1 /*
2 * Copyright (c) Yann Collet, Facebook, Inc.
3 * All rights reserved.
4 *
5 * This source code is licensed under both the BSD-style license (found in the
6 * LICENSE file in the root directory of this source tree) and the GPLv2 (found
7 * in the COPYING file in the root directory of this source tree).
8 * You may select, at your option, one of the above-listed licenses.
9 */
10
11
12 /* ====== Dependencies ======= */
13 #include "zstd_deps.h" /* size_t */
14 #include "debug.h" /* assert */
15 #include "zstd_internal.h" /* ZSTD_customMalloc, ZSTD_customFree */
16 #include "pool.h"
17
18 /* ====== Compiler specifics ====== */
19 #if defined(_MSC_VER)
20 # pragma warning(disable : 4204) /* disable: C4204: non-constant aggregate initializer */
21 #endif
22
23
24 #ifdef ZSTD_MULTITHREAD
25
26 #include "threading.h" /* pthread adaptation */
27
28 /* A job is a function and an opaque argument */
29 typedef struct POOL_job_s {
30 POOL_function function;
31 void *opaque;
32 } POOL_job;
33
34 struct POOL_ctx_s {
35 ZSTD_customMem customMem;
36 /* Keep track of the threads */
37 ZSTD_pthread_t* threads;
38 size_t threadCapacity;
39 size_t threadLimit;
40
41 /* The queue is a circular buffer */
42 POOL_job *queue;
43 size_t queueHead;
44 size_t queueTail;
45 size_t queueSize;
46
47 /* The number of threads working on jobs */
48 size_t numThreadsBusy;
49 /* Indicates if the queue is empty */
50 int queueEmpty;
51
52 /* The mutex protects the queue */
53 ZSTD_pthread_mutex_t queueMutex;
54 /* Condition variable for pushers to wait on when the queue is full */
55 ZSTD_pthread_cond_t queuePushCond;
56 /* Condition variables for poppers to wait on when the queue is empty */
57 ZSTD_pthread_cond_t queuePopCond;
58 /* Indicates if the queue is shutting down */
59 int shutdown;
60 };
61
62 /* POOL_thread() :
63 * Work thread for the thread pool.
64 * Waits for jobs and executes them.
65 * @returns : NULL on failure else non-null.
66 */
POOL_thread(void * opaque)67 static void* POOL_thread(void* opaque) {
68 POOL_ctx* const ctx = (POOL_ctx*)opaque;
69 if (!ctx) { return NULL; }
70 for (;;) {
71 /* Lock the mutex and wait for a non-empty queue or until shutdown */
72 ZSTD_pthread_mutex_lock(&ctx->queueMutex);
73
74 while ( ctx->queueEmpty
75 || (ctx->numThreadsBusy >= ctx->threadLimit) ) {
76 if (ctx->shutdown) {
77 /* even if !queueEmpty, (possible if numThreadsBusy >= threadLimit),
78 * a few threads will be shutdown while !queueEmpty,
79 * but enough threads will remain active to finish the queue */
80 ZSTD_pthread_mutex_unlock(&ctx->queueMutex);
81 return opaque;
82 }
83 ZSTD_pthread_cond_wait(&ctx->queuePopCond, &ctx->queueMutex);
84 }
85 /* Pop a job off the queue */
86 { POOL_job const job = ctx->queue[ctx->queueHead];
87 ctx->queueHead = (ctx->queueHead + 1) % ctx->queueSize;
