1 // Copyright 2011 The Chromium Authors 2 // Use of this source code is governed by a BSD-style license that can be 3 // found in the LICENSE file. 4 5 #ifndef BASE_FUNCTIONAL_BIND_INTERNAL_H_ 6 #define BASE_FUNCTIONAL_BIND_INTERNAL_H_ 7 8 #include <stddef.h> 9 10 #include <functional> 11 #include <memory> 12 #include <tuple> 13 #include <type_traits> 14 #include <utility> 15 16 #include "base/allocator/partition_allocator/partition_alloc_buildflags.h" 17 #include "base/allocator/partition_allocator/partition_alloc_config.h" 18 #include "base/allocator/partition_allocator/pointers/raw_ptr.h" 19 #include "base/check.h" 20 #include "base/compiler_specific.h" 21 #include "base/functional/callback_internal.h" 22 #include "base/functional/disallow_unretained.h" 23 #include "base/functional/unretained_traits.h" 24 #include "base/memory/raw_ptr.h" 25 #include "base/memory/raw_ptr_asan_bound_arg_tracker.h" 26 #include "base/memory/raw_ptr_asan_service.h" 27 #include "base/memory/raw_ref.h" 28 #include "base/memory/raw_scoped_refptr_mismatch_checker.h" 29 #include "base/memory/weak_ptr.h" 30 #include "base/notreached.h" 31 #include "base/types/always_false.h" 32 #include "build/build_config.h" 33 #include "third_party/abseil-cpp/absl/functional/function_ref.h" 34 35 #if BUILDFLAG(IS_APPLE) && !HAS_FEATURE(objc_arc) 36 #include "base/mac/scoped_block.h" 37 #endif 38 39 // See base/functional/callback.h for user documentation. 40 // 41 // 42 // CONCEPTS: 43 // Functor -- A movable type representing something that should be called. 44 // All function pointers and Callback<> are functors even if the 45 // invocation syntax differs. 46 // RunType -- A function type (as opposed to function _pointer_ type) for 47 // a Callback<>::Run(). Usually just a convenience typedef. 48 // (Bound)Args -- A set of types that stores the arguments. 49 // 50 // Types: 51 // ForceVoidReturn<> -- Helper class for translating function signatures to 52 // equivalent forms with a "void" return type. 53 // FunctorTraits<> -- Type traits used to determine the correct RunType and 54 // invocation manner for a Functor. This is where function 55 // signature adapters are applied. 56 // StorageTraits<> -- Type traits that determine how a bound argument is 57 // stored in BindState. 58 // InvokeHelper<> -- Take a Functor + arguments and actually invokes it. 59 // Handle the differing syntaxes needed for WeakPtr<> 60 // support. This is separate from Invoker to avoid creating 61 // multiple version of Invoker<>. 62 // Invoker<> -- Unwraps the curried parameters and executes the Functor. 63 // BindState<> -- Stores the curried parameters, and is the main entry point 64 // into the Bind() system. 65 66 #if BUILDFLAG(IS_WIN) 67 namespace Microsoft { 68 namespace WRL { 69 template <typename> 70 class ComPtr; 71 } // namespace WRL 72 } // namespace Microsoft 73 #endif 74 75 namespace base { 76 77 template <typename T> 78 struct IsWeakReceiver; 79 80 template <typename> 81 struct BindUnwrapTraits; 82 83 template <typename Functor, typename BoundArgsTuple, typename SFINAE = void> 84 struct CallbackCancellationTraits; 85 86 template <typename Signature> 87 class FunctionRef; 88 89 namespace unretained_traits { 90 91 // UnretainedWrapper will check and report if pointer is dangling upon 92 // invocation. 93 struct MayNotDangle {}; 94 // UnretainedWrapper won't check if pointer is dangling upon invocation. For 95 // extra safety, the receiver must be of type MayBeDangling<>. 96 struct MayDangle {}; 97 // UnretainedWrapper won't check if pointer is dangling upon invocation. The 98 // receiver doesn't have to be a raw_ptr<>. This is just a temporary state, to 99 // allow dangling pointers that would otherwise crash if MayNotDangle was used. 100 // It should be replaced ASAP with MayNotDangle (after fixing the dangling 101 // pointers) or with MayDangle if there is really no other way (after making 102 // receivers MayBeDangling<>). 103 struct MayDangleUntriaged {}; 104 105 } // namespace unretained_traits 106 107 namespace internal { 108 109 template <typename Functor, typename SFINAE = void> 110 struct FunctorTraits; 111 112 template <typename T, 113 typename UnretainedTrait, 114 RawPtrTraits PtrTraits = RawPtrTraits::kEmpty> 115 class UnretainedWrapper { 116 // Note that if PtrTraits already includes MayDangle, DanglingRawPtrType 117 // will be identical to `raw_ptr<T, PtrTraits>`. 118 using DanglingRawPtrType = MayBeDangling<T, PtrTraits>; 119 120 public: 121 // We want the getter type to match the receiver parameter that it is passed 122 // into, to minimize `raw_ptr<T>` <-> `T*` conversions. We also would like to 123 // match `StorageType`, but sometimes we can't have both, as shown in 124 // https://docs.google.com/document/d/1dLM34aKqbNBfRdOYxxV_T-zQU4J5wjmXwIBJZr7JvZM/edit 125 // When we can't have both, prefer the former, mostly because 126 // `GetPtrType`=`raw_ptr<T>` would break if e.g. UnretainedWrapper() is 127 // constructed using `char*`, but the receiver is of type `std::string&`. 128 // This is enforced by static_asserts in base::internal::AssertConstructible. 129 using GetPtrType = std::conditional_t< 130 raw_ptr_traits::IsSupportedType<T>::value && 131 std::is_same_v<UnretainedTrait, unretained_traits::MayDangle>, 132 DanglingRawPtrType, 133 T*>; 134 135 static_assert(TypeSupportsUnretainedV<T>, 136 "Callback cannot capture an unprotected C++ pointer since this " 137 "Type is annotated with DISALLOW_UNRETAINED(). Please see " 138 "base/functional/disallow_unretained.h for alternatives."); 139 140 // Raw pointer makes sense only if there are no PtrTraits. If there are, 141 // it means that a `raw_ptr` is being passed, so use the ctors below instead. 142 template <RawPtrTraits PTraits = PtrTraits, 143 typename = std::enable_if_t<PTraits == RawPtrTraits::kEmpty>> UnretainedWrapper(T * o)144 explicit UnretainedWrapper(T* o) : ptr_(o) {} 145 146 // Trick to only instantiate these constructors if they are used. Otherwise, 147 // instantiating UnretainedWrapper with a T that is not supported by 148 // raw_ptr would trigger raw_ptr<T>'s static_assert. 149 template <typename U = T> UnretainedWrapper(const raw_ptr<U,PtrTraits> & o)150 explicit UnretainedWrapper(const raw_ptr<U, PtrTraits>& o) : ptr_(o) {} 151 template <typename U = T> UnretainedWrapper(raw_ptr<U,PtrTraits> && o)152 explicit UnretainedWrapper(raw_ptr<U, PtrTraits>&& o) : ptr_(std::move(o)) {} 153 get()154 GetPtrType get() const { return GetInternal(ptr_); } 155 156 private: 157 // `ptr_` is either a `raw_ptr` or a regular C++ pointer. 158 template <typename U> GetInternal(U * ptr)159 static GetPtrType GetInternal(U* ptr) { 160 static_assert(std::is_same_v<T, U>); 161 return ptr; 162 } 163 template <typename U, RawPtrTraits Traits> GetInternal(const raw_ptr<U,Traits> & ptr)164 static GetPtrType GetInternal(const raw_ptr<U, Traits>& ptr) { 165 static_assert(std::is_same_v<T, U>); 166 if constexpr (std::is_same_v<UnretainedTrait, 167 unretained_traits::MayNotDangle>) { 168 ptr.ReportIfDangling(); 169 } 170 return ptr; 171 } 172 173 // `Unretained()` arguments often dangle by design (a common design pattern 174 // is to manage an object's lifetime inside the callback itself, using 175 // stateful information), so disable direct dangling pointer detection 176 // of `ptr_`. 177 // 178 // If the callback is invoked, dangling pointer detection will be triggered 179 // before invoking the bound functor (unless stated otherwise, see 180 // `UnsafeDangling()` and `UnsafeDanglingUntriaged()`), when retrieving the 181 // pointer value via `get()` above. 182 using StorageType = 183 std::conditional_t<raw_ptr_traits::IsSupportedType<T>::value, 184 DanglingRawPtrType, 185 T*>; 186 // Avoid converting between different `raw_ptr` types when calling `get()`. 187 // It is allowable to convert `raw_ptr<T>` -> `T*`, but not in the other 188 // direction. See the comment by `GetPtrType` describing for more details. 189 static_assert(std::is_pointer_v<GetPtrType> || 190 std::is_same_v<GetPtrType, StorageType>); 191 StorageType ptr_; 192 }; 193 194 // Storage type for std::reference_wrapper so `BindState` can internally store 195 // unprotected references using raw_ref. 196 // 197 // std::reference_wrapper<T> and T& do not work, since the reference lifetime is 198 // not safely protected by MiraclePtr. 199 // 200 // UnretainedWrapper<T> and raw_ptr<T> do not work, since BindUnwrapTraits would 201 // try to pass by T* rather than T&. 202 template <typename T, 203 typename UnretainedTrait, 204 RawPtrTraits PtrTraits = RawPtrTraits::kEmpty> 205 class UnretainedRefWrapper { 206 public: 207 static_assert( 208 TypeSupportsUnretainedV<T>, 209 "Callback cannot capture an unprotected C++ reference since this " 210 "type is annotated with DISALLOW_UNRETAINED(). Please see " 211 "base/functional/disallow_unretained.h for alternatives."); 212 213 // Raw reference makes sense only if there are no PtrTraits. If there are, 214 // it means that a `raw_ref` is being passed, so use the ctors below instead. 215 template <RawPtrTraits PTraits = PtrTraits, 216 typename = std::enable_if_t<PTraits == RawPtrTraits::kEmpty>> UnretainedRefWrapper(T & o)217 explicit UnretainedRefWrapper(T& o) : ref_(o) {} 218 219 // Trick to only instantiate these constructors if they are used. Otherwise, 220 // instantiating UnretainedWrapper with a T that is not supported by 221 // raw_ref would trigger raw_ref<T>'s static_assert. 