• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*------------------------------------------------------------------------
2  * Vulkan Conformance Tests
3  * ------------------------
4  *
5  * Copyright (c) 2018 The Khronos Group Inc.
6  * Copyright (c) 2015 Samsung Electronics Co., Ltd.
7  * Copyright (c) 2016 The Android Open Source Project
8  *
9  * Licensed under the Apache License, Version 2.0 (the "License");
10  * you may not use this file except in compliance with the License.
11  * You may obtain a copy of the License at
12  *
13  *      http://www.apache.org/licenses/LICENSE-2.0
14  *
15  * Unless required by applicable law or agreed to in writing, software
16  * distributed under the License is distributed on an "AS IS" BASIS,
17  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18  * See the License for the specific language governing permissions and
19  * limitations under the License.
20  *
21  *//*!
22  * \file
23  * \brief Precision and range tests for builtins and types.
24  *
25  *//*--------------------------------------------------------------------*/
26 
27 #include "vktShaderBuiltinPrecisionTests.hpp"
28 #include "vktShaderExecutor.hpp"
29 #include "amber/vktAmberTestCase.hpp"
30 
31 #include "deMath.h"
32 #include "deMemory.h"
33 #include "deFloat16.h"
34 #include "deDefs.hpp"
35 #include "deRandom.hpp"
36 #include "deSTLUtil.hpp"
37 #include "deStringUtil.hpp"
38 #include "deUniquePtr.hpp"
39 #include "deSharedPtr.hpp"
40 #include "deArrayUtil.hpp"
41 
42 #include "tcuCommandLine.hpp"
43 #include "tcuFloatFormat.hpp"
44 #include "tcuInterval.hpp"
45 #include "tcuTestLog.hpp"
46 #include "tcuVector.hpp"
47 #include "tcuMatrix.hpp"
48 #include "tcuResultCollector.hpp"
49 #include "tcuMaybe.hpp"
50 
51 #include "gluContextInfo.hpp"
52 #include "gluVarType.hpp"
53 #include "gluRenderContext.hpp"
54 #include "glwDefs.hpp"
55 
56 #include <cmath>
57 #include <string>
58 #include <sstream>
59 #include <iostream>
60 #include <map>
61 #include <utility>
62 #include <limits>
63 
64 // Uncomment this to get evaluation trace dumps to std::cerr
65 // #define GLS_ENABLE_TRACE
66 
67 // set this to true to dump even passing results
68 #define GLS_LOG_ALL_RESULTS false
69 
70 #define FLOAT16_1_0		0x3C00 //1.0 float16bit
71 #define FLOAT16_180_0	0x59A0 //180.0 float16bit
72 #define FLOAT16_2_0		0x4000 //2.0 float16bit
73 #define FLOAT16_3_0		0x4200 //3.0 float16bit
74 #define FLOAT16_0_5		0x3800 //0.5 float16bit
75 #define FLOAT16_0_0		0x0000 //0.0 float16bit
76 
77 
78 using tcu::Vector;
79 typedef Vector<deFloat16, 1>	Vec1_16Bit;
80 typedef Vector<deFloat16, 2>	Vec2_16Bit;
81 typedef Vector<deFloat16, 3>	Vec3_16Bit;
82 typedef Vector<deFloat16, 4>	Vec4_16Bit;
83 
84 typedef Vector<double, 1>		Vec1_64Bit;
85 typedef Vector<double, 2>		Vec2_64Bit;
86 typedef Vector<double, 3>		Vec3_64Bit;
87 typedef Vector<double, 4>		Vec4_64Bit;
88 
89 enum
90 {
91 	// Computing reference intervals can take a non-trivial amount of time, especially on
92 	// platforms where toggling floating-point rounding mode is slow (emulated arm on x86).
93 	// As a workaround watchdog is kept happy by touching it periodically during reference
94 	// interval computation.
95 	TOUCH_WATCHDOG_VALUE_FREQUENCY	= 512
96 };
97 
98 namespace vkt
99 {
100 namespace shaderexecutor
101 {
102 
103 using std::string;
104 using std::map;
105 using std::ostream;
106 using std::ostringstream;
107 using std::pair;
108 using std::vector;
109 using std::set;
110 
111 using de::MovePtr;
112 using de::Random;
113 using de::SharedPtr;
114 using de::UniquePtr;
115 using tcu::Interval;
116 using tcu::FloatFormat;
117 using tcu::MessageBuilder;
118 using tcu::TestLog;
119 using tcu::Vector;
120 using tcu::Matrix;
121 using glu::Precision;
122 using glu::VarType;
123 using glu::DataType;
124 using glu::ShaderType;
125 
126 enum PrecisionTestFeatureBits
127 {
128 	PRECISION_TEST_FEATURES_NONE									= 0u,
129 	PRECISION_TEST_FEATURES_16BIT_BUFFER_ACCESS						= (1u << 1),
130 	PRECISION_TEST_FEATURES_16BIT_UNIFORM_AND_STORAGE_BUFFER_ACCESS	= (1u << 2),
131 	PRECISION_TEST_FEATURES_16BIT_PUSH_CONSTANT						= (1u << 3),
132 	PRECISION_TEST_FEATURES_16BIT_INPUT_OUTPUT						= (1u << 4),
133 	PRECISION_TEST_FEATURES_16BIT_SHADER_FLOAT						= (1u << 5),
134 	PRECISION_TEST_FEATURES_64BIT_SHADER_FLOAT						= (1u << 6),
135 };
136 typedef deUint32 PrecisionTestFeatures;
137 
138 
areFeaturesSupported(const Context & context,deUint32 toCheck)139 void areFeaturesSupported (const Context& context, deUint32 toCheck)
140 {
141 	if (toCheck == PRECISION_TEST_FEATURES_NONE) return;
142 
143 	const vk::VkPhysicalDevice16BitStorageFeatures& extensionFeatures = context.get16BitStorageFeatures();
144 
145 	if ((toCheck & PRECISION_TEST_FEATURES_16BIT_BUFFER_ACCESS) != 0 && extensionFeatures.storageBuffer16BitAccess == VK_FALSE)
146 		TCU_THROW(NotSupportedError, "Requested 16bit storage features not supported");
147 
148 	if ((toCheck & PRECISION_TEST_FEATURES_16BIT_UNIFORM_AND_STORAGE_BUFFER_ACCESS) != 0 && extensionFeatures.uniformAndStorageBuffer16BitAccess == VK_FALSE)
149 		TCU_THROW(NotSupportedError, "Requested 16bit storage features not supported");
150 
151 	if ((toCheck & PRECISION_TEST_FEATURES_16BIT_PUSH_CONSTANT) != 0 && extensionFeatures.storagePushConstant16 == VK_FALSE)
152 		TCU_THROW(NotSupportedError, "Requested 16bit storage features not supported");
153 
154 	if ((toCheck & PRECISION_TEST_FEATURES_16BIT_INPUT_OUTPUT) != 0 && extensionFeatures.storageInputOutput16 == VK_FALSE)
155 		TCU_THROW(NotSupportedError, "Requested 16bit storage features not supported");
156 
157 	if ((toCheck & PRECISION_TEST_FEATURES_16BIT_SHADER_FLOAT) != 0 && context.getShaderFloat16Int8Features().shaderFloat16 == VK_FALSE)
158 		TCU_THROW(NotSupportedError, "Requested 16-bit floats (halfs) are not supported in shader code");
159 
160 	if ((toCheck & PRECISION_TEST_FEATURES_64BIT_SHADER_FLOAT) != 0 && context.getDeviceFeatures().shaderFloat64 == VK_FALSE)
161 		TCU_THROW(NotSupportedError, "Requested 64-bit floats are not supported in shader code");
162 }
163 
164 /*--------------------------------------------------------------------*//*!
165  * \brief Generic singleton creator.
166  *
167  * instance<T>() returns a reference to a unique default-constructed instance
168  * of T. This is mainly used for our GLSL function implementations: each
169  * function is implemented by an object, and each of the objects has a
170  * distinct class. It would be extremely toilsome to maintain a separate
171  * context object that contained individual instances of the function classes,
172  * so we have to resort to global singleton instances.
173  *
174  *//*--------------------------------------------------------------------*/
175 template <typename T>
instance(void)176 const T& instance (void)
177 {
178 	static const T s_instance = T();
179 	return s_instance;
180 }
181 
182 /*--------------------------------------------------------------------*//*!
183  * \brief Empty placeholder type for unused template parameters.
184  *
185  * In the precision tests we are dealing with functions of different arities.
186  * To minimize code duplication, we only define templates with the maximum
187  * number of arguments, currently four. If a function's arity is less than the
188  * maximum, Void us used as the type for unused arguments.
189  *
190  * Although Voids are not used at run-time, they still must be compilable, so
191  * they must support all operations that other types do.
192  *
193  *//*--------------------------------------------------------------------*/
194 struct Void
195 {
196 	typedef	Void		Element;
197 	enum
198 	{
199 		SIZE = 0,
200 	};
201 
202 	template <typename T>
Voidvkt::shaderexecutor::Void203 	explicit			Void			(const T&)		{}
Voidvkt::shaderexecutor::Void204 						Void			(void)			{}
operator doublevkt::shaderexecutor::Void205 						operator double	(void)	const	{ return TCU_NAN; }
206 
207 	// These are used to make Voids usable as containers in container-generic code.
operator []vkt::shaderexecutor::Void208 	Void&				operator[]		(int)			{ return *this; }
operator []vkt::shaderexecutor::Void209 	const Void&			operator[]		(int)	const	{ return *this; }
210 };
211 
operator <<(ostream & os,Void)212 ostream& operator<< (ostream& os, Void) { return os << "()"; }
213 
214 //! Returns true for all other types except Void
isTypeValid(void)215 template <typename T>	bool isTypeValid		(void)	{ return true;	}
isTypeValid(void)216 template <>				bool isTypeValid<Void>	(void)	{ return false;	}
217 
isInteger(void)218 template <typename T>	bool isInteger				(void)	{ return false;	}
isInteger(void)219 template <>				bool isInteger<int>			(void)	{ return true;	}
isInteger(void)220 template <>				bool isInteger<tcu::IVec2>	(void)	{ return true;	}
isInteger(void)221 template <>				bool isInteger<tcu::IVec3>	(void)	{ return true; }
isInteger(void)222 template <>				bool isInteger<tcu::IVec4>	(void)	{ return true; }
223 
224 //! Utility function for getting the name of a data type.
225 //! This is used in vector and matrix constructors.
226 template <typename T>
dataTypeNameOf(void)227 const char* dataTypeNameOf (void)
228 {
229 	return glu::getDataTypeName(glu::dataTypeOf<T>());
230 }
231 
232 template <>
dataTypeNameOf(void)233 const char* dataTypeNameOf<Void> (void)
234 {
235 	DE_FATAL("Impossible");
236 	return DE_NULL;
237 }
238 
239 template <typename T>
getVarTypeOf(Precision prec=glu::PRECISION_LAST)240 VarType getVarTypeOf (Precision prec = glu::PRECISION_LAST)
241 {
242 	return glu::varTypeOf<T>(prec);
243 }
244 
245 //! A hack to get Void support for VarType.
246 template <>
getVarTypeOf(Precision)247 VarType getVarTypeOf<Void> (Precision)
248 {
249 	DE_FATAL("Impossible");
250 	return VarType();
251 }
252 
253 /*--------------------------------------------------------------------*//*!
254  * \brief Type traits for generalized interval types.
255  *
256  * We are trying to compute sets of acceptable values not only for
257  * float-valued expressions but also for compound values: vectors and
258  * matrices. We approximate a set of vectors as a vector of intervals and
259  * likewise for matrices.
260  *
261  * We now need generalized operations for each type and its interval
262  * approximation. These are given in the type Traits<T>.
263  *
264  * The type Traits<T>::IVal is the approximation of T: it is `Interval` for
265  * scalar types, and a vector or matrix of intervals for container types.
266  *
267  * To allow template inference to take place, there are function wrappers for
268  * the actual operations in Traits<T>. Hence we can just use:
269  *
270  * makeIVal(someFloat)
271  *
272  * instead of:
273  *
274  * Traits<float>::doMakeIVal(value)
275  *
276  *//*--------------------------------------------------------------------*/
277 
278 template <typename T> struct Traits;
279 
280 //! Create container from elementwise singleton values.
281 template <typename T>
makeIVal(const T & value)282 typename Traits<T>::IVal makeIVal (const T& value)
283 {
284 	return Traits<T>::doMakeIVal(value);
285 }
286 
287 //! Elementwise union of intervals.
288 template <typename T>
unionIVal(const typename Traits<T>::IVal & a,const typename Traits<T>::IVal & b)289 typename Traits<T>::IVal unionIVal (const typename Traits<T>::IVal& a,
290 									const typename Traits<T>::IVal& b)
291 {
292 	return Traits<T>::doUnion(a, b);
293 }
294 
295 //! Returns true iff every element of `ival` contains the corresponding element of `value`.
296 template <typename T, typename U = Void>
contains(const typename Traits<T>::IVal & ival,const T & value,bool is16Bit=false,const tcu::Maybe<U> & modularDivisor=tcu::Nothing)297 bool contains (const typename Traits<T>::IVal& ival, const T& value, bool is16Bit = false, const tcu::Maybe<U>& modularDivisor = tcu::Nothing)
298 {
299 	return Traits<T>::doContains(ival, value, is16Bit, modularDivisor);
300 }
301 
302 //! Print out an interval with the precision of `fmt`.
303 template <typename T>
printIVal(const FloatFormat & fmt,const typename Traits<T>::IVal & ival,ostream & os)304 void printIVal (const FloatFormat& fmt, const typename Traits<T>::IVal& ival, ostream& os)
305 {
306 	Traits<T>::doPrintIVal(fmt, ival, os);
307 }
308 
309 template <typename T>
intervalToString(const FloatFormat & fmt,const typename Traits<T>::IVal & ival)310 string intervalToString (const FloatFormat& fmt, const typename Traits<T>::IVal& ival)
311 {
312 	ostringstream oss;
313 	printIVal<T>(fmt, ival, oss);
314 	return oss.str();
315 }
316 
317 //! Print out a value with the precision of `fmt`.
318 template <typename T>
printValue16(const FloatFormat & fmt,const T & value,ostream & os)319 void printValue16 (const FloatFormat& fmt, const T& value, ostream& os)
320 {
321 	Traits<T>::doPrintValue16(fmt, value, os);
322 }
323 
324 template <typename T>
value16ToString(const FloatFormat & fmt,const T & val)325 string value16ToString(const FloatFormat& fmt, const T& val)
326 {
327 	ostringstream oss;
328 	printValue16(fmt, val, oss);
329 	return oss.str();
330 }
331 
getComparisonOperation(const int ndx)332 const std::string getComparisonOperation(const int ndx)
333 {
334 	const int operationCount = 10;
335 	DE_ASSERT(de::inBounds(ndx, 0, operationCount));
336 	const std::string operations[operationCount] =
337 	{
338 		"OpFOrdEqual\t\t\t",
339 		"OpFOrdGreaterThan\t",
340 		"OpFOrdLessThan\t\t",
341 		"OpFOrdGreaterThanEqual",
342 		"OpFOrdLessThanEqual\t",
343 		"OpFUnordEqual\t\t",
344 		"OpFUnordGreaterThan\t",
345 		"OpFUnordLessThan\t",
346 		"OpFUnordGreaterThanEqual",
347 		"OpFUnordLessThanEqual"
348 	};
349 	return operations[ndx];
350 }
351 
352 template <typename T>
comparisonMessage(const T & val)353 string comparisonMessage(const T& val)
354 {
355 	DE_UNREF(val);
356 	return "";
357 }
358 
359 template <>
comparisonMessage(const int & val)360 string comparisonMessage(const int& val)
361 {
362 	ostringstream oss;
363 
364 	int flags = val;
365 	for(int ndx = 0; ndx < 10; ++ndx)
366 	{
367 		oss << getComparisonOperation(ndx) << "\t:\t" << ((flags & 1) == 1 ? "TRUE" : "FALSE") << "\n";
368 		flags = flags >> 1;
369 	}
370 	return oss.str();
371 }
372 
373 template <>
comparisonMessage(const tcu::IVec2 & val)374 string comparisonMessage(const tcu::IVec2& val)
375 {
376 	ostringstream oss;
377 	tcu::IVec2 flags = val;
378 	for (int ndx = 0; ndx < 10; ++ndx)
379 	{
380 		oss << getComparisonOperation(ndx) << "\t:\t" << ((flags.x() & 1) == 1 ? "TRUE" : "FALSE") << "\t" << ((flags.y() & 1) == 1 ? "TRUE" : "FALSE") << "\n";
381 		flags.x() = flags.x() >> 1;
382 		flags.y() = flags.y() >> 1;
383 	}
384 	return oss.str();
385 }
386 
387 template <>
comparisonMessage(const tcu::IVec3 & val)388 string comparisonMessage(const tcu::IVec3& val)
389 {
390 	ostringstream oss;
391 	tcu::IVec3 flags = val;
392 	for (int ndx = 0; ndx < 10; ++ndx)
393 	{
394 		oss << getComparisonOperation(ndx) << "\t:\t" << ((flags.x() & 1) == 1 ? "TRUE" : "FALSE") << "\t"
395 								<< ((flags.y() & 1) == 1 ? "TRUE" : "FALSE") << "\t"
396 								<< ((flags.z() & 1) == 1 ? "TRUE" : "FALSE") << "\n";
397 		flags.x() = flags.x() >> 1;
398 		flags.y() = flags.y() >> 1;
399 		flags.z() = flags.z() >> 1;
400 	}
401 	return oss.str();
402 }
403 
404 template <>
comparisonMessage(const tcu::IVec4 & val)405 string comparisonMessage(const tcu::IVec4& val)
406 {
407 	ostringstream oss;
408 	tcu::IVec4 flags = val;
409 	for (int ndx = 0; ndx < 10; ++ndx)
410 	{
411 		oss << getComparisonOperation(ndx) << "\t:\t" << ((flags.x() & 1) == 1 ? "TRUE" : "FALSE") << "\t"
412 			<< ((flags.y() & 1) == 1 ? "TRUE" : "FALSE") << "\t"
413 			<< ((flags.z() & 1) == 1 ? "TRUE" : "FALSE") << "\t"
414 			<< ((flags.w() & 1) == 1 ? "TRUE" : "FALSE") << "\n";
415 		flags.x() = flags.x() >> 1;
416 		flags.y() = flags.y() >> 1;
417 		flags.z() = flags.z() >> 1;
418 		flags.w() = flags.z() >> 1;
419 	}
420 	return oss.str();
421 }
422 //! Print out a value with the precision of `fmt`.
423 template <typename T>
printValue32(const FloatFormat & fmt,const T & value,ostream & os)424 void printValue32 (const FloatFormat& fmt, const T& value, ostream& os)
425 {
426 	Traits<T>::doPrintValue32(fmt, value, os);
427 }
428 
429 template <typename T>
value32ToString(const FloatFormat & fmt,const T & val)430 string value32ToString (const FloatFormat& fmt, const T& val)
431 {
432 	ostringstream oss;
433 	printValue32(fmt, val, oss);
434 	return oss.str();
435 }
436 
437 template <typename T>
printValue64(const FloatFormat & fmt,const T & value,ostream & os)438 void printValue64 (const FloatFormat& fmt, const T& value, ostream& os)
439 {
440 	Traits<T>::doPrintValue64(fmt, value, os);
441 }
442 
443 template <typename T>
value64ToString(const FloatFormat & fmt,const T & val)444 string value64ToString (const FloatFormat& fmt, const T& val)
445 {
446 	ostringstream oss;
447 	printValue64(fmt, val, oss);
448 	return oss.str();
449 }
450 
451 //! Approximate `value` elementwise to the float precision defined in `fmt`.
