• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2019 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "src/trace_processor/importers/common/clock_tracker.h"
18 
19 #include <optional>
20 #include <random>
21 
22 #include "src/trace_processor/importers/common/metadata_tracker.h"
23 #include "src/trace_processor/storage/trace_storage.h"
24 #include "src/trace_processor/types/trace_processor_context.h"
25 #include "test/gtest_and_gmock.h"
26 
27 #include "protos/perfetto/common/builtin_clock.pbzero.h"
28 #include "protos/perfetto/trace/clock_snapshot.pbzero.h"
29 
30 namespace perfetto {
31 namespace trace_processor {
32 
33 class ClockTrackerTest : public ::testing::Test {
34  public:
ClockTrackerTest()35   ClockTrackerTest() {
36     context_.storage.reset(new TraceStorage());
37     context_.metadata_tracker.reset(
38         new MetadataTracker(context_.storage.get()));
39   }
40 
41   // using ClockId = uint64_t;
42   TraceProcessorContext context_;
43   ClockTracker ct_{&context_};
Convert(ClockTracker::ClockId src_clock_id,int64_t src_timestamp,ClockTracker::ClockId target_clock_id)44   base::StatusOr<int64_t> Convert(ClockTracker::ClockId src_clock_id,
45                                   int64_t src_timestamp,
46                                   ClockTracker::ClockId target_clock_id) {
47     return ct_.Convert(src_clock_id, src_timestamp, target_clock_id);
48   }
49 };
50 
51 namespace {
52 
53 using ::testing::NiceMock;
54 using Clock = protos::pbzero::ClockSnapshot::Clock;
55 
56 constexpr auto REALTIME = protos::pbzero::BUILTIN_CLOCK_REALTIME;
57 constexpr auto BOOTTIME = protos::pbzero::BUILTIN_CLOCK_BOOTTIME;
58 constexpr auto MONOTONIC = protos::pbzero::BUILTIN_CLOCK_MONOTONIC;
59 constexpr auto MONOTONIC_COARSE =
60     protos::pbzero::BUILTIN_CLOCK_MONOTONIC_COARSE;
61 constexpr auto MONOTONIC_RAW = protos::pbzero::BUILTIN_CLOCK_MONOTONIC_RAW;
62 
TEST_F(ClockTrackerTest,ClockDomainConversions)63 TEST_F(ClockTrackerTest, ClockDomainConversions) {
64   EXPECT_FALSE(ct_.ToTraceTime(REALTIME, 0).ok());
65 
66   ct_.AddSnapshot({{REALTIME, 10}, {BOOTTIME, 10010}});
67   ct_.AddSnapshot({{REALTIME, 20}, {BOOTTIME, 20220}});
68   ct_.AddSnapshot({{REALTIME, 30}, {BOOTTIME, 30030}});
69   ct_.AddSnapshot({{MONOTONIC, 1000}, {BOOTTIME, 100000}});
70 
71   EXPECT_EQ(*ct_.ToTraceTime(REALTIME, 0), 10000);
72   EXPECT_EQ(*ct_.ToTraceTime(REALTIME, 1), 10001);
73   EXPECT_EQ(*ct_.ToTraceTime(REALTIME, 9), 10009);
74   EXPECT_EQ(*ct_.ToTraceTime(REALTIME, 10), 10010);
75   EXPECT_EQ(*ct_.ToTraceTime(REALTIME, 11), 10011);
76   EXPECT_EQ(*ct_.ToTraceTime(REALTIME, 19), 10019);
77   EXPECT_EQ(*ct_.ToTraceTime(REALTIME, 20), 20220);
78   EXPECT_EQ(*ct_.ToTraceTime(REALTIME, 21), 20221);
79   EXPECT_EQ(*ct_.ToTraceTime(REALTIME, 29), 20229);
80   EXPECT_EQ(*ct_.ToTraceTime(REALTIME, 30), 30030);
81   EXPECT_EQ(*ct_.ToTraceTime(REALTIME, 40), 30040);