222 template <typename U = T> UnretainedRefWrapper(const raw_ref<U,PtrTraits> & o)223 explicit UnretainedRefWrapper(const raw_ref<U, PtrTraits>& o) : ref_(o) {} 224 template <typename U = T> UnretainedRefWrapper(raw_ref<U,PtrTraits> && o)225 explicit UnretainedRefWrapper(raw_ref<U, PtrTraits>&& o) 226 : ref_(std::move(o)) {} 227 get()228 T& get() const { return GetInternal(ref_); } 229 230 private: 231 // `ref_` is either a `raw_ref` or a regular C++ reference. 232 template <typename U> GetInternal(U & ref)233 static T& GetInternal(U& ref) { 234 static_assert(std::is_same_v<T, U>); 235 return ref; 236 } 237 template <typename U, RawPtrTraits Traits> GetInternal(const raw_ref<U,Traits> & ref)238 static T& GetInternal(const raw_ref<U, Traits>& ref) { 239 static_assert(std::is_same_v<T, U>); 240 // The ultimate goal is to crash when a callback is invoked with a 241 // dangling pointer. This is checked here. For now, it is configured to 242 // either crash, DumpWithoutCrashing or be ignored. This depends on the 243 // PartitionAllocUnretainedDanglingPtr feature. 244 if constexpr (std::is_same_v<UnretainedTrait, 245 unretained_traits::MayNotDangle>) { 246 ref.ReportIfDangling(); 247 } 248 // We can't use operator* here, we need to use raw_ptr's GetForExtraction 249 // instead of GetForDereference. If we did use GetForDereference then we'd 250 // crash in ASAN builds on calling a bound callback with a dangling 251 // reference parameter even if that parameter is not used. This could hide 252 // a later unprotected issue that would be reached in release builds. 253 return ref.get(); 254 } 255 256 // `Unretained()` arguments often dangle by design (a common design pattern 257 // is to manage an object's lifetime inside the callback itself, using 258 // stateful information), so disable direct dangling pointer detection 259 // of `ref_`. 260 // 261 // If the callback is invoked, dangling pointer detection will be triggered 262 // before invoking the bound functor (unless stated otherwise, see 263 // `UnsafeDangling()` and `UnsafeDanglingUntriaged()`), when retrieving the 264 // pointer value via `get()` above. 265 using StorageType = 266 std::conditional_t<raw_ptr_traits::IsSupportedType<T>::value, 267 raw_ref<T, DisableDanglingPtrDetection>, 268 T&>; 269 270 StorageType ref_; 271 }; 272 273 // The class is used to wrap `UnretainedRefWrapper` when the latter is used as 274 // a method receiver (a reference on `this` argument). This is needed because 275 // the internal callback mechanism expects the receiver to have the type 276 // `MyClass*` and to have `operator*`. 277 // This is used as storage. 278 template <typename T, typename UnretainedTrait, RawPtrTraits PtrTraits> 279 class UnretainedRefWrapperReceiver { 280 public: 281 // NOLINTNEXTLINE(google-explicit-constructor) UnretainedRefWrapperReceiver(UnretainedRefWrapper<T,UnretainedTrait,PtrTraits> && o)282 UnretainedRefWrapperReceiver( 283 UnretainedRefWrapper<T, UnretainedTrait, PtrTraits>&& o) 284 : obj_(std::move(o)) {} 285 // NOLINTNEXTLINE(google-explicit-constructor) 286 T& operator*() const { return obj_.get(); } 287 288 private: 289 UnretainedRefWrapper<T, UnretainedTrait, PtrTraits> obj_; 290 }; 291 292 // MethodReceiverStorageType converts the current receiver type to its stored 293 // type. For instance, it converts pointers to `scoped_refptr`, and wraps 294 // `UnretainedRefWrapper` to make it compliant with the internal callback 295 // invocation mechanism. 296 template <typename T> 297 struct MethodReceiverStorageType { 298 using Type = 299 std::conditional_t<IsPointerV<T>, scoped_refptr<RemovePointerT<T>>, T>; 300 }; 301 302 template <typename T, typename UnretainedTrait, RawPtrTraits PtrTraits> 303 struct MethodReceiverStorageType< 304 UnretainedRefWrapper<T, UnretainedTrait, PtrTraits>> { 305 // We can't use UnretainedRefWrapper as a receiver directly (see 306 // UnretainedRefWrapperReceiver for why). 307 using Type = UnretainedRefWrapperReceiver<T, UnretainedTrait, PtrTraits>; 308 }; 309 310 template <typename T> 311 class RetainedRefWrapper { 312 public: 313 explicit RetainedRefWrapper(T* o) : ptr_(o) {} 314 explicit RetainedRefWrapper(scoped_refptr<T> o) : ptr_(std::move(o)) {} 315 T* get() const { return ptr_.get(); } 316 317 private: 318 scoped_refptr<T> ptr_; 319 }; 320 321 template <typename T> 322 struct IgnoreResultHelper { 323 explicit IgnoreResultHelper(T functor) : functor_(std::move(functor)) {} 324 explicit operator bool() const { return !!functor_; } 325 326 T functor_; 327 }; 328 329 template <typename T, typename Deleter = std::default_delete<T>> 330 class OwnedWrapper { 331 public: 332 explicit OwnedWrapper(T* o) : ptr_(o) {} 333 explicit OwnedWrapper(std::unique_ptr<T, Deleter>&& ptr) 334 : ptr_(std::move(ptr)) {} 335 T* get() const { return ptr_.get(); } 336 337 private: 338 std::unique_ptr<T, Deleter> ptr_; 339 }; 340 341 template <typename T> 342 class OwnedRefWrapper { 343 public: 344 explicit OwnedRefWrapper(const T& t) : t_(t) {} 345 explicit OwnedRefWrapper(T&& t) : t_(std::move(t)) {} 346 T& get() const { return t_; } 347 348 private: 349 mutable T t_; 350 }; 351 352 // PassedWrapper is a copyable adapter for a scoper that ignores const. 353 // 354 // It is needed to get around the fact that Bind() takes a const reference to 355 // all its arguments. Because Bind() takes a const reference to avoid 356 // unnecessary copies, it is incompatible with movable-but-not-copyable 357 // types; doing a destructive "move" of the type into Bind() would violate 358 // the const correctness. 359 // 360 // This conundrum cannot be solved without either C++11 rvalue references or 361 // a O(2^n) blowup of Bind() templates to handle each combination of regular 362 // types and movable-but-not-copyable types. Thus we introduce a wrapper type 363 // that is copyable to transmit the correct type information down into 364 // BindState<>. Ignoring const in this type makes sense because it is only 365 // created when we are explicitly trying to do a destructive move. 366 // 367 // Two notes: 368 // 1) PassedWrapper supports any type that has a move constructor, however 369 // the type will need to be specifically allowed in order for it to be 370 // bound to a Callback. We guard this explicitly at the call of Passed() 371 // to make for clear errors. Things not given to Passed() will be forwarded 372 // and stored by value which will not work for general move-only types. 373 // 2) is_valid_ is distinct from NULL because it is valid to bind a "NULL" 374 // scoper to a Callback and allow the Callback to execute once. 375 template <typename T> 376 class PassedWrapper { 377 public: 378 explicit PassedWrapper(T&& scoper) : scoper_(std::move(scoper)) {} 379 PassedWrapper(PassedWrapper&& other) 380 : is_valid_(other.is_valid_), scoper_(std::move(other.scoper_)) {} 381 T Take() const { 382 CHECK(is_valid_); 383 is_valid_ = false; 384 return std::move(scoper_); 385 } 386 387 private: 388 mutable bool is_valid_ = true; 389 mutable T scoper_; 390 }; 391 392 template <typename T> 393 using Unwrapper = BindUnwrapTraits<std::decay_t<T>>; 394 395 template <typename T> 396 decltype(auto) Unwrap(T&& o) { 397 return Unwrapper<T>::Unwrap(std::forward<T>(o)); 398 } 399 400 // IsWeakMethod is a helper that determine if we are binding a WeakPtr<> to a 401 // method. It is used internally by Bind() to select the correct 402 // InvokeHelper that will no-op itself in the event the WeakPtr<> for 403 // the target object is invalidated. 404 // 405 // The first argument should be the type of the object that will be received by 406 // the method. 407 template <bool is_method, typename... Args> 408 struct IsWeakMethod : std::false_type {}; 409 410 template <typename T, typename... Args> 411 struct IsWeakMethod<true, T, Args...> : IsWeakReceiver<T> {}; 412 413 // Packs a list of types to hold them in a single type. 414 template <typename... Types> 415 struct TypeList {}; 416 417 // Used for DropTypeListItem implementation. 418 template <size_t n, typename List> 419 struct DropTypeListItemImpl; 420 421 // Do not use enable_if and SFINAE here to avoid MSVC2013 compile failure. 422 template <size_t n, typename T, typename... List> 423 struct DropTypeListItemImpl<n, TypeList<T, List...>> 424 : DropTypeListItemImpl<n - 1, TypeList<List...>> {}; 425 426 template <typename T, typename... List> 427 struct DropTypeListItemImpl<0, TypeList<T, List...>> { 428 using Type = TypeList<T, List...>; 429 }; 430 431 template <> 432 struct DropTypeListItemImpl<0, TypeList<>> { 433 using Type = TypeList<>; 434 }; 435 436 // A type-level function that drops |n| list item from given TypeList. 437 template <size_t n, typename List> 438 using DropTypeListItem = typename DropTypeListItemImpl<n, List>::Type; 439 440 // Used for TakeTypeListItem implementation. 441 template <size_t n, typename List, typename... Accum> 442 struct TakeTypeListItemImpl; 443 444 // Do not use enable_if and SFINAE here to avoid MSVC2013 compile failure. 445 template <size_t n, typename T, typename... List, typename... Accum> 446 struct TakeTypeListItemImpl<n, TypeList<T, List...>, Accum...> 447 : TakeTypeListItemImpl<n - 1, TypeList<List...>, Accum..., T> {}; 448 449 template <typename T, typename... List, typename... Accum> 450 struct TakeTypeListItemImpl<0, TypeList<T, List...>, Accum...> { 451 using Type = TypeList<Accum...