452 //! The resulting interval might not be a singleton if rounding in both
453 //! directions is allowed.
454 template <typename T>
round(const FloatFormat & fmt,const T & value)455 typename Traits<T>::IVal round (const FloatFormat& fmt, const T& value)
456 {
457 	return Traits<T>::doRound(fmt, value);
458 }
459 
460 template <typename T>
convert(const FloatFormat & fmt,const typename Traits<T>::IVal & value)461 typename Traits<T>::IVal convert (const FloatFormat&				fmt,
462 								  const typename Traits<T>::IVal&	value)
463 {
464 	return Traits<T>::doConvert(fmt, value);
465 }
466 
467 // Matching input and output types. We may be in a modulo case and modularDivisor may have an actual value.
468 template <typename T>
intervalContains(const Interval & interval,T value,const tcu::Maybe<T> & modularDivisor)469 bool intervalContains (const Interval& interval, T value, const tcu::Maybe<T>& modularDivisor)
470 {
471 	bool contained = interval.contains(value);
472 
473 	if (!contained && modularDivisor)
474 	{
475 		const T divisor = modularDivisor.get();
476 
477 		// In a modulo operation, if the calculated answer contains the divisor, allow exactly 0.0 as a replacement. Alternatively,
478 		// if the calculated answer contains 0.0, allow exactly the divisor as a replacement.
479 		if (interval.contains(static_cast<double>(divisor)))
480 			contained |= (value == 0.0);
481 		if (interval.contains(0.0))
482 			contained |= (value == divisor);
483 	}
484 	return contained;
485 }
486 
487 // When the input and output types do not match, we are not in a real modulo operation. Do not take the divisor into account. This
488 // version is provided for syntactical compatibility only.
489 template <typename T, typename U>
intervalContains(const Interval & interval,T value,const tcu::Maybe<U> & modularDivisor)490 bool intervalContains (const Interval& interval, T value, const tcu::Maybe<U>& modularDivisor)
491 {
492 	DE_UNREF(modularDivisor);		// For release builds.
493 	DE_ASSERT(!modularDivisor);
494 	return interval.contains(value);
495 }
496 
497 //! Common traits for scalar types.
498 template <typename T>
499 struct ScalarTraits
500 {
501 	typedef				Interval		IVal;
502 
doMakeIValvkt::shaderexecutor::ScalarTraits503 	static Interval		doMakeIVal		(const T& value)
504 	{
505 		// Thankfully all scalar types have a well-defined conversion to `double`,
506 		// hence Interval can represent their ranges without problems.
507 		return Interval(double(value));
508 	}
509 
doUnionvkt::shaderexecutor::ScalarTraits510 	static Interval		doUnion			(const Interval& a, const Interval& b)
511 	{
512 		return a | b;
513 	}
514 
doContainsvkt::shaderexecutor::ScalarTraits515 	static bool			doContains		(const Interval& a, T value)
516 	{
517 		return a.contains(double(value));
518 	}
519 
doConvertvkt::shaderexecutor::ScalarTraits520 	static Interval		doConvert		(const FloatFormat& fmt, const IVal& ival)
521 	{
522 		return fmt.convert(ival);
523 	}
524 
doConvertvkt::shaderexecutor::ScalarTraits525 	static Interval		doConvert		(const FloatFormat& fmt, const IVal& ival, bool is16Bit)
526 	{
527 		DE_UNREF(is16Bit);
528 		return fmt.convert(ival);
529 	}
530 
doRoundvkt::shaderexecutor::ScalarTraits531 	static Interval		doRound			(const FloatFormat& fmt, T value)
532 	{
533 		return fmt.roundOut(double(value), false);
534 	}
535 };
536 
537 template <>
538 struct ScalarTraits<deUint16>
539 {
540 	typedef				Interval		IVal;
541 
doMakeIValvkt::shaderexecutor::ScalarTraits542 	static Interval		doMakeIVal		(const deUint16& value)
543 	{
544 		// Thankfully all scalar types have a well-defined conversion to `double`,
545 		// hence Interval can represent their ranges without problems.
546 		return Interval(double(deFloat16To32(value)));
547 	}
548 
doUnionvkt::shaderexecutor::ScalarTraits549 	static Interval		doUnion			(const Interval& a, const Interval& b)
550 	{
551 		return a | b;
552 	}
553 
doConvertvkt::shaderexecutor::ScalarTraits554 	static Interval		doConvert		(const FloatFormat& fmt, const IVal& ival)
555 	{
556 		return fmt.convert(ival);
557 	}
558 
doRoundvkt::shaderexecutor::ScalarTraits559 	static Interval		doRound			(const FloatFormat& fmt, deUint16 value)
560 	{
561 		return fmt.roundOut(double(deFloat16To32(value)), false);
562 	}
563 };
564 
565 template<>
566 struct Traits<float> : ScalarTraits<float>
567 {
doPrintIValvkt::shaderexecutor::Traits568 	static void			doPrintIVal		(const FloatFormat&	fmt,
569 										 const Interval&	ival,
570 										 ostream&			os)
571 	{
572 		os << fmt.intervalToHex(ival);
573 	}
574 
doPrintValue16vkt::shaderexecutor::Traits575 	static void			doPrintValue16	(const FloatFormat&	fmt,
576 										 const float&		value,
577 										 ostream&			os)
578 	{
579 		const deUint32 iRep = reinterpret_cast<const deUint32 & >(value);
580 		float res0 = deFloat16To32((deFloat16)(iRep & 0xFFFF));
581 		float res1 = deFloat16To32((deFloat16)(iRep >> 16));
582 		os << fmt.floatToHex(res0) << " " << fmt.floatToHex(res1);
583 	}
584 
doPrintValue32vkt::shaderexecutor::Traits585 	static void			doPrintValue32	(const FloatFormat&	fmt,
586 										 const float&		value,
587 										 ostream&			os)
588 	{
589 		os << fmt.floatToHex(value);
590 	}
591 
doPrintValue64vkt::shaderexecutor::Traits592 	static void			doPrintValue64	(const FloatFormat&	fmt,
593 										 const float&		value,
594 										 ostream&			os)
595 	{
596 		os << fmt.floatToHex(value);
597 	}
598 
599 	template <typename U>
doContainsvkt::shaderexecutor::Traits600 	static bool			doContains		(const Interval& a, const float& value, bool is16Bit, const tcu::Maybe<U>& modularDivisor)
601 	{
602 		if(is16Bit)
603 		{
604 			// Note: for deFloat16s packed in 32 bits, the original divisor is provided as a float to the shader in the input
605 			// buffer, so U is also float here and we call the right interlvalContains() version.
606 			const deUint32 iRep = reinterpret_cast<const deUint32&>(value);
607 			float res0 = deFloat16To32((deFloat16)(iRep & 0xFFFF));
608 			float res1 = deFloat16To32((deFloat16)(iRep >> 16));
609 			return intervalContains(a, res0, modularDivisor) && (res1 == -1.0);
610 		}
611 		return intervalContains(a, value, modularDivisor);
612 	}
613 };
614 
615 template<>
616 struct Traits<double> : ScalarTraits<double>
617 {
doPrintIValvkt::shaderexecutor::Traits618 	static void			doPrintIVal		(const FloatFormat&	fmt,
619 										 const Interval&	ival,
620 										 ostream&			os)
621 	{
622 		os << fmt.intervalToHex(ival);
623 	}
624 
doPrintValue16vkt::shaderexecutor::Traits625 	static void			doPrintValue16	(const FloatFormat&	fmt,
626 										 const double&		value,
627 										 ostream&			os)
628 	{
629 		const deUint64 iRep = reinterpret_cast<const deUint64&>(value);
630 		double byte0 = deFloat16To64((deFloat16)((iRep      ) & 0xffff));
631 		double byte1 = deFloat16To64((deFloat16)((iRep >> 16) & 0xffff));
632 		double byte2 = deFloat16To64((deFloat16)((iRep >> 32) & 0xffff));
633 		double byte3 = deFloat16To64((deFloat16)((iRep >> 48) & 0xffff));
634 		os << fmt.floatToHex(byte0) << " " << fmt.floatToHex(byte1) << " " << fmt.floatToHex(byte2) << " " << fmt.floatToHex(byte3);
635 	}
636 
doPrintValue32vkt::shaderexecutor::Traits637 	static void			doPrintValue32	(const FloatFormat&	fmt,
638 										 const double&		value,
639 										 ostream&			os)
640 	{
641 		const deUint64 iRep = reinterpret_cast<const deUint64&>(value);
642 		double res0 = static_cast<double>((float)((iRep      ) & 0xffffffff));
643 		double res1 = static_cast<double>((float)((iRep >> 32) & 0xffffffff));
644 		os << fmt.floatToHex(res0) << " " << fmt.floatToHex(res1);
645 	}
646 
doPrintValue64vkt::shaderexecutor::Traits647 	static void			doPrintValue64	(const FloatFormat&	fmt,
648 										 const double&		value,
649 										 ostream&			os)
650 	{
651 		os << fmt.floatToHex(value);
652 	}
653 
654 	template <class U>
doContainsvkt::shaderexecutor::Traits655 	static bool			doContains		(const Interval& a, const double& value, bool is16Bit, const tcu::Maybe<U>& modularDivisor)
656 	{
657 		DE_UNREF(is16Bit);
658 		DE_ASSERT(!is16Bit);
659 		return intervalContains(a, value, modularDivisor);
660 	}
661 };
662 
663 template<>
664 struct Traits<deFloat16> : ScalarTraits<deFloat16>
665 {
doPrintIValvkt::shaderexecutor::Traits666 	static void			doPrintIVal		(const FloatFormat&	fmt,
667 										 const Interval&	ival,
668 										 ostream&			os)
669 	{
670 		os << fmt.intervalToHex(ival);
671 	}
672 
doPrintValue16vkt::shaderexecutor::Traits673 	static void			doPrintValue16	(const FloatFormat&	fmt,
674 										 const deFloat16&	value,
675 										 ostream&			os)
676 	{
677 		const float res0 = deFloat16To32(value);
678 		os << fmt.floatToHex(static_cast<double>(res0));
679 	}
doPrintValue32vkt::shaderexecutor::Traits680 	static void			doPrintValue32	(const FloatFormat&	fmt,
681 										 const deFloat16&	value,
682 										 ostream&			os)
683 	{
684 		const float res0 = deFloat16To32(value);
685 		os << fmt.floatToHex(static_cast<double>(res0));
686 	}
687 
doPrintValue64vkt::shaderexecutor::Traits688 	static void			doPrintValue64	(const FloatFormat&	fmt,
689 										 const deFloat16&	value,
690 										 ostream&			os)
691 	{
692 		const double res0 = deFloat16To64(value);
693 		os << fmt.floatToHex(res0);
694 	}
695 
696 	// When the value and divisor are both deFloat16, convert both to float to call the right intervalContains version.
doContainsvkt::shaderexecutor::Traits697 	static bool			doContains		(const Interval& a, const deFloat16& value, bool is16Bit, const tcu::Maybe<deFloat16>& modularDivisor)
698 	{
699 		DE_UNREF(is16Bit);
700 		float res0 = deFloat16To32(value);
701 		const tcu::Maybe<float> convertedDivisor = (modularDivisor ? tcu::just(deFloat16To32(modularDivisor.get())) : tcu::Nothing);
702 		return intervalContains(a, res0, convertedDivisor);
703 	}
704 
705 	// If the types don't match we should not be in a modulo operation, so no conversion should take place.
706 	template <class U>
doContainsvkt::shaderexecutor::Traits707 	static bool			doContains		(const Interval& a, const deFloat16& value, bool is16Bit, const tcu::Maybe<U>& modularDivisor)
708 	{
709 		DE_UNREF(is16Bit);
710 		float res0 = deFloat16To32(value);
711 		return intervalContains(a, res0, modularDivisor);
712 	}
713 };
714 
715 template<>
716 struct Traits<bool> : ScalarTraits<bool>
717 {
doPrintValue16vkt::shaderexecutor::Traits718 	static void			doPrintValue16	(const FloatFormat&,
719 										 const float&		value,
720 										 ostream&			os)
721 	{
722 		os << (value != 0.0f ? "true" : "false");
723 	}
724 
doPrintValue32vkt::shaderexecutor::Traits725 	static void		doPrintValue32	(const			FloatFormat&,
726 									 const float&	value,
727 									 ostream&		os)
728 	{
729 		os << (value != 0.0f ? "true" : "false");
730 	}
731 
doPrintValue64vkt::shaderexecutor::Traits732 	static void		doPrintValue64	(const			FloatFormat&,
733 									 const float&	value,
734 									 ostream&		os)
735 	{
736 		os << (value != 0.0f ? "true" : "false");
737 	}
738 
doPrintIValvkt::shaderexecutor::Traits739 	static void			doPrintIVal		(const FloatFormat&,
740 										 const Interval&	ival,
741 										 ostream&			os)
742 	{
743 		os << "{";
744 		if (ival.contains(false))
745 			os << "false";
746 		if (ival.contains(false) && ival.contains(true))
747 			os << ", ";
748 		if (ival.contains(true))
749 			os << "true";
750 		os << "}";
751 	}
752 };
753 
754 template<>
755 struct Traits<int> : ScalarTraits<int>
756 {
doPrintValue16vkt::shaderexecutor::Traits757 	static void			doPrintValue16	(const FloatFormat&,
758 										 const int&			value,
759 										 ostream&			os)
760 	{
761 		int res0 = value & 0xFFFF;
762 		int res1 = value >> 16;
763 		os << res0 << " " << res1;
764 	}
765 
doPrintValue32vkt::shaderexecutor::Traits766 	static void		doPrintValue32		(const FloatFormat&,
767 										 const int&			value,
768 										 ostream&			os)
769 	{
770 		os << value;
771 	}
772 
doPrintValue64vkt::shaderexecutor::Traits773 	static void		doPrintValue64		(const FloatFormat&,
774 										 const int&			value,
775 										 ostream&			os)
776 	{
777 		os << value;
778 	}
779 
doPrintIValvkt::shaderexecutor::Traits780 	static void			doPrintIVal		(const FloatFormat&,
781 										 const Interval&	ival,
782 										 ostream&			os)
783 	{
784 		os << "[" << int(ival.lo()) << ", " << int(ival.hi()) << "]";
785 	}
786 
787 	template <typename U>
doContainsvkt::shaderexecutor::Traits788 	static bool			doContains		(const Interval& a, const int& value, bool is16Bit, const tcu::Maybe<U>& modularDivisor)
789 	{
790 		DE_UNREF(is16Bit);
791 		return intervalContains(a, value, modularDivisor);
792 	}
793 };
794 
795 //! Common traits for containers, i.e. vectors and matrices.
796 //! T is the container type itself, I is the same type with interval elements.
797 template <typename T, typename I>
798 struct ContainerTraits
799 {
800 	typedef typename	T::Element		Element;
801 	typedef				I				IVal;
802 
doMakeIValvkt::shaderexecutor::ContainerTraits803 	static IVal			doMakeIVal		(const T& value)
804 	{
805 		IVal ret;
806 
807 		for (int ndx = 0; ndx < T::SIZE; ++ndx)
808 			ret[ndx] = makeIVal(value[ndx]);
809 
810 		return ret;
811 	}
812 
doUnionvkt::shaderexecutor::ContainerTraits813 	static IVal			doUnion			(const IVal& a, const IVal& b)
814 	{
815 		IVal ret;
816 
817 		for (int ndx = 0; ndx < T::SIZE; ++ndx)
818 			ret[ndx] = unionIVal<Element>(a[ndx], b[ndx]);
819 
820 		return ret;
821 	}
822 
823 	// When the input and output types match, we may be in a modulo operation. If the divisor is provided, use each of its
824 	// components to determine if the obtained result is fine.
doContainsvkt::shaderexecutor::ContainerTraits825 	static bool			doContains		(const IVal& ival, const T& value, bool is16Bit, const tcu::Maybe<T>& modularDivisor)
826 	{
827 		using DivisorElement = typename T::Element;
828 
829 		for (int ndx = 0; ndx < T::SIZE; ++ndx)
830 		{
831 			const tcu::Maybe<DivisorElement> divisorElement = (modularDivisor ? tcu::just((*modularDivisor)[ndx]) : tcu::Nothing);
832 			if (!contains(ival[ndx], value[ndx], is16Bit, divisorElement))
833 				return false;
834 		}
835 
836 		return true;
837 	}
838 
839 	// When the input and output types do not match we should not be in a modulo operation. This version is provided for syntactical
840 	// compatibility.
841 	template <typename U>
doContainsvkt::shaderexecutor::ContainerTraits842 	static bool			doContains		(const IVal& ival, const T& value, bool is16Bit, const tcu::Maybe<U>& modularDivisor)
843 	{
844 		for (int ndx = 0; ndx < T::SIZE; ++ndx)
845 		{
846 			if (!contains(ival[ndx], value[ndx], is16Bit, modularDivisor))
847 				return false;
848 		}
849 
850 		return true;
851 	}
852 
doPrintIValvkt::shaderexecutor::ContainerTraits853 	static void			doPrintIVal		(const FloatFormat& fmt, const IVal ival, ostream& os)
854 	{
855 		os << "(";
856 
857 		for (int ndx = 0; ndx < T::SIZE; ++ndx)
858 		{
859 			if (ndx > 0)
860 				os << ", ";
861 
862 			printIVal<Element>(fmt, ival[ndx], os);
863 		}
864 
865 		os << ")";
866 	}
867 
doPrintValue16vkt::shaderexecutor::ContainerTraits868 	static void			doPrintValue16	(const FloatFormat& fmt, const T& value, ostream& os)
869 	{
870 		os << dataTypeNameOf<T>() << "(";
871 
872 		for (int ndx = 0; ndx < T::SIZE; ++ndx)
873 		{
874 			if (ndx > 0)
875 				os << ", ";
876 
877 			printValue16<Element>(fmt, value[ndx], os);
878 		}
879 
880 		os << ")";
881 	}
882 
doPrintValue32vkt::shaderexecutor::ContainerTraits883 	static void			doPrintValue32	(const FloatFormat& fmt, const T& value, ostream& os)
884 	{
885 		os << dataTypeNameOf<T>() << "(";
886 
887 		for (int ndx = 0; ndx < T::SIZE; ++ndx)
888 		{
889 			if (ndx > 0)
890 				os << ", ";
891 
892 			printValue32<Element>(fmt, value[ndx], os);
893 		}
894 
895 		os << ")";
896 	}
897 
doPrintValue64vkt::shaderexecutor::ContainerTraits898 	static void			doPrintValue64	(const FloatFormat& fmt, const T& value, ostream& os)
899 	{
900 		os << dataTypeNameOf<T>() << "(";
901 
902 		for (int ndx = 0; ndx < T::SIZE; ++ndx)
903 		{
904 			if (ndx > 0)
905 				os << ", ";
906 
907 			printValue64<Element>(fmt, value[ndx], os);
908 		}
909 
910 		os << ")";
911 	}
912 
doConvertvkt::shaderexecutor::ContainerTraits913 	static IVal			doConvert		(const FloatFormat& fmt, const IVal& value)
914 	{
915 		IVal ret;
916 
917 		for (int ndx = 0; ndx < T::SIZE; ++ndx)
918 			ret[ndx] = convert<Element>(fmt, value[ndx]);
919 
920 		return ret;
921 	}
922 
doRoundvkt::shaderexecutor::ContainerTraits923 	static IVal			doRound			(const FloatFormat& fmt, T value)
924 	{
925 		IVal ret;
926 
927 		for (int ndx = 0; ndx < T::SIZE; ++ndx)
928 			ret[ndx] = round(fmt, value[ndx]);
929 
930 		return ret;
931 	}
932 };
933 
934 template <typename T, int Size>
935 struct Traits<Vector<T, Size> > :
936 	ContainerTraits<Vector<T, Size>, Vector<typename Traits<T>::IVal, Size> >
937 {
938 };
939 
940 template <typename T, int Rows, int Cols>
941 struct Traits<Matrix<T, Rows, Cols> > :
942 	ContainerTraits<Matrix<T, Rows, Cols>, Matrix<typename Traits<T>::IVal, Rows, Cols> >
943 {
944 };
945 
946 //! Void traits. These are just dummies, but technically valid: a Void is a
947 //! unit type with a single possible value.
