• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*-------------------------------------------------------------------------
2  * Vulkan Conformance Tests
3  * ------------------------
4  *
5  * Copyright (c) 2022 The Khronos Group Inc.
6  * Copyright (c) 2022 NVIDIA Corporation.
7  *
8  * Licensed under the Apache License, Version 2.0 (the "License");
9  * you may not use this file except in compliance with the License.
10  * You may obtain a copy of the License at
11  *
12  *      http://www.apache.org/licenses/LICENSE-2.0
13  *
14  * Unless required by applicable law or agreed to in writing, software
15  * distributed under the License is distributed on an "AS IS" BASIS,
16  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
17  * See the License for the specific language governing permissions and
18  * limitations under the License.
19  *
20  *//*!
21  * \file
22  * \brief Ray Query Opacity Micromap Tests
23  *//*--------------------------------------------------------------------*/
24 
25 #include "vktRayQueryOpacityMicromapTests.hpp"
26 #include "vktTestCase.hpp"
27 
28 #include "vkRayTracingUtil.hpp"
29 #include "vkObjUtil.hpp"
30 #include "vkCmdUtil.hpp"
31 #include "vkBufferWithMemory.hpp"
32 #include "vkBuilderUtil.hpp"
33 #include "vkTypeUtil.hpp"
34 #include "vkBarrierUtil.hpp"
35 #include "vktTestGroupUtil.hpp"
36 
37 #include "deUniquePtr.hpp"
38 #include "deRandom.hpp"
39 
40 #include <sstream>
41 #include <vector>
42 #include <iostream>
43 
44 namespace vkt
45 {
46 namespace RayQuery
47 {
48 
49 namespace
50 {
51 
52 using namespace vk;
53 
54 enum ShaderSourcePipeline
55 {
56 	SSP_GRAPHICS_PIPELINE,
57 	SSP_COMPUTE_PIPELINE,
58 	SSP_RAY_TRACING_PIPELINE
59 };
60 
61 enum ShaderSourceType
62 {
63 	SST_VERTEX_SHADER,
64 	SST_COMPUTE_SHADER,
65 	SST_RAY_GENERATION_SHADER,
66 };
67 
68 enum TestFlagBits
69 {
70 	TEST_FLAG_BIT_FORCE_OPAQUE_INSTANCE				= 1U << 0,
71 	TEST_FLAG_BIT_FORCE_OPAQUE_RAY_FLAG				= 1U << 1,
72 	TEST_FLAG_BIT_DISABLE_OPACITY_MICROMAP_INSTANCE	= 1U << 2,
73 	TEST_FLAG_BIT_FORCE_2_STATE_INSTANCE			= 1U << 3,
74 	TEST_FLAG_BIT_FORCE_2_STATE_RAY_FLAG			= 1U << 4,
75 	TEST_FLAG_BIT_LAST								= 1U << 5,
76 };
77 
78 std::vector<std::string> testFlagBitNames =
79 {
80 	"force_opaque_instance",
81 	"force_opaque_ray_flag",
82 	"disable_opacity_micromap_instance",
83 	"force_2_state_instance",
84 	"force_2_state_ray_flag",
85 };
86 
87 enum CopyType {
88 	CT_NONE,
89 	CT_FIRST_ACTIVE,
90 	CT_CLONE = CT_FIRST_ACTIVE,
91 	CT_COMPACT,
92 	CT_NUM_COPY_TYPES,
93 };
94 
95 std::vector<std::string> copyTypeNames
96 {
97 	"None",
98 	"Clone",
99 	"Compact",
100 };
101 
102 struct TestParams
103 {
104 	ShaderSourceType		shaderSourceType;
105 	ShaderSourcePipeline	shaderSourcePipeline;
106 	bool					useSpecialIndex;
107 	deUint32				testFlagMask;
108 	deUint32				subdivisionLevel; // Must be 0 for useSpecialIndex
109 	deUint32				mode; // Special index value if useSpecialIndex, 2 or 4 for number of states otherwise
110 	deUint32				seed;
111 	CopyType				copyType;
112 };
113 
114 static constexpr deUint32 kNumThreadsAtOnce = 1024;
115 
116 
117 class OpacityMicromapCase : public TestCase
118 {
119 public:
120 							OpacityMicromapCase		(tcu::TestContext& testCtx, const std::string& name, const std::string& description, const TestParams& params);
~OpacityMicromapCase(void)121 	virtual					~OpacityMicromapCase	(void) {}
122 
123 	virtual void			checkSupport				(Context& context) const;
124 	virtual void			initPrograms				(vk::SourceCollections& programCollection) const;
125 	virtual TestInstance*	createInstance				(Context& context) const;
126 
127 protected:
128 	TestParams				m_params;
129 };
130 
131 class OpacityMicromapInstance : public TestInstance
132 {
133 public:
134 								OpacityMicromapInstance		(Context& context, const TestParams& params);
~OpacityMicromapInstance(void)135 	virtual						~OpacityMicromapInstance	(void) {}
136 
137 	virtual tcu::TestStatus		iterate							(void);
138 
139 protected:
140 	TestParams					m_params;
141 };
142 
OpacityMicromapCase(tcu::TestContext & testCtx,const std::string & name,const std::string & description,const TestParams & params)143 OpacityMicromapCase::OpacityMicromapCase (tcu::TestContext& testCtx, const std::string& name, const std::string& description, const TestParams& params)
144 	: TestCase	(testCtx, name, description)
145 	, m_params	(params)
146 {}
147 
checkSupport(Context & context) const148 void OpacityMicromapCase::checkSupport (Context& context) const
149 {
150 	context.requireDeviceFunctionality("VK_KHR_ray_query");
151 	context.requireDeviceFunctionality("VK_KHR_acceleration_structure");
152 	context.requireDeviceFunctionality("VK_EXT_opacity_micromap");
153 
154 	const VkPhysicalDeviceRayQueryFeaturesKHR& rayQueryFeaturesKHR = context.getRayQueryFeatures();
155 	if (rayQueryFeaturesKHR.rayQuery == DE_FALSE)
156 		TCU_THROW(NotSupportedError, "Requires VkPhysicalDeviceRayQueryFeaturesKHR.rayQuery");
157 
158 	const VkPhysicalDeviceAccelerationStructureFeaturesKHR& accelerationStructureFeaturesKHR = context.getAccelerationStructureFeatures();
159 	if (accelerationStructureFeaturesKHR.accelerationStructure == DE_FALSE)
160 		TCU_THROW(TestError, "VK_KHR_ray_query requires VkPhysicalDeviceAccelerationStructureFeaturesKHR.accelerationStructure");
161 
162 	const VkPhysicalDeviceOpacityMicromapFeaturesEXT& opacityMicromapFeaturesEXT = context.getOpacityMicromapFeaturesEXT();
163 	if (opacityMicromapFeaturesEXT.micromap == DE_FALSE)
164 		TCU_THROW(NotSupportedError, "Requires VkPhysicalDeviceOpacityMicromapFeaturesEXT.micromap");
165 
166 	if (m_params.shaderSourceType == SST_RAY_GENERATION_SHADER)
167 	{
168 		context.requireDeviceFunctionality("VK_KHR_ray_tracing_pipeline");
169 
170 		const VkPhysicalDeviceRayTracingPipelineFeaturesKHR& rayTracingPipelineFeaturesKHR = context.getRayTracingPipelineFeatures();
171 
172 		if (rayTracingPipelineFeaturesKHR.rayTracingPipeline == DE_FALSE)
173 			TCU_THROW(NotSupportedError, "Requires VkPhysicalDeviceRayTracingPipelineFeaturesKHR.rayTracingPipeline");
174 	}
175 
176 	switch (m_params.shaderSourceType)
177 	{
178 	case SST_VERTEX_SHADER:
179 		context.requireDeviceCoreFeature(DEVICE_CORE_FEATURE_VERTEX_PIPELINE_STORES_AND_ATOMICS);
180 		break;
181 	default:
182 		break;
183 	}
184 
185 	const VkPhysicalDeviceOpacityMicromapPropertiesEXT& opacityMicromapPropertiesEXT = context.getOpacityMicromapPropertiesEXT();
186 
187 	if (!m_params.useSpecialIndex)
188 	{
189 		switch (m_params.mode)
190 		{
191 		case 2:
192 			if (m_params.subdivisionLevel > opacityMicromapPropertiesEXT.maxOpacity2StateSubdivisionLevel)
193 				TCU_THROW(NotSupportedError, "Requires a higher supported 2 state subdivision level");
194 			break;
195 		case 4:
196 			if (m_params.subdivisionLevel > opacityMicromapPropertiesEXT.maxOpacity4StateSubdivisionLevel)
197 				TCU_THROW(NotSupportedError, "Requires a higher supported 4 state subdivision level");
198 			break;
199 		default:
200 			DE_ASSERT(false);
201 			break;
202 		}
203 	}
204 }
205 