82 
83   EXPECT_EQ(*ct_.ToTraceTime(MONOTONIC, 0), 100000 - 1000);
84   EXPECT_EQ(*ct_.ToTraceTime(MONOTONIC, 999), 100000 - 1);
85   EXPECT_EQ(*ct_.ToTraceTime(MONOTONIC, 1000), 100000);
86   EXPECT_EQ(*ct_.ToTraceTime(MONOTONIC, 1e6),
87             static_cast<int64_t>(100000 - 1000 + 1e6));
88 }
89 
TEST_F(ClockTrackerTest,ToTraceTimeFromSnapshot)90 TEST_F(ClockTrackerTest, ToTraceTimeFromSnapshot) {
91   EXPECT_FALSE(ct_.ToTraceTime(REALTIME, 0).ok());
92 
93   EXPECT_EQ(*ct_.ToTraceTimeFromSnapshot({{REALTIME, 10}, {BOOTTIME, 10010}}),
94             10010);
95   EXPECT_EQ(ct_.ToTraceTimeFromSnapshot({{MONOTONIC, 10}, {REALTIME, 10010}}),
96             std::nullopt);
97 }
98 
99 // When a clock moves backwards conversions *from* that clock are forbidden
100 // but conversions *to* that clock should still work.
101 // Think to the case of REALTIME going backwards from 3AM to 2AM during DST day.
102 // You can't convert 2.10AM REALTIME to BOOTTIME because there are two possible
103 // answers, but you can still unambiguosly convert BOOTTIME into REALTIME.
TEST_F(ClockTrackerTest,RealTimeClockMovingBackwards)104 TEST_F(ClockTrackerTest, RealTimeClockMovingBackwards) {
105   ct_.AddSnapshot({{BOOTTIME, 10010}, {REALTIME, 10}});
106 
107   // At this point conversions are still possible in both ways because we
108   // haven't broken monotonicity yet.
109   EXPECT_EQ(*ct_.ToTraceTime(REALTIME, 11), 10011);
110 
111   ct_.AddSnapshot({{BOOTTIME, 10020}, {REALTIME, 20}});
112   ct_.AddSnapshot({{BOOTTIME, 30040}, {REALTIME, 40}});
113   ct_.AddSnapshot({{BOOTTIME, 40030}, {REALTIME, 30}});
114 
115   // Now only BOOTIME -> REALTIME conversion should be possible.
116   EXPECT_FALSE(ct_.ToTraceTime(REALTIME, 11).ok());
117   EXPECT_EQ(*Convert(BOOTTIME, 10011, REALTIME), 11);
118   EXPECT_EQ(*Convert(BOOTTIME, 10029, REALTIME), 29);
119   EXPECT_EQ(*Convert(BOOTTIME, 40030, REALTIME), 30);
120   EXPECT_EQ(*Convert(BOOTTIME, 40040, REALTIME), 40);
121 
122   ct_.AddSnapshot({{BOOTTIME, 50000}, {REALTIME, 50}});
123   EXPECT_EQ(*Convert(BOOTTIME, 50005, REALTIME), 55);
124 
125   ct_.AddSnapshot({{BOOTTIME, 60020}, {REALTIME, 20}});
126   EXPECT_EQ(*Convert(BOOTTIME, 60020, REALTIME), 20);
127 }
128 
129 // Simulate the following scenario:
130 // MONOTONIC = MONOTONIC_COARSE + 10
131 // BOOTTIME = MONOTONIC + 1000 (until T=200)
132 // BOOTTIME = MONOTONIC + 2000 (from T=200)
133 // Then resolve MONOTONIC_COARSE. This requires a two-level resolution:
134 // MONOTONIC_COARSE -> MONOTONIC -> BOOTTIME.
TEST_F(ClockTrackerTest,ChainedResolutionSimple)135 TEST_F(ClockTrackerTest, ChainedResolutionSimple) {
136   ct_.AddSnapshot({{MONOTONIC_COARSE, 1}, {MONOTONIC, 11}});
137   ct_.AddSnapshot({{MONOTONIC, 100}, {BOOTTIME, 1100}});
138   ct_.AddSnapshot({{MONOTONIC, 200}, {BOOTTIME, 2200}});
139 
140   // MONOTONIC_COARSE@100 == MONOTONIC@110 == BOOTTIME@1100.