948 template<>
949 struct Traits<Void>
950 {
951 	typedef		Void			IVal;
952 
doMakeIValvkt::shaderexecutor::Traits953 	static Void	doMakeIVal		(const Void& value)										{ return value; }
doUnionvkt::shaderexecutor::Traits954 	static Void	doUnion			(const Void&, const Void&)								{ return Void(); }
doContainsvkt::shaderexecutor::Traits955 	static bool	doContains		(const Void&, Void)										{ return true; }
956 	template <typename U>
doContainsvkt::shaderexecutor::Traits957 	static bool	doContains		(const Void&, const Void& value, bool is16Bit, const tcu::Maybe<U>& modularDivisor) { DE_UNREF(value); DE_UNREF(is16Bit); DE_UNREF(modularDivisor); return true; }
doRoundvkt::shaderexecutor::Traits958 	static Void	doRound			(const FloatFormat&, const Void& value)					{ return value; }
doConvertvkt::shaderexecutor::Traits959 	static Void	doConvert		(const FloatFormat&, const Void& value)					{ return value; }
960 
doPrintValue16vkt::shaderexecutor::Traits961 	static void	doPrintValue16	(const FloatFormat&, const Void&, ostream& os)
962 	{
963 		os << "()";
964 	}
965 
doPrintValue32vkt::shaderexecutor::Traits966 	static void	doPrintValue32	(const FloatFormat&, const Void&, ostream& os)
967 	{
968 		os << "()";
969 	}
970 
doPrintValue64vkt::shaderexecutor::Traits971 	static void	doPrintValue64	(const FloatFormat&, const Void&, ostream& os)
972 	{
973 		os << "()";
974 	}
975 
doPrintIValvkt::shaderexecutor::Traits976 	static void	doPrintIVal		(const FloatFormat&, const Void&, ostream& os)
977 	{
978 		os << "()";
979 	}
980 };
981 
982 //! This is needed for container-generic operations.
983 //! We want a scalar type T to be its own "one-element vector".
984 template <typename T, int Size> struct ContainerOf	{ typedef Vector<T, Size>	Container; };
985 
986 template <typename T>			struct ContainerOf<T, 1>		{ typedef T		Container; };
987 template <int Size>				struct ContainerOf<Void, Size>	{ typedef Void	Container; };
988 
989 // This is a kludge that is only needed to get the ExprP::operator[] syntactic sugar to work.
990 template <typename T>	struct ElementOf		{ typedef	typename T::Element	Element; };
991 template <>				struct ElementOf<float>	{ typedef	void				Element; };
992 template <>				struct ElementOf<double>{ typedef	void				Element; };
993 template <>				struct ElementOf<bool>	{ typedef	void				Element; };
994 template <>				struct ElementOf<int>	{ typedef	void				Element; };
995 
996 template <typename T>
comparisonMessageInterval(const typename Traits<T>::IVal & val)997 string comparisonMessageInterval(const typename Traits<T>::IVal& val)
998 {
999 	DE_UNREF(val);
1000 	return "";
1001 }
1002 
1003 template <>
comparisonMessageInterval(const Traits<int>::IVal & val)1004 string comparisonMessageInterval<int>(const Traits<int>::IVal& val)
1005 {
1006 	return comparisonMessage(static_cast<int>(val.lo()));
1007 }
1008 
1009 template <>
comparisonMessageInterval(const Traits<float>::IVal & val)1010 string comparisonMessageInterval<float>(const Traits<float>::IVal& val)
1011 {
1012 	return comparisonMessage(static_cast<int>(val.lo()));
1013 }
1014 
1015 template <>
comparisonMessageInterval(const tcu::Vector<tcu::Interval,2> & val)1016 string comparisonMessageInterval<tcu::Vector<int, 2> >(const tcu::Vector<tcu::Interval, 2> & val)
1017 {
1018 	tcu::IVec2 result(static_cast<int>(val[0].lo()), static_cast<int>(val[1].lo()));
1019 	return comparisonMessage(result);
1020 }
1021 
1022 template <>
comparisonMessageInterval(const tcu::Vector<tcu::Interval,3> & val)1023 string comparisonMessageInterval<tcu::Vector<int, 3> >(const tcu::Vector<tcu::Interval, 3> & val)
1024 {
1025 	tcu::IVec3 result(static_cast<int>(val[0].lo()), static_cast<int>(val[1].lo()), static_cast<int>(val[2].lo()));
1026 	return comparisonMessage(result);
1027 }
1028 
1029 template <>
comparisonMessageInterval(const tcu::Vector<tcu::Interval,4> & val)1030 string comparisonMessageInterval<tcu::Vector<int, 4> >(const tcu::Vector<tcu::Interval, 4> & val)
1031 {
1032 	tcu::IVec4 result(static_cast<int>(val[0].lo()), static_cast<int>(val[1].lo()), static_cast<int>(val[2].lo()), static_cast<int>(val[3].lo()));
1033 	return comparisonMessage(result);
1034 }
1035 
1036 /*--------------------------------------------------------------------*//*!
1037  *
1038  * \name Abstract syntax for expressions and statements.
1039  *
1040  * We represent GLSL programs as syntax objects: an Expr<T> represents an
1041  * expression whose GLSL type corresponds to the C++ type T, and a Statement
1042  * represents a statement.
1043  *
1044  * To ease memory management, we use shared pointers to refer to expressions
1045  * and statements. ExprP<T> is a shared pointer to an Expr<T>, and StatementP
1046  * is a shared pointer to a Statement.
1047  *
1048  * \{
1049  *
1050  *//*--------------------------------------------------------------------*/
1051 
1052 class ExprBase;
1053 class ExpandContext;
1054 class Statement;
1055 class StatementP;
1056 class FuncBase;
1057 template <typename T> class ExprP;
1058 template <typename T> class Variable;
1059 template <typename T> class VariableP;
1060 template <typename T> class DefaultSampling;
1061 
1062 typedef set<const FuncBase*> FuncSet;
1063 
1064 template <typename T>
1065 VariableP<T>	variable			(const string& name);
1066 StatementP		compoundStatement	(const vector<StatementP>& statements);
1067 
1068 /*--------------------------------------------------------------------*//*!
1069  * \brief A variable environment.
1070  *
1071  * An Environment object maintains the mapping between variables of the
1072  * abstract syntax tree and their values.
1073  *
1074  * \todo [2014-03-28 lauri] At least run-time type safety.
1075  *
1076  *//*--------------------------------------------------------------------*/
1077 class Environment
1078 {
1079 public:
1080 	template<typename T>
bind(const Variable<T> & variable,const typename Traits<T>::IVal & value)1081 	void						bind	(const Variable<T>&					variable,
1082 										 const typename Traits<T>::IVal&	value)
1083 	{
1084 		deUint8* const data = new deUint8[sizeof(value)];
1085 
1086 		deMemcpy(data, &value, sizeof(value));
1087 		de::insert(m_map, variable.getName(), SharedPtr<deUint8>(data, de::ArrayDeleter<deUint8>()));
1088 	}
1089 
1090 	template<typename T>
lookup(const Variable<T> & variable) const1091 	typename Traits<T>::IVal&	lookup	(const Variable<T>& variable) const
1092 	{
1093 		deUint8* const data = de::lookup(m_map, variable.getName()).get();
1094 
1095 		return *reinterpret_cast<typename Traits<T>::IVal*>(data);
1096 	}
1097 
1098 private:
1099 	map<string, SharedPtr<deUint8> >	m_map;
1100 };
1101 
1102 /*--------------------------------------------------------------------*//*!
1103  * \brief Evaluation context.
1104  *
1105  * The evaluation context contains everything that separates one execution of
1106  * an expression from the next. Currently this means the desired floating
1107  * point precision and the current variable environment.
1108  *
1109  *//*--------------------------------------------------------------------*/
1110 struct EvalContext
1111 {
EvalContextvkt::shaderexecutor::EvalContext1112 	EvalContext (const FloatFormat&	format_,
1113 				 Precision			floatPrecision_,
1114 				 Environment&		env_,
1115 				 int				callDepth_)
1116 		: format				(format_)
1117 		, floatPrecision		(floatPrecision_)
1118 		, env					(env_)
1119 		, callDepth				(callDepth_) {}
1120 
1121 	FloatFormat		format;
1122 	Precision		floatPrecision;
1123 	Environment&	env;
1124 	int				callDepth;
1125 };
1126 
1127 /*--------------------------------------------------------------------*//*!
1128  * \brief Simple incremental counter.
1129  *
1130  * This is used to make sure that different ExpandContexts will not produce
1131  * overlapping temporary names.
1132  *
1133  *//*--------------------------------------------------------------------*/
1134 class Counter
1135 {
1136 public:
Counter(int count=0)1137 			Counter		(int count = 0) : m_count(count) {}
operator ()(void)1138 	int		operator()	(void) { return m_count++; }
1139 
1140 private:
1141 	int		m_count;
1142 };
1143 
1144 class ExpandContext
1145 {
1146 public:
ExpandContext(Counter & symCounter)1147 						ExpandContext	(Counter& symCounter) : m_symCounter(symCounter) {}
ExpandContext(const ExpandContext & parent)1148 						ExpandContext	(const ExpandContext& parent)
1149 							: m_symCounter(parent.m_symCounter) {}
1150 
1151 	template<typename T>
genSym(const string & baseName)1152 	VariableP<T>		genSym			(const string& baseName)
1153 	{
1154 		return variable<T>(baseName + de::toString(m_symCounter()));
1155 	}
1156 
addStatement(const StatementP & stmt)1157 	void				addStatement	(const StatementP& stmt)
1158 	{
1159 		m_statements.push_back(stmt);
1160 	}
1161 
getStatements(void) const1162 	vector<StatementP>	getStatements	(void) const
1163 	{
1164 		return m_statements;
1165 	}
1166 private:
1167 	Counter&			m_symCounter;
1168 	vector<StatementP>	m_statements;
1169 };
1170 
1171 /*--------------------------------------------------------------------*//*!
1172  * \brief A statement or declaration.
1173  *
1174  * Statements have no values. Instead, they are executed for their side
1175  * effects only: the execute() method should modify at least one variable in
1176  * the environment.
1177  *
1178  * As a bit of a kludge, a Statement object can also represent a declaration:
1179  * when it is evaluated, it can add a variable binding to the environment
1180  * instead of modifying a current one.
1181  *
1182  *//*--------------------------------------------------------------------*/
1183 class Statement
1184 {
1185 public:
~Statement(void)1186 	virtual			~Statement		(void)							{								 }
1187 	//! Execute the statement, modifying the environment of `ctx`
execute(EvalContext & ctx) const1188 	void			execute			(EvalContext&	ctx)	const	{ this->doExecute(ctx);			 }
print(ostream & os) const1189 	void			print			(ostream&		os)		const	{ this->doPrint(os);			 }
1190 	//! Add the functions used in this statement to `dst`.
getUsedFuncs(FuncSet & dst) const1191 	void			getUsedFuncs	(FuncSet& dst)			const	{ this->doGetUsedFuncs(dst);	 }
failed(EvalContext & ctx) const1192 	void			failed			(EvalContext& ctx)		const	{ this->doFail(ctx);			 }
1193 
1194 protected:
1195 	virtual void	doPrint			(ostream& os)			const	= 0;
1196 	virtual void	doExecute		(EvalContext& ctx)		const	= 0;
1197 	virtual void	doGetUsedFuncs	(FuncSet& dst)			const	= 0;
doFail(EvalContext & ctx) const1198 	virtual void	doFail			(EvalContext& ctx)		const	{ DE_UNREF(ctx); }
1199 };
1200 
operator <<(ostream & os,const Statement & stmt)1201 ostream& operator<<(ostream& os, const Statement& stmt)
1202 {
1203 	stmt.print(os);
1204 	return os;
1205 }
1206 
1207 /*--------------------------------------------------------------------*//*!
1208  * \brief Smart pointer for statements (and declarations)
1209  *
1210  *//*--------------------------------------------------------------------*/
1211 class StatementP : public SharedPtr<const Statement>
1212 {
1213 public:
1214 	typedef		SharedPtr<const Statement>	Super;
1215 
StatementP(void)1216 				StatementP			(void) {}
StatementP(const Statement * ptr)1217 	explicit	StatementP			(const Statement* ptr)	: Super(ptr) {}
StatementP(const Super & ptr)1218 				StatementP			(const Super& ptr)		: Super(ptr) {}
1219 };
1220 
1221 /*--------------------------------------------------------------------*//*!
1222  * \brief
1223  *
1224  * A statement that modifies a variable or a declaration that binds a variable.
1225  *
1226  *//*--------------------------------------------------------------------*/
1227 template <typename T>
1228 class VariableStatement : public Statement
1229 {
1230 public:
VariableStatement(const VariableP<T> & variable,const ExprP<T> & value,bool isDeclaration)1231 					VariableStatement	(const VariableP<T>& variable, const ExprP<T>& value,
1232 										 bool isDeclaration)
1233 						: m_variable		(variable)
1234 						, m_value			(value)
1235 						, m_isDeclaration	(isDeclaration) {}
1236 
1237 protected:
doPrint(ostream & os) const1238 	void			doPrint				(ostream& os)							const
1239 	{
1240 		if (m_isDeclaration)
1241 			os << glu::declare(getVarTypeOf<T>(), m_variable->getName());
1242 		else
1243 			os << m_variable->getName();
1244 
1245 		os << " = ";
1246 		os<< *m_value << ";\n";
1247 	}
1248 
doExecute(EvalContext & ctx) const1249 	void			doExecute			(EvalContext& ctx)						const
1250 	{
1251 		if (m_isDeclaration)
1252 			ctx.env.bind(*m_variable, m_value->evaluate(ctx));
1253 		else
1254 			ctx.env.lookup(*m_variable) = m_value->evaluate(ctx);
1255 	}
1256 
doGetUsedFuncs(FuncSet & dst) const1257 	void			doGetUsedFuncs		(FuncSet& dst)							const
1258 	{
1259 		m_value->getUsedFuncs(dst);
1260 	}
1261 
doFail(EvalContext & ctx) const1262 	virtual void	doFail			(EvalContext& ctx)		const
1263 	{
1264 		if (m_isDeclaration)
1265 			ctx.env.bind(*m_variable, m_value->fails(ctx));
1266 		else
1267 			ctx.env.lookup(*m_variable) = m_value->fails(ctx);
1268 	}
1269 
1270 	VariableP<T>	m_variable;
1271 	ExprP<T>		m_value;
1272 	bool			m_isDeclaration;
1273 };
1274 
1275 template <typename T>
variableStatement(const VariableP<T> & variable,const ExprP<T> & value,bool isDeclaration)1276 StatementP variableStatement (const VariableP<T>&	variable,
1277 							  const ExprP<T>&		value,
1278 							  bool					isDeclaration)
1279 {
1280 	return StatementP(new VariableStatement<T>(variable, value, isDeclaration));
1281 }
1282 
1283 template <typename T>
variableDeclaration(const VariableP<T> & variable,const ExprP<T> & definiens)1284 StatementP variableDeclaration (const VariableP<T>& variable, const ExprP<T>& definiens)
1285 {
1286 	return variableStatement(variable, definiens, true);
1287 }
1288 
1289 template <typename T>
variableAssignment(const VariableP<T> & variable,const ExprP<T> & value)1290 StatementP variableAssignment (const VariableP<T>& variable, const ExprP<T>& value)
1291 {
1292 	return variableStatement(variable, value, false);
1293 }
1294 
1295 /*--------------------------------------------------------------------*//*!
1296  * \brief A compound statement, i.e. a block.
1297  *
1298  * A compound statement is executed by executing its constituent statements in
1299  * sequence.
1300  *
1301  *//*--------------------------------------------------------------------*/
1302 class CompoundStatement : public Statement
1303 {
1304 public:
CompoundStatement(const vector<StatementP> & statements)1305 						CompoundStatement	(const vector<StatementP>& statements)
1306 							: m_statements	(statements) {}
1307 
1308 protected:
doPrint(ostream & os) const1309 	void				doPrint				(ostream&		os)						const
1310 	{
1311 		os << "{\n";
1312 
1313 		for (size_t ndx = 0; ndx < m_statements.size(); ++ndx)
1314 			os << *m_statements[ndx];
1315 
1316 		os << "}\n";
1317 	}
1318 
doExecute(EvalContext & ctx) const1319 	void				doExecute			(EvalContext&	ctx)					const
1320 	{
1321 		for (size_t ndx = 0; ndx < m_statements.size(); ++ndx)
1322 			m_statements[ndx]->execute(ctx);
1323 	}
1324 
doGetUsedFuncs(FuncSet & dst) const1325 	void				doGetUsedFuncs		(FuncSet& dst)							const
1326 	{
1327 		for (size_t ndx = 0; ndx < m_statements.size(); ++ndx)
1328 			m_statements[ndx]->getUsedFuncs(dst);
1329 	}
1330 
1331 	vector<StatementP>	m_statements;
1332 };
1333 
compoundStatement(const vector<StatementP> & statements)1334 StatementP compoundStatement(const vector<StatementP>& statements)
1335 {
1336 	return StatementP(new CompoundStatement(statements));
1337 }
1338 
1339 //! Common base class for all expressions regardless of their type.
1340 class ExprBase
1341 {
1342 public:
~ExprBase(void)1343 	virtual				~ExprBase		(void)									{}
printExpr(ostream & os) const1344 	void				printExpr		(ostream& os) const { this->doPrintExpr(os); }
1345 
1346 	//! Output the functions that this expression refers to
getUsedFuncs(FuncSet & dst) const1347 	void				getUsedFuncs	(FuncSet& dst) const
1348 	{
1349 		this->doGetUsedFuncs(dst);
1350 	}
1351 
1352 protected:
doPrintExpr(ostream &) const1353 	virtual void		doPrintExpr		(ostream&)	const	{}
doGetUsedFuncs(FuncSet &) const1354 	virtual void		doGetUsedFuncs	(FuncSet&)	const	{}
1355 };
1356 
1357 //! Type-specific operations for an expression representing type T.
1358 template <typename T>
1359 class Expr : public ExprBase
1360 {
1361 public:
1362 	typedef				T				Val;
1363 	typedef typename	Traits<T>::IVal	IVal;
1364 
1365 	IVal				evaluate		(const EvalContext&	ctx) const;
fails(const EvalContext & ctx) const1366 	IVal				fails			(const EvalContext&	ctx) const	{ return this->doFails(ctx); }
1367 
1368 protected:
1369 	virtual IVal		doEvaluate		(const EvalContext&	ctx) const = 0;
doFails(const EvalContext & ctx) const1370 	virtual IVal		doFails			(const EvalContext&	ctx) const {return doEvaluate(ctx);}
1371 };
1372 
1373 //! Evaluate an expression with the given context, optionally tracing the calls to stderr.