levelToSubtriangles(deUint32 level)206 static deUint32 levelToSubtriangles(deUint32 level)
207 {
208 	return 1 << (2 * level);
209 }
210 
initPrograms(vk::SourceCollections & programCollection) const211 void OpacityMicromapCase::initPrograms (vk::SourceCollections& programCollection) const
212 {
213 	const vk::ShaderBuildOptions buildOptions (programCollection.usedVulkanVersion, vk::SPIRV_VERSION_1_4, 0u, true);
214 
215 	deUint32 numRays = levelToSubtriangles(m_params.subdivisionLevel);
216 
217 	std::string flagsString = (m_params.testFlagMask & TEST_FLAG_BIT_FORCE_OPAQUE_RAY_FLAG) ? "gl_RayFlagsOpaqueEXT" : "gl_RayFlagsNoneEXT";
218 
219 	if (m_params.testFlagMask & TEST_FLAG_BIT_FORCE_2_STATE_RAY_FLAG)
220 		flagsString += " | gl_RayFlagsForceOpacityMicromap2StateEXT";
221 
222 	std::ostringstream sharedHeader;
223 	sharedHeader
224 		<< "#version 460 core\n"
225 		<< "#extension GL_EXT_ray_query : require\n"
226 		<< "#extension GL_EXT_opacity_micromap : require\n"
227 		<< "\n"
228 		<< "layout(set=0, binding=0) uniform accelerationStructureEXT topLevelAS;\n"
229 		<< "layout(set=0, binding=1, std430) buffer RayOrigins {\n"
230 		<< "  vec4 values[" << numRays << "];\n"
231 		<< "} origins;\n"
232 		<< "layout(set=0, binding=2, std430) buffer OutputModes {\n"
233 		<< "  uint values[" << numRays << "];\n"
234 		<< "} modes;\n";
235 
236 	std::ostringstream mainLoop;
237 	mainLoop
238 		<< "  while (index < " << numRays << ") {\n"
239 		<< "    const uint  cullMask  = 0xFF;\n"
240 		<< "    const vec3  origin    = origins.values[index].xyz;\n"
241 		<< "    const vec3  direction = vec3(0.0, 0.0, -1.0);\n"
242 		<< "    const float tMin      = 0.0f;\n"
243 		<< "    const float tMax      = 2.0f;\n"
244 		<< "    uint        outputVal = 0;\n" // 0 for miss, 1 for non-opaque, 2 for opaque
245 		<< "    rayQueryEXT rq;\n"
246 		<< "    rayQueryInitializeEXT(rq, topLevelAS, " << flagsString << ", cullMask, origin, tMin, direction, tMax);\n"
247 		<< "    while (rayQueryProceedEXT(rq)) {\n"
248 		<< "      if (rayQueryGetIntersectionTypeEXT(rq, false) == gl_RayQueryCandidateIntersectionTriangleEXT) {\n"
249 		<< "        outputVal = 1;\n"
250 		<< "      }\n"
251 		<< "    }\n"
252 		<< "    if (rayQueryGetIntersectionTypeEXT(rq, true) == gl_RayQueryCommittedIntersectionTriangleEXT) {\n"
253 		<< "      outputVal = 2;\n"
254 		<< "    }\n"
255 		<< "    modes.values[index] = outputVal;\n"
256 		<< "    index += " << kNumThreadsAtOnce << ";\n"
257 		<< "  }\n";
258 
259 	if (m_params.shaderSourceType == SST_VERTEX_SHADER) {
260 		std::ostringstream vert;
261 		vert
262 			<< sharedHeader.str()
263 			<< "void main()\n"
264 			<< "{\n"
265 			<< "  uint index             = gl_VertexIndex.x;\n"
266 			<< mainLoop.str()
267 			<< "  gl_PointSize = 1.0f;\n"
268 			<< "}\n"
269 			;
270 
271 		programCollection.glslSources.add("vert") << glu::VertexSource(vert.str()) << buildOptions;
272 	}
273 	else if (m_params.shaderSourceType == SST_RAY_GENERATION_SHADER)
274 	{
275 		std::ostringstream rgen;
276 		rgen
277 			<< sharedHeader.str()
278 			<< "#extension GL_EXT_ray_tracing : require\n"
279 			<< "void main()\n"
280 			<< "{\n"
281 			<< "  uint index             = gl_LaunchIDEXT.x;\n"
282 			<< mainLoop.str()
283 			<< "}\n"
284 			;
285 
286 		programCollection.glslSources.add("rgen") << glu::RaygenSource(updateRayTracingGLSL(rgen.str())) << buildOptions;
287 	}
288 	else
289 	{
290 		DE_ASSERT(m_params.shaderSourceType == SST_COMPUTE_SHADER);
291 		std::ostringstream comp;
292 		comp
293 			<< sharedHeader.str()
294 			<< "layout(local_size_x=1024, local_size_y=1, local_size_z=1) in;\n"
295 			<< "\n"
296 			<< "void main()\n"
297 			<< "{\n"
298 			<< "  uint index             = gl_LocalInvocationID.x;\n"
299 			<< mainLoop.str()
300 			<< "}\n"
301 			;
302 
303 		programCollection.glslSources.add("comp") << glu::ComputeSource(updateRayTracingGLSL(comp.str())) << buildOptions;
304 	}
305 }
306 
createInstance(Context & context) const307 TestInstance* OpacityMicromapCase::createInstance (Context& context) const
308 {
309 	return new OpacityMicromapInstance(context, m_params);
310 }
311 
OpacityMicromapInstance(Context & context,const TestParams & params)312 OpacityMicromapInstance::OpacityMicromapInstance (Context& context, const TestParams& params)
313 	: TestInstance	(context)
314 	, m_params		(params)
315 {}
316 
calcSubtriangleCentroid(const deUint32 index,const deUint32 subdivisionLevel)317 tcu::Vec2 calcSubtriangleCentroid(const deUint32 index, const deUint32 subdivisionLevel)
318 {
319 	if (subdivisionLevel == 0) {
320 		return tcu::Vec2(1.0f/3.0f, 1.0f/3.0f);
321 	}
322 
323 	deUint32 d = index;
324 
325 	d = ((d >> 1) & 0x22222222u) | ((d << 1) & 0x44444444u) | (d & 0x99999999u);
326 	d = ((d >> 2) & 0x0c0c0c0cu) | ((d << 2) & 0x30303030u) | (d & 0xc3c3c3c3u);
327 	d = ((d >> 4) & 0x00f000f0u) | ((d << 4) & 0x0f000f00u) | (d & 0xf00ff00fu);
328 	d = ((d >> 8) & 0x0000ff00u) | ((d << 8) & 0x00ff0000u) | (d & 0xff0000ffu);
329 
330 	deUint32 f = (d & 0xffffu) | ((d << 16) & ~d);
331 
332 	f ^= (f >> 1) & 0x7fff7fffu;
333 	f ^= (f >> 2) & 0x3fff3fffu;
334 	f ^= (f >> 4) & 0x0fff0fffu;
335 	f ^= (f >> 8) & 0x00ff00ffu;
336 
337 	deUint32 t = (f ^ d) >> 16;
338 
339 	deUint32 iu = ((f & ~t) | (d & ~t) | (~d & ~f & t)) & 0xffffu;
340 	deUint32 iv = ((f >> 16) ^ d) & 0xffffu;
341 	deUint32 iw = ((~f & ~t) | (d & ~t) | (~d & f & t)) & ((1 << subdivisionLevel) - 1);
342 
343 	const float scale = 1.0f / float(1 << subdivisionLevel);
344 
345 	float u = (1.0f / 3.0f) * scale;
346 	float v = (1.0f / 3.0f) * scale;
347 
348 	// we need to only look at "subdivisionLevel" bits
349 	iu = iu & ((1 << subdivisionLevel) - 1);
350 	iv = iv & ((1 << subdivisionLevel) - 1);
351 	iw = iw & ((1 << subdivisionLevel) - 1);
352 
353 	bool upright = (iu & 1) ^ (iv & 1) ^ (iw & 1);
354 	if (!upright)
355 	{
356 		iu = iu + 1;
357 		iv = iv + 1;
358 	}
359 
360 	if (upright)
361 	{
362 		return tcu::Vec2(
363 			u + (float)iu * scale,
364 			v + (float)iv * scale
365 		);
366 	} else
367 	{
368 		return tcu::Vec2(
369 			(float)iu * scale - u,
370 			(float)iv * scale - v
371 		);
372 	}
373 }
374 
makeEmptyRenderPass(const DeviceInterface & vk,const VkDevice device)375 static Move<VkRenderPass> makeEmptyRenderPass(const DeviceInterface& vk,
376 	const VkDevice				device)
377 {
378 	std::vector<VkSubpassDescription>	subpassDescriptions;
379 	std::vector<VkSubpassDependency>	subpassDependencies;
380 
381 	const VkSubpassDescription	description =
382 	{
383 		(VkSubpassDescriptionFlags)0,		//  VkSubpassDescriptionFlags		flags;
384 		VK_PIPELINE_BIND_POINT_GRAPHICS,	//  VkPipelineBindPoint				pipelineBindPoint;
385 		0u,									//  deUint32						inputAttachmentCount;
386 		DE_NULL,							//  const VkAttachmentReference*	pInputAttachments;
387 		0u,									//  deUint32						colorAttachmentCount;
388 		DE_NULL,							//  const VkAttachmentReference*	pColorAttachments;
389 		DE_NULL,							//  const VkAttachmentReference*	pResolveAttachments;
390 		DE_NULL,							//  const VkAttachmentReference*	pDepthStencilAttachment;