>; 452 }; 453 454 template <typename... Accum> 455 struct TakeTypeListItemImpl<0, TypeList<>, Accum...> { 456 using Type = TypeList<Accum...>; 457 }; 458 459 // A type-level function that takes first |n| list item from given TypeList. 460 // E.g. TakeTypeListItem<3, TypeList<A, B, C, D>> is evaluated to 461 // TypeList<A, B, C>. 462 template <size_t n, typename List> 463 using TakeTypeListItem = typename TakeTypeListItemImpl<n, List>::Type; 464 465 // Used for ConcatTypeLists implementation. 466 template <typename List1, typename List2> 467 struct ConcatTypeListsImpl; 468 469 template <typename... Types1, typename... Types2> 470 struct ConcatTypeListsImpl<TypeList<Types1...>, TypeList<Types2...>> { 471 using Type = TypeList<Types1..., Types2...>; 472 }; 473 474 // A type-level function that concats two TypeLists. 475 template <typename List1, typename List2> 476 using ConcatTypeLists = typename ConcatTypeListsImpl<List1, List2>::Type; 477 478 // Used for MakeFunctionType implementation. 479 template <typename R, typename ArgList> 480 struct MakeFunctionTypeImpl; 481 482 template <typename R, typename... Args> 483 struct MakeFunctionTypeImpl<R, TypeList<Args...>> { 484 // MSVC 2013 doesn't support Type Alias of function types. 485 // Revisit this after we update it to newer version. 486 typedef R Type(Args...); 487 }; 488 489 // A type-level function that constructs a function type that has |R| as its 490 // return type and has TypeLists items as its arguments. 491 template <typename R, typename ArgList> 492 using MakeFunctionType = typename MakeFunctionTypeImpl<R, ArgList>::Type; 493 494 // Used for ExtractArgs and ExtractReturnType. 495 template <typename Signature> 496 struct ExtractArgsImpl; 497 498 template <typename R, typename... Args> 499 struct ExtractArgsImpl<R(Args...)> { 500 using ReturnType = R; 501 using ArgsList = TypeList<Args...>; 502 }; 503 504 // A type-level function that extracts function arguments into a TypeList. 505 // E.g. ExtractArgs<R(A, B, C)> is evaluated to TypeList<A, B, C>. 506 template <typename Signature> 507 using ExtractArgs = typename ExtractArgsImpl<Signature>::ArgsList; 508 509 // A type-level function that extracts the return type of a function. 510 // E.g. ExtractReturnType<R(A, B, C)> is evaluated to R. 511 template <typename Signature> 512 using ExtractReturnType = typename ExtractArgsImpl<Signature>::ReturnType; 513 514 template <typename Callable, 515 typename Signature = decltype(&Callable::operator())> 516 struct ExtractCallableRunTypeImpl; 517 518 template <typename Callable, typename R, typename... Args> 519 struct ExtractCallableRunTypeImpl<Callable, R (Callable::*)(Args...)> { 520 using Type = R(Args...); 521 }; 522 523 template <typename Callable, typename R, typename... Args> 524 struct ExtractCallableRunTypeImpl<Callable, R (Callable::*)(Args...) const> { 525 using Type = R(Args...); 526 }; 527 528 template <typename Callable, typename R, typename... Args> 529 struct ExtractCallableRunTypeImpl<Callable, R (Callable::*)(Args...) noexcept> { 530 using Type = R(Args...); 531 }; 532 533 template <typename Callable, typename R, typename... Args> 534 struct ExtractCallableRunTypeImpl<Callable, 535 R (Callable::*)(Args...) const noexcept> { 536 using Type = R(Args...); 537 }; 538 539 // Evaluated to RunType of the given callable type. 540 // Example: 541 // auto f = [](int, char*) { return 0.1; }; 542 // ExtractCallableRunType<decltype(f)> 543 // is evaluated to 544 // double(int, char*); 545 template <typename Callable> 546 using ExtractCallableRunType = 547 typename ExtractCallableRunTypeImpl<Callable>::Type; 548 549 // IsCallableObject<Functor> is std::true_type if |Functor| has operator(). 550 // Otherwise, it's std::false_type. 551 // Example: 552 // IsCallableObject<void(*)()>::value is false. 553 // 554 // struct Foo {}; 555 // IsCallableObject<void(Foo::*)()>::value is false. 556 // 557 // int i = 0; 558 // auto f = [i]() {}; 559 // IsCallableObject<decltype(f)>::value is false. 560 template <typename Functor, typename SFINAE = void> 561 struct IsCallableObject : std::false_type {}; 562 563 template <typename Callable> 564 struct IsCallableObject<Callable, std::void_t<decltype(&Callable::operator())>> 565 : std::true_type {}; 566 567 // HasRefCountedTypeAsRawPtr inherits from true_type when any of the |Args| is a 568 // raw pointer to a RefCounted type. 569 template <typename... Ts> 570 struct HasRefCountedTypeAsRawPtr 571 : std::disjunction<NeedsScopedRefptrButGetsRawPtr<Ts>...> {}; 572 573 // ForceVoidReturn<> 574 // 575 // Set of templates that support forcing the function return type to void. 576 template <typename Sig> 577 struct ForceVoidReturn; 578 579 template <typename R, typename... Args> 580 struct ForceVoidReturn<R(Args...)> { 581 using RunType = void(Args...); 582 }; 583 584 // FunctorTraits<> 585 // 586 // See description at top of file. 587 template <typename Functor, typename SFINAE> 588 struct FunctorTraits; 589 590 // For callable types. 591 // This specialization handles lambdas (captureless and capturing) and functors 592 // with a call operator. Capturing lambdas and stateful functors are explicitly 593 // disallowed by BindImpl(). 594 // 595 // Example: 596 // 597 // // Captureless lambdas are allowed. 598 // []() {return 42;}; 599 // 600 // // Capturing lambdas are *not* allowed. 601 // int x; 602 // [x]() {return x;}; 603 // 604 // // Any empty class with operator() is allowed. 605 // struct Foo { 606 // void operator()() const {} 607 // // No non-static member variable and no virtual functions. 608 // }; 609 template <typename Functor> 610 struct FunctorTraits<Functor, 611 std::enable_if_t<IsCallableObject<Functor>::value>> { 612 using RunType = ExtractCallableRunType<Functor>; 613 static constexpr bool is_method = false; 614 static constexpr bool is_nullable = false; 615 static constexpr bool is_callback = false; 616 static constexpr bool is_stateless = std::is_empty_v<Functor>; 617 618 template <typename RunFunctor, typename... RunArgs> 619 static ExtractReturnType<RunType> Invoke(RunFunctor&& functor, 620 RunArgs&&... args) { 621 return std::forward<RunFunctor>(functor)(std::forward<RunArgs>(args)...); 622 } 623 }; 624 625 // For functions. 626 template <typename R, typename... Args> 627 struct FunctorTraits<R (*)(Args...)> { 628 using RunType = R(Args...); 629 static constexpr bool is_method = false; 630 static constexpr bool is_nullable = true; 631 static constexpr bool is_callback = false; 632 static constexpr bool is_stateless = true; 633 634 template <typename Function, typename... RunArgs> 635 static R Invoke(Function&& function, RunArgs&&... args) { 636 return std::forward<Function>(function)(std::forward<RunArgs>(args)...); 637 } 638 }; 639 640 #if BUILDFLAG(IS_WIN) && !defined(ARCH_CPU_64_BITS) 641 642 // For functions. 643 template <typename R, typename... Args> 644 struct FunctorTraits<R(__stdcall*)(Args...)> { 645 using RunType = R(Args...); 646 static constexpr bool is_method = false; 647 static constexpr bool is_nullable = true; 648 static constexpr bool is_callback = false; 649 static constexpr bool is_stateless = true; 650 651 template <typename... RunArgs> 652 static R Invoke(R(__stdcall* function)(Args...), RunArgs&&... args) { 653 return function(std::forward<RunArgs>(args)...); 654 } 655 }; 656 657 // For functions. 658 template <typename R, typename... Args> 659 struct FunctorTraits<R(__fastcall*)(Args...)> { 660 using RunType = R(Args...); 661 static constexpr bool is_method = false; 662 static constexpr bool is_nullable = true; 663 static constexpr bool is_callback = false; 664 static constexpr bool is_stateless = true; 665 666 template <typename... RunArgs> 667 static R Invoke(R(__fastcall* function)(Args...), RunArgs&&... args) { 668 return function(std::forward<RunArgs>(args)...); 669 } 670 }; 671 672 #endif // BUILDFLAG(IS_WIN) && !defined(ARCH_CPU_64_BITS) 673 674 #if BUILDFLAG(IS_APPLE) 675 676 // Support for Objective-C blocks. There are two implementation depending 677 // on whether Automated Reference Counting (ARC) is enabled. When ARC is 678 // enabled, then the block itself can be bound as the compiler will ensure 679 // its lifetime will be correctly managed. Otherwise, require the block to 680 // be wrapped in a base::mac::ScopedBlock (via base::RetainBlock) that will 681 // correctly manage the block lifetime. 682 // 683 // The two implementation ensure that the One Definition Rule (ODR) is not 684 // broken (it is not possible to write a template base::RetainBlock that would 685 // work correctly both with ARC enabled and disabled). 686 687 #if HAS_FEATURE(objc_arc) 688 689 template <typename R, typename... Args> 690 struct FunctorTraits<R (^)(Args...)> { 691 using RunType = R(Args...); 692 static constexpr bool is_method = false; 693 static constexpr bool is_nullable = true; 694 static constexpr bool is_callback = false; 695 static constexpr bool is_stateless = true; 696 697 template <typename BlockType, typename... RunArgs> 698 static R Invoke(BlockType&& block, RunArgs&&... args) { 699 // According to LLVM documentation (§ 6.3), "local variables of automatic 700 // storage duration do not have precise lifetime." Use objc_precise_lifetime 701 // to ensure that the Objective-C block is not deallocated until it has 702 // finished executing even if the Callback<> is destroyed during the block 703 // execution. 