1374 template <typename T>
evaluate(const EvalContext & ctx) const1375 typename Traits<T>::IVal Expr<T>::evaluate (const EvalContext& ctx) const
1376 {
1377 #ifdef GLS_ENABLE_TRACE
1378 	static const FloatFormat	highpFmt	(-126, 127, 23, true,
1379 											 tcu::MAYBE,
1380 											 tcu::YES,
1381 											 tcu::MAYBE);
1382 	EvalContext					newCtx		(ctx.format, ctx.floatPrecision,
1383 											 ctx.env, ctx.callDepth + 1);
1384 	const IVal					ret			= this->doEvaluate(newCtx);
1385 
1386 	if (isTypeValid<T>())
1387 	{
1388 		std::cerr << string(ctx.callDepth, ' ');
1389 		this->printExpr(std::cerr);
1390 		std::cerr << " -> " << intervalToString<T>(highpFmt, ret) << std::endl;
1391 	}
1392 	return ret;
1393 #else
1394 	return this->doEvaluate(ctx);
1395 #endif
1396 }
1397 
1398 template <typename T>
1399 class ExprPBase : public SharedPtr<const Expr<T> >
1400 {
1401 public:
1402 };
1403 
operator <<(ostream & os,const ExprBase & expr)1404 ostream& operator<< (ostream& os, const ExprBase& expr)
1405 {
1406 	expr.printExpr(os);
1407 	return os;
1408 }
1409 
1410 /*--------------------------------------------------------------------*//*!
1411  * \brief Shared pointer to an expression of a container type.
1412  *
1413  * Container types (i.e. vectors and matrices) support the subscription
1414  * operator. This class provides a bit of syntactic sugar to allow us to use
1415  * the C++ subscription operator to create a subscription expression.
1416  *//*--------------------------------------------------------------------*/
1417 template <typename T>
1418 class ContainerExprPBase : public ExprPBase<T>
1419 {
1420 public:
1421 	ExprP<typename T::Element>	operator[]	(int i) const;
1422 };
1423 
1424 template <typename T>
1425 class ExprP : public ExprPBase<T> {};
1426 
1427 // We treat Voids as containers since the unused parameters in generalized
1428 // vector functions are represented as Voids.
1429 template <>
1430 class ExprP<Void> : public ContainerExprPBase<Void> {};
1431 
1432 template <typename T, int Size>
1433 class ExprP<Vector<T, Size> > : public ContainerExprPBase<Vector<T, Size> > {};
1434 
1435 template <typename T, int Rows, int Cols>
1436 class ExprP<Matrix<T, Rows, Cols> > : public ContainerExprPBase<Matrix<T, Rows, Cols> > {};
1437 
exprP(void)1438 template <typename T> ExprP<T> exprP (void)
1439 {
1440 	return ExprP<T>();
1441 }
1442 
1443 template <typename T>
exprP(const SharedPtr<const Expr<T>> & ptr)1444 ExprP<T> exprP (const SharedPtr<const Expr<T> >& ptr)
1445 {
1446 	ExprP<T> ret;
1447 	static_cast<SharedPtr<const Expr<T> >&>(ret) = ptr;
1448 	return ret;
1449 }
1450 
1451 template <typename T>
exprP(const Expr<T> * ptr)1452 ExprP<T> exprP (const Expr<T>* ptr)
1453 {
1454 	return exprP(SharedPtr<const Expr<T> >(ptr));
1455 }
1456 
1457 /*--------------------------------------------------------------------*//*!
1458  * \brief A shared pointer to a variable expression.
1459  *
1460  * This is just a narrowing of ExprP for the operations that require a variable
1461  * instead of an arbitrary expression.
1462  *
1463  *//*--------------------------------------------------------------------*/
1464 template <typename T>
1465 class VariableP : public SharedPtr<const Variable<T> >
1466 {
1467 public:
1468 	typedef		SharedPtr<const Variable<T> >	Super;
VariableP(const Variable<T> * ptr)1469 	explicit	VariableP	(const Variable<T>* ptr) : Super(ptr) {}
VariableP(void)1470 				VariableP	(void) {}
VariableP(const Super & ptr)1471 				VariableP	(const Super& ptr) : Super(ptr) {}
1472 
operator ExprP<T>(void) const1473 	operator	ExprP<T>	(void) const { return exprP(SharedPtr<const Expr<T> >(*this)); }
1474 };
1475 
1476 /*--------------------------------------------------------------------*//*!
1477  * \name Syntactic sugar operators for expressions.
1478  *
1479  * @{
1480  *
1481  * These operators allow the use of C++ syntax to construct GLSL expressions
1482  * containing operators: e.g. "a+b" creates an addition expression with
1483  * operands a and b, and so on.
1484  *
1485  *//*--------------------------------------------------------------------*/
1486 ExprP<float>						operator+ (const ExprP<float>&						arg0,
1487 											  const ExprP<float>&						arg1);
1488 ExprP<deFloat16>					operator+ (const ExprP<deFloat16>&					arg0,
1489 											  const ExprP<deFloat16>&					arg1);
1490 ExprP<double>						operator+ (const ExprP<double>&						arg0,
1491 											  const ExprP<double>&						arg1);
1492 template <typename T>
1493 ExprP<T>							operator- (const ExprP<T>& arg0);
1494 template <typename T>
1495 ExprP<T>							operator- (const ExprP<T>&							arg0,
1496 											  const ExprP<T>&							arg1);
1497 template<int Left, int Mid, int Right, typename T>
1498 ExprP<Matrix<T, Left, Right> >		operator* (const ExprP<Matrix<T, Left, Mid> >&		left,
1499 											   const ExprP<Matrix<T, Mid, Right> >&		right);
1500 ExprP<float>						operator* (const ExprP<float>&						arg0,
1501 											  const ExprP<float>&						arg1);
1502 ExprP<deFloat16>					operator* (const ExprP<deFloat16>&					arg0,
1503 											   const ExprP<deFloat16>&					arg1);
1504 ExprP<double>						operator* (const ExprP<double>&						arg0,
1505 											  const ExprP<double>&						arg1);
1506 template <typename T>
1507 ExprP<T>							operator/ (const ExprP<T>&							arg0,
1508 											  const ExprP<T>&							arg1);
1509 template<typename T, int Size>
1510 ExprP<Vector<T, Size> >				operator- (const ExprP<Vector<T, Size> >&			arg0);
1511 template<typename T, int Size>
1512 ExprP<Vector<T, Size> >				operator- (const ExprP<Vector<T, Size> >&			arg0,
1513 											   const ExprP<Vector<T, Size> >&			arg1);
1514 template<int Size, typename T>
1515 ExprP<Vector<T, Size> >				operator* (const ExprP<Vector<T, Size> >&			arg0,
1516 											   const ExprP<T>&							arg1);
1517 template<typename T, int Size>
1518 ExprP<Vector<T, Size> >				operator* (const ExprP<Vector<T, Size> >&			arg0,
1519 											   const ExprP<Vector<T, Size> >&			arg1);
1520 template<int Rows, int Cols, typename T>
1521 ExprP<Vector<T, Rows> >				operator* (const ExprP<Vector<T, Cols> >&			left,
1522 											   const ExprP<Matrix<T, Rows, Cols> >&		right);
1523 template<int Rows, int Cols, typename T>
1524 ExprP<Vector<T, Cols> >				operator* (const ExprP<Matrix<T, Rows, Cols> >&		left,
1525 											   const ExprP<Vector<T, Rows> >&			right);
1526 template<int Rows, int Cols, typename T>
1527 ExprP<Matrix<T, Rows, Cols> >		operator* (const ExprP<Matrix<T, Rows, Cols> >&		left,
1528 											   const ExprP<T>&							right);
1529 template<int Rows, int Cols>
1530 ExprP<Matrix<float, Rows, Cols> >	operator+ (const ExprP<Matrix<float, Rows, Cols> >&	left,
1531 											   const ExprP<Matrix<float, Rows, Cols> >&	right);
1532 template<int Rows, int Cols>
1533 ExprP<Matrix<deFloat16, Rows, Cols> >	operator+ (const ExprP<Matrix<deFloat16, Rows, Cols> >&	left,
1534 												   const ExprP<Matrix<deFloat16, Rows, Cols> >&	right);
1535 template<int Rows, int Cols>
1536 ExprP<Matrix<double, Rows, Cols> >	operator+ (const ExprP<Matrix<double, Rows, Cols> >&	left,
1537 											   const ExprP<Matrix<double, Rows, Cols> >&	right);
1538 template<typename T, int Rows, int Cols>
1539 ExprP<Matrix<T, Rows, Cols> >	operator- (const ExprP<Matrix<T, Rows, Cols> >&	mat);
1540 
1541 //! @}
1542 
1543 /*--------------------------------------------------------------------*//*!
1544  * \brief Variable expression.
1545  *
1546  * A variable is evaluated by looking up its range of possible values from an
1547  * environment.
1548  *//*--------------------------------------------------------------------*/
1549 template <typename T>
1550 class Variable : public Expr<T>
1551 {
1552 public:
1553 	typedef typename Expr<T>::IVal IVal;
1554 
Variable(const string & name)1555 					Variable	(const string& name) : m_name (name) {}
getName(void) const1556 	string			getName		(void)							const { return m_name; }
1557 
1558 protected:
doPrintExpr(ostream & os) const1559 	void			doPrintExpr	(ostream& os)					const { os << m_name; }
doEvaluate(const EvalContext & ctx) const1560 	IVal			doEvaluate	(const EvalContext& ctx)		const
1561 	{
1562 		return ctx.env.lookup<T>(*this);
1563 	}
1564 
1565 private:
1566 	string	m_name;
1567 };
1568 
1569 template <typename T>
variable(const string & name)1570 VariableP<T> variable (const string& name)
1571 {
1572 	return VariableP<T>(new Variable<T>(name));
1573 }
1574 
1575 template <typename T>
bindExpression(const string & name,ExpandContext & ctx,const ExprP<T> & expr)1576 VariableP<T> bindExpression (const string& name, ExpandContext& ctx, const ExprP<T>& expr)
1577 {
1578 	VariableP<T> var = ctx.genSym<T>(name);
1579 	ctx.addStatement(variableDeclaration(var, expr));
1580 	return var;
1581 }
1582 
1583 /*--------------------------------------------------------------------*//*!
1584  * \brief Constant expression.
1585  *
1586  * A constant is evaluated by rounding it to a set of possible values allowed
1587  * by the current floating point precision.
1588  *//*--------------------------------------------------------------------*/
1589 template <typename T>
1590 class Constant : public Expr<T>
1591 {
1592 public:
1593 	typedef typename Expr<T>::IVal IVal;
1594 
Constant(const T & value)1595 			Constant		(const T& value) : m_value(value) {}
1596 
1597 protected:
doPrintExpr(ostream & os) const1598 	void	doPrintExpr		(ostream& os) const			{ os << m_value; }
doEvaluate(const EvalContext &) const1599 	IVal	doEvaluate		(const EvalContext&) const	{ return makeIVal(m_value); }
1600 
1601 private:
1602 	T		m_value;
1603 };
1604 
1605 template <typename T>
constant(const T & value)1606 ExprP<T> constant (const T& value)
1607 {
1608 	return exprP(new Constant<T>(value));
1609 }
1610 
1611 //! Return a reference to a singleton void constant.
voidP(void)1612 const ExprP<Void>& voidP (void)
1613 {
1614 	static const ExprP<Void> singleton = constant(Void());
1615 
1616 	return singleton;
1617 }
1618 
1619 /*--------------------------------------------------------------------*//*!
1620  * \brief Four-element tuple.
1621  *
1622  * This is used for various things where we need one thing for each possible
1623  * function parameter. Currently the maximum supported number of parameters is
1624  * four.
1625  *//*--------------------------------------------------------------------*/
1626 template <typename T0 = Void, typename T1 = Void, typename T2 = Void, typename T3 = Void>
1627 struct Tuple4
1628 {
Tuple4vkt::shaderexecutor::Tuple41629 	explicit Tuple4 (const T0 e0 = T0(),
1630 					 const T1 e1 = T1(),
1631 					 const T2 e2 = T2(),
1632 					 const T3 e3 = T3())
1633 		: a	(e0)
1634 		, b	(e1)
1635 		, c	(e2)
1636 		, d	(e3)
1637 	{
1638 	}
1639 
1640 	T0 a;
1641 	T1 b;
1642 	T2 c;
1643 	T3 d;
1644 };
1645 
1646 /*--------------------------------------------------------------------*//*!
1647  * \brief Function signature.
1648  *
1649  * This is a purely compile-time structure used to bundle all types in a
1650  * function signature together. This makes passing the signature around in
1651  * templates easier, since we only need to take and pass a single Sig instead
1652  * of a bunch of parameter types and a return type.
1653  *
1654  *//*--------------------------------------------------------------------*/
1655 template <typename R,
1656 		  typename P0 = Void, typename P1 = Void,
1657 		  typename P2 = Void, typename P3 = Void>
1658 struct Signature
1659 {
1660 	typedef R							Ret;
1661 	typedef P0							Arg0;
1662 	typedef P1							Arg1;
1663 	typedef P2							Arg2;
1664 	typedef P3							Arg3;
1665 	typedef typename Traits<Ret>::IVal	IRet;
1666 	typedef typename Traits<Arg0>::IVal	IArg0;
1667 	typedef typename Traits<Arg1>::IVal	IArg1;
1668 	typedef typename Traits<Arg2>::IVal	IArg2;
1669 	typedef typename Traits<Arg3>::IVal	IArg3;
1670 
1671 	typedef Tuple4<	const Arg0&,	const Arg1&,	const Arg2&,	const Arg3&>	Args;
1672 	typedef Tuple4<	const IArg0&,	const IArg1&,	const IArg2&,	const IArg3&>	IArgs;
1673 	typedef Tuple4<	ExprP<Arg0>,	ExprP<Arg1>,	ExprP<Arg2>,	ExprP<Arg3> >	ArgExprs;
1674 };
1675 
1676 typedef vector<const ExprBase*> BaseArgExprs;
1677 
1678 /*--------------------------------------------------------------------*//*!
1679  * \brief Type-independent operations for function objects.
1680  *
1681  *//*--------------------------------------------------------------------*/
1682 class FuncBase
1683 {
1684 public:
~FuncBase(void)1685 	virtual				~FuncBase				(void)					{}
1686 	virtual string		getName					(void)					const = 0;
1687 	//! Name of extension that this function requires, or empty.
getRequiredExtension(void) const1688 	virtual string		getRequiredExtension	(void)					const { return ""; }
getInputRange(const bool is16bit) const1689 	virtual Interval	getInputRange			(const bool is16bit)	const {DE_UNREF(is16bit); return Interval(true, -TCU_INFINITY, TCU_INFINITY); }
1690 	virtual void		print					(ostream&,
1691 												 const BaseArgExprs&)	const = 0;
1692 	//! Index of output parameter, or -1 if none of the parameters is output.
getOutParamIndex(void) const1693 	virtual int			getOutParamIndex		(void)					const { return -1; }
1694 
getSpirvCase(void) const1695 	virtual SpirVCaseT	getSpirvCase			(void)					const { return SPIRV_CASETYPE_NONE; }
1696 
printDefinition(ostream & os) const1697 	void				printDefinition			(ostream& os)			const
1698 	{
1699 		doPrintDefinition(os);
1700 	}
1701 
getUsedFuncs(FuncSet & dst) const1702 	void				getUsedFuncs			(FuncSet& dst) const
1703 	{
1704 		this->doGetUsedFuncs(dst);
1705 	}
1706 
1707 protected:
1708 	virtual void		doPrintDefinition		(ostream& os)			const = 0;
1709 	virtual void		doGetUsedFuncs			(FuncSet& dst)			const = 0;
1710 };
1711 
1712 typedef Tuple4<string, string, string, string> ParamNames;
1713 
1714 /*--------------------------------------------------------------------*//*!
1715  * \brief Function objects.
1716  *
1717  * Each Func object represents a GLSL function. It can be applied to interval
1718  * arguments, and it returns the an interval that is a conservative
1719  * approximation of the image of the GLSL function over the argument
1720  * intervals. That is, it is given a set of possible arguments and it returns
1721  * the set of possible values.