391 		0,									//  deUint32						preserveAttachmentCount;
392 		DE_NULL								//  const deUint32*					pPreserveAttachments;
393 	};
394 	subpassDescriptions.push_back(description);
395 
396 	const VkSubpassDependency	dependency =
397 	{
398 		0u,													//  deUint32				srcSubpass;
399 		0u,													//  deUint32				dstSubpass;
400 		VK_PIPELINE_STAGE_VERTEX_SHADER_BIT,				//  VkPipelineStageFlags	srcStageMask;
401 		VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT,				//  VkPipelineStageFlags	dstStageMask;
402 		VK_ACCESS_SHADER_WRITE_BIT,							//  VkAccessFlags			srcAccessMask;
403 		VK_ACCESS_MEMORY_READ_BIT,							//  VkAccessFlags			dstAccessMask;
404 		0u													//  VkDependencyFlags		dependencyFlags;
405 	};
406 	subpassDependencies.push_back(dependency);
407 
408 	const VkRenderPassCreateInfo renderPassInfo =
409 	{
410 		VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO,							//  VkStructureType					sType;
411 		DE_NULL,															//  const void*						pNext;
412 		static_cast<VkRenderPassCreateFlags>(0u),							//  VkRenderPassCreateFlags			flags;
413 		0u,																	//  deUint32						attachmentCount;
414 		DE_NULL,															//  const VkAttachmentDescription*	pAttachments;
415 		static_cast<deUint32>(subpassDescriptions.size()),					//  deUint32						subpassCount;
416 		&subpassDescriptions[0],											//  const VkSubpassDescription*		pSubpasses;
417 		static_cast<deUint32>(subpassDependencies.size()),					//  deUint32						dependencyCount;
418 		subpassDependencies.size() > 0 ? &subpassDependencies[0] : DE_NULL	//  const VkSubpassDependency*		pDependencies;
419 	};
420 
421 	return createRenderPass(vk, device, &renderPassInfo);
422 }
423 
makeGraphicsPipeline(const DeviceInterface & vk,const VkDevice device,const VkPipelineLayout pipelineLayout,const VkRenderPass renderPass,const VkShaderModule vertexModule,const deUint32 subpass)424 Move<VkPipeline> makeGraphicsPipeline(const DeviceInterface& vk,
425 	const VkDevice				device,
426 	const VkPipelineLayout		pipelineLayout,
427 	const VkRenderPass			renderPass,
428 	const VkShaderModule		vertexModule,
429 	const deUint32				subpass)
430 {
431 	VkExtent2D												renderSize { 256, 256 };
432 	VkViewport												viewport = makeViewport(renderSize);
433 	VkRect2D												scissor = makeRect2D(renderSize);
434 
435 	const VkPipelineViewportStateCreateInfo					viewportStateCreateInfo =
436 	{
437 		VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO,		// VkStructureType                             sType
438 		DE_NULL,													// const void*                                 pNext
439 		(VkPipelineViewportStateCreateFlags)0,						// VkPipelineViewportStateCreateFlags          flags
440 		1u,															// deUint32                                    viewportCount
441 		&viewport,													// const VkViewport*                           pViewports
442 		1u,															// deUint32                                    scissorCount
443 		&scissor													// const VkRect2D*                             pScissors
444 	};
445 
446 	const VkPipelineInputAssemblyStateCreateInfo			inputAssemblyStateCreateInfo =
447 	{
448 		VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO,	// VkStructureType                            sType
449 		DE_NULL,														// const void*                                pNext
450 		0u,																// VkPipelineInputAssemblyStateCreateFlags    flags
451 		VK_PRIMITIVE_TOPOLOGY_POINT_LIST,								// VkPrimitiveTopology                        topology
452 		VK_FALSE														// VkBool32                                   primitiveRestartEnable
453 	};
454 
455 	const VkPipelineVertexInputStateCreateInfo				vertexInputStateCreateInfo =
456 	{
457 		VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO,									//  VkStructureType									sType
458 		DE_NULL,																					//  const void*										pNext
459 		(VkPipelineVertexInputStateCreateFlags)0,													//  VkPipelineVertexInputStateCreateFlags			flags
460 		0u,																							//  deUint32										vertexBindingDescriptionCount
461 		DE_NULL,																					//  const VkVertexInputBindingDescription*			pVertexBindingDescriptions
462 		0u,																							//  deUint32										vertexAttributeDescriptionCount
463 		DE_NULL,																					//  const VkVertexInputAttributeDescription*		pVertexAttributeDescriptions
464 	};
465 
466 	const VkPipelineRasterizationStateCreateInfo			rasterizationStateCreateInfo =
467 	{
468 		VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO,	//  VkStructureType							sType
469 		DE_NULL,													//  const void*								pNext
470 		0u,															//  VkPipelineRasterizationStateCreateFlags	flags
471 		VK_FALSE,													//  VkBool32								depthClampEnable
472 		VK_TRUE,													//  VkBool32								rasterizerDiscardEnable
473 		VK_POLYGON_MODE_FILL,										//  VkPolygonMode							polygonMode
474 		VK_CULL_MODE_NONE,											//  VkCullModeFlags							cullMode
475 		VK_FRONT_FACE_COUNTER_CLOCKWISE,							//  VkFrontFace								frontFace
476 		VK_FALSE,													//  VkBool32								depthBiasEnable
477 		0.0f,														//  float									depthBiasConstantFactor
478 		0.0f,														//  float									depthBiasClamp
479 		0.0f,														//  float									depthBiasSlopeFactor
480 		1.0f														//  float									lineWidth
481 	};
482 
483 	return makeGraphicsPipeline(vk,									// const DeviceInterface&							vk
484 		device,								// const VkDevice									device
485 		pipelineLayout,						// const VkPipelineLayout							pipelineLayout
486 		vertexModule,						// const VkShaderModule								vertexShaderModule
487 		DE_NULL,							// const VkShaderModule								tessellationControlModule
488 		DE_NULL,							// const VkShaderModule								tessellationEvalModule
489 		DE_NULL,							// const VkShaderModule								geometryShaderModule
490 		DE_NULL,							// const VkShaderModule								fragmentShaderModule
491 		renderPass,							// const VkRenderPass								renderPass
492 		subpass,							// const deUint32									subpass
493 		&vertexInputStateCreateInfo,		// const VkPipelineVertexInputStateCreateInfo*		vertexInputStateCreateInfo
494 		&inputAssemblyStateCreateInfo,		// const VkPipelineInputAssemblyStateCreateInfo*	inputAssemblyStateCreateInfo
495 		DE_NULL,							// const VkPipelineTessellationStateCreateInfo*		tessStateCreateInfo
496 		&viewportStateCreateInfo,			// const VkPipelineViewportStateCreateInfo*			viewportStateCreateInfo
497 		&rasterizationStateCreateInfo);	// const VkPipelineRasterizationStateCreateInfo*	rasterizationStateCreateInfo
498 }
499 
iterate(void)500 tcu::TestStatus OpacityMicromapInstance::iterate (void)
501 {
502 	const auto&	vkd		= m_context.getDeviceInterface();
503 	const auto	device	= m_context.getDevice();
504 	auto&		alloc	= m_context.getDefaultAllocator();
505 	const auto	qIndex	= m_context.getUniversalQueueFamilyIndex();
506 	const auto	queue	= m_context.getUniversalQueue();
507 
508 	// Command pool and buffer.