704 // https://clang.llvm.org/docs/AutomaticReferenceCounting.html#precise-lifetime-semantics 705 __attribute__((objc_precise_lifetime)) R (^scoped_block)(Args...) = block; 706 return scoped_block(std::forward<RunArgs>(args)...); 707 } 708 }; 709 710 #else // HAS_FEATURE(objc_arc) 711 712 template <typename R, typename... Args> 713 struct FunctorTraits<base::mac::ScopedBlock<R (^)(Args...)>> { 714 using RunType = R(Args...); 715 static constexpr bool is_method = false; 716 static constexpr bool is_nullable = true; 717 static constexpr bool is_callback = false; 718 static constexpr bool is_stateless = true; 719 720 template <typename BlockType, typename... RunArgs> 721 static R Invoke(BlockType&& block, RunArgs&&... args) { 722 // Copy the block to ensure that the Objective-C block is not deallocated 723 // until it has finished executing even if the Callback<> is destroyed 724 // during the block execution. 725 base::mac::ScopedBlock<R (^)(Args...)> scoped_block(block); 726 return scoped_block.get()(std::forward<RunArgs>(args)...); 727 } 728 }; 729 730 #endif // HAS_FEATURE(objc_arc) 731 #endif // BUILDFLAG(IS_APPLE) 732 733 // For methods. 734 template <typename R, typename Receiver, typename... Args> 735 struct FunctorTraits<R (Receiver::*)(Args...)> { 736 using RunType = R(Receiver*, Args...); 737 static constexpr bool is_method = true; 738 static constexpr bool is_nullable = true; 739 static constexpr bool is_callback = false; 740 static constexpr bool is_stateless = true; 741 742 template <typename Method, typename ReceiverPtr, typename... RunArgs> 743 static R Invoke(Method method, 744 ReceiverPtr&& receiver_ptr, 745 RunArgs&&... args) { 746 return ((*receiver_ptr).*method)(std::forward<RunArgs>(args)...); 747 } 748 }; 749 750 // For const methods. 751 template <typename R, typename Receiver, typename... Args> 752 struct FunctorTraits<R (Receiver::*)(Args...) const> { 753 using RunType = R(const Receiver*, Args...); 754 static constexpr bool is_method = true; 755 static constexpr bool is_nullable = true; 756 static constexpr bool is_callback = false; 757 static constexpr bool is_stateless = true; 758 759 template <typename Method, typename ReceiverPtr, typename... RunArgs> 760 static R Invoke(Method method, 761 ReceiverPtr&& receiver_ptr, 762 RunArgs&&... args) { 763 return ((*receiver_ptr).*method)(std::forward<RunArgs>(args)...); 764 } 765 }; 766 767 #if BUILDFLAG(IS_WIN) && !defined(ARCH_CPU_64_BITS) 768 769 // For __stdcall methods. 770 template <typename R, typename Receiver, typename... Args> 771 struct FunctorTraits<R (__stdcall Receiver::*)(Args...)> { 772 using RunType = R(Receiver*, Args...); 773 static constexpr bool is_method = true; 774 static constexpr bool is_nullable = true; 775 static constexpr bool is_callback = false; 776 static constexpr bool is_stateless = true; 777 778 template <typename Method, typename ReceiverPtr, typename... RunArgs> 779 static R Invoke(Method method, 780 ReceiverPtr&& receiver_ptr, 781 RunArgs&&... args) { 782 return ((*receiver_ptr).*method)(std::forward<RunArgs>(args)...); 783 } 784 }; 785 786 // For __stdcall const methods. 787 template <typename R, typename Receiver, typename... Args> 788 struct FunctorTraits<R (__stdcall Receiver::*)(Args...) const> { 789 using RunType = R(const Receiver*, Args...); 790 static constexpr bool is_method = true; 791 static constexpr bool is_nullable = true; 792 static constexpr bool is_callback = false; 793 static constexpr bool is_stateless = true; 794 795 template <typename Method, typename ReceiverPtr, typename... RunArgs> 796 static R Invoke(Method method, 797 ReceiverPtr&& receiver_ptr, 798 RunArgs&&... args) { 799 return ((*receiver_ptr).*method)(std::forward<RunArgs>(args)...); 800 } 801 }; 802 803 #endif // BUILDFLAG(IS_WIN) && !defined(ARCH_CPU_64_BITS) 804 805 #ifdef __cpp_noexcept_function_type 806 // noexcept makes a distinct function type in C++17. 807 // I.e. `void(*)()` and `void(*)() noexcept` are same in pre-C++17, and 808 // different in C++17. 809 template <typename R, typename... Args> 810 struct FunctorTraits<R (*)(Args...) noexcept> : FunctorTraits<R (*)(Args...)> { 811 }; 812 813 template <typename R, typename Receiver, typename... Args> 814 struct FunctorTraits<R (Receiver::*)(Args...) noexcept> 815 : FunctorTraits<R (Receiver::*)(Args...)> {}; 816 817 template <typename R, typename Receiver, typename... Args> 818 struct FunctorTraits<R (Receiver::*)(Args...) const noexcept> 819 : FunctorTraits<R (Receiver::*)(Args...) const> {}; 820 #endif 821 822 // For IgnoreResults. 823 template <typename T> 824 struct FunctorTraits<IgnoreResultHelper<T>> : FunctorTraits<T> { 825 using RunType = 826 typename ForceVoidReturn<typename FunctorTraits<T>::RunType>::RunType; 827 828 template <typename IgnoreResultType, typename... RunArgs> 829 static void Invoke(IgnoreResultType&& ignore_result_helper, 830 RunArgs&&... args) { 831 FunctorTraits<T>::Invoke( 832 std::forward<IgnoreResultType>(ignore_result_helper).functor_, 833 std::forward<RunArgs>(args)...); 834 } 835 }; 836 837 // For OnceCallbacks. 838 template <typename R, typename... Args> 839 struct FunctorTraits<OnceCallback<R(Args...)>> { 840 using RunType = R(Args...); 841 static constexpr bool is_method = false; 842 static constexpr bool is_nullable = true; 843 static constexpr bool is_callback = true; 844 static constexpr bool is_stateless = true; 845 846 template <typename CallbackType, typename... RunArgs> 847 static R Invoke(CallbackType&& callback, RunArgs&&... args) { 848 DCHECK(!callback.is_null()); 849 return std::forward<CallbackType>(callback).Run( 850 std::forward<RunArgs>(args)...); 851 } 852 }; 853 854 // For RepeatingCallbacks. 855 template <typename R, typename... Args> 856 struct FunctorTraits<RepeatingCallback<R(Args...)>> { 857 using RunType = R(Args...); 858 static constexpr bool is_method = false; 859 static constexpr bool is_nullable = true; 860 static constexpr bool is_callback = true; 861 static constexpr bool is_stateless = true; 862 863 template <typename CallbackType, typename... RunArgs> 864 static R Invoke(CallbackType&& callback, RunArgs&&... args) { 865 DCHECK(!callback.is_null()); 866 return std::forward<CallbackType>(callback).Run( 867 std::forward<RunArgs>(args)...); 868 } 869 }; 870 871 template <typename Functor> 872 using MakeFunctorTraits = FunctorTraits<std::decay_t<Functor>>; 873 874 // StorageTraits<> 875 // 876 // See description at top of file. 877 template <typename T> 878 struct StorageTraits { 879 using Type = T; 880 }; 881 882 // For T*, store as UnretainedWrapper<T> for safety, as it internally uses 883 // raw_ptr<T> (when possible). 884 template <typename T> 885 struct StorageTraits<T*> { 886 using Type = UnretainedWrapper<T, unretained_traits::MayNotDangle>; 887 }; 888 889 // For raw_ptr<T>, store as UnretainedWrapper<T> for safety. This may seem 890 // contradictory, but this ensures guaranteed protection for the pointer even 891 // during execution of callbacks with parameters of type raw_ptr<T>. 892 template <typename T, RawPtrTraits PtrTraits> 893 struct StorageTraits<raw_ptr<T, PtrTraits>> { 894 using Type = UnretainedWrapper<T, unretained_traits::MayNotDangle, PtrTraits>; 895 }; 896 897 // Unwrap std::reference_wrapper and store it in a custom wrapper so that 898 // references are also protected with raw_ptr<T>. 899 template <typename T> 900 struct StorageTraits<std::reference_wrapper<T>> { 901 using Type = UnretainedRefWrapper<T, unretained_traits::MayNotDangle>; 902 }; 903 904 template <typename T> 905 using MakeStorageType = typename StorageTraits<std::decay_t<T>>::Type; 906 907 // InvokeHelper<> 908 // 909 // There are 2 logical InvokeHelper<> specializations: normal, WeakCalls. 910 // 911 // The normal type just calls the underlying runnable. 912 // 913 // WeakCalls need special syntax that is applied to the first argument to check 914 // if they should no-op themselves. 915 template <bool is_weak_call, typename ReturnType, size_t... indices> 916 struct InvokeHelper; 917 918 template <typename ReturnType, size_t... indices> 919 struct InvokeHelper<false, ReturnType, indices...> { 920 template <typename Functor, typename BoundArgsTuple, typename... RunArgs> 921 static inline ReturnType MakeItSo(Functor&& functor, 922 BoundArgsTuple&& bound, 923 RunArgs&&... args) { 924 using Traits = MakeFunctorTraits<Functor>; 925 return Traits::Invoke( 926 std::forward<Functor>(functor), 927 Unwrap(std::get<indices>(std::forward<BoundArgsTuple>(bound)))..., 928 std::forward<RunArgs>(args)...); 929 } 930 }; 931 932 template <typename ReturnType, size_t index_target, size_t... index_tail> 933 struct InvokeHelper<true, ReturnType, index_target, index_tail...> { 934 // WeakCalls are only supported for functions with a void return type. 935 // Otherwise, the function result would be undefined if the WeakPtr<> 936 // is invalidated. 937 static_assert(std::is_void_v<ReturnType>, 938 "weak_ptrs can only bind to methods without return values"); 939 940 template <typename Functor, typename BoundArgsTuple, typename... RunArgs> 941 static inline void MakeItSo(Functor&& functor, 942 BoundArgsTuple&& bound, 943 RunArgs&&... args) { 944 static_assert(index_target == 0); 945 // Note the validity of the weak pointer should be tested _after_ it is 946 // unwrapped, otherwise it creates a race for weak pointer implementations 947 // that allow cross-thread usage and perform `Lock()` in Unwrap() traits. 