysize;
595 uint16_t* counts;
596 int window_offsets[WINDOW_OFFSETS_SIZE_MAX] = {0};
597 int window_offsets_new[WINDOW_OFFSETS_SIZE_MAX] = {0};
598 int window_offsets_size = 0;
599 int window_offsets_new_size = 0;
600 uint16_t* const counts_ini =
601 (uint16_t*)WebPSafeMalloc(xsize * ysize, sizeof(*counts_ini));
602 int best_offset_prev = -1, best_length_prev = -1;
603 if (counts_ini == NULL) return 0;
604
605 // counts[i] counts how many times a pixel is repeated starting at position i.
606 i = pix_count - 2;
607 counts = counts_ini + i;
608 counts[1] = 1;
609 for (; i >= 0; --i, --counts) {
610 if (argb[i] == argb[i + 1]) {
611 // Max out the counts to MAX_LENGTH.
612 counts[0] = counts[1] + (counts[1] != MAX_LENGTH);
613 } else {
614 counts[0] = 1;
615 }
616 }
617
618 // Figure out the window offsets around a pixel. They are stored in a
619 // spiraling order around the pixel as defined by VP8LDistanceToPlaneCode.
620 {
621 int x, y;
622 for (y = 0; y <= 6; ++y) {
623 for (x = -6; x <= 6; ++x) {
624 const int offset = y * xsize + x;
625 int plane_code;
626 // Ignore offsets that bring us after the pixel.
627 if (offset <= 0) continue;
628 plane_code = VP8LDistanceToPlaneCode(xsize, offset) - 1;
629 if (plane_code >= WINDOW_OFFSETS_SIZE_MAX) continue;
630 window_offsets[plane_code] = offset;
631 }
632 }
633 // For narrow images, not all plane codes are reached, so remove those.
634 for (i = 0; i < WINDOW_OFFSETS_SIZE_MAX; ++i) {
635 if (window_offsets[i] == 0) continue;
636 window_offsets[window_offsets_size++] = window_offsets[i];
637 }
638 // Given a pixel P, find the offsets that reach pixels unreachable from P-1
639 // with any of the offsets in window_offsets[].
640 for (i = 0; i < window_offsets_size; ++i) {
641 int j;
642 int is_reachable = 0;
643 for (j = 0; j < window_offsets_size && !is_reachable; ++j) {
644 is_reachable |= (window_offsets[i] == window_offsets[j] + 1);
645 }
646 if (!is_reachable) {
647 window_offsets_new[window_offsets_new_size] = window_offsets[i];
648 ++window_offsets_new_size;
649 }
650 }
651 }
652
653 hash_chain->offset_length_[0] = 0;
654 for (i = 1; i < pix_count; ++i) {
655 int ind;
656 int best_length = VP8LHashChainFindLength(hash_chain_best, i);
657 int best_offset;
658 int do_compute = 1;
659
660 if (best_length >= MAX_LENGTH) {
661 // Do not recompute the best match if we already have a maximal one in the
662 // window.
663 best_offset = VP8LHashChainFindOffset(hash_chain_best, i);
664 for (ind = 0; ind < window_offsets_size; ++ind) {
665 if (best_offset == window_offsets[ind]) {
666 do_compute = 0;
667 break;
668 }
669 }
670 }
671 if (do_compute) {
672 // Figure out if we should use the offset/length from the previous pixel
673 // as an initial guess and therefore only inspect the offsets in
674 // window_offsets_new[].
675 const int use_prev =
676 (best_length_prev > 1) && (best_length_prev < MAX_LENGTH);
677 const int num_ind =
678 use_prev ? window_offsets_new_size : window_offsets_size;
679 best_length = use_prev ? best_length_prev - 1 : 0;
680 best_offset = use_prev ? best_offset_prev : 0;
681 // Find the longest match in a window around the pixel.
682 for (ind = 0; ind < num_ind; ++ind) {
683 int curr_length = 0;
684 int j = i;
685 int j_offset =
686 use_prev ? i - window_offsets_new[ind] : i - window_offsets[ind];
687 if (j_offset < 0 || argb[j_offset] != argb[i]) continue;
688 // The longest match is the sum of how many times each pixel is
689 // repeated.
690 do {
691 const int counts_j_offset = counts_ini[j_offset];
692 const int counts_j = counts_ini[j];
693 if (counts_j_offset != counts_j) {
694 curr_length +=
695 (counts_j_offset < counts_j) ? counts_j_offset : counts_j;
696 break;
697 }
698 // The same color is repeated counts_pos times at j_offset and j.