509 	const auto cmdPool		= makeCommandPool(vkd, device, qIndex);
510 	const auto cmdBufferPtr	= allocateCommandBuffer(vkd, device, cmdPool.get(), VK_COMMAND_BUFFER_LEVEL_PRIMARY);
511 	const auto cmdBuffer	= cmdBufferPtr.get();
512 
513 	beginCommandBuffer(vkd, cmdBuffer);
514 
515 	// Build acceleration structures.
516 	auto topLevelAS		= makeTopLevelAccelerationStructure();
517 	auto bottomLevelAS	= makeBottomLevelAccelerationStructure();
518 
519 	deUint32 numSubtriangles = levelToSubtriangles(m_params.subdivisionLevel);
520 	deUint32 opacityMicromapBytes = (m_params.mode == 2) ? (numSubtriangles + 3) / 4 : (numSubtriangles + 1) / 2;
521 
522 	// Generate random micromap data
523 	std::vector<deUint8> opacityMicromapData;
524 
525 	de::Random rnd(m_params.seed);
526 
527 	while (opacityMicromapData.size() < opacityMicromapBytes) {
528 		opacityMicromapData.push_back(rnd.getUint8());
529 	}
530 
531 	// Build a micromap (ignore infrastructure for now)
532 	// Create the buffer with the mask and index data
533 	// Allocate a fairly conservative bound for now
534 	const auto micromapDataBufferSize = static_cast<VkDeviceSize>(1024 + opacityMicromapBytes);
535 	const auto micromapDataBufferCreateInfo = makeBufferCreateInfo(micromapDataBufferSize,
536 		VK_BUFFER_USAGE_MICROMAP_BUILD_INPUT_READ_ONLY_BIT_EXT | VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT);
537 	BufferWithMemory micromapDataBuffer(vkd, device, alloc, micromapDataBufferCreateInfo, MemoryRequirement::HostVisible | MemoryRequirement::DeviceAddress);
538 	auto& micromapDataBufferAlloc = micromapDataBuffer.getAllocation();
539 	void* micromapDataBufferData = micromapDataBufferAlloc.getHostPtr();
540 
541 	const int TriangleOffset = 0;
542 	const int IndexOffset = 256;
543 	const int DataOffset = 512;
544 
545 	// Fill out VkMicromapUsageEXT with size information
546 	VkMicromapUsageEXT mmUsage = { };
547 	mmUsage.count = 1;
548 	mmUsage.subdivisionLevel = m_params.subdivisionLevel;
549 	mmUsage.format = m_params.mode == 2 ? VK_OPACITY_MICROMAP_FORMAT_2_STATE_EXT : VK_OPACITY_MICROMAP_FORMAT_4_STATE_EXT;
550 
551 	{
552 		deUint8 *data = static_cast<deUint8*>(micromapDataBufferData);
553 
554 		deMemset(data, 0, size_t(micromapDataBufferCreateInfo.size));
555 
556 		DE_STATIC_ASSERT(sizeof(VkMicromapTriangleEXT) == 8);
557 
558 		// Triangle information
559 		VkMicromapTriangleEXT* tri = (VkMicromapTriangleEXT*)(&data[TriangleOffset]);
560 		tri->dataOffset = 0;
561 		tri->subdivisionLevel = uint16_t(mmUsage.subdivisionLevel);
562 		tri->format = uint16_t(mmUsage.format);
563 
564 		// Micromap data
565 		{
566 			for (size_t i = 0; i < opacityMicromapData.size(); i++) {
567 				data[DataOffset + i] = opacityMicromapData[i];
568 			}
569 		}
570 
571 		// Index information
572 		*((deUint32*)&data[IndexOffset]) = m_params.useSpecialIndex ? m_params.mode : 0;
573 	}
574 
575 	// Query the size from the build info
576 	VkMicromapBuildInfoEXT mmBuildInfo = {
577 		VK_STRUCTURE_TYPE_MICROMAP_BUILD_INFO_EXT,	// VkStructureType						sType;
578 		DE_NULL,									// const void*							pNext;
579 		VK_MICROMAP_TYPE_OPACITY_MICROMAP_EXT,		// VkMicromapTypeEXT					type;
580 		0,											// VkBuildMicromapFlagsEXT				flags;
581 		VK_BUILD_MICROMAP_MODE_BUILD_EXT,			// VkBuildMicromapModeEXT				mode;
582 		DE_NULL,									// VkMicromapEXT						dstMicromap;
583 		1,											// uint32_t							usageCountsCount;
584 		&mmUsage,									// const VkMicromapUsageEXT*			pUsageCounts;
585 		DE_NULL,									// const VkMicromapUsageEXT* const*	ppUsageCounts;
586 		makeDeviceOrHostAddressConstKHR(DE_NULL),	// VkDeviceOrHostAddressConstKHR		data;
587 		makeDeviceOrHostAddressKHR(DE_NULL),		// VkDeviceOrHostAddressKHR			scratchData;
588 		makeDeviceOrHostAddressConstKHR(DE_NULL),	// VkDeviceOrHostAddressConstKHR		triangleArray;
589 		0,											// VkDeviceSize						triangleArrayStride;
590 	};
591 
592 	VkMicromapBuildSizesInfoEXT sizeInfo = {
593 		VK_STRUCTURE_TYPE_MICROMAP_BUILD_SIZES_INFO_EXT,	// VkStructureType	sType;
594 		DE_NULL,											// const void* pNext;
595 		0,													// VkDeviceSize	micromapSize;
596 		0,													// VkDeviceSize	buildScratchSize;
597 		DE_FALSE,											// VkBool32		discardable;
598 	};
599 
600 	vkd.getMicromapBuildSizesEXT(device, VK_ACCELERATION_STRUCTURE_BUILD_TYPE_DEVICE_KHR, &mmBuildInfo, &sizeInfo);
601 
602 	// Create the backing and scratch storage
603 	const auto micromapBackingBufferCreateInfo = makeBufferCreateInfo(sizeInfo.micromapSize,
604 		VK_BUFFER_USAGE_MICROMAP_STORAGE_BIT_EXT | VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT);
605 	BufferWithMemory micromapBackingBuffer(vkd, device, alloc, micromapBackingBufferCreateInfo, MemoryRequirement::Local | MemoryRequirement::DeviceAddress);
606 
607 	const auto micromapScratchBufferCreateInfo = makeBufferCreateInfo(sizeInfo.buildScratchSize,
608 		VK_BUFFER_USAGE_MICROMAP_STORAGE_BIT_EXT | VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT);
609 	BufferWithMemory micromapScratchBuffer(vkd, device, alloc, micromapScratchBufferCreateInfo, MemoryRequirement::Local | MemoryRequirement::DeviceAddress);
610 
611 	de::MovePtr<BufferWithMemory> copyMicromapBackingBuffer;
612 
613 	// Create the micromap itself
614 	VkMicromapCreateInfoEXT maCreateInfo = {
615 		VK_STRUCTURE_TYPE_MICROMAP_CREATE_INFO_EXT,	  // VkStructureType				sType;
616 		DE_NULL,									  // const void* pNext;
617 		0,											  // VkMicromapCreateFlagsEXT	createFlags;
618 		micromapBackingBuffer.get(),				  // VkBuffer					buffer;
619 		0,											  // VkDeviceSize				offset;
620 		sizeInfo.micromapSize,						  // VkDeviceSize				size;
621 		VK_MICROMAP_TYPE_OPACITY_MICROMAP_EXT,		  // VkMicromapTypeEXT			type;
622 		0ull										  // VkDeviceAddress				deviceAddress;
623 	};
624 
625 	VkMicromapEXT micromap = VK_NULL_HANDLE, origMicromap = VK_NULL_HANDLE;
626 
627 	VK_CHECK(vkd.createMicromapEXT(device, &maCreateInfo, nullptr, &micromap));