948 const auto& target = Unwrap(std::get<0>(bound)); 949 if (!target) { 950 return; 951 } 952 using Traits = MakeFunctorTraits<Functor>; 953 Traits::Invoke( 954 std::forward<Functor>(functor), target, 955 Unwrap(std::get<index_tail>(std::forward<BoundArgsTuple>(bound)))..., 956 std::forward<RunArgs>(args)...); 957 } 958 }; 959 960 // Invoker<> 961 // 962 // See description at the top of the file. 963 template <typename StorageType, typename UnboundRunType> 964 struct Invoker; 965 966 template <typename StorageType, typename R, typename... UnboundArgs> 967 struct Invoker<StorageType, R(UnboundArgs...)> { 968 static R RunOnce(BindStateBase* base, 969 PassingType<UnboundArgs>... unbound_args) { 970 // Local references to make debugger stepping easier. If in a debugger, 971 // you really want to warp ahead and step through the 972 // InvokeHelper<>::MakeItSo() call below. 973 StorageType* storage = static_cast<StorageType*>(base); 974 static constexpr size_t num_bound_args = 975 std::tuple_size_v<decltype(storage->bound_args_)>; 976 return RunImpl(std::move(storage->functor_), 977 std::move(storage->bound_args_), 978 std::make_index_sequence<num_bound_args>(), 979 std::forward<UnboundArgs>(unbound_args)...); 980 } 981 982 static R Run(BindStateBase* base, PassingType<UnboundArgs>... unbound_args) { 983 // Local references to make debugger stepping easier. If in a debugger, 984 // you really want to warp ahead and step through the 985 // InvokeHelper<>::MakeItSo() call below. 986 const StorageType* storage = static_cast<StorageType*>(base); 987 static constexpr size_t num_bound_args = 988 std::tuple_size_v<decltype(storage->bound_args_)>; 989 return RunImpl(storage->functor_, storage->bound_args_, 990 std::make_index_sequence<num_bound_args>(), 991 std::forward<UnboundArgs>(unbound_args)...); 992 } 993 994 private: 995 template <typename Functor, typename BoundArgsTuple, size_t... indices> 996 static inline R RunImpl(Functor&& functor, 997 BoundArgsTuple&& bound, 998 std::index_sequence<indices...> seq, 999 UnboundArgs&&... unbound_args) { 1000 static constexpr bool is_method = MakeFunctorTraits<Functor>::is_method; 1001 1002 using DecayedArgsTuple = std::decay_t<BoundArgsTuple>; 1003 1004 #if BUILDFLAG(USE_ASAN_BACKUP_REF_PTR) 1005 RawPtrAsanBoundArgTracker raw_ptr_asan_bound_arg_tracker; 1006 raw_ptr_asan_bound_arg_tracker.AddArgs( 1007 std::get<indices>(std::forward<BoundArgsTuple>(bound))..., 1008 std::forward<UnboundArgs>(unbound_args)...); 1009 #endif // BUILDFLAG(USE_ASAN_BACKUP_REF_PTR) 1010 1011 static constexpr bool is_weak_call = 1012 IsWeakMethod<is_method, 1013 std::tuple_element_t<indices, DecayedArgsTuple>...>(); 1014 1015 // Do not `Unwrap()` here, as that immediately triggers dangling pointer 1016 // detection. Dangling pointer detection should only be triggered if the 1017 // callback is not cancelled, but cancellation status is not determined 1018 // until later inside the InvokeHelper::MakeItSo specialization for weak 1019 // calls. 1020 // 1021 // Dangling pointers when invoking a cancelled callback are not considered 1022 // a memory safety error because protecting raw pointers usage with weak 1023 // receivers (where the weak receiver usually own the pointed objects) is a 1024 // common and broadly used pattern in the codebase. 1025 return InvokeHelper<is_weak_call, R, indices...>::MakeItSo( 1026 std::forward<Functor>(functor), std::forward<BoundArgsTuple>(bound), 1027 std::forward<UnboundArgs>(unbound_args)...); 1028 } 1029 }; 1030 1031 // Extracts necessary type info from Functor and BoundArgs. 1032 // Used to implement MakeUnboundRunType, BindOnce and BindRepeating. 1033 template <typename Functor, typename... BoundArgs> 1034 struct BindTypeHelper { 1035 static constexpr size_t num_bounds = sizeof...(BoundArgs); 1036 using FunctorTraits = MakeFunctorTraits<Functor>; 1037 1038 // Example: 1039 // When Functor is `double (Foo::*)(int, const std::string&)`, and BoundArgs 1040 // is a template pack of `Foo*` and `int16_t`: 1041 // - RunType is `double(Foo*, int, const std::string&)`, 1042 // - ReturnType is `double`, 1043 // - RunParamsList is `TypeList<Foo*, int, const std::string&>`, 1044 // - BoundParamsList is `TypeList<Foo*, int>`, 1045 // - UnboundParamsList is `TypeList<const std::string&>`, 1046 // - BoundArgsList is `TypeList<Foo*, int16_t>`, 1047 // - UnboundRunType is `double(const std::string&)`. 1048 using RunType = typename FunctorTraits::RunType; 1049 using ReturnType = ExtractReturnType<RunType>; 1050 1051 using RunParamsList = ExtractArgs<RunType>; 1052 using BoundParamsList = TakeTypeListItem<num_bounds, RunParamsList>; 1053 using UnboundParamsList = DropTypeListItem<num_bounds, RunParamsList>; 1054 1055 using BoundArgsList = TypeList<BoundArgs...>; 1056 1057 using UnboundRunType = MakeFunctionType<ReturnType, UnboundParamsList>; 1058 }; 1059 1060 template <typename Functor> 1061 std::enable_if_t<FunctorTraits<Functor>::is_nullable, bool> IsNull( 1062 const Functor& functor) { 1063 return !functor; 1064 } 1065 1066 template <typename Functor> 1067 std::enable_if_t<!FunctorTraits<Functor>::is_nullable, bool> IsNull( 1068 const Functor&) { 1069 return false; 1070 } 1071 1072 // Used by QueryCancellationTraits below. 1073 template <typename Functor, typename BoundArgsTuple, size_t... indices> 1074 bool QueryCancellationTraitsImpl(BindStateBase::CancellationQueryMode mode, 1075 const Functor& functor, 1076 const BoundArgsTuple& bound_args, 1077 std::index_sequence<indices...>) { 1078 switch (mode) { 1079 case BindStateBase::IS_CANCELLED: 1080 return CallbackCancellationTraits<Functor, BoundArgsTuple>::IsCancelled( 1081 functor, std::get<indices>(bound_args)...); 1082 case BindStateBase::MAYBE_VALID: 1083 return CallbackCancellationTraits<Functor, BoundArgsTuple>::MaybeValid( 1084 functor, std::get<indices>(bound_args)...); 1085 } 1086 NOTREACHED(); 1087 return false; 1088 } 1089 1090 // Relays |base| to corresponding CallbackCancellationTraits<>::Run(). Returns 1091 // true if the callback |base| represents is canceled. 1092 template <typename BindStateType> 1093 bool QueryCancellationTraits(const BindStateBase* base, 1094 BindStateBase::CancellationQueryMode mode) { 1095 const BindStateType* storage = static_cast<const BindStateType*>(base); 1096 static constexpr size_t num_bound_args = 1097 std::tuple_size_v<decltype(storage->bound_args_)>; 1098 return QueryCancellationTraitsImpl( 1099 mode, storage->functor_, storage->bound_args_, 1100 std::make_index_sequence<num_bound_args>()); 1101 } 1102 1103 // The base case of BanUnconstructedRefCountedReceiver that checks nothing. 1104 template <typename Functor, typename Receiver, typename... Unused> 1105 std::enable_if_t< 1106 !(MakeFunctorTraits<Functor>::is_method && 1107 IsPointerV<std::decay_t<Receiver>> && 1108 IsRefCountedType<RemovePointerT<std::decay_t<Receiver>>>::value)> 1109 BanUnconstructedRefCountedReceiver(const Receiver& receiver, Unused&&...) {} 1110 1111 template <typename Functor> 1112 void BanUnconstructedRefCountedReceiver() {} 1113 1114 // Asserts that Callback is not the first owner of a ref-counted receiver. 1115 template <typename Functor, typename Receiver, typename... Unused> 1116 std::enable_if_t< 1117 MakeFunctorTraits<Functor>::is_method && 1118 IsPointerV<std::decay_t<Receiver>> && 1119 IsRefCountedType<RemovePointerT<std::decay_t<Receiver>>>::value> 1120 BanUnconstructedRefCountedReceiver(const Receiver& receiver, Unused&&...) { 1121 DCHECK(receiver); 1122 1123 // It's error prone to make the implicit first reference to ref-counted types. 1124 // In the example below, base::BindOnce() would make the implicit first 1125 // reference to the ref-counted Foo. If PostTask() failed or the posted task 1126 // ran fast enough, the newly created instance could be destroyed before `oo` 1127 // makes another reference. 1128 // Foo::Foo() { 1129 // base::ThreadPool::PostTask(FROM_HERE, base::BindOnce(&Foo::Bar, this)); 1130 // } 1131 // 1132 // scoped_refptr<Foo> oo = new Foo(); 1133 // 1134 // Hence, base::Bind{Once,Repeating}() refuses to create the first reference 1135 // to ref-counted objects, and DCHECK()s otherwise. As above, that typically 1136 // happens around PostTask() in their constructor, and such objects can be 1137 // destroyed before `new` returns if the task resolves fast enough. 1138 // 1139 // Instead of doing the above, please consider adding a static constructor, 1140 // and keep the first reference alive explicitly. 1141 // // static 1142 // scoped_refptr<Foo> Foo::Create() { 1143 // auto foo = base::WrapRefCounted(new Foo()); 1144 // base::ThreadPool::PostTask(FROM_HERE, base::BindOnce(&Foo::Bar, foo)); 1145 // return foo; 1146 // } 1147 // 1148 // Foo::Foo() {} 1149 // 1150 // scoped_refptr<Foo> oo = Foo::Create(); 1151 // 1152 DCHECK(receiver->HasAtLeastOneRef()); 1153 } 1154 1155 // BindState<> 1156 // 1157 // This stores all the state passed into Bind(). 1158 template <typename Functor, typename... BoundArgs> 1159 struct BindState final : BindStateBase { 1160 using IsCancellable = std::bool_constant< 1161 CallbackCancellationTraits<Functor, 1162 std::tuple<BoundArgs...>>::is_cancellable>; 1163 template <typename ForwardFunctor, typename... ForwardBoundArgs> 1164 static BindState* Create(BindStateBase::InvokeFuncStorage invoke_func, 1165 ForwardFunctor&& functor, 1166 ForwardBoundArgs&&... bound_args) { 1167 // Ban ref counted receivers that were not yet fully constructed to avoid 1168 // a common pattern of racy situation. 