141   EXPECT_EQ(*ct_.ToTraceTime(MONOTONIC, 110), 1110);
142   EXPECT_EQ(*ct_.ToTraceTime(MONOTONIC_COARSE, 100), 100 + 10 + 1000);
143   EXPECT_EQ(*ct_.ToTraceTime(MONOTONIC_COARSE, 202), 202 + 10 + 2000);
144 }
145 
TEST_F(ClockTrackerTest,ChainedResolutionHard)146 TEST_F(ClockTrackerTest, ChainedResolutionHard) {
147   // MONOTONIC_COARSE = MONOTONIC_RAW - 1.
148   ct_.AddSnapshot({{MONOTONIC_RAW, 10}, {MONOTONIC_COARSE, 9}});
149 
150   // MONOTONIC = MONOTONIC_COARSE - 50.
151   ct_.AddSnapshot({{MONOTONIC_COARSE, 100}, {MONOTONIC, 50}});
152 
153   // BOOTTIME = MONOTONIC + 1000 until T=100 (see below).
154   ct_.AddSnapshot({{MONOTONIC, 1}, {BOOTTIME, 1001}, {REALTIME, 10001}});
155 
156   // BOOTTIME = MONOTONIC + 2000 from T=100.
157   // At the same time, REALTIME goes backwards.
158   ct_.AddSnapshot({{MONOTONIC, 101}, {BOOTTIME, 2101}, {REALTIME, 9101}});
159 
160   // 1-hop conversions.
161   EXPECT_EQ(*Convert(MONOTONIC_RAW, 2, MONOTONIC_COARSE), 1);
162   EXPECT_EQ(*Convert(MONOTONIC_COARSE, 1, MONOTONIC_RAW), 2);
163   EXPECT_EQ(*Convert(MONOTONIC_RAW, 100001, MONOTONIC_COARSE), 100000);
164   EXPECT_EQ(*Convert(MONOTONIC_COARSE, 100000, MONOTONIC_RAW), 100001);
165 
166   // 2-hop conversions (MONOTONIC_RAW <-> MONOTONIC_COARSE <-> MONOTONIC).
167   // From above, MONOTONIC = (MONOTONIC_RAW - 1) - 50.
168   EXPECT_EQ(*Convert(MONOTONIC_RAW, 53, MONOTONIC), 53 - 1 - 50);
169   EXPECT_EQ(*Convert(MONOTONIC, 2, MONOTONIC_RAW), 2 + 1 + 50);
170 
171   // 3-hop conversions (as above + BOOTTIME)
172   EXPECT_EQ(*Convert(MONOTONIC_RAW, 53, BOOTTIME), 53 - 1 - 50 + 1000);
173   EXPECT_EQ(*Convert(BOOTTIME, 1002, MONOTONIC_RAW), 1002 - 1000 + 1 + 50);
174 
175   EXPECT_EQ(*Convert(MONOTONIC_RAW, 753, BOOTTIME), 753 - 1 - 50 + 2000);
176   EXPECT_EQ(*Convert(BOOTTIME, 2702, MONOTONIC_RAW), 2702 - 2000 + 1 + 50);
177 
178   // 3-hop conversion to REALTIME, one way only (REALTIME goes backwards).
179   EXPECT_EQ(*Convert(MONOTONIC_RAW, 53, REALTIME), 53 - 1 - 50 + 10000);
180   EXPECT_EQ(*Convert(MONOTONIC_RAW, 753, REALTIME), 753 - 1 - 50 + 9000);
181 }
182 
183 // Regression test for b/158182858. When taking two snapshots back-to-back,
184 // MONOTONIC_COARSE might be stuck to the last value. We should still be able
185 // to convert both ways in this case.