628 
629 	// Do the build
630 	mmBuildInfo.dstMicromap = micromap;
631 	mmBuildInfo.data = makeDeviceOrHostAddressConstKHR(vkd, device, micromapDataBuffer.get(), DataOffset);
632 	mmBuildInfo.triangleArray = makeDeviceOrHostAddressConstKHR(vkd, device, micromapDataBuffer.get(), TriangleOffset);
633 	mmBuildInfo.scratchData = makeDeviceOrHostAddressKHR(vkd, device, micromapScratchBuffer.get(), 0);
634 
635 	vkd.cmdBuildMicromapsEXT(cmdBuffer, 1, &mmBuildInfo);
636 
637 	{
638 		VkMemoryBarrier2 memoryBarrier = { VK_STRUCTURE_TYPE_MEMORY_BARRIER_2, NULL,
639 			VK_PIPELINE_STAGE_2_MICROMAP_BUILD_BIT_EXT, VK_ACCESS_2_MICROMAP_WRITE_BIT_EXT,
640 			VK_PIPELINE_STAGE_2_ACCELERATION_STRUCTURE_BUILD_BIT_KHR, VK_ACCESS_2_MICROMAP_READ_BIT_EXT };
641 		VkDependencyInfoKHR dependencyInfo = {
642 			VK_STRUCTURE_TYPE_DEPENDENCY_INFO_KHR,		// VkStructureType						sType;
643 			DE_NULL,									// const void*							pNext;
644 			0u,											// VkDependencyFlags					dependencyFlags;
645 			1u,											// uint32_t							memoryBarrierCount;
646 			&memoryBarrier,								// const VkMemoryBarrier2KHR*			pMemoryBarriers;
647 			0u,											// uint32_t							bufferMemoryBarrierCount;
648 			DE_NULL,									// const VkBufferMemoryBarrier2KHR*	pBufferMemoryBarriers;
649 			0u,											// uint32_t							imageMemoryBarrierCount;
650 			DE_NULL,									// const VkImageMemoryBarrier2KHR*		pImageMemoryBarriers;
651 		};
652 
653 		vkd.cmdPipelineBarrier2(cmdBuffer, &dependencyInfo);
654 	}
655 
656 	if (m_params.copyType != CT_NONE) {
657 		copyMicromapBackingBuffer = de::MovePtr<BufferWithMemory>(new BufferWithMemory(
658 			vkd, device, alloc, micromapBackingBufferCreateInfo, MemoryRequirement::Local | MemoryRequirement::DeviceAddress));
659 
660 		origMicromap = micromap;
661 
662 		maCreateInfo.buffer = copyMicromapBackingBuffer->get();
663 
664 		VK_CHECK(vkd.createMicromapEXT(device, &maCreateInfo, nullptr, &micromap));
665 
666 		VkCopyMicromapInfoEXT copyMicromapInfo = {
667 			VK_STRUCTURE_TYPE_COPY_MICROMAP_INFO_EXT,		 // VkStructureType			sType;
668 			DE_NULL,										 // const void*				pNext;
669 			origMicromap,									 // VkMicromapEXT			src;
670 			micromap,										 // VkMicromapEXT			dst;
671 			VK_COPY_MICROMAP_MODE_CLONE_EXT					 // VkCopyMicromapModeEXT	mode;
672 		};
673 
674 		vkd.cmdCopyMicromapEXT(cmdBuffer, &copyMicromapInfo);
675 
676 		{
677 			VkMemoryBarrier2 memoryBarrier = { VK_STRUCTURE_TYPE_MEMORY_BARRIER_2, NULL,
678 				VK_PIPELINE_STAGE_2_MICROMAP_BUILD_BIT_EXT, VK_ACCESS_2_MICROMAP_WRITE_BIT_EXT,
679 				VK_PIPELINE_STAGE_2_ACCELERATION_STRUCTURE_BUILD_BIT_KHR, VK_ACCESS_2_MICROMAP_READ_BIT_EXT };
680 			VkDependencyInfoKHR dependencyInfo = {
681 				VK_STRUCTURE_TYPE_DEPENDENCY_INFO_KHR,		// VkStructureType						sType;
682 				DE_NULL,									// const void*							pNext;
683 				0u,											// VkDependencyFlags					dependencyFlags;
684 				1u,											// uint32_t							memoryBarrierCount;
685 				&memoryBarrier,								// const VkMemoryBarrier2KHR*			pMemoryBarriers;
686 				0u,											// uint32_t							bufferMemoryBarrierCount;
687 				DE_NULL,									// const VkBufferMemoryBarrier2KHR*	pBufferMemoryBarriers;
688 				0u,											// uint32_t							imageMemoryBarrierCount;
689 				DE_NULL,									// const VkImageMemoryBarrier2KHR*		pImageMemoryBarriers;
690 			};
691 
692 			dependencyInfo.memoryBarrierCount = 1;
693 			dependencyInfo.pMemoryBarriers = &memoryBarrier;
694 
695 			vkd.cmdPipelineBarrier2(cmdBuffer, &dependencyInfo);
696 		}
697 	}
698 
699 	// Attach the micromap to the geometry
700 	VkAccelerationStructureTrianglesOpacityMicromapEXT opacityGeometryMicromap = {
701 		VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_TRIANGLES_OPACITY_MICROMAP_EXT,				//VkStructureType						sType;
702 		DE_NULL,																				//void*								pNext;
703 		VK_INDEX_TYPE_UINT32,																	//VkIndexType							indexType;
704 		makeDeviceOrHostAddressConstKHR(vkd, device, micromapDataBuffer.get(), IndexOffset),	//VkDeviceOrHostAddressConstKHR		indexBuffer;
705 		0u,																						//VkDeviceSize						indexStride;
706 		0u,																						//uint32_t							baseTriangle;
707 		1u,																						//uint32_t							usageCountsCount;
708 		& mmUsage,																				//const VkMicromapUsageEXT*			pUsageCounts;
709 		DE_NULL,																				//const VkMicromapUsageEXT* const*	ppUsageCounts;
710 		micromap																				//VkMicromapEXT						micromap;
711 	};
712 
713 	const std::vector<tcu::Vec3> triangle =
714 	{
715 		tcu::Vec3(0.0f, 0.0f, 0.0f),
716 		tcu::Vec3(1.0f, 0.0f, 0.0f),
717 		tcu::Vec3(0.0f, 1.0f, 0.0f),
718 	};
719 
720 	bottomLevelAS->addGeometry(triangle, true/*is triangles*/, 0, &opacityGeometryMicromap);
721 	if (m_params.testFlagMask & TEST_FLAG_BIT_DISABLE_OPACITY_MICROMAP_INSTANCE)
722 		bottomLevelAS->setBuildFlags(VK_BUILD_ACCELERATION_STRUCTURE_ALLOW_DISABLE_OPACITY_MICROMAPS_EXT);
723 	bottomLevelAS->createAndBuild(vkd, device, cmdBuffer, alloc);
724 	de::SharedPtr<BottomLevelAccelerationStructure> blasSharedPtr (bottomLevelAS.release());
725 
726 	VkGeometryInstanceFlagsKHR instanceFlags = 0;
727 
728 	if (m_params.testFlagMask & TEST_FLAG_BIT_FORCE_2_STATE_INSTANCE)
729 		instanceFlags |= VK_GEOMETRY_INSTANCE_FORCE_OPACITY_MICROMAP_2_STATE_EXT;
730 	if (m_params.testFlagMask & TEST_FLAG_BIT_FORCE_OPAQUE_INSTANCE)
731 		instanceFlags |= VK_GEOMETRY_INSTANCE_FORCE_OPAQUE_BIT_KHR;
732 	if (m_params.testFlagMask & TEST_FLAG_BIT_DISABLE_OPACITY_MICROMAP_INSTANCE)
733 		instanceFlags |= VK_GEOMETRY_INSTANCE_DISABLE_OPACITY_MICROMAPS_EXT;
734 
735 	topLevelAS->setInstanceCount(1);
736 	topLevelAS->addInstance(blasSharedPtr, identityMatrix3x4, 0, 0xFFu, 0u, instanceFlags);
737 	topLevelAS->createAndBuild(vkd, device, cmdBuffer, alloc);
738 
739 	// One ray per subtriangle for this test
740 	deUint32 numRays = numSubtriangles;
741 
742 	// SSBO buffer for origins.