1722  *
1723  *//*--------------------------------------------------------------------*/
1724 template <typename Sig_>
1725 class Func : public FuncBase
1726 {
1727 public:
1728 	typedef Sig_										Sig;
1729 	typedef typename Sig::Ret							Ret;
1730 	typedef typename Sig::Arg0							Arg0;
1731 	typedef typename Sig::Arg1							Arg1;
1732 	typedef typename Sig::Arg2							Arg2;
1733 	typedef typename Sig::Arg3							Arg3;
1734 	typedef typename Sig::IRet							IRet;
1735 	typedef typename Sig::IArg0							IArg0;
1736 	typedef typename Sig::IArg1							IArg1;
1737 	typedef typename Sig::IArg2							IArg2;
1738 	typedef typename Sig::IArg3							IArg3;
1739 	typedef typename Sig::Args							Args;
1740 	typedef typename Sig::IArgs							IArgs;
1741 	typedef typename Sig::ArgExprs						ArgExprs;
1742 
print(ostream & os,const BaseArgExprs & args) const1743 	void				print			(ostream&			os,
1744 										 const BaseArgExprs& args)				const
1745 	{
1746 		this->doPrint(os, args);
1747 	}
1748 
apply(const EvalContext & ctx,const IArg0 & arg0=IArg0 (),const IArg1 & arg1=IArg1 (),const IArg2 & arg2=IArg2 (),const IArg3 & arg3=IArg3 ()) const1749 	IRet				apply			(const EvalContext&	ctx,
1750 										 const IArg0&		arg0 = IArg0(),
1751 										 const IArg1&		arg1 = IArg1(),
1752 										 const IArg2&		arg2 = IArg2(),
1753 										 const IArg3&		arg3 = IArg3())		const
1754 	{
1755 		return this->applyArgs(ctx, IArgs(arg0, arg1, arg2, arg3));
1756 	}
1757 
fail(const EvalContext & ctx,const IArg0 & arg0=IArg0 (),const IArg1 & arg1=IArg1 (),const IArg2 & arg2=IArg2 (),const IArg3 & arg3=IArg3 ()) const1758 	IRet				fail			(const EvalContext&	ctx,
1759 										 const IArg0&		arg0 = IArg0(),
1760 										 const IArg1&		arg1 = IArg1(),
1761 										 const IArg2&		arg2 = IArg2(),
1762 										 const IArg3&		arg3 = IArg3())		const
1763 	{
1764 		return this->doFail(ctx, IArgs(arg0, arg1, arg2, arg3));
1765 	}
applyArgs(const EvalContext & ctx,const IArgs & args) const1766 	IRet				applyArgs		(const EvalContext&	ctx,
1767 										 const IArgs&		args)				const
1768 	{
1769 		return this->doApply(ctx, args);
1770 	}
1771 	ExprP<Ret>			operator()		(const ExprP<Arg0>&		arg0 = voidP(),
1772 										 const ExprP<Arg1>&		arg1 = voidP(),
1773 										 const ExprP<Arg2>&		arg2 = voidP(),
1774 										 const ExprP<Arg3>&		arg3 = voidP())		const;
1775 
getParamNames(void) const1776 	const ParamNames&	getParamNames	(void)									const
1777 	{
1778 		return this->doGetParamNames();
1779 	}
1780 
1781 protected:
1782 	virtual IRet		doApply			(const EvalContext&,
1783 										 const IArgs&)							const = 0;
doFail(const EvalContext & ctx,const IArgs & args) const1784 	virtual IRet		doFail			(const EvalContext&	ctx,
1785 										 const IArgs&		args)				const
1786 	{
1787 		return this->doApply(ctx, args);
1788 	}
doPrint(ostream & os,const BaseArgExprs & args) const1789 	virtual void		doPrint			(ostream& os, const BaseArgExprs& args)	const
1790 	{
1791 		os << getName() << "(";
1792 
1793 		if (isTypeValid<Arg0>())
1794 			os << *args[0];
1795 
1796 		if (isTypeValid<Arg1>())
1797 			os << ", " << *args[1];
1798 
1799 		if (isTypeValid<Arg2>())
1800 			os << ", " << *args[2];
1801 
1802 		if (isTypeValid<Arg3>())
1803 			os << ", " << *args[3];
1804 
1805 		os << ")";
1806 	}
1807 
doGetParamNames(void) const1808 	virtual const ParamNames&	doGetParamNames	(void)							const
1809 	{
1810 		static ParamNames	names	("a", "b", "c", "d");
1811 		return names;
1812 	}
1813 };
1814 
1815 template <typename Sig>
1816 class Apply : public Expr<typename Sig::Ret>
1817 {
1818 public:
1819 	typedef typename Sig::Ret				Ret;
1820 	typedef typename Sig::Arg0				Arg0;
1821 	typedef typename Sig::Arg1				Arg1;
1822 	typedef typename Sig::Arg2				Arg2;
1823 	typedef typename Sig::Arg3				Arg3;
1824 	typedef typename Expr<Ret>::Val			Val;
1825 	typedef typename Expr<Ret>::IVal		IVal;
1826 	typedef Func<Sig>						ApplyFunc;
1827 	typedef typename ApplyFunc::ArgExprs	ArgExprs;
1828 
Apply(const ApplyFunc & func,const ExprP<Arg0> & arg0=voidP (),const ExprP<Arg1> & arg1=voidP (),const ExprP<Arg2> & arg2=voidP (),const ExprP<Arg3> & arg3=voidP ())1829 						Apply	(const ApplyFunc&		func,
1830 								 const ExprP<Arg0>&		arg0 = voidP(),
1831 								 const ExprP<Arg1>&		arg1 = voidP(),
1832 								 const ExprP<Arg2>&		arg2 = voidP(),
1833 								 const ExprP<Arg3>&		arg3 = voidP())
1834 							: m_func	(func),
1835 							  m_args	(arg0, arg1, arg2, arg3) {}
1836 
Apply(const ApplyFunc & func,const ArgExprs & args)1837 						Apply	(const ApplyFunc&	func,
1838 								 const ArgExprs&	args)
1839 							: m_func	(func),
1840 							  m_args	(args) {}
1841 protected:
doPrintExpr(ostream & os) const1842 	void				doPrintExpr			(ostream& os) const
1843 	{
1844 		BaseArgExprs	args;
1845 		args.push_back(m_args.a.get());
1846 		args.push_back(m_args.b.get());
1847 		args.push_back(m_args.c.get());
1848 		args.push_back(m_args.d.get());
1849 		m_func.print(os, args);
1850 	}
1851 
doEvaluate(const EvalContext & ctx) const1852 	IVal				doEvaluate		(const EvalContext& ctx) const
1853 	{
1854 		return m_func.apply(ctx,
1855 							m_args.a->evaluate(ctx), m_args.b->evaluate(ctx),
1856 							m_args.c->evaluate(ctx), m_args.d->evaluate(ctx));
1857 	}
1858 
doGetUsedFuncs(FuncSet & dst) const1859 	void				doGetUsedFuncs	(FuncSet& dst) const
1860 	{
1861 		m_func.getUsedFuncs(dst);
1862 		m_args.a->getUsedFuncs(dst);
1863 		m_args.b->getUsedFuncs(dst);
1864 		m_args.c->getUsedFuncs(dst);
1865 		m_args.d->getUsedFuncs(dst);
1866 	}
1867 
1868 	const ApplyFunc&	m_func;
1869 	ArgExprs			m_args;
1870 };
1871 
1872 template<typename T>
1873 class Alternatives : public Func<Signature<T, T, T> >
1874 {
1875 public:
1876 	typedef typename	Alternatives::Sig		Sig;
1877 
1878 protected:
1879 	typedef typename	Alternatives::IRet		IRet;
1880 	typedef typename	Alternatives::IArgs		IArgs;
1881 
getName(void) const1882 	virtual string		getName				(void) const			{ return "alternatives"; }
doPrintDefinition(std::ostream &) const1883 	virtual void		doPrintDefinition	(std::ostream&) const	{}
doGetUsedFuncs(FuncSet &) const1884 	void				doGetUsedFuncs		(FuncSet&) const		{}
1885 
doApply(const EvalContext &,const IArgs & args) const1886 	virtual IRet		doApply				(const EvalContext&, const IArgs& args) const
1887 	{
1888 		return unionIVal<T>(args.a, args.b);
1889 	}
1890 
doPrint(ostream & os,const BaseArgExprs & args) const1891 	virtual void		doPrint				(ostream& os, const BaseArgExprs& args)	const
1892 	{
1893 		os << "{" << *args[0] << " | " << *args[1] << "}";
1894 	}
1895 };
1896 
1897 template <typename Sig>
createApply(const Func<Sig> & func,const typename Func<Sig>::ArgExprs & args)1898 ExprP<typename Sig::Ret> createApply (const Func<Sig>&						func,
1899 									  const typename Func<Sig>::ArgExprs&	args)
1900 {
1901 	return exprP(new Apply<Sig>(func, args));
1902 }
1903 
1904 template <typename Sig>
createApply(const Func<Sig> & func,const ExprP<typename Sig::Arg0> & arg0=voidP (),const ExprP<typename Sig::Arg1> & arg1=voidP (),const ExprP<typename Sig::Arg2> & arg2=voidP (),const ExprP<typename Sig::Arg3> & arg3=voidP ())1905 ExprP<typename Sig::Ret> createApply (
1906 	const Func<Sig>&			func,
1907 	const ExprP<typename Sig::Arg0>&	arg0 = voidP(),
1908 	const ExprP<typename Sig::Arg1>&	arg1 = voidP(),
1909 	const ExprP<typename Sig::Arg2>&	arg2 = voidP(),
1910 	const ExprP<typename Sig::Arg3>&	arg3 = voidP())
1911 {
1912 	return exprP(new Apply<Sig>(func, arg0, arg1, arg2, arg3));
1913 }
1914 
1915 template <typename Sig>
operator ()(const ExprP<typename Sig::Arg0> & arg0,const ExprP<typename Sig::Arg1> & arg1,const ExprP<typename Sig::Arg2> & arg2,const ExprP<typename Sig::Arg3> & arg3) const1916 ExprP<typename Sig::Ret> Func<Sig>::operator() (const ExprP<typename Sig::Arg0>& arg0,
1917 												const ExprP<typename Sig::Arg1>& arg1,
1918 												const ExprP<typename Sig::Arg2>& arg2,
1919 												const ExprP<typename Sig::Arg3>& arg3) const
1920 {
1921 	return createApply(*this, arg0, arg1, arg2, arg3);
1922 }
1923 
1924 template <typename F>
app(const ExprP<typename F::Arg0> & arg0=voidP (),const ExprP<typename F::Arg1> & arg1=voidP (),const ExprP<typename F::Arg2> & arg2=voidP (),const ExprP<typename F::Arg3> & arg3=voidP ())1925 ExprP<typename F::Ret> app (const ExprP<typename F::Arg0>& arg0 = voidP(),
1926 							const ExprP<typename F::Arg1>& arg1 = voidP(),
1927 							const ExprP<typename F::Arg2>& arg2 = voidP(),
1928 							const ExprP<typename F::Arg3>& arg3 = voidP())
1929 {
1930 	return createApply(instance<F>(), arg0, arg1, arg2, arg3);
1931 }
1932 
1933 template <typename F>
call(const EvalContext & ctx,const typename F::IArg0 & arg0=Void (),const typename F::IArg1 & arg1=Void (),const typename F::IArg2 & arg2=Void (),const typename F::IArg3 & arg3=Void ())1934 typename F::IRet call (const EvalContext&			ctx,
1935 					   const typename F::IArg0&		arg0 = Void(),
1936 					   const typename F::IArg1&		arg1 = Void(),
1937 					   const typename F::IArg2&		arg2 = Void(),
1938 					   const typename F::IArg3&		arg3 = Void())
1939 {
1940 	return instance<F>().apply(ctx, arg0, arg1, arg2, arg3);
1941 }
1942 
1943 template <typename T>
alternatives(const ExprP<T> & arg0,const ExprP<T> & arg1)1944 ExprP<T> alternatives (const ExprP<T>& arg0,
1945 					   const ExprP<T>& arg1)
1946 {
1947 	return createApply<typename Alternatives<T>::Sig>(instance<Alternatives<T> >(), arg0, arg1);
1948 }
1949 
1950 template <typename Sig>
1951 class ApplyVar : public Apply<Sig>
1952 {
1953 public:
1954 	typedef typename Sig::Ret				Ret;
1955 	typedef typename Sig::Arg0				Arg0;
1956 	typedef typename Sig::Arg1				Arg1;
1957 	typedef typename Sig::Arg2				Arg2;
1958 	typedef typename Sig::Arg3				Arg3;
1959 	typedef typename Expr<Ret>::Val			Val;
1960 	typedef typename Expr<Ret>::IVal		IVal;
1961 	typedef Func<Sig>						ApplyFunc;
1962 	typedef typename ApplyFunc::ArgExprs	ArgExprs;
1963 
ApplyVar(const ApplyFunc & func,const VariableP<Arg0> & arg0,const VariableP<Arg1> & arg1,const VariableP<Arg2> & arg2,const VariableP<Arg3> & arg3)1964 						ApplyVar	(const ApplyFunc&			func,
1965 									 const VariableP<Arg0>&		arg0,
1966 									 const VariableP<Arg1>&		arg1,
1967 									 const VariableP<Arg2>&		arg2,
1968 									 const VariableP<Arg3>&		arg3)
1969 							: Apply<Sig> (func, arg0, arg1, arg2, arg3) {}
1970 protected:
doEvaluate(const EvalContext & ctx) const1971 	IVal				doEvaluate		(const EvalContext& ctx) const
1972 	{
1973 		const Variable<Arg0>&	var0 = static_cast<const Variable<Arg0>&>(*this->m_args.a);
1974 		const Variable<Arg1>&	var1 = static_cast<const Variable<Arg1>&>(*this->m_args.b);
1975 		const Variable<Arg2>&	var2 = static_cast<const Variable<Arg2>&>(*this->m_args.c);
1976 		const Variable<Arg3>&	var3 = static_cast<const Variable<Arg3>&>(*this->m_args.d);
1977 		return this->m_func.apply(ctx,
1978 								  ctx.env.lookup(var0), ctx.env.lookup(var1),
1979 								  ctx.env.lookup(var2), ctx.env.lookup(var3));
1980 	}
1981 
doFails(const EvalContext & ctx) const1982 	IVal				doFails		(const EvalContext& ctx) const
1983 	{
1984 		const Variable<Arg0>&	var0 = static_cast<const Variable<Arg0>&>(*this->m_args.a);
1985 		const Variable<Arg1>&	var1 = static_cast<const Variable<Arg1>&>(*this->m_args.b);
1986 		const Variable<Arg2>&	var2 = static_cast<const Variable<Arg2>&>(*this->m_args.c);
1987 		const Variable<Arg3>&	var3 = static_cast<const Variable<Arg3>&>(*this->m_args.d);
1988 		return this->m_func.fail(ctx,
1989 								  ctx.env.lookup(var0), ctx.env.lookup(var1),
1990 								  ctx.env.lookup(var2), ctx.env.lookup(var3));
1991 	}
1992 };
1993 
1994 template <typename Sig>
applyVar(const Func<Sig> & func,const VariableP<typename Sig::Arg0> & arg0,const VariableP<typename Sig::Arg1> & arg1,const VariableP<typename Sig::Arg2> & arg2,const VariableP<typename Sig::Arg3> & arg3)1995 ExprP<typename Sig::Ret> applyVar (const Func<Sig>&						func,
1996 								   const VariableP<typename Sig::Arg0>&	arg0,
1997 								   const VariableP<typename Sig::Arg1>&	arg1,
1998 								   const VariableP<typename Sig::Arg2>&	arg2,
1999 								   const VariableP<typename Sig::Arg3>&	arg3)
2000 {
2001 	return exprP(new ApplyVar<Sig>(func, arg0, arg1, arg2, arg3));
2002 }
2003 
2004 template <typename Sig_>
2005 class DerivedFunc : public Func<Sig_>
2006 {
2007 public:
2008 	typedef typename DerivedFunc::ArgExprs		ArgExprs;
2009 	typedef typename DerivedFunc::IRet			IRet;
2010 	typedef typename DerivedFunc::IArgs			IArgs;
2011 	typedef typename DerivedFunc::Ret			Ret;
2012 	typedef typename DerivedFunc::Arg0			Arg0;
2013 	typedef typename DerivedFunc::Arg1			Arg1;
2014 	typedef typename DerivedFunc::Arg2			Arg2;
2015 	typedef typename DerivedFunc::Arg3			Arg3;
2016 	typedef typename DerivedFunc::IArg0			IArg0;
2017 	typedef typename DerivedFunc::IArg1			IArg1;
2018 	typedef typename DerivedFunc::IArg2			IArg2;
2019 	typedef typename DerivedFunc::IArg3			IArg3;
2020 
2021 protected:
doPrintDefinition(ostream & os) const2022 	void						doPrintDefinition	(ostream& os) const
2023 	{
2024 		const ParamNames&	paramNames	= this->getParamNames();
2025 
2026 		initialize();
2027 
2028 		os << dataTypeNameOf<Ret>() << " " << this->getName()
2029 			<< "(";
2030 		if (isTypeValid<Arg0>())
2031 			os << dataTypeNameOf<Arg0>() << " " << paramNames.a;
2032 		if (isTypeValid<Arg1>())
2033 			os << ", " << dataTypeNameOf<Arg1>() << " " << paramNames.b;
2034 		if (isTypeValid<Arg2>())
2035 			os << ", " << dataTypeNameOf<Arg2>() << " " << paramNames.c;
2036 		if (isTypeValid<Arg3>())
2037 			os << ", " << dataTypeNameOf<Arg3>() << " " << paramNames.d;
2038 		os << ")\n{\n";
2039 
2040 		for (size_t ndx = 0; ndx < m_body.size(); ++ndx)
2041 			os << *m_body[ndx];
2042 		os << "return " << *m_ret << ";\n";
2043 		os << "}\n";
2044 	}
2045 
doApply(const EvalContext & ctx,const IArgs & args) const2046 	IRet						doApply			(const EvalContext&	ctx,
2047 												 const IArgs&		args) const
2048 	{
2049 		Environment	funEnv;
2050 		IArgs&		mutArgs		= const_cast<IArgs&>(args);
2051 		IRet		ret;
2052 
2053 		initialize();
2054 
2055 		funEnv.bind(*m_var0, args.a);
2056 		funEnv.bind(*m_var1, args.b);
2057 		funEnv.bind(*m_var2, args.c);
2058 		funEnv.bind(*m_var3, args.d);
2059 
2060 		{
2061 			EvalContext	funCtx(ctx.format, ctx.floatPrecision, funEnv, ctx.callDepth);
2062 
2063 			for (size_t ndx = 0; ndx < m_body.size(); ++ndx)
2064 				m_body[ndx]->execute(funCtx);
2065 
2066 			ret = m_ret->evaluate(funCtx);
2067 		}
2068 
2069 		// \todo [lauri] Store references instead of values in environment
2070 		const_cast<IArg0&>(mutArgs.a) = funEnv.lookup(*m_var0);
2071 		const_cast<IArg1&>(mutArgs.b) = funEnv.lookup(*m_var1);
2072 		const_cast<IArg2&>(mutArgs.c) = funEnv.lookup(*m_var2);
2073 		const_cast<IArg3&>(mutArgs.d) = funEnv.lookup(*m_var3);
2074 
2075 		return ret;
2076 	}
2077 
doGetUsedFuncs(FuncSet & dst) const2078 	void						doGetUsedFuncs	(FuncSet& dst) const
2079 	{
2080 		initialize();
2081 		if (dst.insert(this).second)
2082 		{
2083 			for (size_t ndx = 0; ndx < m_body.size(); ++ndx)
2084 				m_body[ndx]->getUsedFuncs(dst);
2085 			m_ret->getUsedFuncs(dst);
2086 		}
2087 	}
2088 
2089 	virtual ExprP<Ret>			doExpand		(ExpandContext& ctx, const ArgExprs& args_) const = 0;
2090 
2091 	// These are transparently initialized when first needed. They cannot be
2092 	// initialized in the constructor because they depend on the doExpand
2093 	// method of the subclass.
2094 
2095 	mutable VariableP<Arg0>		m_var0;
2096 	mutable VariableP<Arg1>		m_var1;
2097 	mutable VariableP<Arg2>		m_var2;
2098 	mutable VariableP<Arg3>		m_var3;
2099 	mutable vector<StatementP>	m_body;
2100 	mutable ExprP<Ret>			m_ret;
2101 
2102 private:
2103 
initialize(void) const2104 	void				initialize		(void)	const
2105 	{
2106 		if (!m_ret)
2107 		{
2108 			const ParamNames&	paramNames	= this->getParamNames();
2109 			Counter				symCounter;
2110 			ExpandContext		ctx			(symCounter);
2111 			ArgExprs			args;
2112 
2113 			args.a	= m_var0 = variable<Arg0>(paramNames.a);
2114 			args.b	= m_var1 = variable<Arg1>(paramNames.b);
2115 			args.c	= m_var2 = variable<Arg2>(paramNames.c);
2116 			args.d	= m_var3 = variable<Arg3>(paramNames.d);
2117 
2118 			m_ret	= this->doExpand(ctx, args);
2119 			m_body	= ctx.getStatements();
2120 		}
2121 	}
2122 };
2123 
2124 template <typename Sig>
2125 class PrimitiveFunc : public Func<Sig>
2126 {
2127 public:
2128 	typedef typename PrimitiveFunc::Ret			Ret;
2129 	typedef typename PrimitiveFunc::ArgExprs	ArgExprs;
2130 
2131 protected:
doPrintDefinition(ostream &) const2132 	void	doPrintDefinition	(ostream&) const	{}
doGetUsedFuncs(FuncSet &) const2133 	void	doGetUsedFuncs		(FuncSet&) const	{}
2134 };
2135 
2136 template <typename T>
2137 class Cond : public PrimitiveFunc<Signature<T, bool, T, T> >
2138 {
2139 public:
2140 	typedef typename Cond::IArgs	IArgs;
2141 	typedef typename Cond::IRet		IRet;
2142 
getName(void) const2143 	string	getName	(void) const
2144 	{
2145 		return "_cond";
2146 	}
2147 
2148 protected:
2149 
doPrint(ostream & os,const BaseArgExprs & args) const2150 	void	doPrint	(ostream& os, const BaseArgExprs& args) const
2151 	{
2152 		os << "(" << *args[0] << " ? " << *args[1] << " : " << *args[2] << ")";
2153 	}
2154 
doApply(const EvalContext &,const IArgs & iargs) const2155 	IRet	doApply	(const EvalContext&, const IArgs& iargs)const
2156 	{
2157 		IRet	ret;
2158 
2159 		if (iargs.a.contains(true))
2160 			ret = unionIVal<T>(ret, iargs.b);
2161 
2162 		if (iargs.a.contains(false))
2163 			ret = unionIVal<T>(ret, iargs.c);
2164 
2165 		return ret;
2166 	}
2167 };
2168 
2169 template <typename T>
2170 class CompareOperator : public PrimitiveFunc<Signature<bool, T, T> >
2171 {
2172 public:
2173 	typedef typename CompareOperator::IArgs	IArgs;
2174 	typedef typename CompareOperator::IArg0	IArg0;
2175 	typedef typename CompareOperator::IArg1	IArg1;
2176 	typedef typename CompareOperator::IRet	IRet;
2177 
2178 protected:
doPrint(ostream & os,const BaseArgExprs & args) const2179 	void			doPrint	(ostream& os, const BaseArgExprs& args) const
2180 	{
2181 		os << "(" << *args[0] << getSymbol() << *args[1] << ")";
2182 	}
2183 
doApply(const EvalContext &,const IArgs & iargs) const2184 	Interval		doApply	(const EvalContext&, const IArgs& iargs) const
2185 	{
2186 		const IArg0&	arg0 = iargs.a;
2187 		const IArg1&	arg1 = iargs.b;
2188 		IRet	ret;
2189 
2190 		if (canSucceed(arg0, arg1))
2191 			ret |= true;
2192 		if (canFail(arg0, arg1))
2193 			ret |= false;
2194 
2195 		return ret;
2196 	}
2197 
2198 	virtual string	getSymbol	(void) const = 0;
2199 	virtual bool	canSucceed	(const IArg0&, const IArg1&) const = 0;
2200 	virtual bool	canFail		(const IArg0&, const IArg1&) const = 0;
2201 };
2202 
2203 template <typename T>
2204 class LessThan : public CompareOperator<T>
2205 {
2206 public:
getName(void) const2207 	string	getName		(void) const									{ return "lessThan"; }
2208 
2209 protected:
getSymbol(void) const2210 	string	getSymbol	(void) const									{ return "<";		}
2211 
canSucceed(const Interval & a,const Interval & b) const2212 	bool	canSucceed	(const Interval& a, const Interval& b) const
2213 	{
2214 		return (a.lo() < b.hi());
2215 	}
2216 
canFail(const Interval & a,const Interval & b) const2217 	bool	canFail		(const Interval& a, const Interval& b) const
2218 	{
2219 		return !(a.hi() < b.lo());
2220 	}
2221 };
2222 
2223 template <typename T>
operator <(const ExprP<T> & a,const ExprP<T> & b)2224 ExprP<bool> operator< (const ExprP<T>& a, const ExprP<T>& b)
2225 {
2226 	return app<LessThan<T> >(a, b);
2227 }
2228 
2229 template <typename T>
cond(const ExprP<bool> & test,const ExprP<T> & consequent,const ExprP<T> & alternative)2230 ExprP<T> cond (const ExprP<bool>&	test,
2231 			   const ExprP<T>&		consequent,
2232 			   const ExprP<T>&		alternative)
2233 {
2234 	return app<Cond<T> >(test, consequent, alternative);
2235 }
2236 
2237 /*--------------------------------------------------------------------*//*!