699 curr_length += counts_j_offset;
700 j_offset += counts_j_offset;
701 j += counts_j_offset;
702 } while (curr_length <= MAX_LENGTH && j < pix_count &&
703 argb[j_offset] == argb[j]);
704 if (best_length < curr_length) {
705 best_offset =
706 use_prev ? window_offsets_new[ind] : window_offsets[ind];
707 if (curr_length >= MAX_LENGTH) {
708 best_length = MAX_LENGTH;
709 break;
710 } else {
711 best_length = curr_length;
712 }
713 }
714 }
715 }
716
717 assert(i + best_length <= pix_count);
718 assert(best_length <= MAX_LENGTH);
719 if (best_length <= MIN_LENGTH) {
720 hash_chain->offset_length_[i] = 0;
721 best_offset_prev = 0;
722 best_length_prev = 0;
723 } else {
724 hash_chain->offset_length_[i] =
725 (best_offset << MAX_LENGTH_BITS) | (uint32_t)best_length;
726 best_offset_prev = best_offset;
727 best_length_prev = best_length;
728 }
729 }
730 hash_chain->offset_length_[0] = 0;
731 WebPSafeFree(counts_ini);
732
733 return BackwardReferencesLz77(xsize, ysize, argb, cache_bits, hash_chain,
734 refs);
735 }
736
737 // -----------------------------------------------------------------------------
738
BackwardReferences2DLocality(int xsize,const VP8LBackwardRefs * const refs)739 static void BackwardReferences2DLocality(int xsize,
740 const VP8LBackwardRefs* const refs) {
741 VP8LRefsCursor c = VP8LRefsCursorInit(refs);
742 while (VP8LRefsCursorOk(&c)) {
743 if (PixOrCopyIsCopy(c.cur_pos)) {
744 const int dist = c.cur_pos->argb_or_distance;
745 const int transformed_dist = VP8LDistanceToPlaneCode(xsize, dist);
746 c.cur_pos->argb_or_distance = transformed_dist;
747 }
748 VP8LRefsCursorNext(&c);
749 }
750 }
751
752 // Evaluate optimal cache bits for the local color cache.
753 // The input *best_cache_bits sets the maximum cache bits to use (passing 0
754 // implies disabling the local color cache). The local color cache is also
755 // disabled for the lower (<= 25) quality.
756 // Returns 0 in case of memory error.
CalculateBestCacheSize(const uint32_t * argb,int quality,const VP8LBackwardRefs * const refs,int * const best_cache_bits)757 static int CalculateBestCacheSize(const uint32_t* argb, int quality,
758 const VP8LBackwardRefs* const refs,
759 int* const best_cache_bits) {
760 int i;
761 const int cache_bits_max = (quality <= 25) ? 0 : *best_cache_bits;
762 float entropy_min = MAX_ENTROPY;
763 int cc_init[MAX_COLOR_CACHE_BITS + 1] = { 0 };
764 VP8LColorCache hashers[MAX_COLOR_CACHE_BITS + 1];
765 VP8LRefsCursor c = VP8LRefsCursorInit(refs);
766 VP8LHistogram* histos[MAX_COLOR_CACHE_BITS + 1] = { NULL };
767 int ok = 0;
768
769 assert(cache_bits_max >= 0 && cache_bits_max <= MAX_COLOR_CACHE_BITS);
770
771 if (cache_bits_max == 0) {
772 *best_cache_bits = 0;
773 // Local color cache is disabled.
774 return 1;
775 }
776
777 // Allocate data.
778 for (i = 0; i <= cache_bits_max; ++i) {
779 histos[i] = VP8LAllocateHistogram(i);
780 if (histos[i] == NULL) goto Error;
781 VP8LHistogramInit(histos[i], i, /*init_arrays=*/ 1);
782 if (i == 0) continue;
783 cc_init[i] = VP8LColorCacheInit(&hashers[i], i);
784 if (!cc_init[i]) goto Error;
785 }
786
787 // Find the cache_bits giving the lowest entropy. The search is done in a
788 // brute-force way as the function (entropy w.r.t cache_bits) can be
789 // anything in practice.