743 	const auto originsBufferSize		= static_cast<VkDeviceSize>(sizeof(tcu::Vec4) * numRays);
744 	const auto originsBufferInfo		= makeBufferCreateInfo(originsBufferSize, VK_BUFFER_USAGE_STORAGE_BUFFER_BIT);
745 	BufferWithMemory originsBuffer	(vkd, device, alloc, originsBufferInfo, MemoryRequirement::HostVisible);
746 	auto& originsBufferAlloc			= originsBuffer.getAllocation();
747 	void* originsBufferData				= originsBufferAlloc.getHostPtr();
748 
749 	std::vector<tcu::Vec4> origins;
750 	std::vector<deUint32> expectedOutputModes;
751 	origins.reserve(numRays);
752 	expectedOutputModes.reserve(numRays);
753 
754 	// Fill in vector of expected outputs
755 	for (deUint32 index = 0; index < numRays; index++) {
756 		deUint32 state = m_params.testFlagMask & (TEST_FLAG_BIT_FORCE_OPAQUE_INSTANCE | TEST_FLAG_BIT_FORCE_OPAQUE_RAY_FLAG) ?
757 			VK_OPACITY_MICROMAP_SPECIAL_INDEX_FULLY_OPAQUE_EXT : VK_OPACITY_MICROMAP_SPECIAL_INDEX_FULLY_UNKNOWN_OPAQUE_EXT;
758 
759 		if (!(m_params.testFlagMask & TEST_FLAG_BIT_DISABLE_OPACITY_MICROMAP_INSTANCE))
760 		{
761 			if (m_params.useSpecialIndex)
762 			{
763 				state = m_params.mode;
764 			}
765 			else
766 			{
767 				if (m_params.mode == 2) {
768 					deUint8 byte = opacityMicromapData[index / 8];
769 					state = (byte >> (index % 8)) & 0x1;
770 				} else {
771 					DE_ASSERT(m_params.mode == 4);
772 					deUint8 byte = opacityMicromapData[index / 4];
773 					state = (byte >> 2*(index % 4)) & 0x3;
774 				}
775 				// Process in SPECIAL_INDEX number space
776 				state = ~state;
777 			}
778 
779 			if (m_params.testFlagMask & (TEST_FLAG_BIT_FORCE_2_STATE_INSTANCE | TEST_FLAG_BIT_FORCE_2_STATE_RAY_FLAG))
780 			{
781 				if (state == deUint32(VK_OPACITY_MICROMAP_SPECIAL_INDEX_FULLY_UNKNOWN_TRANSPARENT_EXT))
782 					state =  deUint32(VK_OPACITY_MICROMAP_SPECIAL_INDEX_FULLY_TRANSPARENT_EXT);
783 				if (state == deUint32(VK_OPACITY_MICROMAP_SPECIAL_INDEX_FULLY_UNKNOWN_OPAQUE_EXT))
784 					state =  deUint32(VK_OPACITY_MICROMAP_SPECIAL_INDEX_FULLY_OPAQUE_EXT);
785 			}
786 		}
787 
788 		if (state != deUint32(VK_OPACITY_MICROMAP_SPECIAL_INDEX_FULLY_TRANSPARENT_EXT))
789 		{
790 			if (m_params.testFlagMask & (TEST_FLAG_BIT_FORCE_OPAQUE_INSTANCE | TEST_FLAG_BIT_FORCE_OPAQUE_RAY_FLAG))
791 			{
792 				state = deUint32(VK_OPACITY_MICROMAP_SPECIAL_INDEX_FULLY_OPAQUE_EXT);
793 			} else if (state != deUint32(VK_OPACITY_MICROMAP_SPECIAL_INDEX_FULLY_OPAQUE_EXT)) {
794 				state = deUint32(VK_OPACITY_MICROMAP_SPECIAL_INDEX_FULLY_UNKNOWN_OPAQUE_EXT);
795 			}
796 		}
797 
798 		if (state == deUint32(VK_OPACITY_MICROMAP_SPECIAL_INDEX_FULLY_TRANSPARENT_EXT))
799 		{
800 			expectedOutputModes.push_back(0);
801 		}
802 		else if (state == deUint32(VK_OPACITY_MICROMAP_SPECIAL_INDEX_FULLY_UNKNOWN_OPAQUE_EXT))
803 		{
804 			expectedOutputModes.push_back(1);
805 		}
806 		else if (state == deUint32(VK_OPACITY_MICROMAP_SPECIAL_INDEX_FULLY_OPAQUE_EXT))
807 		{
808 			expectedOutputModes.push_back(2);
809 		}
810 		else
811 		{
812 			DE_ASSERT(false);
813 		}
814 	}
815 
816 	for(deUint32 index = 0; index < numRays; index++) {
817 		tcu::Vec2 centroid = calcSubtriangleCentroid(index, m_params.subdivisionLevel);
818 		origins.push_back(tcu::Vec4(centroid.x(), centroid.y(), 1.0, 0.0));
819 	}
820 
821 	const auto				originsBufferSizeSz = static_cast<size_t>(originsBufferSize);
822 	deMemcpy(originsBufferData, origins.data(), originsBufferSizeSz);
823 	flushAlloc(vkd, device, originsBufferAlloc);
824 
825 	// Storage buffer for output modes
826 	const auto outputModesBufferSize		= static_cast<VkDeviceSize>(sizeof(deUint32) * numRays);
827 	const auto outputModesBufferInfo		= makeBufferCreateInfo(outputModesBufferSize, VK_BUFFER_USAGE_STORAGE_BUFFER_BIT);
828 	BufferWithMemory outputModesBuffer	(vkd, device, alloc, outputModesBufferInfo, MemoryRequirement::HostVisible);
829 	auto& outputModesBufferAlloc			= outputModesBuffer.getAllocation();
830 	void* outputModesBufferData			= outputModesBufferAlloc.getHostPtr();
831 	deMemset(outputModesBufferData, 0xFF, static_cast<size_t>(outputModesBufferSize));
832 	flushAlloc(vkd, device, outputModesBufferAlloc);
833 
834 	// Descriptor set layout.
835 	DescriptorSetLayoutBuilder dsLayoutBuilder;
836 	dsLayoutBuilder.addSingleBinding(VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR, VK_SHADER_STAGE_ALL);
837 	dsLayoutBuilder.addSingleBinding(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, VK_SHADER_STAGE_ALL);
838 	dsLayoutBuilder.addSingleBinding(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, VK_SHADER_STAGE_ALL);
839 	const auto setLayout = dsLayoutBuilder.build(vkd, device);
840 
841 	// Pipeline layout.
842 	const auto pipelineLayout = makePipelineLayout(vkd, device, setLayout.get());
843 
844 	// Descriptor pool and set.
845 	DescriptorPoolBuilder poolBuilder;
846 	poolBuilder.addType(VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR);
847 	poolBuilder.addType(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER);
848 	poolBuilder.addType(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER);
849 	const auto descriptorPool	= poolBuilder.build(vkd, device, VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT, 1u);
850 	const auto descriptorSet	= makeDescriptorSet(vkd, device, descriptorPool.get(), setLayout.get());
851 
852 	// Update descriptor set.