2238  *
2239  * @}
2240  *
2241  *//*--------------------------------------------------------------------*/
2242 //Proper parameters for template T
2243 //	Signature<float, float>		32bit tests
2244 //	Signature<float, deFloat16>	16bit tests
2245 //	Signature<double, double>	64bit tests
2246 template< class T>
2247 class FloatFunc1 : public PrimitiveFunc<T>
2248 {
2249 protected:
doApply(const EvalContext & ctx,const typename Signature<typename T::Ret,typename T::Arg0>::IArgs & iargs) const2250 		Interval			doApply			(const EvalContext& ctx, const typename Signature<typename T::Ret, typename T::Arg0>::IArgs& iargs) const
2251 	{
2252 		return this->applyMonotone(ctx, iargs.a);
2253 	}
2254 
applyMonotone(const EvalContext & ctx,const Interval & iarg0) const2255 	Interval			applyMonotone	(const EvalContext& ctx, const Interval& iarg0) const
2256 	{
2257 		Interval ret;
2258 
2259 		TCU_INTERVAL_APPLY_MONOTONE1(ret, arg0, iarg0, val,
2260 									 TCU_SET_INTERVAL(val, point,
2261 													  point = this->applyPoint(ctx, arg0)));
2262 
2263 		ret |= innerExtrema(ctx, iarg0);
2264 		ret &= (this->getCodomain(ctx) | TCU_NAN);
2265 
2266 		return ctx.format.convert(ret);
2267 	}
2268 
innerExtrema(const EvalContext &,const Interval &) const2269 	virtual Interval	innerExtrema	(const EvalContext&, const Interval&) const
2270 	{
2271 		return Interval(); // empty interval, i.e. no extrema
2272 	}
2273 
applyPoint(const EvalContext & ctx,double arg0) const2274 	virtual Interval	applyPoint		(const EvalContext& ctx, double arg0) const
2275 	{
2276 		const double	exact	= this->applyExact(arg0);
2277 		const double	prec	= this->precision(ctx, exact, arg0);
2278 
2279 		return exact + Interval(-prec, prec);
2280 	}
2281 
applyExact(double) const2282 	virtual double		applyExact		(double) const
2283 	{
2284 		TCU_THROW(InternalError, "Cannot apply");
2285 	}
2286 
getCodomain(const EvalContext &) const2287 	virtual Interval	getCodomain		(const EvalContext&) const
2288 	{
2289 		return Interval::unbounded(true);
2290 	}
2291 
2292 	virtual double		precision		(const EvalContext& ctx, double, double) const = 0;
2293 };
2294 
2295 /*Proper parameters for template T
2296 	Signature<double, double>	64bit tests
2297 	Signature<float, float>		32bit tests
2298 	Signature<float, deFloat16>	16bit tests*/
2299 template <class T>
2300 class CFloatFunc1 : public FloatFunc1<T>
2301 {
2302 public:
CFloatFunc1(const string & name,tcu::DoubleFunc1 & func)2303 						CFloatFunc1	(const string& name, tcu::DoubleFunc1& func)
2304 							: m_name(name), m_func(func) {}
2305 
getName(void) const2306 	string				getName		(void) const		{ return m_name; }
2307 
2308 protected:
applyExact(double x) const2309 	double				applyExact	(double x) const	{ return m_func(x); }
2310 
2311 	const string		m_name;
2312 	tcu::DoubleFunc1&	m_func;
2313 };
2314 
2315 //<Signature<float, deFloat16, deFloat16> >
2316 //<Signature<float, float, float> >
2317 //<Signature<double, double, double> >
2318 template <class T>
2319 class FloatFunc2 : public PrimitiveFunc<T>
2320 {
2321 protected:
doApply(const EvalContext & ctx,const typename Signature<typename T::Ret,typename T::Arg0,typename T::Arg1>::IArgs & iargs) const2322 	Interval			doApply			(const EvalContext&	ctx, const typename Signature<typename T::Ret, typename T::Arg0, typename T::Arg1>::IArgs& iargs) const
2323 	{
2324 		return this->applyMonotone(ctx, iargs.a, iargs.b);
2325 	}
2326 
applyMonotone(const EvalContext & ctx,const Interval & xi,const Interval & yi) const2327 	Interval			applyMonotone	(const EvalContext&	ctx,
2328 										 const Interval&	xi,
2329 										 const Interval&	yi) const
2330 	{
2331 		Interval reti;
2332 
2333 		TCU_INTERVAL_APPLY_MONOTONE2(reti, x, xi, y, yi, ret,
2334 									 TCU_SET_INTERVAL(ret, point,
2335 													  point = this->applyPoint(ctx, x, y)));
2336 		reti |= innerExtrema(ctx, xi, yi);
2337 		reti &= (this->getCodomain(ctx) | TCU_NAN);
2338 
2339 		return ctx.format.convert(reti);
2340 	}
2341 
innerExtrema(const EvalContext &,const Interval &,const Interval &) const2342 	virtual Interval	innerExtrema	(const EvalContext&,
2343 										 const Interval&,
2344 										 const Interval&) const
2345 	{
2346 		return Interval(); // empty interval, i.e. no extrema
2347 	}
2348 
applyPoint(const EvalContext & ctx,double x,double y) const2349 	virtual Interval	applyPoint		(const EvalContext&	ctx,
2350 										 double				x,
2351 										 double				y) const
2352 	{
2353 		const double exact	= this->applyExact(x, y);
2354 		const double prec	= this->precision(ctx, exact, x, y);
2355 
2356 		return exact + Interval(-prec, prec);
2357 	}
2358 
applyExact(double,double) const2359 	virtual double		applyExact		(double, double) const
2360 	{
2361 		TCU_THROW(InternalError, "Cannot apply");
2362 	}
2363 
getCodomain(const EvalContext &) const2364 	virtual Interval	getCodomain		(const EvalContext&) const
2365 	{
2366 		return Interval::unbounded(true);
2367 	}
2368 
2369 	virtual double		precision		(const EvalContext&	ctx,
2370 										 double				ret,
2371 										 double				x,
2372 										 double				y) const = 0;
2373 };
2374 
2375 template <class T>
2376 class CFloatFunc2 : public FloatFunc2<T>
2377 {
2378 public:
CFloatFunc2(const string & name,tcu::DoubleFunc2 & func)2379 						CFloatFunc2	(const string&		name,
2380 									 tcu::DoubleFunc2&	func)
2381 							: m_name(name)
2382 							, m_func(func)
2383 	{
2384 	}
2385 
getName(void) const2386 	string				getName		(void) const						{ return m_name; }
2387 
2388 protected:
applyExact(double x,double y) const2389 	double				applyExact	(double x, double y) const			{ return m_func(x, y); }
2390 
2391 	const string		m_name;
2392 	tcu::DoubleFunc2&	m_func;
2393 };
2394 
2395 template <class T>
2396 class InfixOperator : public FloatFunc2<T>
2397 {
2398 protected:
2399 	virtual string	getSymbol		(void) const = 0;
2400 
doPrint(ostream & os,const BaseArgExprs & args) const2401 	void			doPrint			(ostream& os, const BaseArgExprs& args) const
2402 	{
2403 		os << "(" << *args[0] << " " << getSymbol() << " " << *args[1] << ")";
2404 	}
2405 
applyPoint(const EvalContext & ctx,double x,double y) const2406 	Interval		applyPoint		(const EvalContext&	ctx,
2407 									 double				x,
2408 									 double				y) const
2409 	{
2410 		const double exact	= this->applyExact(x, y);
2411 
2412 		// Allow either representable number on both sides of the exact value,
2413 		// but require exactly representable values to be preserved.
2414 		return ctx.format.roundOut(exact, !deIsInf(x) && !deIsInf(y));
2415 	}
2416 
precision(const EvalContext &,double,double,double) const2417 	double			precision		(const EvalContext&, double, double, double) const
2418 	{
2419 		return 0.0;
2420 	}
2421 };
2422 
2423 class InfixOperator16Bit : public FloatFunc2 <Signature<float, deFloat16, deFloat16> >
2424 {
2425 protected:
2426 	virtual string	getSymbol		(void) const = 0;
2427 
doPrint(ostream & os,const BaseArgExprs & args) const2428 	void			doPrint			(ostream& os, const BaseArgExprs& args) const
2429 	{
2430 		os << "(" << *args[0] << " " << getSymbol() << " " << *args[1] << ")";
2431 	}
2432 
applyPoint(const EvalContext & ctx,double x,double y) const2433 	Interval		applyPoint		(const EvalContext&	ctx,
2434 									 double				x,
2435 									 double				y) const
2436 	{
2437 		const double exact	= this->applyExact(x, y);
2438 
2439 		// Allow either representable number on both sides of the exact value,
2440 		// but require exactly representable values to be preserved.
2441 		return ctx.format.roundOut(exact, !deIsInf(x) && !deIsInf(y));
2442 	}
2443 
precision(const EvalContext &,double,double,double) const2444 	double			precision		(const EvalContext&, double, double, double) const
2445 	{
2446 		return 0.0;
2447 	}
2448 };
2449 
2450 template <class T>
2451 class FloatFunc3 : public PrimitiveFunc<T>
2452 {
2453 protected:
doApply(const EvalContext & ctx,const typename Signature<typename T::Ret,typename T::Arg0,typename T::Arg1,typename T::Arg2>::IArgs & iargs) const2454 	Interval			doApply			(const EvalContext&	ctx, const typename Signature<typename T::Ret, typename T::Arg0, typename T::Arg1, typename T::Arg2>::IArgs& iargs) const
2455 	{
2456 		return this->applyMonotone(ctx, iargs.a, iargs.b, iargs.c);
2457 	}
2458 
applyMonotone(const EvalContext & ctx,const Interval & xi,const Interval & yi,const Interval & zi) const2459 	Interval			applyMonotone	(const EvalContext&	ctx,
2460 										 const Interval&	xi,
2461 										 const Interval&	yi,
2462 										 const Interval&	zi) const
2463 	{
2464 		Interval reti;
2465 		TCU_INTERVAL_APPLY_MONOTONE3(reti, x, xi, y, yi, z, zi, ret,
2466 									 TCU_SET_INTERVAL(ret, point,
2467 													  point = this->applyPoint(ctx, x, y, z)));
2468 		return ctx.format.convert(reti);
2469 	}
2470 
applyPoint(const EvalContext & ctx,double x,double y,double z) const2471 	virtual Interval	applyPoint		(const EvalContext&	ctx,
2472 										 double				x,
2473 										 double				y,
2474 										 double				z) const
2475 	{
2476 		const double exact	= this->applyExact(x, y, z);
2477 		const double prec	= this->precision(ctx, exact, x, y, z);
2478 		return exact + Interval(-prec, prec);
2479 	}
2480 
applyExact(double,double,double) const2481 	virtual double		applyExact		(double, double, double) const
2482 	{
2483 		TCU_THROW(InternalError, "Cannot apply");
2484 	}
2485 
2486 	virtual double		precision		(const EvalContext&	ctx,
2487 										 double				result,
2488 										 double				x,
2489 										 double				y,
2490 										 double				z) const = 0;
2491 };
2492 
2493 // We define syntactic sugar functions for expression constructors. Since
2494 // these have the same names as ordinary mathematical operations (sin, log
2495 // etc.), it's better to give them a dedicated namespace.
2496 namespace Functions
2497 {
2498 
2499 using namespace tcu;
2500 
2501 template <class T>
2502 class Comparison : public InfixOperator < T >
2503 {
2504 public:
getName(void) const2505 	string		getName			(void) const	{ return "comparison"; }
getSymbol(void) const2506 	string		getSymbol		(void) const	{ return ""; }
2507 
getSpirvCase() const2508 	SpirVCaseT	getSpirvCase	() const		{ return SPIRV_CASETYPE_COMPARE; }
2509 
doApply(const EvalContext & ctx,const typename Comparison<T>::IArgs & iargs) const2510 	Interval	doApply			(const EvalContext&						ctx,
2511 								 const typename Comparison<T>::IArgs&	iargs) const
2512 	{
2513 		DE_UNREF(ctx);
2514 		if (iargs.a.hasNaN() || iargs.b.hasNaN())
2515 		{
2516 			return TCU_NAN; // one of the floats is NaN: block analysis
2517 		}
2518 
2519 		int operationFlag = 1;
2520 		int result = 0;
2521 		const double a = iargs.a.midpoint();
2522 		const double b = iargs.b.midpoint();
2523 
2524 		for (int i = 0; i<2; ++i)
2525 		{
2526 			if (a == b)
2527 				result += operationFlag;
2528 			operationFlag = operationFlag << 1;
2529 
2530 			if (a > b)
2531 				result += operationFlag;
2532 			operationFlag = operationFlag << 1;
2533 
2534 			if (a < b)
2535 				result += operationFlag;
2536 			operationFlag = operationFlag << 1;
2537 
2538 			if (a >= b)
2539 				result += operationFlag;
2540 			operationFlag = operationFlag << 1;
2541 
2542 			if (a <= b)
2543 				result += operationFlag;
2544 			operationFlag = operationFlag << 1;
2545 		}
2546 		return result;
2547 	}
2548 };
2549 
2550 template <class T>
2551 class Add : public InfixOperator < T >
2552 {
2553 public:
getName(void) const2554 	string		getName		(void) const						{ return "add"; }
getSymbol(void) const2555 	string		getSymbol	(void) const						{ return "+"; }
2556 
doApply(const EvalContext & ctx,const typename Signature<typename T::Ret,typename T::Arg0,typename T::Arg1>::IArgs & iargs) const2557 	Interval	doApply		(const EvalContext&	ctx,
2558 							 const typename Signature<typename T::Ret, typename T::Arg0, typename T::Arg1>::IArgs& iargs) const
2559 	{
2560 		// Fast-path for common case
2561 		if (iargs.a.isOrdinary(ctx.format.getMaxValue()) && iargs.b.isOrdinary(ctx.format.getMaxValue()))
2562 		{
2563 			Interval ret;
2564 			TCU_SET_INTERVAL_BOUNDS(ret, sum,
2565 									sum = iargs.a.lo() + iargs.b.lo(),
2566 									sum = iargs.a.hi() + iargs.b.hi());
2567 			return ctx.format.convert(ctx.format.roundOut(ret, true));
2568 		}
2569 		return this->applyMonotone(ctx, iargs.a, iargs.b);
2570 	}
2571 
2572 protected:
applyExact(double x,double y) const2573 	double		applyExact	(double x, double y) const			{ return x + y; }
2574 };
2575 
2576 template<class T>
2577 class Mul : public InfixOperator<T>
2578 {
2579 public:
getName(void) const2580 	string		getName		(void) const									{ return "mul"; }
getSymbol(void) const2581 	string		getSymbol	(void) const									{ return "*"; }
2582 
doApply(const EvalContext & ctx,const typename Signature<typename T::Ret,typename T::Arg0,typename T::Arg1>::IArgs & iargs) const2583 	Interval	doApply		(const EvalContext&	ctx, const typename Signature<typename T::Ret, typename T::Arg0, typename T::Arg1>::IArgs& iargs) const
2584 	{
2585 		Interval a = iargs.a;
2586 		Interval b = iargs.b;
2587 
2588 		// Fast-path for common case
2589 		if (a.isOrdinary(ctx.format.getMaxValue()) && b.isOrdinary(ctx.format.getMaxValue()))
2590 		{
2591 			Interval ret;
2592 			if (a.hi() < 0)
2593 			{
2594 				a = -a;
2595 				b = -b;
2596 			}
2597 			if (a.lo() >= 0 && b.lo() >= 0)
2598 			{
2599 				TCU_SET_INTERVAL_BOUNDS(ret, prod,
2600 										prod = a.lo() * b.lo(),
2601 										prod = a.hi() * b.hi());
2602 				return ctx.format.convert(ctx.format.roundOut(ret, true));
2603 			}
2604 			if (a.lo() >= 0 && b.hi() <= 0)
2605 			{
2606 				TCU_SET_INTERVAL_BOUNDS(ret, prod,
2607 										prod = a.hi() * b.lo(),
2608 										prod = a.lo() * b.hi());
2609 				return ctx.format.convert(ctx.format.roundOut(ret, true));
2610 			}
2611 		}
2612 		return this->applyMonotone(ctx, iargs.a, iargs.b);
2613 	}
2614 
2615 protected:
applyExact(double x,double y) const2616 	double		applyExact	(double x, double y) const						{ return x * y; }
2617 
innerExtrema(const EvalContext &,const Interval & xi,const Interval & yi) const2618 	Interval	innerExtrema(const EvalContext&, const Interval& xi, const Interval& yi) const
2619 	{
2620 		if (((xi.contains(-TCU_INFINITY) || xi.contains(TCU_INFINITY)) && yi.contains(0.0)) ||
2621 			((yi.contains(-TCU_INFINITY) || yi.contains(TCU_INFINITY)) && xi.contains(0.0)))
2622 			return Interval(TCU_NAN);
2623 
2624 		return Interval();
2625 	}
2626 };
2627 
2628 template<class T>
2629 class Sub : public InfixOperator <T>
2630 {
2631 public:
getName(void) const2632 	string		getName		(void) const				{ return "sub"; }
getSymbol(void) const2633 	string		getSymbol	(void) const				{ return "-"; }
2634 
doApply(const EvalContext & ctx,const typename Signature<typename T::Ret,typename T::Arg0,typename T::Arg1>::IArgs & iargs) const2635 	Interval	doApply		(const EvalContext&	ctx, const typename Signature<typename T::Ret, typename T::Arg0, typename T::Arg1>::IArgs& iargs) const
2636 	{
2637 		// Fast-path for common case
2638 		if (iargs.a.isOrdinary(ctx.format.getMaxValue()) && iargs.b.isOrdinary(ctx.format.getMaxValue()))
2639 		{
2640 			Interval ret;
2641 
2642 			TCU_SET_INTERVAL_BOUNDS(ret, diff,
2643 									diff = iargs.a.lo() - iargs.b.hi(),
2644 									diff = iargs.a.hi() - iargs.b.lo());
2645 			return ctx.format.convert(ctx.format.roundOut(ret, true));
2646 
2647 		}
2648 		else
2649 		{
2650 			return this->applyMonotone(ctx, iargs.a, iargs.b);
2651 		}
2652 	}
2653 
2654 protected:
applyExact(double x,double y) const2655 	double		applyExact	(double x, double y) const	{ return x - y; }
2656 };
2657 
2658 template <class T>
2659 class Negate : public FloatFunc1<T>
2660 {
2661 public:
getName(void) const2662 	string	getName		(void) const									{ return "_negate"; }
doPrint(ostream & os,const BaseArgExprs & args) const2663 	void	doPrint		(ostream& os, const BaseArgExprs& args) const	{ os << "-" << *args[0]; }
2664 
2665 protected:
precision(const EvalContext &,double,double) const2666 	double	precision	(const EvalContext&, double, double) const		{ return 0.0; }
applyExact(double x) const2667 	double	applyExact	(double x) const								{ return -x; }
2668 };
2669 
2670 template <class T>
2671 class Div : public InfixOperator<T>
2672 {
2673 public:
getName(void) const2674 	string		getName			(void) const						{ return "div"; }
2675 
2676 protected:
getSymbol(void) const2677 	string		getSymbol		(void) const						{ return "/"; }
2678 
innerExtrema(const EvalContext &,const Interval & nom,const Interval & den) const2679 	Interval	innerExtrema	(const EvalContext&,
2680 								 const Interval&		nom,
2681 								 const Interval&		den) const
2682 	{
2683 		Interval ret;
2684 
2685 		if (den.contains(0.0))
2686 		{
2687 			if (nom.contains(0.0))
2688 				ret |= TCU_NAN;
2689 
2690 			if (nom.lo() < 0.0 || nom.hi() > 0.0)
2691 				ret |= Interval::unbounded();
2692 		}
2693 
2694 		return ret;
2695 	}
2696 
applyExact(double x,double y) const2697 	double		applyExact		(double x, double y) const { return x / y; }
2698 
applyPoint(const EvalContext & ctx,double x,double y) const2699 	Interval	applyPoint		(const EvalContext&	ctx, double x, double y) const
2700 	{
2701 		Interval ret = FloatFunc2<T>::applyPoint(ctx, x, y);
2702 
2703 		if (!deIsInf(x) && !deIsInf(y) && y != 0.0)
2704 		{
2705 			const Interval dst = ctx.format.convert(ret);
2706 			if (dst.contains(-TCU_INFINITY)) ret |= -ctx.format.getMaxValue();
2707 			if (dst.contains(+TCU_INFINITY)) ret |= +ctx.format.getMaxValue();
2708 		}
2709 
2710 		return ret;
2711 	}
2712 
precision(const EvalContext & ctx,double ret,double,double den) const2713 	double		precision		(const EvalContext& ctx, double ret, double, double den) const
2714 	{
2715 		const FloatFormat&	fmt		= ctx.format;
2716 
2717 		// \todo [2014-03-05 lauri] Check that the limits in GLSL 3.10 are actually correct.