790 while (VP8LRefsCursorOk(&c)) {
791 const PixOrCopy* const v = c.cur_pos;
792 if (PixOrCopyIsLiteral(v)) {
793 const uint32_t pix = *argb++;
794 const uint32_t a = (pix >> 24) & 0xff;
795 const uint32_t r = (pix >> 16) & 0xff;
796 const uint32_t g = (pix >> 8) & 0xff;
797 const uint32_t b = (pix >> 0) & 0xff;
798 // The keys of the caches can be derived from the longest one.
799 int key = VP8LHashPix(pix, 32 - cache_bits_max);
800 // Do not use the color cache for cache_bits = 0.
801 ++histos[0]->blue_[b];
802 ++histos[0]->literal_[g];
803 ++histos[0]->red_[r];
804 ++histos[0]->alpha_[a];
805 // Deal with cache_bits > 0.
806 for (i = cache_bits_max; i >= 1; --i, key >>= 1) {
807 if (VP8LColorCacheLookup(&hashers[i], key) == pix) {
808 ++histos[i]->literal_[NUM_LITERAL_CODES + NUM_LENGTH_CODES + key];
809 } else {
810 VP8LColorCacheSet(&hashers[i], key, pix);
811 ++histos[i]->blue_[b];
812 ++histos[i]->literal_[g];
813 ++histos[i]->red_[r];
814 ++histos[i]->alpha_[a];
815 }
816 }
817 } else {
818 int code, extra_bits, extra_bits_value;
819 // We should compute the contribution of the (distance,length)
820 // histograms but those are the same independently from the cache size.
821 // As those constant contributions are in the end added to the other
822 // histogram contributions, we can ignore them, except for the length
823 // prefix that is part of the literal_ histogram.
824 int len = PixOrCopyLength(v);
825 uint32_t argb_prev = *argb ^ 0xffffffffu;
826 VP8LPrefixEncode(len, &code, &extra_bits, &extra_bits_value);
827 for (i = 0; i <= cache_bits_max; ++i) {
828 ++histos[i]->literal_[NUM_LITERAL_CODES + code];
829 }
830 // Update the color caches.
831 do {
832 if (*argb != argb_prev) {
833 // Efficiency: insert only if the color changes.
834 int key = VP8LHashPix(*argb, 32 - cache_bits_max);
835 for (i = cache_bits_max; i >= 1; --i, key >>= 1) {
836 hashers[i].colors_[key] = *argb;
837 }
838 argb_prev = *argb;
839 }
840 argb++;
841 } while (--len != 0);
842 }
843 VP8LRefsCursorNext(&c);
844 }
845
846 for (i = 0; i <= cache_bits_max; ++i) {
847 const float entropy = VP8LHistogramEstimateBits(histos[i]);
848 if (i == 0 || entropy < entropy_min) {
849 entropy_min = entropy;
850 *best_cache_bits = i;
851 }
852 }
853 ok = 1;
854 Error:
855 for (i = 0; i <= cache_bits_max; ++i) {
856 if (cc_init[i]) VP8LColorCacheClear(&hashers[i]);
857 VP8LFreeHistogram(histos[i]);
858 }
859 return ok;
860 }
861
862 // Update (in-place) backward references for specified cache_bits.
BackwardRefsWithLocalCache(const uint32_t * const argb,int cache_bits,VP8LBackwardRefs * const refs)863 static int BackwardRefsWithLocalCache(const uint32_t* const argb,
864 int cache_bits,
865 VP8LBackwardRefs* const refs) {
866 int pixel_index = 0;
867 VP8LColorCache hashers;
868 VP8LRefsCursor c = VP8LRefsCursorInit(refs);
869 if (!VP8LColorCacheInit(&hashers, cache_bits)) return 0;
870
871 while (VP8LRefsCursorOk(&c)) {
872 PixOrCopy* const v = c.cur_pos;
873 if (PixOrCopyIsLiteral(v)) {
874 const uint32_t argb_literal = v->argb_or_distance;
875 const int ix = VP8LColorCacheContains(&hashers, argb_literal);
876 if (ix >= 0) {
877 // hashers contains argb_literal
878 *v = PixOrCopyCreateCacheIdx(ix);
879 } else {
880 VP8LColorCacheInsert(&hashers, argb_literal);
881 }
882 ++pixel_index;
883 } else {
884 // refs was created without local cache, so it can not have cache indexes.