853 	{
854 		const VkWriteDescriptorSetAccelerationStructureKHR accelDescInfo =
855 		{
856 			VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET_ACCELERATION_STRUCTURE_KHR,
857 			nullptr,
858 			1u,
859 			topLevelAS.get()->getPtr(),
860 		};
861 		const auto inStorageBufferInfo = makeDescriptorBufferInfo(originsBuffer.get(), 0ull, VK_WHOLE_SIZE);
862 		const auto storageBufferInfo = makeDescriptorBufferInfo(outputModesBuffer.get(), 0ull, VK_WHOLE_SIZE);
863 
864 		DescriptorSetUpdateBuilder updateBuilder;
865 		updateBuilder.writeSingle(descriptorSet.get(), DescriptorSetUpdateBuilder::Location::binding(0u), VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR, &accelDescInfo);
866 		updateBuilder.writeSingle(descriptorSet.get(), DescriptorSetUpdateBuilder::Location::binding(1u), VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, &inStorageBufferInfo);
867 		updateBuilder.writeSingle(descriptorSet.get(), DescriptorSetUpdateBuilder::Location::binding(2u), VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, &storageBufferInfo);
868 		updateBuilder.update(vkd, device);
869 	}
870 
871 	Move<VkPipeline>				pipeline;
872 	de::MovePtr<BufferWithMemory>	raygenSBT;
873 	Move<VkRenderPass>				renderPass;
874 	Move<VkFramebuffer>				framebuffer;
875 
876 	if (m_params.shaderSourceType == SST_VERTEX_SHADER)
877 	{
878 		auto vertexModule = createShaderModule(vkd, device, m_context.getBinaryCollection().get("vert"), 0);
879 
880 		renderPass = makeEmptyRenderPass(vkd, device);
881 		framebuffer = makeFramebuffer(vkd, device, *renderPass, 0u, DE_NULL, 32, 32);
882 		pipeline = makeGraphicsPipeline(vkd, device, *pipelineLayout, *renderPass, *vertexModule, 0);
883 
884 		beginRenderPass(vkd, cmdBuffer, *renderPass, *framebuffer, makeRect2D(32u, 32u));
885 		vkd.cmdBindPipeline(cmdBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline.get());
886 		vkd.cmdBindDescriptorSets(cmdBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout.get(), 0u, 1u, &descriptorSet.get(), 0u, nullptr);
887 		vkd.cmdDraw(cmdBuffer, kNumThreadsAtOnce, 1, 0, 0);
888 		endRenderPass(vkd, cmdBuffer);
889 	} else if (m_params.shaderSourceType == SST_RAY_GENERATION_SHADER)
890 	{
891 		const auto& vki = m_context.getInstanceInterface();
892 		const auto	physDev = m_context.getPhysicalDevice();
893 
894 		// Shader module.
895 		auto rgenModule = createShaderModule(vkd, device, m_context.getBinaryCollection().get("rgen"), 0);
896 
897 		// Get some ray tracing properties.
898 		deUint32 shaderGroupHandleSize = 0u;
899 		deUint32 shaderGroupBaseAlignment = 1u;
900 		{
901 			const auto rayTracingPropertiesKHR = makeRayTracingProperties(vki, physDev);
902 			shaderGroupHandleSize = rayTracingPropertiesKHR->getShaderGroupHandleSize();
903 			shaderGroupBaseAlignment = rayTracingPropertiesKHR->getShaderGroupBaseAlignment();
904 		}
905 
906 		auto raygenSBTRegion = makeStridedDeviceAddressRegionKHR(DE_NULL, 0, 0);
907 		auto unusedSBTRegion = makeStridedDeviceAddressRegionKHR(DE_NULL, 0, 0);
908 
909 		{
910 			const auto rayTracingPipeline = de::newMovePtr<RayTracingPipeline>();
911 			rayTracingPipeline->setCreateFlags(VK_PIPELINE_CREATE_RAY_TRACING_OPACITY_MICROMAP_BIT_EXT);
912 			rayTracingPipeline->addShader(VK_SHADER_STAGE_RAYGEN_BIT_KHR, rgenModule, 0);
913 
914 			pipeline = rayTracingPipeline->createPipeline(vkd, device, pipelineLayout.get());
915 
916 			raygenSBT = rayTracingPipeline->createShaderBindingTable(vkd, device, pipeline.get(), alloc, shaderGroupHandleSize, shaderGroupBaseAlignment, 0, 1);
917 			raygenSBTRegion = makeStridedDeviceAddressRegionKHR(getBufferDeviceAddress(vkd, device, raygenSBT->get(), 0), shaderGroupHandleSize, shaderGroupHandleSize);
918 		}
919 
920 		// Trace rays.
921 		vkd.cmdBindPipeline(cmdBuffer, VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR, pipeline.get());
922 		vkd.cmdBindDescriptorSets(cmdBuffer, VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR, pipelineLayout.get(), 0u, 1u, &descriptorSet.get(), 0u, nullptr);
923 		vkd.cmdTraceRaysKHR(cmdBuffer, &raygenSBTRegion, &unusedSBTRegion, &unusedSBTRegion, &unusedSBTRegion, kNumThreadsAtOnce, 1u, 1u);
924 	}
925 	else
926 	{
927 		DE_ASSERT(m_params.shaderSourceType == SST_COMPUTE_SHADER);
928 		// Shader module.
929 		const auto compModule = createShaderModule(vkd, device, m_context.getBinaryCollection().get("comp"), 0);
930 
931 		// Pipeline.
932 		const VkPipelineShaderStageCreateInfo shaderInfo =
933 		{
934 			VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,	//	VkStructureType						sType;
935 			nullptr,												//	const void*							pNext;
936 			0u,														//	VkPipelineShaderStageCreateFlags	flags;
937 			VK_SHADER_STAGE_COMPUTE_BIT,							//	VkShaderStageFlagBits				stage;
938 			compModule.get(),										//	VkShaderModule						module;
939 			"main",													//	const char*							pName;
940 			nullptr,												//	const VkSpecializationInfo*			pSpecializationInfo;
941 		};
942 		const VkComputePipelineCreateInfo pipelineInfo =
943 		{
944 			VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO,	//	VkStructureType					sType;
945 			nullptr,										//	const void*						pNext;
946 			0u,												//	VkPipelineCreateFlags			flags;
947 			shaderInfo,										//	VkPipelineShaderStageCreateInfo	stage;
948 			pipelineLayout.get(),							//	VkPipelineLayout				layout;
949 			DE_NULL,										//	VkPipeline						basePipelineHandle;
950 			0,												//	deInt32							basePipelineIndex;
951 		};
952 		pipeline = createComputePipeline(vkd, device, DE_NULL, &pipelineInfo);
953 
954 		// Dispatch work with ray queries.
955 		vkd.cmdBindPipeline(cmdBuffer, VK_PIPELINE_BIND_POINT_COMPUTE, pipeline.get());
956 		vkd.cmdBindDescriptorSets(cmdBuffer, VK_PIPELINE_BIND_POINT_COMPUTE, pipelineLayout.get(), 0u, 1u, &descriptorSet.get(), 0u, nullptr);
957 		vkd.cmdDispatch(cmdBuffer, 1u, 1u, 1u);
958 	}
959 
960 	// Barrier for the output buffer.
961 	const auto bufferBarrier = makeMemoryBarrier(VK_ACCESS_SHADER_WRITE_BIT, VK_ACCESS_HOST_READ_BIT);
962 	vkd.cmdPipelineBarrier(cmdBuffer, VK_PIPELINE_STAGE_ALL_COMMANDS_BIT, VK_PIPELINE_STAGE_HOST_BIT, 0u, 1u, &bufferBarrier, 0u, nullptr, 0u, nullptr);
963 
964 	endCommandBuffer(vkd, cmdBuffer);
965 	submitCommandsAndWait(vkd, device, queue, cmdBuffer);
966 
967 	if (micromap != VK_NULL_HANDLE)
968 		vkd.destroyMicromapEXT(device, micromap, DE_NULL);
969 	if (micromap != VK_NULL_HANDLE)
970 		vkd.destroyMicromapEXT(device, origMicromap, DE_NULL);
971 
972 	// Verify results.