88 ctx->numThreadsBusy++;
89 ctx->queueEmpty = (ctx->queueHead == ctx->queueTail);
90 /* Unlock the mutex, signal a pusher, and run the job */
91 ZSTD_pthread_cond_signal(&ctx->queuePushCond);
92 ZSTD_pthread_mutex_unlock(&ctx->queueMutex);
93
94 job.function(job.opaque);
95
96 /* If the intended queue size was 0, signal after finishing job */
97 ZSTD_pthread_mutex_lock(&ctx->queueMutex);
98 ctx->numThreadsBusy--;
99 if (ctx->queueSize == 1) {
100 ZSTD_pthread_cond_signal(&ctx->queuePushCond);
101 }
102 ZSTD_pthread_mutex_unlock(&ctx->queueMutex);
103 }
104 } /* for (;;) */
105 assert(0); /* Unreachable */
106 }
107
108 /* ZSTD_createThreadPool() : public access point */
ZSTD_createThreadPool(size_t numThreads)109 POOL_ctx* ZSTD_createThreadPool(size_t numThreads) {
110 return POOL_create (numThreads, 0);
111 }
112
POOL_create(size_t numThreads,size_t queueSize)113 POOL_ctx* POOL_create(size_t numThreads, size_t queueSize) {
114 return POOL_create_advanced(numThreads, queueSize, ZSTD_defaultCMem);
115 }
116
POOL_create_advanced(size_t numThreads,size_t queueSize,ZSTD_customMem customMem)117 POOL_ctx* POOL_create_advanced(size_t numThreads, size_t queueSize,
118 ZSTD_customMem customMem)
119 {
120 POOL_ctx* ctx;
121 /* Check parameters */
122 if (!numThreads) { return NULL; }
123 /* Allocate the context and zero initialize */
124 ctx = (POOL_ctx*)ZSTD_customCalloc(sizeof(POOL_ctx), customMem);
125 if (!ctx) { return NULL; }
126 /* Initialize the job queue.
127 * It needs one extra space since one space is wasted to differentiate
128 * empty and full queues.
129 */
130 ctx->queueSize = queueSize + 1;
131 ctx->queue = (POOL_job*)ZSTD_customMalloc(ctx->queueSize * sizeof(POOL_job), customMem);
132 ctx->queueHead = 0;
133 ctx->queueTail = 0;
134 ctx->numThreadsBusy = 0;
135 ctx->queueEmpty = 1;
136 {
137 int error = 0;
138 error |= ZSTD_pthread_mutex_init(&ctx->queueMutex, NULL);
139 error |= ZSTD_pthread_cond_init(&ctx->queuePushCond, NULL);
140 error |= ZSTD_pthread_cond_init(&ctx->queuePopCond, NULL);
141 if (error) { POOL_free(ctx); return NULL; }
142 }
143 ctx->shutdown = 0;
144 /* Allocate space for the thread handles */
145 ctx->threads = (ZSTD_pthread_t*)ZSTD_customMalloc(numThreads * sizeof(ZSTD_pthread_t), customMem);
146 ctx->threadCapacity = 0;
147 ctx->customMem = customMem;
148 /* Check for errors */
149 if (!ctx->threads || !ctx->queue) { POOL_free(ctx); return NULL; }
150 /* Initialize the threads */
151 { size_t i;
152 for (i = 0; i < numThreads; ++i) {
153 if (ZSTD_pthread_create(&ctx->threads[i], NULL, &POOL_thread, ctx)) {
154 ctx->threadCapacity = i;
155 POOL_free(ctx);
156 return NULL;
157 } }
158 ctx->threadCapacity = numThreads;
159 ctx->threadLimit = numThreads;
160 }
161 return ctx;
162 }
163
164 /*! POOL_join() :