TEST_F(ClockTrackerTest,NonStrictlyMonotonic)186 TEST_F(ClockTrackerTest, NonStrictlyMonotonic) {
187   ct_.AddSnapshot({{BOOTTIME, 101}, {MONOTONIC, 51}, {MONOTONIC_COARSE, 50}});
188   ct_.AddSnapshot({{BOOTTIME, 105}, {MONOTONIC, 55}, {MONOTONIC_COARSE, 50}});
189 
190   // This last snapshot is deliberately identical to the previous one. This
191   // is to simulate the case of taking two snapshots so close to each other
192   // that all clocks are identical.
193   ct_.AddSnapshot({{BOOTTIME, 105}, {MONOTONIC, 55}, {MONOTONIC_COARSE, 50}});
194 
195   EXPECT_EQ(*Convert(MONOTONIC_COARSE, 49, MONOTONIC), 50);
196   EXPECT_EQ(*Convert(MONOTONIC_COARSE, 50, MONOTONIC), 55);
197   EXPECT_EQ(*Convert(MONOTONIC_COARSE, 51, MONOTONIC), 56);
198 
199   EXPECT_EQ(*Convert(MONOTONIC_COARSE, 40, BOOTTIME), 91);
200   EXPECT_EQ(*Convert(MONOTONIC_COARSE, 50, BOOTTIME), 105);
201   EXPECT_EQ(*Convert(MONOTONIC_COARSE, 55, BOOTTIME), 110);
202 
203   EXPECT_EQ(*Convert(BOOTTIME, 91, MONOTONIC_COARSE), 40);
204   EXPECT_EQ(*Convert(BOOTTIME, 105, MONOTONIC_COARSE), 50);
205   EXPECT_EQ(*Convert(BOOTTIME, 110, MONOTONIC_COARSE), 55);
206 }
207 
TEST_F(ClockTrackerTest,SequenceScopedClocks)208 TEST_F(ClockTrackerTest, SequenceScopedClocks) {
209   ct_.AddSnapshot({{MONOTONIC, 1000}, {BOOTTIME, 100000}});
210 
211   ClockTracker::ClockId c64_1 = ct_.SeqenceToGlobalClock(1, 64);
212   ClockTracker::ClockId c65_1 = ct_.SeqenceToGlobalClock(1, 65);
213   ClockTracker::ClockId c66_1 = ct_.SeqenceToGlobalClock(1, 66);
214   ClockTracker::ClockId c66_2 = ct_.SeqenceToGlobalClock(2, 64);
215 
216   ct_.AddSnapshot(
217       {{MONOTONIC, 10000},
218        {c64_1, 100000},
219        {c65_1, 100, /*unit_multiplier_ns=*/1000, /*is_incremental=*/false},
220        {c66_1, 10, /*unit_multiplier_ns=*/1000, /*is_incremental=*/true}});
221 
222   // c64_1 is non-incremental and in nanos.
223   EXPECT_EQ(*Convert(c64_1, 150000, MONOTONIC), 60000);
224   EXPECT_EQ(*Convert(c64_1, 150000, BOOTTIME), 159000);
225   EXPECT_EQ(*ct_.ToTraceTime(c64_1, 150000), 159000);
226 
227   // c65_1 is non-incremental and in micros.
228   EXPECT_EQ(*Convert(c65_1, 150, MONOTONIC), 60000);
229   EXPECT_EQ(*Convert(c65_1, 150, BOOTTIME), 159000);
230   EXPECT_EQ(*ct_.ToTraceTime(c65_1, 150), 159000);
231 
232   // c66_1 is incremental and in micros.
233   EXPECT_EQ(*Convert(c66_1, 1 /* abs 11 */, MONOTONIC), 11000);
234   EXPECT_EQ(*Convert(c66_1, 1 /* abs 12 */, MONOTONIC), 12000);
235   EXPECT_EQ(*Convert(c66_1, 1 /* abs 13 */, BOOTTIME), 112000);
236   EXPECT_EQ(*ct_.ToTraceTime(c66_1, 2 /* abs 15 */), 114000);
237 
238   ct_.AddSnapshot(
239       {{MONOTONIC, 20000},
240        {c66_1, 20, /*unit_multiplier_ns=*/1000, /*incremental=*/true}});
241   ct_.AddSnapshot(
242       {{MONOTONIC, 20000},
243        {c66_2, 20, /*unit_multiplier_ns=*/1000, /*incremental=*/true}});
244 
245   // c66_1 and c66_2 are both incremental and in micros, but shouldn't affect
246   // each other.