2718 		// For now, we assume that division's precision is 2.5 ULP when the value is within
2719 		// [2^MINEXP, 2^MAXEXP-1]
2720 
2721 		if (den == 0.0)
2722 			return 0.0; // Result must be exactly inf
2723 		else if (de::inBounds(deAbs(den),
2724 							  deLdExp(1.0, fmt.getMinExp()),
2725 							  deLdExp(1.0, fmt.getMaxExp() - 1)))
2726 			return fmt.ulp(ret, 2.5);
2727 		else
2728 			return TCU_INFINITY; // Can be any number, but must be a number.
2729 	}
2730 };
2731 
2732 template <class T>
2733 class InverseSqrt : public FloatFunc1 <T>
2734 {
2735 public:
getName(void) const2736 	string		getName		(void) const							{ return "inversesqrt"; }
2737 
2738 protected:
applyExact(double x) const2739 	double		applyExact	(double x) const						{ return 1.0 / deSqrt(x); }
2740 
precision(const EvalContext & ctx,double ret,double x) const2741 	double		precision	(const EvalContext& ctx, double ret, double x) const
2742 	{
2743 		return x <= 0 ? TCU_NAN : ctx.format.ulp(ret, 2.0);
2744 	}
2745 
getCodomain(const EvalContext &) const2746 	Interval	getCodomain	(const EvalContext&) const
2747 	{
2748 		return Interval(0.0, TCU_INFINITY);
2749 	}
2750 };
2751 
2752 template <class T>
2753 class ExpFunc : public CFloatFunc1<T>
2754 {
2755 public:
ExpFunc(const string & name,DoubleFunc1 & func)2756 				ExpFunc		(const string& name, DoubleFunc1& func)
2757 					: CFloatFunc1<T> (name, func)
2758 				{}
2759 protected:
2760 	double		precision	(const EvalContext& ctx, double ret, double x) const;
getCodomain(const EvalContext &) const2761 	Interval	getCodomain	(const EvalContext&) const
2762 	{
2763 		return Interval(0.0, TCU_INFINITY);
2764 	}
2765 };
2766 
2767 template <>
precision(const EvalContext & ctx,double ret,double x) const2768 double ExpFunc <Signature<float, float> >::precision (const EvalContext& ctx, double ret, double x) const
2769 {
2770 	switch (ctx.floatPrecision)
2771 	{
2772 	case glu::PRECISION_HIGHP:
2773 		return ctx.format.ulp(ret, 3.0 + 2.0 * deAbs(x));
2774 	case glu::PRECISION_MEDIUMP:
2775 	case glu::PRECISION_LAST:
2776 		return ctx.format.ulp(ret, 1.0 + 2.0 * deAbs(x));
2777 	default:
2778 		DE_FATAL("Impossible");
2779 	}
2780 
2781 	return 0.0;
2782 }
2783 
2784 template <>
precision(const EvalContext & ctx,double ret,double x) const2785 double ExpFunc <Signature<deFloat16, deFloat16> >::precision(const EvalContext& ctx, double ret, double x) const
2786 {
2787 	return ctx.format.ulp(ret, 1.0 + 2.0 * deAbs(x));
2788 }
2789 
2790 template <>
precision(const EvalContext & ctx,double ret,double x) const2791 double ExpFunc <Signature<double, double> >::precision(const EvalContext& ctx, double ret, double x) const
2792 {
2793 	return ctx.format.ulp(ret, 1.0 + 2.0 * deAbs(x));
2794 }
2795 
2796 template <class T>
Exp2(void)2797 class Exp2	: public ExpFunc<T>	{ public: Exp2 (void)	: ExpFunc<T>("exp2", deExp2) {} };
2798 template <class T>
Exp(void)2799 class Exp	: public ExpFunc<T>	{ public: Exp (void)	: ExpFunc<T>("exp", deExp) {} };
2800 
2801 template <typename T>
exp2(const ExprP<T> & x)2802 ExprP<T> exp2	(const ExprP<T>& x)	{ return app<Exp2< Signature<T, T> > >(x); }
2803 template <typename T>
exp(const ExprP<T> & x)2804 ExprP<T> exp	(const ExprP<T>& x)	{ return app<Exp< Signature<T, T> > >(x); }
2805 
2806 template <class T>
2807 class LogFunc : public CFloatFunc1<T>
2808 {
2809 public:
LogFunc(const string & name,DoubleFunc1 & func)2810 				LogFunc		(const string& name, DoubleFunc1& func)
2811 					: CFloatFunc1<T>(name, func) {}
2812 
2813 protected:
2814 	double		precision	(const EvalContext& ctx, double ret, double x) const;
2815 };
2816 
2817 template <>
precision(const EvalContext & ctx,double ret,double x) const2818 double LogFunc<Signature<float, float> >::precision(const EvalContext& ctx, double ret, double x) const
2819 {
2820 	if (x <= 0)
2821 		return TCU_NAN;
2822 
2823 	switch (ctx.floatPrecision)
2824 	{
2825 	case glu::PRECISION_HIGHP:
2826 		return (0.5 <= x && x <= 2.0) ? deLdExp(1.0, -21) : ctx.format.ulp(ret, 3.0);
2827 	case glu::PRECISION_MEDIUMP:
2828 	case glu::PRECISION_LAST:
2829 		return (0.5 <= x && x <= 2.0) ? deLdExp(1.0, -7) : ctx.format.ulp(ret, 3.0);
2830 	default:
2831 		DE_FATAL("Impossible");
2832 	}
2833 
2834 	return 0;
2835 }
2836 
2837 template <>
precision(const EvalContext & ctx,double ret,double x) const2838 double LogFunc<Signature<deFloat16, deFloat16> >::precision(const EvalContext& ctx, double ret, double x) const
2839 {
2840 	if (x <= 0)
2841 		return TCU_NAN;
2842 	return (0.5 <= x && x <= 2.0) ? deLdExp(1.0, -7) : ctx.format.ulp(ret, 3.0);
2843 }
2844 
2845 // Spec: "The precision of double-precision instructions is at least that of single precision."
2846 // Lets pick float high precision as a reference.
2847 template <>
precision(const EvalContext & ctx,double ret,double x) const2848 double LogFunc<Signature<double, double> >::precision(const EvalContext& ctx, double ret, double x) const
2849 {
2850 	if (x <= 0)
2851 		return TCU_NAN;
2852 	return (0.5 <= x && x <= 2.0) ? deLdExp(1.0, -21) : ctx.format.ulp(ret, 3.0);
2853 }
2854 
2855 template <class T>
Log2(void)2856 class Log2	: public LogFunc<T>		{ public: Log2	(void) : LogFunc<T>("log2", deLog2) {} };
2857 template <class T>
Log(void)2858 class Log	: public LogFunc<T>		{ public: Log	(void) : LogFunc<T>("log", deLog) {} };
2859 
log2(const ExprP<float> & x)2860 ExprP<float> log2	(const ExprP<float>& x)	{ return app<Log2< Signature<float, float> > >(x); }
log(const ExprP<float> & x)2861 ExprP<float> log	(const ExprP<float>& x)	{ return app<Log< Signature<float, float> > >(x); }
2862 
log2(const ExprP<deFloat16> & x)2863 ExprP<deFloat16> log2	(const ExprP<deFloat16>& x)	{ return app<Log2< Signature<deFloat16, deFloat16> > >(x); }
log(const ExprP<deFloat16> & x)2864 ExprP<deFloat16> log	(const ExprP<deFloat16>& x)	{ return app<Log< Signature<deFloat16, deFloat16> > >(x); }
2865 
log2(const ExprP<double> & x)2866 ExprP<double> log2	(const ExprP<double>& x)	{ return app<Log2< Signature<double, double> > >(x); }
log(const ExprP<double> & x)2867 ExprP<double> log	(const ExprP<double>& x)	{ return app<Log< Signature<double, double> > >(x); }
2868 
2869 #define DEFINE_CONSTRUCTOR1(CLASS, TRET, NAME, T0) \
2870 ExprP<TRET> NAME (const ExprP<T0>& arg0) { return app<CLASS>(arg0); }
2871 
2872 #define DEFINE_DERIVED1(CLASS, TRET, NAME, T0, ARG0, EXPANSION)				\
2873 class CLASS : public DerivedFunc<Signature<TRET, T0> > /* NOLINT(CLASS) */	\
2874 {																			\
2875 public:																		\
2876 	string			getName		(void) const		{ return #NAME; }		\
2877 																			\
2878 protected:																	\
2879 	ExprP<TRET>		doExpand		(ExpandContext&,						\
2880 									 const CLASS::ArgExprs& args_) const	\
2881 	{																		\
2882 		const ExprP<T0>& ARG0 = args_.a;									\
2883 		return EXPANSION;													\
2884 	}																		\
2885 };																			\
2886 DEFINE_CONSTRUCTOR1(CLASS, TRET, NAME, T0)
2887 
2888 #define DEFINE_DERIVED_DOUBLE1(CLASS, NAME, ARG0, EXPANSION) \
2889 	DEFINE_DERIVED1(CLASS, double, NAME, double, ARG0, EXPANSION)
2890 
2891 #define DEFINE_DERIVED_FLOAT1(CLASS, NAME, ARG0, EXPANSION) \
2892 	DEFINE_DERIVED1(CLASS, float, NAME, float, ARG0, EXPANSION)
2893 
2894 
2895 #define DEFINE_DERIVED1_INPUTRANGE(CLASS, TRET, NAME, T0, ARG0, EXPANSION, INTERVAL)	\
2896 class CLASS : public DerivedFunc<Signature<TRET, T0> > /* NOLINT(CLASS) */				\
2897 {																						\
2898 public:																					\
2899 	string			getName		(void) const		{ return #NAME; }					\
2900 																						\
2901 protected:																				\
2902 	ExprP<TRET>		doExpand		(ExpandContext&,									\
2903 									 const CLASS::ArgExprs& args_) const				\
2904 	{																					\
2905 		const ExprP<T0>& ARG0 = args_.a;												\
2906 		return EXPANSION;																\
2907 	}																					\
2908 	Interval	getInputRange	(const bool /*is16bit*/) const							\
2909 	{																					\
2910 		return INTERVAL;																\
2911 	}																					\
2912 };																						\
2913 DEFINE_CONSTRUCTOR1(CLASS, TRET, NAME, T0)
2914 
2915 #define DEFINE_DERIVED_FLOAT1_INPUTRANGE(CLASS, NAME, ARG0, EXPANSION, INTERVAL) \
2916 	DEFINE_DERIVED1_INPUTRANGE(CLASS, float, NAME, float, ARG0, EXPANSION, INTERVAL)
2917 
2918 #define DEFINE_DERIVED_DOUBLE1_INPUTRANGE(CLASS, NAME, ARG0, EXPANSION, INTERVAL) \
2919 	DEFINE_DERIVED1_INPUTRANGE(CLASS, double, NAME, double, ARG0, EXPANSION, INTERVAL)
2920 
2921 #define DEFINE_DERIVED_FLOAT1_16BIT(CLASS, NAME, ARG0, EXPANSION) \
2922 	DEFINE_DERIVED1(CLASS, deFloat16, NAME, deFloat16, ARG0, EXPANSION)
2923 
2924 #define DEFINE_DERIVED_FLOAT1_INPUTRANGE_16BIT(CLASS, NAME, ARG0, EXPANSION, INTERVAL) \
2925 	DEFINE_DERIVED1_INPUTRANGE(CLASS, deFloat16, NAME, deFloat16, ARG0, EXPANSION, INTERVAL)
2926 
2927 #define DEFINE_CONSTRUCTOR2(CLASS, TRET, NAME, T0, T1)				\
2928 ExprP<TRET> NAME (const ExprP<T0>& arg0, const ExprP<T1>& arg1)		\
2929 {																	\
2930 	return app<CLASS>(arg0, arg1);									\
2931 }
2932 
2933 #define DEFINE_CASED_DERIVED2(CLASS, TRET, NAME, T0, Arg0, T1, Arg1, EXPANSION, SPIRVCASE) \
2934 class CLASS : public DerivedFunc<Signature<TRET, T0, T1> > /* NOLINT(CLASS) */ \
2935 {																		\
2936 public:																	\
2937 	string			getName		(void) const	{ return #NAME; }		\
2938 																		\
2939 	SpirVCaseT		getSpirvCase(void) const	{ return SPIRVCASE; }	\
2940 																		\
2941 protected:																\
2942 	ExprP<TRET>		doExpand	(ExpandContext&, const ArgExprs& args_) const \
2943 	{																	\
2944 		const ExprP<T0>& Arg0 = args_.a;								\
2945 		const ExprP<T1>& Arg1 = args_.b;								\
2946 		return EXPANSION;												\
2947 	}																	\
2948 };																		\
2949 DEFINE_CONSTRUCTOR2(CLASS, TRET, NAME, T0, T1)
2950 
2951 #define DEFINE_DERIVED2(CLASS, TRET, NAME, T0, Arg0, T1, Arg1, EXPANSION) \
2952 	DEFINE_CASED_DERIVED2(CLASS, TRET, NAME, T0, Arg0, T1, Arg1, EXPANSION, SPIRV_CASETYPE_NONE)
2953 
2954 #define DEFINE_DERIVED_DOUBLE2(CLASS, NAME, Arg0, Arg1, EXPANSION)		\
2955 	DEFINE_DERIVED2(CLASS, double, NAME, double, Arg0, double, Arg1, EXPANSION)
2956 
2957 #define DEFINE_DERIVED_FLOAT2(CLASS, NAME, Arg0, Arg1, EXPANSION)		\
2958 	DEFINE_DERIVED2(CLASS, float, NAME, float, Arg0, float, Arg1, EXPANSION)
2959 
2960 #define DEFINE_DERIVED_FLOAT2_16BIT(CLASS, NAME, Arg0, Arg1, EXPANSION)		\
2961 	DEFINE_DERIVED2(CLASS, deFloat16, NAME, deFloat16, Arg0, deFloat16, Arg1, EXPANSION)
2962 
2963 #define DEFINE_CASED_DERIVED_FLOAT2(CLASS, NAME, Arg0, Arg1, EXPANSION, SPIRVCASE) \
2964 	DEFINE_CASED_DERIVED2(CLASS, float, NAME, float, Arg0, float, Arg1, EXPANSION, SPIRVCASE)
2965 
2966 #define DEFINE_CASED_DERIVED_FLOAT2_16BIT(CLASS, NAME, Arg0, Arg1, EXPANSION, SPIRVCASE) \
2967 	DEFINE_CASED_DERIVED2(CLASS, deFloat16, NAME, deFloat16, Arg0, deFloat16, Arg1, EXPANSION, SPIRVCASE)
2968 
2969 #define DEFINE_CASED_DERIVED_DOUBLE2(CLASS, NAME, Arg0, Arg1, EXPANSION, SPIRVCASE) \
2970 	DEFINE_CASED_DERIVED2(CLASS, double, NAME, double, Arg0, double, Arg1, EXPANSION, SPIRVCASE)
2971 
2972 #define DEFINE_CONSTRUCTOR3(CLASS, TRET, NAME, T0, T1, T2)				\
2973 ExprP<TRET> NAME (const ExprP<T0>& arg0, const ExprP<T1>& arg1, const ExprP<T2>& arg2) \
2974 {																		\
2975 	return app<CLASS>(arg0, arg1, arg2);								\
2976 }
2977 
2978 #define DEFINE_DERIVED3(CLASS, TRET, NAME, T0, ARG0, T1, ARG1, T2, ARG2, EXPANSION) \
2979 class CLASS : public DerivedFunc<Signature<TRET, T0, T1, T2> > /* NOLINT(CLASS) */ \
2980 {																				\
2981 public:																			\
2982 	string			getName		(void) const	{ return #NAME; }				\
2983 																				\
2984 protected:																		\
2985 	ExprP<TRET>		doExpand	(ExpandContext&, const ArgExprs& args_) const	\
2986 	{																			\
2987 		const ExprP<T0>& ARG0 = args_.a;										\
2988 		const ExprP<T1>& ARG1 = args_.b;										\
2989 		const ExprP<T2>& ARG2 = args_.c;										\
2990 		return EXPANSION;														\
2991 	}																			\
2992 };																				\
2993 DEFINE_CONSTRUCTOR3(CLASS, TRET, NAME, T0, T1, T2)
2994 
2995 #define DEFINE_DERIVED_DOUBLE3(CLASS, NAME, ARG0, ARG1, ARG2, EXPANSION)			\
2996 	DEFINE_DERIVED3(CLASS, double, NAME, double, ARG0, double, ARG1, double, ARG2, EXPANSION)
2997 
2998 #define DEFINE_DERIVED_FLOAT3(CLASS, NAME, ARG0, ARG1, ARG2, EXPANSION)			\
2999 	DEFINE_DERIVED3(CLASS, float, NAME, float, ARG0, float, ARG1, float, ARG2, EXPANSION)
3000 
3001 #define DEFINE_DERIVED_FLOAT3_16BIT(CLASS, NAME, ARG0, ARG1, ARG2, EXPANSION)			\
3002 	DEFINE_DERIVED3(CLASS, deFloat16, NAME, deFloat16, ARG0, deFloat16, ARG1, deFloat16, ARG2, EXPANSION)
3003 
3004 #define DEFINE_CONSTRUCTOR4(CLASS, TRET, NAME, T0, T1, T2, T3)			\
3005 ExprP<TRET> NAME (const ExprP<T0>& arg0, const ExprP<T1>& arg1,			\
3006 				  const ExprP<T2>& arg2, const ExprP<T3>& arg3)			\
3007 {																		\
3008 	return app<CLASS>(arg0, arg1, arg2, arg3);							\
3009 }
3010 
3011 typedef	 InverseSqrt< Signature<deFloat16, deFloat16> >	InverseSqrt16Bit;
3012 typedef	 InverseSqrt< Signature<float, float> >			InverseSqrt32Bit;
3013 typedef InverseSqrt< Signature<double, double> >		InverseSqrt64Bit;
3014 
3015 DEFINE_DERIVED_FLOAT1(Sqrt32Bit,		sqrt,		x,		constant(1.0f) / app<InverseSqrt32Bit>(x))
3016 DEFINE_DERIVED_FLOAT1_16BIT(Sqrt16Bit,	sqrt,		x,		constant((deFloat16)FLOAT16_1_0) / app<InverseSqrt16Bit>(x))
3017 DEFINE_DERIVED_DOUBLE1(Sqrt64Bit,		sqrt,		x,		constant(1.0) / app<InverseSqrt64Bit>(x))
3018 DEFINE_DERIVED_FLOAT2(Pow,				pow,		x,	y,	exp2<float>(y * log2(x)))
3019 DEFINE_DERIVED_FLOAT2_16BIT(Pow16,		pow,		x,	y,	exp2<deFloat16>(y * log2(x)))
3020 DEFINE_DERIVED_DOUBLE2(Pow64,			pow,		x,	y,	exp2<double>(y * log2(x)))
3021 DEFINE_DERIVED_FLOAT1(Radians,			radians,	d,		(constant(DE_PI) / constant(180.0f)) * d)
3022 DEFINE_DERIVED_FLOAT1_16BIT(Radians16,	radians,	d,		(constant((deFloat16)DE_PI_16BIT) / constant((deFloat16)FLOAT16_180_0)) * d)
3023 DEFINE_DERIVED_DOUBLE1(Radians64,		radians,	d,		(constant((double)(DE_PI)) / constant(180.0)) * d)
3024 DEFINE_DERIVED_FLOAT1(Degrees,			degrees,	r,		(constant(180.0f) / constant(DE_PI)) * r)
3025 DEFINE_DERIVED_FLOAT1_16BIT(Degrees16,	degrees,	r,		(constant((deFloat16)FLOAT16_180_0) / constant((deFloat16)DE_PI_16BIT)) * r)
3026 DEFINE_DERIVED_DOUBLE1(Degrees64,		degrees,	r,		(constant(180.0) / constant((double)(DE_PI))) * r)
3027 
3028 /*Proper parameters for template T
3029 	Signature<float, float>		32bit tests
3030 	Signature<float, deFloat16>	16bit tests*/
3031 template<class T>
3032 class TrigFunc : public CFloatFunc1<T>
3033 {
3034 public:
TrigFunc(const string & name,DoubleFunc1 & func,const Interval & loEx,const Interval & hiEx)3035 					TrigFunc		(const string&		name,
3036 									 DoubleFunc1&		func,
3037 									 const Interval&	loEx,
3038 									 const Interval&	hiEx)
3039 						: CFloatFunc1<T>	(name, func)
3040 						, m_loExtremum		(loEx)
3041 						, m_hiExtremum		(hiEx) {}
3042 
3043 protected:
innerExtrema(const EvalContext &,const Interval & angle) const3044 	Interval		innerExtrema	(const EvalContext&, const Interval& angle) const
3045 	{
3046 		const double		lo		= angle.lo();
3047 		const double		hi		= angle.hi();
3048 		const int			loSlope	= doGetSlope(lo);
3049 		const int			hiSlope	= doGetSlope(hi);
3050 
3051 		// Detect the high and low values the function can take between the
3052 		// interval endpoints.
