1 // Copyright 2018 The Chromium Authors 2 // Use of this source code is governed by a BSD-style license that can be 3 // found in the LICENSE file. 4 5 #ifndef BASE_ALLOCATOR_PARTITION_ALLOCATOR_PARTITION_ALLOC_BASE_NO_DESTRUCTOR_H_ 6 #define BASE_ALLOCATOR_PARTITION_ALLOCATOR_PARTITION_ALLOC_BASE_NO_DESTRUCTOR_H_ 7 8 #include <new> 9 #include <type_traits> 10 #include <utility> 11 12 namespace partition_alloc::internal::base { 13 14 // Helper type to create a function-local static variable of type `T` when `T` 15 // has a non-trivial destructor. Storing a `T` in a `base::NoDestructor<T>` will 16 // prevent `~T()` from running, even when the variable goes out of scope. 17 // 18 // Useful when a variable has static storage duration but its type has a 19 // non-trivial destructor. Chromium bans global constructors and destructors: 20 // using a function-local static variable prevents the former, while using 21 // `base::NoDestructor<T>` prevents the latter. 22 // 23 // ## Caveats 24 // 25 // - Must only be used as a function-local static variable. Declaring a global 26 // variable of type `base::NoDestructor<T>` will still generate a global 27 // constructor; declaring a local or member variable will lead to memory leaks 28 // or other surprising and undesirable behaviour. 29 // 30 // - If the data is rarely used, consider creating it on demand rather than 31 // caching it for the lifetime of the program. Though `base::NoDestructor<T>` 32 // does not heap allocate, the compiler still reserves space in bss for 33 // storing `T`, which costs memory at runtime. 34 // 35 // - If `T` is trivially destructible, do not use `base::NoDestructor<T>`: 36 // 37 // const uint64_t GetUnstableSessionSeed() { 38 // // No need to use `base::NoDestructor<T>` as `uint64_t` is trivially 39 // // destructible and does not require a global destructor. 40 // static const uint64_t kSessionSeed = base::RandUint64(); 41 // return kSessionSeed; 42 // } 43 // 44 // ## Example Usage 45 // 46 // const std::string& GetDefaultText() { 47 // // Required since `static const std::string` requires a global destructor. 48 // static const base::NoDestructor<std::string> s("Hello world!"); 49 // return *s; 50 // } 51 // 52 // More complex initialization using a lambda: 53 // 54 // const std::string& GetRandomNonce() { 55 // // `nonce` is initialized with random data the first time this function is 56 // // called, but its value is fixed thereafter. 57 // static const base::NoDestructor<std::string> nonce([] { 58 // std::string s(16); 59 // crypto::RandString(s.data(), s.size()); 60 // return s; 61 // }()); 62 // return *nonce; 63 // } 64 // 65 // ## Thread safety 66 // 67 // Initialisation of function-local static variables is thread-safe since C++11. 68 // The standard guarantees that: 69 // 70 // - function-local static variables will be initialised the first time 71 // execution passes through the declaration. 72 // 73 // - if another thread's execution concurrently passes through the declaration 74 // in the middle of initialisation, that thread will wait for the in-progress 75 // initialisation to complete. 76 template <typename T> 77 class NoDestructor { 78 public: 79 static_assert( 80 !std::is_trivially_destructible_v<T>, 81 "T is trivially destructible; please use a function-local static " 82 "of type T directly instead"); 83 84 // Not constexpr; just write static constexpr T x = ...; if the value should 85 // be a constexpr. 86 template <typename... Args> NoDestructor(Args &&...args)87 explicit NoDestructor(Args&&... args) { 88 new (storage_) T(std::forward<Args>(args)...); 89 } 90 91 // Allows copy and move construction of the contained type, to allow 92 // construction from an initializer list, e.g. for std::vector. NoDestructor(const T & x)93 explicit NoDestructor(const T& x) { new (storage_) T(x); } NoDestructor(T && x)94 explicit NoDestructor(T&& x) { new (storage_) T(std::move(x)); } 95 96 NoDestructor(const NoDestructor&) = delete; 97 NoDestructor& operator=(const NoDestructor&) = delete; 98 99 ~NoDestructor() = default; 100 101 const T& operator*() const { return *get(); } 102 T& operator*() { return *get(); } 103 104 const T* operator->() const { return get(); } 105 T* operator->() { return get(); } 106 get()107 const T* get() const { return reinterpret_cast<const T*>(storage_); } get()108 T* get() { return reinterpret_cast<T*>(storage_); } 109 110 private: 111 alignas(T) char storage_[sizeof(T)]; 112 113 #if defined(LEAK_SANITIZER) 114 // TODO(https://crbug.com/812277): This is a hack to work around the fact 115 // that LSan doesn't seem to treat NoDestructor as a root for reachability 116 // analysis. This means that code like this: 117 // static base::NoDestructor<std::vector<int>> v({1, 2, 3}); 118 // is considered a leak. Using the standard leak sanitizer annotations to 119 // suppress leaks doesn't work: std::vector is implicitly constructed before 120 // calling the base::NoDestructor constructor. 121 // 122 // Unfortunately, I haven't been able to demonstrate this issue in simpler 123 // reproductions: until that's resolved, hold an explicit pointer to the 124 // placement-new'd object in leak sanitizer mode to help LSan realize that 125 // objects allocated by the contained type are still reachable. 126 T* storage_ptr_ = reinterpret_cast<T*>(storage_); 127 #endif // defined(LEAK_SANITIZER) 128 }; 129 130 } // namespace partition_alloc::internal::base 131 132 #endif // BASE_ALLOCATOR_PARTITION_ALLOCATOR_PARTITION_ALLOC_BASE_NO_DESTRUCTOR_H_ 133