247   EXPECT_EQ(*Convert(c66_1, 1 /* abs 21 */, MONOTONIC), 21000);
248   EXPECT_EQ(*Convert(c66_2, 2 /* abs 22 */, MONOTONIC), 22000);
249   EXPECT_EQ(*Convert(c66_1, 1 /* abs 22 */, MONOTONIC), 22000);
250   EXPECT_EQ(*Convert(c66_2, 2 /* abs 24 */, MONOTONIC), 24000);
251   EXPECT_EQ(*Convert(c66_1, 1 /* abs 23 */, BOOTTIME), 122000);
252   EXPECT_EQ(*Convert(c66_2, 2 /* abs 26 */, BOOTTIME), 125000);
253   EXPECT_EQ(*ct_.ToTraceTime(c66_1, 2 /* abs 25 */), 124000);
254   EXPECT_EQ(*ct_.ToTraceTime(c66_2, 4 /* abs 30 */), 129000);
255 }
256 
257 // Tests that the cache doesn't affect the results of Convert() in unexpected
258 // ways.
TEST_F(ClockTrackerTest,CacheDoesntAffectResults)259 TEST_F(ClockTrackerTest, CacheDoesntAffectResults) {
260   std::minstd_rand rnd;
261   int last_mono = 0;
262   int last_boot = 0;
263   int last_raw = 0;
264   static const int increments[] = {1, 2, 10};
265   for (int i = 0; i < 1000; i++) {
266     last_mono += increments[rnd() % base::ArraySize(increments)];
267     last_boot += increments[rnd() % base::ArraySize(increments)];
268     ct_.AddSnapshot({{MONOTONIC, last_mono}, {BOOTTIME, last_boot}});
269 
270     last_raw += increments[rnd() % base::ArraySize(increments)];
271     last_boot += increments[rnd() % base::ArraySize(increments)];
272     ct_.AddSnapshot({{MONOTONIC_RAW, last_raw}, {BOOTTIME, last_boot}});
273   }
274 
275   for (int i = 0; i < 1000; i++) {
276     int64_t val = static_cast<int64_t>(rnd()) % 10000;
277     for (int j = 0; j < 5; j++) {
278       ClockTracker::ClockId src;
279       ClockTracker::ClockId tgt;
280       if (j == 0) {
281         std::tie(src, tgt) = std::make_tuple(MONOTONIC, BOOTTIME);
282       } else if (j == 1) {
283         std::tie(src, tgt) = std::make_tuple(MONOTONIC_RAW, BOOTTIME);
284       } else if (j == 2) {
285         std::tie(src, tgt) = std::make_tuple(BOOTTIME, MONOTONIC);
286       } else if (j == 3) {
287         std::tie(src, tgt) = std::make_tuple(BOOTTIME, MONOTONIC_RAW);
288       } else if (j == 4) {
289         std::tie(src, tgt) = std::make_tuple(MONOTONIC_RAW, MONOTONIC);
290       } else {
291         PERFETTO_FATAL("j out of bounds");
292       }
293       // It will still write the cache, just not lookup.
294       ct_.set_cache_lookups_disabled_for_testing(true);
295       auto not_cached = Convert(src, val, tgt);
296 
297       // This should 100% hit the cache.
298       ct_.set_cache_lookups_disabled_for_testing(false);
299       auto cached = Convert(src, val, tgt);
300 
301       ASSERT_EQ(not_cached.value(), cached.value());
302     }
303   }
304 }
305 
306 }  // namespace
307 }  // namespace trace_processor
308 }  // namespace perfetto
309