1169 BanUnconstructedRefCountedReceiver<ForwardFunctor>(bound_args...); 1170 1171 // IsCancellable is std::false_type if 1172 // CallbackCancellationTraits<>::IsCancelled returns always false. 1173 // Otherwise, it's std::true_type. 1174 return new BindState(IsCancellable{}, invoke_func, 1175 std::forward<ForwardFunctor>(functor), 1176 std::forward<ForwardBoundArgs>(bound_args)...); 1177 } 1178 1179 Functor functor_; 1180 std::tuple<BoundArgs...> bound_args_; 1181 1182 private: 1183 static constexpr bool is_nested_callback = 1184 MakeFunctorTraits<Functor>::is_callback; 1185 1186 template <typename ForwardFunctor, typename... ForwardBoundArgs> 1187 explicit BindState(std::true_type, 1188 BindStateBase::InvokeFuncStorage invoke_func, 1189 ForwardFunctor&& functor, 1190 ForwardBoundArgs&&... bound_args) 1191 : BindStateBase(invoke_func, 1192 &Destroy, 1193 &QueryCancellationTraits<BindState>), 1194 functor_(std::forward<ForwardFunctor>(functor)), 1195 bound_args_(std::forward<ForwardBoundArgs>(bound_args)...) { 1196 // We check the validity of nested callbacks (e.g., Bind(callback, ...)) in 1197 // release builds to avoid null pointers from ending up in posted tasks, 1198 // causing hard-to-diagnose crashes. Ideally we'd do this for all functors 1199 // here, but that would have a large binary size impact. 1200 if (is_nested_callback) { 1201 CHECK(!IsNull(functor_)); 1202 } else { 1203 DCHECK(!IsNull(functor_)); 1204 } 1205 } 1206 1207 template <typename ForwardFunctor, typename... ForwardBoundArgs> 1208 explicit BindState(std::false_type, 1209 BindStateBase::InvokeFuncStorage invoke_func, 1210 ForwardFunctor&& functor, 1211 ForwardBoundArgs&&... bound_args) 1212 : BindStateBase(invoke_func, &Destroy), 1213 functor_(std::forward<ForwardFunctor>(functor)), 1214 bound_args_(std::forward<ForwardBoundArgs>(bound_args)...) { 1215 // See above for CHECK/DCHECK rationale. 1216 if (is_nested_callback) { 1217 CHECK(!IsNull(functor_)); 1218 } else { 1219 DCHECK(!IsNull(functor_)); 1220 } 1221 } 1222 1223 ~BindState() = default; 1224 1225 static void Destroy(const BindStateBase* self) { 1226 delete static_cast<const BindState*>(self); 1227 } 1228 }; 1229 1230 // Used to implement MakeBindStateType. 1231 template <bool is_method, typename Functor, typename... BoundArgs> 1232 struct MakeBindStateTypeImpl; 1233 1234 template <typename Functor, typename... BoundArgs> 1235 struct MakeBindStateTypeImpl<false, Functor, BoundArgs...> { 1236 static_assert(!HasRefCountedTypeAsRawPtr<std::decay_t<BoundArgs>...>::value, 1237 "A parameter is a refcounted type and needs scoped_refptr."); 1238 using Type = BindState<std::decay_t<Functor>, MakeStorageType<BoundArgs>...>; 1239 }; 1240 1241 template <typename Functor> 1242 struct MakeBindStateTypeImpl<true, Functor> { 1243 using Type = BindState<std::decay_t<Functor>>; 1244 }; 1245 1246 template <typename Functor, typename Receiver, typename... BoundArgs> 1247 struct MakeBindStateTypeImpl<true, Functor, Receiver, BoundArgs...> { 1248 private: 1249 using DecayedReceiver = std::decay_t<Receiver>; 1250 static_assert(!std::is_array_v<std::remove_reference_t<Receiver>>, 1251 "First bound argument to a method cannot be an array."); 1252 static_assert( 1253 !IsRawRefV<DecayedReceiver>, 1254 "Receivers may not be raw_ref<T>. If using a raw_ref<T> here is safe" 1255 " and has no lifetime concerns, use base::Unretained() and document why" 1256 " it's safe."); 1257 static_assert( 1258 !IsPointerV<DecayedReceiver> || 1259 IsRefCountedType<RemovePointerT<DecayedReceiver>>::value, 1260 "Receivers may not be raw pointers. If using a raw pointer here is safe" 1261 " and has no lifetime concerns, use base::Unretained() and document why" 1262 " it's safe."); 1263 1264 static_assert(!HasRefCountedTypeAsRawPtr<std::decay_t<BoundArgs>...>::value, 1265 "A parameter is a refcounted type and needs scoped_refptr."); 1266 1267 using ReceiverStorageType = 1268 typename MethodReceiverStorageType<DecayedReceiver>::Type; 1269 1270 public: 1271 using Type = BindState<std::decay_t<Functor>, 1272 ReceiverStorageType, 1273 MakeStorageType<BoundArgs>...>; 1274 }; 1275 1276 template <typename Functor, typename... BoundArgs> 1277 using MakeBindStateType = 1278 typename MakeBindStateTypeImpl<MakeFunctorTraits<Functor>::is_method, 1279 Functor, 1280 BoundArgs...>::Type; 1281 1282 // Returns a RunType of bound functor. 1283 // E.g. MakeUnboundRunType<R(A, B, C), A, B> is evaluated to R(C). 1284 template <typename Functor, typename... BoundArgs> 1285 using MakeUnboundRunType = 1286 typename BindTypeHelper<Functor, BoundArgs...>::UnboundRunType; 1287 1288 // The implementation of TransformToUnwrappedType below. 1289 template <bool is_once, typename T> 1290 struct TransformToUnwrappedTypeImpl; 1291 1292 template <typename T> 1293 struct TransformToUnwrappedTypeImpl<true, T> { 1294 using StoredType = std::decay_t<T>; 1295 using ForwardType = StoredType&&; 1296 using Unwrapped = decltype(Unwrap(std::declval<ForwardType>())); 1297 }; 1298 1299 template <typename T> 1300 struct TransformToUnwrappedTypeImpl<false, T> { 1301 using StoredType = std::decay_t<T>; 1302 using ForwardType = const StoredType&; 1303 using Unwrapped = decltype(Unwrap(std::declval<ForwardType>())); 1304 }; 1305 1306 // Transform |T| into `Unwrapped` type, which is passed to the target function. 1307 // Example: 1308 // In is_once == true case, 1309 // `int&&` -> `int&&`, 1310 // `const int&` -> `int&&`, 1311 // `OwnedWrapper<int>&` -> `int*&&`. 1312 // In is_once == false case, 1313 // `int&&` -> `const int&`, 1314 // `const int&` -> `const int&`, 1315 // `OwnedWrapper<int>&` -> `int* const &`. 1316 template <bool is_once, typename T> 1317 using TransformToUnwrappedType = 1318 typename TransformToUnwrappedTypeImpl<is_once, T>::Unwrapped; 1319 1320 // Transforms |Args| into `Unwrapped` types, and packs them into a TypeList. 1321 // If |is_method| is true, tries to dereference the first argument to support 1322 // smart pointers. 1323 template <bool is_once, bool is_method, typename... Args> 1324 struct MakeUnwrappedTypeListImpl { 1325 using Type = TypeList<TransformToUnwrappedType<is_once, Args>...>; 1326 }; 1327 1328 // Performs special handling for this pointers. 1329 // Example: 1330 // int* -> int*, 1331 // std::unique_ptr<int> -> int*. 1332 template <bool is_once, typename Receiver, typename... Args> 1333 struct MakeUnwrappedTypeListImpl<is_once, true, Receiver, Args...> { 1334 using ReceiverStorageType = 1335 typename MethodReceiverStorageType<std::decay_t<Receiver>>::Type; 1336 using UnwrappedReceiver = 1337 TransformToUnwrappedType<is_once, ReceiverStorageType>; 1338 using Type = TypeList<decltype(&*std::declval<UnwrappedReceiver>()), 1339 TransformToUnwrappedType<is_once, Args>...>; 1340 }; 1341 1342 template <bool is_once, bool is_method, typename... Args> 1343 using MakeUnwrappedTypeList = 1344 typename MakeUnwrappedTypeListImpl<is_once, is_method, Args...>::Type; 1345 1346 // IsOnceCallback<T> is a std::true_type if |T| is a OnceCallback. 1347 template <typename T> 1348 struct IsOnceCallback : std::false_type {}; 1349 1350 template <typename Signature> 1351 struct IsOnceCallback<OnceCallback<Signature>> : std::true_type {}; 1352 1353 // IsUnretainedMayDangle is true if StorageType is of type 1354 // `UnretainedWrapper<T, unretained_traits::MayDangle, PtrTraits>. 1355 // Note that it is false for unretained_traits::MayDangleUntriaged. 1356 template <typename StorageType> 1357 inline constexpr bool IsUnretainedMayDangle = false; 1358 template <typename T, RawPtrTraits PtrTraits> 1359 inline constexpr bool IsUnretainedMayDangle< 1360 UnretainedWrapper<T, unretained_traits::MayDangle, PtrTraits>> = true; 1361 1362 // UnretainedAndRawPtrHaveCompatibleTraits is true if StorageType is of type 1363 // `UnretainedWrapper<T, unretained_traits::MayDangle, PtrTraits1>` and 1364 // FunctionParamType is of type `raw_ptr<T, PtrTraits2>`, and the former's 1365 // ::GetPtrType is the same type as the latter. 1366 template <typename StorageType, typename FunctionParamType> 1367 inline constexpr bool UnretainedAndRawPtrHaveCompatibleTraits = false; 1368 template <typename T, 1369 RawPtrTraits PtrTraitsInUnretained, 1370 RawPtrTraits PtrTraitsInReceiver> 1371 inline constexpr bool UnretainedAndRawPtrHaveCompatibleTraits< 1372 UnretainedWrapper<T, unretained_traits::MayDangle, PtrTraitsInUnretained>, 1373 raw_ptr<T, PtrTraitsInReceiver>> = 1374 std::is_same_v< 1375 typename UnretainedWrapper<T, 1376 unretained_traits::MayDangle, 1377 PtrTraitsInUnretained>::GetPtrType, 1378 raw_ptr<T, PtrTraitsInReceiver>>; 1379 1380 // Helpers to make error messages slightly more readable. 1381 template <int i> 1382 struct BindArgument { 1383 template <typename ForwardingType> 1384 struct ForwardedAs { 1385 template <typename FunctorParamType> 1386 struct ToParamWithType { 1387 static constexpr bool kNotARawPtr = !IsRawPtrV<FunctorParamType>; 1388 1389 static constexpr bool kCanBeForwardedToBoundFunctor = 1390 std::is_constructible_v<FunctorParamType, ForwardingType>; 1391 1392 // If the bound type can't be forwarded then test if `FunctorParamType` is 1393 // a non-const lvalue reference and a reference to the unwrapped type 1394 // *could* have been successfully forwarded. 1395 static constexpr bool kNonConstRefParamMustBeWrapped = 1396 kCanBeForwardedToBoundFunctor || 1397 !