165 Shutdown the queue, wake any sleeping threads, and join all of the threads.
166 */
POOL_join(POOL_ctx * ctx)167 static void POOL_join(POOL_ctx* ctx) {
168 /* Shut down the queue */
169 ZSTD_pthread_mutex_lock(&ctx->queueMutex);
170 ctx->shutdown = 1;
171 ZSTD_pthread_mutex_unlock(&ctx->queueMutex);
172 /* Wake up sleeping threads */
173 ZSTD_pthread_cond_broadcast(&ctx->queuePushCond);
174 ZSTD_pthread_cond_broadcast(&ctx->queuePopCond);
175 /* Join all of the threads */
176 { size_t i;
177 for (i = 0; i < ctx->threadCapacity; ++i) {
178 ZSTD_pthread_join(ctx->threads[i], NULL); /* note : could fail */
179 } }
180 }
181
POOL_free(POOL_ctx * ctx)182 void POOL_free(POOL_ctx *ctx) {
183 if (!ctx) { return; }
184 POOL_join(ctx);
185 ZSTD_pthread_mutex_destroy(&ctx->queueMutex);
186 ZSTD_pthread_cond_destroy(&ctx->queuePushCond);
187 ZSTD_pthread_cond_destroy(&ctx->queuePopCond);
188 ZSTD_customFree(ctx->queue, ctx->customMem);
189 ZSTD_customFree(ctx->threads, ctx->customMem);
190 ZSTD_customFree(ctx, ctx->customMem);
191 }
192
ZSTD_freeThreadPool(ZSTD_threadPool * pool)193 void ZSTD_freeThreadPool (ZSTD_threadPool* pool) {
194 POOL_free (pool);
195 }
196
POOL_sizeof(const POOL_ctx * ctx)197 size_t POOL_sizeof(const POOL_ctx* ctx) {
198 if (ctx==NULL) return 0; /* supports sizeof NULL */
199 return sizeof(*ctx)
200 + ctx->queueSize * sizeof(POOL_job)
201 + ctx->threadCapacity * sizeof(ZSTD_pthread_t);
202 }
203
204
205 /* @return : 0 on success, 1 on error */
POOL_resize_internal(POOL_ctx * ctx,size_t numThreads)206 static int POOL_resize_internal(POOL_ctx* ctx, size_t numThreads)
207 {
208 if (numThreads <= ctx->threadCapacity) {
209 if (!numThreads) return 1;
210 ctx->threadLimit = numThreads;
211 return 0;
212 }
213 /* numThreads > threadCapacity */
214 { ZSTD_pthread_t* const threadPool = (ZSTD_pthread_t*)ZSTD_customMalloc(numThreads * sizeof(ZSTD_pthread_t), ctx->customMem);
215 if (!threadPool) return 1;
216 /* replace existing thread pool */
217 ZSTD_memcpy(threadPool, ctx->threads, ctx->threadCapacity * sizeof(*threadPool));
218 ZSTD_customFree(ctx->threads, ctx->customMem);
219 ctx->threads = threadPool;
220 /* Initialize additional threads */
221 { size_t threadId;
222 for (threadId = ctx->threadCapacity; threadId < numThreads; ++threadId) {
223 if (ZSTD_pthread_create(&threadPool[threadId], NULL, &POOL_thread, ctx)) {
224 ctx->threadCapacity = threadId;
225 return 1;
226 } }
227 } }
228 /* successfully expanded */
229 ctx->threadCapacity = numThreads;
230 ctx->threadLimit = numThreads;
231 return 0;
232 }
233
234 /* @return : 0 on success, 1 on error */
POOL_resize(POOL_ctx * ctx,size_t numThreads)235 int POOL_resize(POOL_ctx* ctx, size_t numThreads)
236 {
237 int result;
238 if (ctx==NULL) return 1;
239 ZSTD_pthread_mutex_lock(&ctx->queueMutex);
240 result = POOL_resize_internal(ctx, numThreads);
241 ZSTD_pthread_cond_broadcast(&ctx->queuePopCond);
242 ZSTD_pthread_mutex_unlock(&ctx->queueMutex);
243 return result;
244 }
245
246 /**
247 * Returns 1 if the queue is full and 0 otherwise.
248 *
249 * When queueSize is 1 (pool was created with an intended queueSize of 0),
250 * then a queue is empty if there is a thread free _and_ no job is waiting.