885 int k;
886 assert(PixOrCopyIsCopy(v));
887 for (k = 0; k < v->len; ++k) {
888 VP8LColorCacheInsert(&hashers, argb[pixel_index++]);
889 }
890 }
891 VP8LRefsCursorNext(&c);
892 }
893 VP8LColorCacheClear(&hashers);
894 return 1;
895 }
896
GetBackwardReferencesLowEffort(int width,int height,const uint32_t * const argb,int * const cache_bits,const VP8LHashChain * const hash_chain,VP8LBackwardRefs * const refs_lz77)897 static VP8LBackwardRefs* GetBackwardReferencesLowEffort(
898 int width, int height, const uint32_t* const argb,
899 int* const cache_bits, const VP8LHashChain* const hash_chain,
900 VP8LBackwardRefs* const refs_lz77) {
901 *cache_bits = 0;
902 if (!BackwardReferencesLz77(width, height, argb, 0, hash_chain, refs_lz77)) {
903 return NULL;
904 }
905 BackwardReferences2DLocality(width, refs_lz77);
906 return refs_lz77;
907 }
908
909 extern int VP8LBackwardReferencesTraceBackwards(
910 int xsize, int ysize, const uint32_t* const argb, int cache_bits,
911 const VP8LHashChain* const hash_chain,
912 const VP8LBackwardRefs* const refs_src, VP8LBackwardRefs* const refs_dst);
GetBackwardReferences(int width,int height,const uint32_t * const argb,int quality,int lz77_types_to_try,int cache_bits_max,int do_no_cache,const VP8LHashChain * const hash_chain,VP8LBackwardRefs * const refs,int * const cache_bits_best)913 static int GetBackwardReferences(int width, int height,
914 const uint32_t* const argb, int quality,
915 int lz77_types_to_try, int cache_bits_max,
916 int do_no_cache,
917 const VP8LHashChain* const hash_chain,
918 VP8LBackwardRefs* const refs,
919 int* const cache_bits_best) {
920 VP8LHistogram* histo = NULL;
921 int i, lz77_type;
922 // Index 0 is for a color cache, index 1 for no cache (if needed).
923 int lz77_types_best[2] = {0, 0};
924 float bit_costs_best[2] = {FLT_MAX, FLT_MAX};
925 VP8LHashChain hash_chain_box;
926 VP8LBackwardRefs* const refs_tmp = &refs[do_no_cache ? 2 : 1];
927 int status = 0;
928 memset(&hash_chain_box, 0, sizeof(hash_chain_box));
929
930 histo = VP8LAllocateHistogram(MAX_COLOR_CACHE_BITS);
931 if (histo == NULL) goto Error;
932
933 for (lz77_type = 1; lz77_types_to_try;
934 lz77_types_to_try &= ~lz77_type, lz77_type <<= 1) {
935 int res = 0;
936 float bit_cost = 0.f;
937 if ((lz77_types_to_try & lz77_type) == 0) continue;
938 switch (lz77_type) {
939 case kLZ77RLE:
940 res = BackwardReferencesRle(width, height, argb, 0, refs_tmp);
941 break;
942 case kLZ77Standard:
943 // Compute LZ77 with no cache (0 bits), as the ideal LZ77 with a color
944 // cache is not that different in practice.
945 res = BackwardReferencesLz77(width, height, argb, 0, hash_chain,
946 refs_tmp);
947 break;
948 case kLZ77Box:
949 if (!VP8LHashChainInit(&hash_chain_box, width * height)) goto Error;
950 res = BackwardReferencesLz77Box(width, height, argb, 0, hash_chain,
951 &hash_chain_box, refs_tmp);
952 break;
953 default:
954 assert(0);
955 }
956 if (!res) goto Error;
957
958 // Start with the no color cache case.
959 for (i = 1; i >= 0; --i) {
960 int cache_bits = (i == 1) ? 0 : cache_bits_max;
961
962 if (i == 1 && !do_no_cache) continue;
963
964 if (i == 0) {
965 // Try with a color cache.
966 if (!CalculateBestCacheSize(argb, quality, refs_tmp, &cache_bits)) {
967 goto Error;
968 }
969 if (cache_bits > 0) {
970 if (!BackwardRefsWithLocalCache(argb, cache_bits, refs_tmp)) {
971 goto Error;
972 }
973 }
974 }
975
976 if (i == 0 && do_no_cache && cache_bits == 0) {
977 // No need to re-compute bit_cost as it was computed at i == 1.