(std::is_lvalue_reference_v<FunctorParamType> && 1398 !std::is_const_v<std::remove_reference_t<FunctorParamType>> && 1399 std::is_convertible_v<std::decay_t<ForwardingType>&, 1400 FunctorParamType>); 1401 1402 // Note that this intentionally drops the const qualifier from 1403 // `ForwardingType`, to test if it *could* have been successfully 1404 // forwarded if `Passed()` had been used. 1405 static constexpr bool kMoveOnlyTypeMustUseBasePassed = 1406 kCanBeForwardedToBoundFunctor || 1407 !std::is_constructible_v<FunctorParamType, 1408 std::decay_t<ForwardingType>&&>; 1409 }; 1410 }; 1411 1412 template <typename BoundAsType> 1413 struct BoundAs { 1414 template <typename StorageType> 1415 struct StoredAs { 1416 static constexpr bool kBindArgumentCanBeCaptured = 1417 std::is_constructible_v<StorageType, BoundAsType>; 1418 // Note that this intentionally drops the const qualifier from 1419 // `BoundAsType`, to test if it *could* have been successfully bound if 1420 // `std::move()` had been used. 1421 static constexpr bool kMoveOnlyTypeMustUseStdMove = 1422 kBindArgumentCanBeCaptured || 1423 !std::is_constructible_v<StorageType, std::decay_t<BoundAsType>&&>; 1424 }; 1425 }; 1426 1427 template <typename FunctionParamType> 1428 struct ToParamWithType { 1429 template <typename StorageType> 1430 struct StoredAs { 1431 template <bool is_method> 1432 // true if we are handling `this` parameter. 1433 static constexpr bool kParamIsThisPointer = is_method && i == 0; 1434 // true if the current parameter is of type `raw_ptr<T>` with 1435 // `RawPtrTraits::kMayDangle` trait (e.g. `MayBeDangling<T>`). 1436 static constexpr bool kParamIsDanglingRawPtr = 1437 IsRawPtrMayDangleV<FunctionParamType>; 1438 // true if the bound parameter is of type 1439 // `UnretainedWrapper<T, unretained_traits::MayDangle, PtrTraits>`. 1440 static constexpr bool kBoundPtrMayDangle = 1441 IsUnretainedMayDangle<StorageType>; 1442 // true if bound parameter of type `UnretainedWrapper` and parameter of 1443 // type `raw_ptr` have compatible `RawPtrTraits`. 1444 static constexpr bool kMayBeDanglingTraitsCorrectness = 1445 UnretainedAndRawPtrHaveCompatibleTraits<StorageType, 1446 FunctionParamType>; 1447 // true if the receiver argument **must** be of type `MayBeDangling<T>`. 1448 static constexpr bool kMayBeDanglingMustBeUsed = 1449 kBoundPtrMayDangle && kParamIsDanglingRawPtr; 1450 1451 // true iff: 1452 // - bound parameter is of type 1453 // `UnretainedWrapper<T, unretained_traits::MayDangle, PtrTraits>` 1454 // - the receiving argument is of type `MayBeDangling<T>` 1455 template <bool is_method> 1456 static constexpr bool kMayBeDanglingPtrPassedCorrectly = 1457 kParamIsThisPointer<is_method> || 1458 kBoundPtrMayDangle == kParamIsDanglingRawPtr; 1459 1460 // true if: 1461 // - MayBeDangling<T> must not be used as receiver parameter. 1462 // OR 1463 // - MayBeDangling<T> must be used as receiver parameter and its traits 1464 // are matching Unretained traits. 1465 static constexpr bool kUnsafeDanglingAndMayBeDanglingHaveMatchingTraits = 1466 !kMayBeDanglingMustBeUsed || kMayBeDanglingTraitsCorrectness; 1467 }; 1468 }; 1469 }; 1470 1471 // Helper to assert that parameter |i| of type |Arg| can be bound, which means: 1472 // - |Arg| can be retained internally as |Storage|. 1473 // - |Arg| can be forwarded as |Unwrapped| to |Param|. 1474 template <int i, 1475 bool is_method, 1476 typename Arg, 1477 typename Storage, 1478 typename Unwrapped, 1479 typename Param> 1480 struct AssertConstructible { 1481 private: 1482 // With `BindRepeating`, there are two decision points for how to handle a 1483 // move-only type: 1484 // 1485 // 1. Whether the move-only argument should be moved into the internal 1486 // `BindState`. Either `std::move()` or `Passed` is sufficient to trigger 1487 // move-only semantics. 1488 // 2. Whether or not the bound, move-only argument should be moved to the 1489 // bound functor when invoked. When the argument is bound with `Passed`, 1490 // invoking the callback will destructively move the bound, move-only 1491 // argument to the bound functor. In contrast, if the argument is bound 1492 // with `std::move()`, `RepeatingCallback` will attempt to call the bound 1493 // functor with a constant reference to the bound, move-only argument. This 1494 // will fail if the bound functor accepts that argument by value, since the 1495 // argument cannot be copied. It is this latter case that this 1496 // static_assert aims to catch. 1497 // 1498 // In contrast, `BindOnce()` only has one decision point. Once a move-only 1499 // type is captured by value into the internal `BindState`, the bound, 1500 // move-only argument will always be moved to the functor when invoked. 1501 // Failure to use std::move will simply fail the `kMoveOnlyTypeMustUseStdMove` 1502 // assert below instead. 1503 // 1504 // Note: `Passed()` is a legacy of supporting move-only types when repeating 1505 // callbacks were the only callback type. A `RepeatingCallback` with a 1506 // `Passed()` argument is really a `OnceCallback` and should eventually be 1507 // migrated. 1508 static_assert( 1509 BindArgument<i>::template ForwardedAs<Unwrapped>:: 1510 template ToParamWithType<Param>::kMoveOnlyTypeMustUseBasePassed, 1511 "base::BindRepeating() argument is a move-only type. Use base::Passed() " 1512 "instead of std::move() to transfer ownership from the callback to the " 1513 "bound functor."); 1514 static_assert( 1515 BindArgument<i>::template ForwardedAs<Unwrapped>:: 1516 template ToParamWithType<Param>::kNonConstRefParamMustBeWrapped, 1517 "Bound argument for non-const reference parameter must be wrapped in " 1518 "std::ref() or base::OwnedRef()."); 1519 static_assert( 1520 BindArgument<i>::template ForwardedAs<Unwrapped>:: 1521 template ToParamWithType<Param>::kCanBeForwardedToBoundFunctor, 1522 "Type mismatch between bound argument and bound functor's parameter."); 1523 1524 static_assert(BindArgument<i>::template BoundAs<Arg>::template StoredAs< 1525 Storage>::kMoveOnlyTypeMustUseStdMove, 1526 "Attempting to bind a move-only type. Use std::move() to " 1527 "transfer ownership to the created callback."); 1528 // In practice, this static_assert should be quite rare as the storage type 1529 // is deduced from the arguments passed to `BindOnce()`/`BindRepeating()`. 1530 static_assert( 1531 BindArgument<i>::template BoundAs<Arg>::template StoredAs< 1532 Storage>::kBindArgumentCanBeCaptured, 1533 "Cannot capture argument: is the argument copyable or movable?"); 1534 1535 // We forbid callbacks to use raw_ptr as a parameter. However, we allow 1536 // MayBeDangling<T> iff the callback argument was created using 1537 // `base::UnsafeDangling`. 1538 static_assert( 1539 BindArgument<i>::template ForwardedAs< 1540 Unwrapped>::template ToParamWithType<Param>::kNotARawPtr || 1541 BindArgument<i>::template ToParamWithType<Param>::template StoredAs< 1542 Storage>::kMayBeDanglingMustBeUsed, 1543 "base::Bind() target functor has a parameter of type raw_ptr<T>. " 1544 "raw_ptr<T> should not be used for function parameters, please use T* or " 1545 "T& instead."); 1546 1547 // A bound functor must take a dangling pointer argument (e.g. bound using the 1548 // UnsafeDangling helper) as a MayBeDangling<T>, to make it clear that the 1549 // pointee's lifetime must be externally validated before using it. For 1550 // methods, exempt a bound receiver (i.e. the this pointer) as it is not 1551 // passed as a regular function argument. 1552 static_assert( 1553 BindArgument<i>::template ToParamWithType<Param>::template StoredAs< 1554 Storage>::template kMayBeDanglingPtrPassedCorrectly<is_method>, 1555 "base::UnsafeDangling() pointers must be received by functors with " 1556 "MayBeDangling<T> as parameter."); 1557 1558 static_assert( 1559 BindArgument<i>::template ToParamWithType<Param>::template StoredAs< 1560 Storage>::kUnsafeDanglingAndMayBeDanglingHaveMatchingTraits, 1561 "MayBeDangling<T> parameter must receive the same RawPtrTraits as the " 1562 "one passed to the corresponding base::UnsafeDangling() call."); 1563 }; 1564 1565 // Takes three same-length TypeLists, and applies AssertConstructible for each 1566 // triples. 1567 template <bool is_method, 1568 typename Index, 1569 typename Args, 1570 typename UnwrappedTypeList, 1571 typename ParamsList> 1572 struct AssertBindArgsValidity; 1573 1574 template <bool is_method, 1575 size_t... Ns, 1576 typename... Args, 1577 typename... Unwrapped, 1578 typename... Params> 1579 struct AssertBindArgsValidity<is_method, 1580 std::index_sequence<Ns...>, 1581 TypeList<Args...>, 1582 TypeList<Unwrapped...>, 1583 TypeList<Params...>> 1584 : AssertConstructible<Ns, 1585 is_method, 1586 Args, 1587 std::decay_t<Args>, 1588 Unwrapped, 1589 Params>... { 1590 static constexpr bool ok = true; 1591 }; 1592 1593 template <typename T> 1594 struct AssertBindArgIsNotBasePassed : public std::true_type {}; 1595 1596 template <typename T> 1597 struct AssertBindArgIsNotBasePassed<PassedWrapper<T>> : public std::false_type { 1598 }; 1599 1600 template <template <typename> class CallbackT, 1601 typename Functor, 1602 typename... Args> 1603 decltype(auto) BindImpl(Functor&& functor, Args&&... args) { 1604 // This block checks if each |args| matches to the corresponding params of the 1605 // target function. This check does not affect the behavior of Bind, but its 1606 // error message should be more readable. 