251 */
isQueueFull(POOL_ctx const * ctx)252 static int isQueueFull(POOL_ctx const* ctx) {
253 if (ctx->queueSize > 1) {
254 return ctx->queueHead == ((ctx->queueTail + 1) % ctx->queueSize);
255 } else {
256 return (ctx->numThreadsBusy == ctx->threadLimit) ||
257 !ctx->queueEmpty;
258 }
259 }
260
261
262 static void
POOL_add_internal(POOL_ctx * ctx,POOL_function function,void * opaque)263 POOL_add_internal(POOL_ctx* ctx, POOL_function function, void *opaque)
264 {
265 POOL_job const job = {function, opaque};
266 assert(ctx != NULL);
267 if (ctx->shutdown) return;
268
269 ctx->queueEmpty = 0;
270 ctx->queue[ctx->queueTail] = job;
271 ctx->queueTail = (ctx->queueTail + 1) % ctx->queueSize;
272 ZSTD_pthread_cond_signal(&ctx->queuePopCond);
273 }
274
POOL_add(POOL_ctx * ctx,POOL_function function,void * opaque)275 void POOL_add(POOL_ctx* ctx, POOL_function function, void* opaque)
276 {
277 assert(ctx != NULL);
278 ZSTD_pthread_mutex_lock(&ctx->queueMutex);
279 /* Wait until there is space in the queue for the new job */
280 while (isQueueFull(ctx) && (!ctx->shutdown)) {
281 ZSTD_pthread_cond_wait(&ctx->queuePushCond, &ctx->queueMutex);
282 }
283 POOL_add_internal(ctx, function, opaque);
284 ZSTD_pthread_mutex_unlock(&ctx->queueMutex);
285 }
286
287
POOL_tryAdd(POOL_ctx * ctx,POOL_function function,void * opaque)288 int POOL_tryAdd(POOL_ctx* ctx, POOL_function function, void* opaque)
289 {
290 assert(ctx != NULL);
291 ZSTD_pthread_mutex_lock(&ctx->queueMutex);
292 if (isQueueFull(ctx)) {
293 ZSTD_pthread_mutex_unlock(&ctx->queueMutex);
294 return 0;
295 }
296 POOL_add_internal(ctx, function, opaque);
297 ZSTD_pthread_mutex_unlock(&ctx->queueMutex);
298 return 1;
299 }
300
301
302 #else /* ZSTD_MULTITHREAD not defined */
303
304 /* ========================== */
305 /* No multi-threading support */
306 /* ========================== */
307
308
309 /* We don't need any data, but if it is empty, malloc() might return NULL. */
310 struct POOL_ctx_s {
311 int dummy;
312 };
313 static POOL_ctx g_poolCtx;
314
POOL_create(size_t numThreads,size_t queueSize)315 POOL_ctx* POOL_create(size_t numThreads, size_t queueSize) {
316 return POOL_create_advanced(numThreads, queueSize, ZSTD_defaultCMem);
317 }
318
319 POOL_ctx*
POOL_create_advanced(size_t numThreads,size_t queueSize,ZSTD_customMem customMem)320 POOL_create_advanced(size_t numThreads, size_t queueSize, ZSTD_customMem customMem)
321 {
322 (void)numThreads;
323 (void)queueSize;
324 (void)customMem;
325 return &g_poolCtx;
326 }
327
POOL_free(POOL_ctx * ctx)328 void POOL_free(POOL_ctx* ctx) {
329 assert(!ctx || ctx == &g_poolCtx);
330 (void)ctx;
331 }
332
POOL_resize(POOL_ctx * ctx,size_t numThreads)333 int POOL_resize(POOL_ctx* ctx, size_t numThreads) {
334 (void)ctx; (void)numThreads;
335 return 0;
336 }
337
POOL_add(POOL_ctx * ctx,POOL_function function,void * opaque)338 void POOL_add(POOL_ctx* ctx, POOL_function function, void* opaque) {
339 (void)ctx;
340 function(opaque);
341 }
342
POOL_tryAdd(POOL_ctx * ctx,POOL_function function,void * opaque)343 int POOL_tryAdd(POOL_ctx* ctx, POOL_function function, void* opaque) {
344 (void)ctx;
345 function(opaque);
346 return 1;
347 }
348
POOL_sizeof(const POOL_ctx * ctx)349 size_t POOL_sizeof(const POOL_ctx* ctx) {
350 if (ctx==NULL) return 0; /* supports sizeof NULL */
351 assert(ctx == &g_poolCtx);
352 return sizeof(*ctx);
353 }
354
355 #endif /* ZSTD_MULTITHREAD */
356