978 } else {
979 VP8LHistogramCreate(histo, refs_tmp, cache_bits);
980 bit_cost = VP8LHistogramEstimateBits(histo);
981 }
982
983 if (bit_cost < bit_costs_best[i]) {
984 if (i == 1) {
985 // Do not swap as the full cache analysis would have the wrong
986 // VP8LBackwardRefs to start with.
987 if (!BackwardRefsClone(refs_tmp, &refs[1])) goto Error;
988 } else {
989 BackwardRefsSwap(refs_tmp, &refs[0]);
990 }
991 bit_costs_best[i] = bit_cost;
992 lz77_types_best[i] = lz77_type;
993 if (i == 0) *cache_bits_best = cache_bits;
994 }
995 }
996 }
997 assert(lz77_types_best[0] > 0);
998 assert(!do_no_cache || lz77_types_best[1] > 0);
999
1000 // Improve on simple LZ77 but only for high quality (TraceBackwards is
1001 // costly).
1002 for (i = 1; i >= 0; --i) {
1003 if (i == 1 && !do_no_cache) continue;
1004 if ((lz77_types_best[i] == kLZ77Standard ||
1005 lz77_types_best[i] == kLZ77Box) &&
1006 quality >= 25) {
1007 const VP8LHashChain* const hash_chain_tmp =
1008 (lz77_types_best[i] == kLZ77Standard) ? hash_chain : &hash_chain_box;
1009 const int cache_bits = (i == 1) ? 0 : *cache_bits_best;
1010 float bit_cost_trace;
1011 if (!VP8LBackwardReferencesTraceBackwards(width, height, argb, cache_bits,
1012 hash_chain_tmp, &refs[i],
1013 refs_tmp)) {
1014 goto Error;
1015 }
1016 VP8LHistogramCreate(histo, refs_tmp, cache_bits);
1017 bit_cost_trace = VP8LHistogramEstimateBits(histo);
1018 if (bit_cost_trace < bit_costs_best[i]) {
1019 BackwardRefsSwap(refs_tmp, &refs[i]);
1020 }
1021 }
1022
1023 BackwardReferences2DLocality(width, &refs[i]);
1024
1025 if (i == 1 && lz77_types_best[0] == lz77_types_best[1] &&
1026 *cache_bits_best == 0) {
1027 // If the best cache size is 0 and we have the same best LZ77, just copy
1028 // the data over and stop here.
1029 if (!BackwardRefsClone(&refs[1], &refs[0])) goto Error;
1030 break;
1031 }
1032 }
1033 status = 1;
1034
1035 Error:
1036 VP8LHashChainClear(&hash_chain_box);
1037 VP8LFreeHistogram(histo);
1038 return status;
1039 }
1040
VP8LGetBackwardReferences(int width,int height,const uint32_t * const argb,int quality,int low_effort,int lz77_types_to_try,int cache_bits_max,int do_no_cache,const VP8LHashChain * const hash_chain,VP8LBackwardRefs * const refs,int * const cache_bits_best,const WebPPicture * const pic,int percent_range,int * const percent)1041 int VP8LGetBackwardReferences(
1042 int width, int height, const uint32_t* const argb, int quality,
1043 int low_effort, int lz77_types_to_try, int cache_bits_max, int do_no_cache,
1044 const VP8LHashChain* const hash_chain, VP8LBackwardRefs* const refs,
1045 int* const cache_bits_best, const WebPPicture* const pic, int percent_range,
1046 int* const percent) {
1047 if (low_effort) {
1048 VP8LBackwardRefs* refs_best;
1049 *cache_bits_best = cache_bits_max;
1050 refs_best = GetBackwardReferencesLowEffort(
1051 width, height, argb, cache_bits_best, hash_chain, refs);
1052 if (refs_best == NULL) {
1053 WebPEncodingSetError(pic, VP8_ENC_ERROR_OUT_OF_MEMORY);
1054 return 0;
1055 }
1056 // Set it in first position.
1057 BackwardRefsSwap(refs_best, &refs[0]);
1058 } else {
1059 if (!GetBackwardReferences(width, height, argb, quality, lz77_types_to_try,
1060 cache_bits_max, do_no_cache, hash_chain, refs,
1061 cache_bits_best)) {
1062 WebPEncodingSetError(pic, VP8_ENC_ERROR_OUT_OF_MEMORY);
1063 return 0;
1064 }
1065 }
1066
1067 return WebPReportProgress(pic, *percent + percent_range, percent);
1068 }
1069