973 	std::vector<deUint32>	outputData				(expectedOutputModes.size());
974 	const auto				outputModesBufferSizeSz	= static_cast<size_t>(outputModesBufferSize);
975 
976 	invalidateAlloc(vkd, device, outputModesBufferAlloc);
977 	DE_ASSERT(de::dataSize(outputData) == outputModesBufferSizeSz);
978 	deMemcpy(outputData.data(), outputModesBufferData, outputModesBufferSizeSz);
979 
980 	for (size_t i = 0; i < outputData.size(); ++i)
981 	{
982 		const auto& outVal		= outputData[i];
983 		const auto& expectedVal	= expectedOutputModes[i];
984 
985 		if (outVal != expectedVal)
986 		{
987 			std::ostringstream msg;
988 			msg << "Unexpected value found for ray " << i << ": expected " << expectedVal << " and found " << outVal << ";";
989 			TCU_FAIL(msg.str());
990 		}
991 #if 0
992 		else
993 		{
994 			std::ostringstream msg;
995 			msg << "Expected value found for ray " << i << ": expected " << expectedVal << " and found " << outVal << ";\n"; // XXX Debug remove
996 			std::cout << msg.str();
997 		}
998 #endif
999 	}
1000 
1001 	return tcu::TestStatus::pass("Pass");
1002 }
1003 
1004 } // anonymous
1005 
1006 constexpr deUint32 kMaxSubdivisionLevel = 15;
1007 
addBasicTests(tcu::TestCaseGroup * group)1008 void addBasicTests(tcu::TestCaseGroup* group)
1009 {
1010 	deUint32 seed = 1614674687u;
1011 
1012 	const struct
1013 	{
1014 		ShaderSourceType						shaderSourceType;
1015 		ShaderSourcePipeline					shaderSourcePipeline;
1016 		std::string								name;
1017 	} shaderSourceTypes[] =
1018 	{
1019 		{ SST_VERTEX_SHADER,					SSP_GRAPHICS_PIPELINE,		"vertex_shader"				},
1020 		{ SST_COMPUTE_SHADER,					SSP_COMPUTE_PIPELINE,		"compute_shader",			},
1021 		{ SST_RAY_GENERATION_SHADER,			SSP_RAY_TRACING_PIPELINE,	"rgen_shader",				},
1022 	};
1023 
1024 	const struct
1025 	{
1026 		bool									useSpecialIndex;
1027 		std::string								name;
1028 	} specialIndexUse[] =
1029 	{
1030 		{ false,								"map_value"},
1031 		{ true,									"special_index"},
1032 	};
1033 
1034 	auto& testCtx = group->getTestContext();
1035 
1036 	for (size_t shaderSourceNdx = 0; shaderSourceNdx < DE_LENGTH_OF_ARRAY(shaderSourceTypes); ++shaderSourceNdx)
1037 	{
1038 		de::MovePtr<tcu::TestCaseGroup> sourceTypeGroup(new tcu::TestCaseGroup(group->getTestContext(), shaderSourceTypes[shaderSourceNdx].name.c_str(), ""));
1039 
1040 		for (deUint32 testFlagMask = 0; testFlagMask < TEST_FLAG_BIT_LAST; testFlagMask++)
1041 		{
1042 			std::string maskName = "";
1043 
1044 			for (deUint32 bit = 0; bit < testFlagBitNames.size(); bit++)
1045 			{
1046 				if (testFlagMask & (1 << bit))
1047 				{
1048 					if (maskName != "")
1049 						maskName += "_";
1050 					maskName += testFlagBitNames[bit];
1051 				}
1052 			}
1053 			if (maskName == "")
1054 				maskName = "NoFlags";
1055 
1056 			de::MovePtr<tcu::TestCaseGroup> testFlagGroup(new tcu::TestCaseGroup(sourceTypeGroup->getTestContext(), maskName.c_str(), ""));
1057 
1058 			for (size_t specialIndexNdx = 0; specialIndexNdx < DE_LENGTH_OF_ARRAY(specialIndexUse); ++specialIndexNdx)
1059 			{
1060 				de::MovePtr<tcu::TestCaseGroup> specialGroup(new tcu::TestCaseGroup(testFlagGroup->getTestContext(), specialIndexUse[specialIndexNdx].name.c_str(), ""));
1061 
1062 				if (specialIndexUse[specialIndexNdx].useSpecialIndex)
1063 				{
1064 					for (deUint32 specialIndex = 0; specialIndex < 4; specialIndex++) {
1065 						TestParams testParams
1066 						{
1067 							shaderSourceTypes[shaderSourceNdx].shaderSourceType,
1068 							shaderSourceTypes[shaderSourceNdx].shaderSourcePipeline,
1069 							specialIndexUse[specialIndexNdx].useSpecialIndex,
1070 							testFlagMask,
1071 							0,
1072 							~specialIndex,
1073 							seed++,
1074 							CT_NONE,
1075 						};
1076 
1077 						std::stringstream css;
1078 						css << specialIndex;
1079 
1080 						specialGroup->addChild(new OpacityMicromapCase(testCtx, css.str().c_str(), "", testParams));
1081 					}
1082 					testFlagGroup->addChild(specialGroup.release());
1083 				}				else
1084 				{
1085 					struct {
1086 						deUint32 mode;
1087 						std::string name;
1088 					} modes[] =
1089 					{
1090 						{ 2, "2"},
1091 						{ 4, "4" }
1092 					};
1093 					for (deUint32 modeNdx = 0; modeNdx < DE_LENGTH_OF_ARRAY(modes); ++modeNdx)
1094 					{
1095 						de::MovePtr<tcu::TestCaseGroup> modeGroup(new tcu::TestCaseGroup(testFlagGroup->getTestContext(), modes[modeNdx].name.c_str(), ""));
1096 
1097 						for (deUint32 level = 0; level <= kMaxSubdivisionLevel; level++)
1098 						{
1099 							TestParams testParams
1100 							{
1101 								shaderSourceTypes[shaderSourceNdx].shaderSourceType,
1102 								shaderSourceTypes[shaderSourceNdx].shaderSourcePipeline,
1103 								specialIndexUse[specialIndexNdx].useSpecialIndex,
1104 								testFlagMask,
1105 								level,
1106 								modes[modeNdx].mode,
1107 								seed++,
1108 								CT_NONE,
1109 							};
1110 
1111 							std::stringstream css;
1112 							css << "level_" << level;
1113 
1114 							modeGroup->addChild(new OpacityMicromapCase(testCtx, css.str().c_str(), "", testParams));
1115 						}
1116 						specialGroup->addChild(modeGroup.release());
1117 					}
1118 					testFlagGroup->addChild(specialGroup.release());
1119 				}
1120 			}
1121 
1122 			sourceTypeGroup->addChild(testFlagGroup.release());
1123 		}
1124 
1125 		group->addChild(sourceTypeGroup.release());
1126 	}
1127 }
1128 
addCopyTests(tcu::TestCaseGroup * group)1129 void addCopyTests(tcu::TestCaseGroup* group)
1130 {
1131 	deUint32 seed = 1614674688u;
1132 
1133 	auto& testCtx = group->getTestContext();
1134 
1135 	for (size_t copyTypeNdx = CT_FIRST_ACTIVE; copyTypeNdx < CT_NUM_COPY_TYPES; ++copyTypeNdx)
1136 	{
1137 		de::MovePtr<tcu::TestCaseGroup> copyTypeGroup(new tcu::TestCaseGroup(group->getTestContext(), copyTypeNames[copyTypeNdx].c_str(), ""));
1138 
1139 		struct {
1140 			deUint32 mode;
1141 			std::string name;
1142 		} modes[] =
1143 		{
1144 			{ 2, "2"},
1145 			{ 4, "4" }
1146 		};
1147 		for (deUint32 modeNdx = 0; modeNdx < DE_LENGTH_OF_ARRAY(modes); ++modeNdx)
1148 		{
1149 			de::MovePtr<tcu::TestCaseGroup> modeGroup(new tcu::TestCaseGroup(copyTypeGroup->getTestContext(), modes[modeNdx].name.c_str(), ""));
1150 
1151 			for (deUint32 level = 0; level <= kMaxSubdivisionLevel; level++)
1152 			{
1153 				TestParams testParams
1154 				{
1155 					SST_COMPUTE_SHADER,
1156 					SSP_COMPUTE_PIPELINE,
1157 					false,
1158 					0,
1159 					level,
1160 					modes[modeNdx].mode,
1161 					seed++,
1162 					(CopyType)copyTypeNdx,
1163 				};
1164 
1165 				std::stringstream css;
1166 				css << "level_" << level;
1167 
1168 				modeGroup->addChild(new OpacityMicromapCase(testCtx, css.str().c_str(), "", testParams));
1169 			}
1170 			copyTypeGroup->addChild(modeGroup.release());
1171 		}
1172 		group->addChild(copyTypeGroup.release());
1173 	}
1174 }
1175 
createOpacityMicromapTests(tcu::TestContext & testCtx)1176 tcu::TestCaseGroup* createOpacityMicromapTests(tcu::TestContext& testCtx)
1177 {
1178 	de::MovePtr<tcu::TestCaseGroup> group(new tcu::TestCaseGroup(testCtx, "opacity_micromap", "Test acceleration structures using opacity micromap with ray query"));
1179 
1180 	addTestGroup(group.get(), "render", "Test accessing all formats of opacity micromaps", addBasicTests);
1181 	addTestGroup(group.get(), "copy", "Test copying opacity micromaps", addCopyTests);
1182 
1183 	return group.release();
1184 }
1185 
1186 } // RayQuery
1187 } // vkt
1188 
1189