1607 static constexpr bool kIsOnce = IsOnceCallback<CallbackT<void()>>::value; 1608 using Helper = BindTypeHelper<Functor, Args...>; 1609 using FunctorTraits = typename Helper::FunctorTraits; 1610 using BoundArgsList = typename Helper::BoundArgsList; 1611 using UnwrappedArgsList = 1612 MakeUnwrappedTypeList<kIsOnce, FunctorTraits::is_method, Args&&...>; 1613 using BoundParamsList = typename Helper::BoundParamsList; 1614 static_assert( 1615 MakeFunctorTraits<Functor>::is_stateless, 1616 "Capturing lambdas and stateful lambdas are intentionally not supported. " 1617 "Please use base::Bind{Once,Repeating} directly to bind arguments."); 1618 static_assert( 1619 AssertBindArgsValidity<FunctorTraits::is_method, 1620 std::make_index_sequence<Helper::num_bounds>, 1621 BoundArgsList, UnwrappedArgsList, 1622 BoundParamsList>::ok, 1623 "The bound args need to be convertible to the target params."); 1624 1625 using BindState = MakeBindStateType<Functor, Args...>; 1626 using UnboundRunType = MakeUnboundRunType<Functor, Args...>; 1627 using Invoker = Invoker<BindState, UnboundRunType>; 1628 using CallbackType = CallbackT<UnboundRunType>; 1629 1630 // Store the invoke func into PolymorphicInvoke before casting it to 1631 // InvokeFuncStorage, so that we can ensure its type matches to 1632 // PolymorphicInvoke, to which CallbackType will cast back. 1633 using PolymorphicInvoke = typename CallbackType::PolymorphicInvoke; 1634 PolymorphicInvoke invoke_func; 1635 if constexpr (kIsOnce) { 1636 invoke_func = Invoker::RunOnce; 1637 } else { 1638 invoke_func = Invoker::Run; 1639 } 1640 1641 using InvokeFuncStorage = BindStateBase::InvokeFuncStorage; 1642 return CallbackType(BindState::Create( 1643 reinterpret_cast<InvokeFuncStorage>(invoke_func), 1644 std::forward<Functor>(functor), std::forward<Args>(args)...)); 1645 } 1646 1647 // Special cases for binding to a base::{Once, Repeating}Callback without extra 1648 // bound arguments. We CHECK() the validity of callback to guard against null 1649 // pointers accidentally ending up in posted tasks, causing hard-to-debug 1650 // crashes. 1651 template <template <typename> class CallbackT, 1652 typename Signature, 1653 std::enable_if_t<std::is_same_v<CallbackT<Signature>, 1654 OnceCallback<Signature>>>* = nullptr> 1655 OnceCallback<Signature> BindImpl(OnceCallback<Signature> callback) { 1656 CHECK(callback); 1657 return callback; 1658 } 1659 1660 template <template <typename> class CallbackT, 1661 typename Signature, 1662 std::enable_if_t<std::is_same_v<CallbackT<Signature>, 1663 OnceCallback<Signature>>>* = nullptr> 1664 OnceCallback<Signature> BindImpl(RepeatingCallback<Signature> callback) { 1665 CHECK(callback); 1666 return callback; 1667 } 1668 1669 template <template <typename> class CallbackT, 1670 typename Signature, 1671 std::enable_if_t<std::is_same_v<CallbackT<Signature>, 1672 RepeatingCallback<Signature>>>* = 1673 nullptr> 1674 RepeatingCallback<Signature> BindImpl(RepeatingCallback<Signature> callback) { 1675 CHECK(callback); 1676 return callback; 1677 } 1678 1679 template <template <typename> class CallbackT, typename Signature> 1680 auto BindImpl(absl::FunctionRef<Signature>, ...) { 1681 static_assert( 1682 AlwaysFalse<Signature>, 1683 "base::Bind{Once,Repeating} require strong ownership: non-owning " 1684 "function references may not bound as the functor due to potential " 1685 "lifetime issues."); 1686 return nullptr; 1687 } 1688 1689 template <template <typename> class CallbackT, typename Signature> 1690 auto BindImpl(FunctionRef<Signature>, ...) { 1691 static_assert( 1692 AlwaysFalse<Signature>, 1693 "base::Bind{Once,Repeating} require strong ownership: non-owning " 1694 "function references may not bound as the functor due to potential " 1695 "lifetime issues."); 1696 return nullptr; 1697 } 1698 1699 } // namespace internal 1700 1701 // An injection point to control |this| pointer behavior on a method invocation. 1702 // If IsWeakReceiver<> is true_type for |T| and |T| is used for a receiver of a 1703 // method, base::Bind cancels the method invocation if the receiver is tested as 1704 // false. 1705 // E.g. Foo::bar() is not called: 1706 // struct Foo : base::SupportsWeakPtr<Foo> { 1707 // void bar() {} 1708 // }; 1709 // 1710 // WeakPtr<Foo> oo = nullptr; 1711 // base::BindOnce(&Foo::bar, oo).Run(); 1712 template <typename T> 1713 struct IsWeakReceiver : std::false_type {}; 1714 1715 template <typename T> 1716 struct IsWeakReceiver<std::reference_wrapper<T>> : IsWeakReceiver<T> {}; 1717 1718 template <typename T> 1719 struct IsWeakReceiver<WeakPtr<T>> : std::true_type {}; 1720 1721 // An injection point to control how objects are checked for maybe validity, 1722 // which is an optimistic thread-safe check for full validity. 1723 template <typename> 1724 struct MaybeValidTraits { 1725 template <typename T> 1726 static bool MaybeValid(const T& o) { 1727 return o.MaybeValid(); 1728 } 1729 }; 1730 1731 // An injection point to control how bound objects passed to the target 1732 // function. BindUnwrapTraits<>::Unwrap() is called for each bound objects right 1733 // before the target function is invoked. 1734 template <typename> 1735 struct BindUnwrapTraits { 1736 template <typename T> 1737 static T&& Unwrap(T&& o) { 1738 return std::forward<T>(o); 1739 } 1740 }; 1741 1742 template <typename T, typename UnretainedTrait, RawPtrTraits PtrTraits> 1743 struct BindUnwrapTraits< 1744 internal::UnretainedWrapper<T, UnretainedTrait, PtrTraits>> { 1745 static auto Unwrap( 1746 const internal::UnretainedWrapper<T, UnretainedTrait, PtrTraits>& o) { 1747 return o.get(); 1748 } 1749 }; 1750 1751 template <typename T, typename UnretainedTrait, RawPtrTraits PtrTraits> 1752 struct BindUnwrapTraits< 1753 internal::UnretainedRefWrapper<T, UnretainedTrait, PtrTraits>> { 1754 static T& Unwrap( 1755 const internal::UnretainedRefWrapper<T, UnretainedTrait, PtrTraits>& o) { 1756 return o.get(); 1757 } 1758 }; 1759 1760 template <typename T> 1761 struct BindUnwrapTraits<internal::RetainedRefWrapper<T>> { 1762 static T* Unwrap(const internal::RetainedRefWrapper<T>& o) { return o.get(); } 1763 }; 1764 1765 template <typename T, typename Deleter> 1766 struct BindUnwrapTraits<internal::OwnedWrapper<T, Deleter>> { 1767 static T* Unwrap(const internal::OwnedWrapper<T, Deleter>& o) { 1768 return o.get(); 1769 } 1770 }; 1771 1772 template <typename T> 1773 struct BindUnwrapTraits<internal::OwnedRefWrapper<T>> { 1774 static T& Unwrap(const internal::OwnedRefWrapper<T>& o) { return o.get(); } 1775 }; 1776 1777 template <typename T> 1778 struct BindUnwrapTraits<internal::PassedWrapper<T>> { 1779 static T Unwrap(const internal::PassedWrapper<T>& o) { return o.Take(); } 1780 }; 1781 1782 #if BUILDFLAG(IS_WIN) 1783 template <typename T> 1784 struct BindUnwrapTraits<Microsoft::WRL::ComPtr<T>> { 1785 static T* Unwrap(const Microsoft::WRL::ComPtr<T>& ptr) { return ptr.Get(); } 1786 }; 1787 #endif 1788 1789 // CallbackCancellationTraits allows customization of Callback's cancellation 1790 // semantics. By default, callbacks are not cancellable. A specialization should 1791 // set is_cancellable = true and implement an IsCancelled() that returns if the 1792 // callback should be cancelled. 1793 template <typename Functor, typename BoundArgsTuple, typename SFINAE> 1794 struct CallbackCancellationTraits { 1795 static constexpr bool is_cancellable = false; 1796 }; 1797 1798 // Specialization for method bound to weak pointer receiver. 1799 template <typename Functor, typename... BoundArgs> 1800 struct CallbackCancellationTraits< 1801 Functor, 1802 std::tuple<BoundArgs...>, 1803 std::enable_if_t< 1804 internal::IsWeakMethod<internal::FunctorTraits<Functor>::is_method, 1805 BoundArgs...>::value>> { 1806 static constexpr bool is_cancellable = true; 1807 1808 template <typename Receiver, typename... Args> 1809 static bool IsCancelled(const Functor&, 1810 const Receiver& receiver, 1811 const Args&...) { 1812 return !receiver; 1813 } 1814 1815 template <typename Receiver, typename... Args> 1816 static bool MaybeValid(const Functor&, 1817 const Receiver& receiver, 1818 const Args&...) { 1819 return MaybeValidTraits<Receiver>::MaybeValid(receiver); 1820 } 1821 }; 1822 1823 // Specialization for a nested bind. 1824 template <typename Signature, typename... BoundArgs> 1825 struct CallbackCancellationTraits<OnceCallback<Signature>, 1826 std::tuple<BoundArgs...>> { 1827 static constexpr bool is_cancellable = true; 1828 1829 template <typename Functor> 1830 static bool IsCancelled(const Functor& functor, const BoundArgs&...) { 1831 return functor.IsCancelled(); 1832 } 1833 1834 template <typename Functor> 1835 static bool MaybeValid(const Functor& functor, const BoundArgs&...) { 1836 return MaybeValidTraits<Functor>::MaybeValid(functor); 1837 } 1838 }; 1839 1840 template <typename Signature, typename... BoundArgs> 1841 struct CallbackCancellationTraits<RepeatingCallback<Signature>, 1842 std::tuple<BoundArgs...>> { 1843 static constexpr bool is_cancellable = true; 1844 1845 template <typename Functor> 1846 static bool IsCancelled(const Functor& functor, const BoundArgs&...) { 1847 return functor.IsCancelled(); 1848 } 1849 1850 template <typename Functor> 1851 static bool MaybeValid(const Functor& functor, const BoundArgs&...) { 1852 return MaybeValidTraits<Functor>::MaybeValid(functor); 1853 } 1854 }; 1855 1856 } // namespace base 1857 1858 #endif // BASE_FUNCTIONAL_BIND_INTERNAL_H_ 1859