3053 		if (angle.length() >= 2.0 * DE_PI_DOUBLE)
3054 		{
3055 			// The interval is longer than a full cycle, so it must get all possible values.
3056 			return m_hiExtremum | m_loExtremum;
3057 		}
3058 		else if (loSlope == 1 && hiSlope == -1)
3059 		{
3060 			// The slope can change from positive to negative only at the maximum value.
3061 			return m_hiExtremum;
3062 		}
3063 		else if (loSlope == -1 && hiSlope == 1)
3064 		{
3065 			// The slope can change from negative to positive only at the maximum value.
3066 			return m_loExtremum;
3067 		}
3068 		else if (loSlope == hiSlope &&
3069 				 deIntSign(CFloatFunc1<T>::applyExact(hi) - CFloatFunc1<T>::applyExact(lo)) * loSlope == -1)
3070 		{
3071 			// The slope has changed twice between the endpoints, so both extrema are included.
3072 			return m_hiExtremum | m_loExtremum;
3073 		}
3074 
3075 		return Interval();
3076 	}
3077 
getCodomain(const EvalContext &) const3078 	Interval	getCodomain				(const EvalContext&) const
3079 	{
3080 		// Ensure that result is always within [-1, 1], or NaN (for +-inf)
3081 		return Interval(-1.0, 1.0) | TCU_NAN;
3082 	}
3083 
3084 	double		precision				(const EvalContext& ctx, double ret, double arg) const;
3085 
3086 	Interval	getInputRange			(const bool is16bit) const;
3087 	virtual int	doGetSlope				(double angle) const = 0;
3088 
3089 	Interval		m_loExtremum;
3090 	Interval		m_hiExtremum;
3091 };
3092 
3093 //Only -DE_PI_DOUBLE, DE_PI_DOUBLE input range
3094 template<>
getInputRange(const bool is16bit) const3095 Interval TrigFunc<Signature<float, float> >::getInputRange(const bool is16bit) const
3096 {
3097 	DE_UNREF(is16bit);
3098 	return Interval(false, -DE_PI_DOUBLE, DE_PI_DOUBLE);
3099 }
3100 
3101 //Only -DE_PI_DOUBLE, DE_PI_DOUBLE input range
3102 template<>
getInputRange(const bool is16bit) const3103 Interval TrigFunc<Signature<deFloat16, deFloat16> >::getInputRange(const bool is16bit) const
3104 {
3105 	DE_UNREF(is16bit);
3106 	return Interval(false, -DE_PI_DOUBLE, DE_PI_DOUBLE);
3107 }
3108 
3109 //Only -DE_PI_DOUBLE, DE_PI_DOUBLE input range
3110 template<>
getInputRange(const bool is16bit) const3111 Interval TrigFunc<Signature<double, double> >::getInputRange(const bool is16bit) const
3112 {
3113 	DE_UNREF(is16bit);
3114 	return Interval(false, -DE_PI_DOUBLE, DE_PI_DOUBLE);
3115 }
3116 
3117 template<>
precision(const EvalContext & ctx,double ret,double arg) const3118 double TrigFunc<Signature<float, float> >::precision(const EvalContext& ctx, double ret, double arg) const
3119 {
3120 	DE_UNREF(ret);
3121 	if (ctx.floatPrecision == glu::PRECISION_HIGHP)
3122 	{
3123 		if (-DE_PI_DOUBLE <= arg && arg <= DE_PI_DOUBLE)
3124 			return deLdExp(1.0, -11);
3125 		else
3126 		{
3127 			// "larger otherwise", let's pick |x| * 2^-12 , which is slightly over
3128 			// 2^-11 at x == pi.
3129 			return deLdExp(deAbs(arg), -12);
3130 		}
3131 	}
3132 	else
3133 	{
3134 		DE_ASSERT(ctx.floatPrecision == glu::PRECISION_MEDIUMP || ctx.floatPrecision == glu::PRECISION_LAST);
3135 
3136 		if (-DE_PI_DOUBLE <= arg && arg <= DE_PI_DOUBLE)
3137 			return deLdExp(1.0, -7);
3138 		else
3139 		{
3140 			// |x| * 2^-8, slightly larger than 2^-7 at x == pi
3141 			return deLdExp(deAbs(arg), -8);
3142 		}
3143 	}
3144 }
3145 //
3146 /*
3147  * Half tests
3148  * From Spec:
3149  * Absolute error 2^{-7} inside the range [-pi, pi].
3150 */
3151 template<>
precision(const EvalContext & ctx,double ret,double arg) const3152 double TrigFunc<Signature<deFloat16, deFloat16> >::precision(const EvalContext& ctx, double ret, double arg) const
3153 {
3154 	DE_UNREF(ctx);
3155 	DE_UNREF(ret);
3156 	DE_UNREF(arg);
3157 	DE_ASSERT(-DE_PI_DOUBLE <= arg && arg <= DE_PI_DOUBLE && ctx.floatPrecision == glu::PRECISION_LAST);
3158 	return deLdExp(1.0, -7);
3159 }
3160 
3161 // Spec: "The precision of double-precision instructions is at least that of single precision."
3162 // Lets pick float high precision as a reference.
3163 template<>
precision(const EvalContext & ctx,double ret,double arg) const3164 double TrigFunc<Signature<double, double> >::precision(const EvalContext& ctx, double ret, double arg) const
3165 {
3166 	DE_UNREF(ctx);
3167 	DE_UNREF(ret);
3168 	if (-DE_PI_DOUBLE <= arg && arg <= DE_PI_DOUBLE)
3169 		return deLdExp(1.0, -11);
3170 	else
3171 	{
3172 		// "larger otherwise", let's pick |x| * 2^-12 , which is slightly over
3173 		// 2^-11 at x == pi.
3174 		return deLdExp(deAbs(arg), -12);
3175 	}
3176 }
3177 
3178 /*Proper parameters for template T
3179 	Signature<float, float>		32bit tests
3180 	Signature<float, deFloat16>	16bit tests*/
3181 template <class T>
3182 class Sin : public TrigFunc<T>
3183 {
3184 public:
Sin(void)3185 				Sin			(void) : TrigFunc<T>("sin", deSin, -1.0, 1.0) {}
3186 
3187 protected:
doGetSlope(double angle) const3188 	int			doGetSlope	(double angle) const { return deIntSign(deCos(angle)); }
3189 };
3190 
sin(const ExprP<float> & x)3191 ExprP<float> sin (const ExprP<float>& x) { return app<Sin<Signature<float, float> > >(x); }
sin(const ExprP<deFloat16> & x)3192 ExprP<deFloat16> sin (const ExprP<deFloat16>& x) { return app<Sin<Signature<deFloat16, deFloat16> > >(x); }
sin(const ExprP<double> & x)3193 ExprP<double> sin (const ExprP<double>& x) { return app<Sin<Signature<double, double> > >(x); }
3194 
3195 template <class T>
3196 class Cos : public TrigFunc<T>
3197 {
3198 public:
Cos(void)3199 				Cos			(void) : TrigFunc<T> ("cos", deCos, -1.0, 1.0) {}
3200 
3201 protected:
doGetSlope(double angle) const3202 	int			doGetSlope	(double angle) const { return -deIntSign(deSin(angle)); }
3203 };
3204 
cos(const ExprP<float> & x)3205 ExprP<float> cos (const ExprP<float>& x) { return app<Cos<Signature<float, float> > >(x); }
cos(const ExprP<deFloat16> & x)3206 ExprP<deFloat16> cos (const ExprP<deFloat16>& x) { return app<Cos<Signature<deFloat16, deFloat16> > >(x); }
cos(const ExprP<double> & x)3207 ExprP<double> cos (const ExprP<double>& x) { return app<Cos<Signature<double, double> > >(x); }
3208 
3209 DEFINE_DERIVED_FLOAT1_INPUTRANGE(Tan, tan, x, sin(x) * (constant(1.0f) / cos(x)), Interval(false, -DE_PI_DOUBLE, DE_PI_DOUBLE))
3210 DEFINE_DERIVED_FLOAT1_INPUTRANGE_16BIT(Tan16Bit, tan, x, sin(x) * (constant((deFloat16)FLOAT16_1_0) / cos(x)), Interval(false, -DE_PI_DOUBLE, DE_PI_DOUBLE))
3211 DEFINE_DERIVED_DOUBLE1_INPUTRANGE(Tan64Bit, tan, x, sin(x) * (constant(1.0) / cos(x)), Interval(false, -DE_PI_DOUBLE, DE_PI_DOUBLE))
3212 
3213 template <class T>
3214 class ATan : public CFloatFunc1<T>
3215 {
3216 public:
ATan(void)3217 			ATan		(void) : CFloatFunc1<T>	("atan", deAtanOver) {}
3218 
3219 protected:
precision(const EvalContext & ctx,double ret,double) const3220 	double	precision	(const EvalContext& ctx, double ret, double) const
3221 	{
3222 		if (ctx.floatPrecision == glu::PRECISION_HIGHP)
3223 			return ctx.format.ulp(ret, 4096.0);
3224 		else
3225 			return ctx.format.ulp(ret, 5.0);
3226 	}
3227 
getCodomain(const EvalContext & ctx) const3228 	Interval getCodomain(const EvalContext& ctx) const
3229 	{
3230 		return ctx.format.roundOut(Interval(-0.5 * DE_PI_DOUBLE, 0.5 * DE_PI_DOUBLE), true);
3231 	}
3232 };
3233 
3234 template <class T>
3235 class ATan2 : public CFloatFunc2<T>
3236 {
3237 public:
ATan2(void)3238 				ATan2			(void) : CFloatFunc2<T> ("atan", deAtan2) {}
3239 
3240 protected:
innerExtrema(const EvalContext & ctx,const Interval & yi,const Interval & xi) const3241 	Interval	innerExtrema	(const EvalContext&		ctx,
3242 								 const Interval&		yi,
3243 								 const Interval&		xi) const
3244 	{
3245 		Interval ret;
3246 
3247 		if (yi.contains(0.0))
3248 		{
3249 			if (xi.contains(0.0))
3250 				ret |= TCU_NAN;
3251 			if (xi.intersects(Interval(-TCU_INFINITY, 0.0)))
3252 				ret |= ctx.format.roundOut(Interval(-DE_PI_DOUBLE, DE_PI_DOUBLE), true);
3253 		}
3254 
3255 		if (!yi.isFinite(ctx.format.getMaxValue()) || !xi.isFinite(ctx.format.getMaxValue()))
3256 		{
3257 			// Infinities may not be supported, allow anything, including NaN
3258 			ret |= TCU_NAN;
3259 		}
3260 
3261 		return ret;
3262 	}
3263 
precision(const EvalContext & ctx,double ret,double,double) const3264 	double		precision		(const EvalContext& ctx, double ret, double, double) const
3265 	{
3266 		if (ctx.floatPrecision == glu::PRECISION_HIGHP)
3267 			return ctx.format.ulp(ret, 4096.0);
3268 		else
3269 			return ctx.format.ulp(ret, 5.0);
3270 	}
3271 
getCodomain(const EvalContext & ctx) const3272 	Interval getCodomain(const EvalContext& ctx) const
3273 	{
3274 		return ctx.format.roundOut(Interval(-DE_PI_DOUBLE, DE_PI_DOUBLE), true);
3275 	}
3276 };
3277 
atan2(const ExprP<float> & x,const ExprP<float> & y)3278 ExprP<float> atan2	(const ExprP<float>& x, const ExprP<float>& y)	{ return app<ATan2<Signature<float, float, float> > >(x, y); }
3279 
atan2(const ExprP<deFloat16> & x,const ExprP<deFloat16> & y)3280 ExprP<deFloat16> atan2	(const ExprP<deFloat16>& x, const ExprP<deFloat16>& y)	{ return app<ATan2<Signature<deFloat16, deFloat16, deFloat16> > >(x, y); }
3281 
atan2(const ExprP<double> & x,const ExprP<double> & y)3282 ExprP<double> atan2	(const ExprP<double>& x, const ExprP<double>& y)	{ return app<ATan2<Signature<double, double, double> > >(x, y); }
3283 
3284 
3285 DEFINE_DERIVED_FLOAT1(Sinh, sinh, x, (exp<float>(x) - exp<float>(-x)) / constant(2.0f))
3286 DEFINE_DERIVED_FLOAT1(Cosh, cosh, x, (exp<float>(x) + exp<float>(-x)) / constant(2.0f))
3287 DEFINE_DERIVED_FLOAT1(Tanh, tanh, x, sinh(x) / cosh(x))
3288 
3289 DEFINE_DERIVED_FLOAT1_16BIT(Sinh16Bit, sinh, x, (exp(x) - exp(-x)) / constant((deFloat16)FLOAT16_2_0))
3290 DEFINE_DERIVED_FLOAT1_16BIT(Cosh16Bit, cosh, x, (exp(x) + exp(-x)) / constant((deFloat16)FLOAT16_2_0))
3291 DEFINE_DERIVED_FLOAT1_16BIT(Tanh16Bit, tanh, x, sinh(x) / cosh(x))
3292 
3293 DEFINE_DERIVED_DOUBLE1(Sinh64Bit, sinh, x, (exp<double>(x) - exp<double>(-x)) / constant(2.0))
3294 DEFINE_DERIVED_DOUBLE1(Cosh64Bit, cosh, x, (exp<double>(x) + exp<double>(-x)) / constant(2.0))
3295 DEFINE_DERIVED_DOUBLE1(Tanh64Bit, tanh, x, sinh(x) / cosh(x))
3296 
3297 DEFINE_DERIVED_FLOAT1(ASin, asin, x, atan2(x, sqrt(constant(1.0f) - x * x)))
3298 DEFINE_DERIVED_FLOAT1(ACos, acos, x, atan2(sqrt(constant(1.0f) - x * x), x))
3299 DEFINE_DERIVED_FLOAT1(ASinh, asinh, x, log(x + sqrt(x * x + constant(1.0f))))
3300 DEFINE_DERIVED_FLOAT1(ACosh, acosh, x, log(x + sqrt(alternatives((x + constant(1.0f)) * (x - constant(1.0f)),
3301 																 (x * x - constant(1.0f))))))
3302 DEFINE_DERIVED_FLOAT1(ATanh, atanh, x, constant(0.5f) * log((constant(1.0f) + x) /
3303 															(constant(1.0f) - x)))
3304 
3305 DEFINE_DERIVED_FLOAT1_16BIT(ASin16Bit, asin, x, atan2(x, sqrt(constant((deFloat16)FLOAT16_1_0) - x * x)))
3306 DEFINE_DERIVED_FLOAT1_16BIT(ACos16Bit, acos, x, atan2(sqrt(constant((deFloat16)FLOAT16_1_0) - x * x), x))
3307 DEFINE_DERIVED_FLOAT1_16BIT(ASinh16Bit, asinh, x, log(x + sqrt(x * x + constant((deFloat16)FLOAT16_1_0))))
3308 DEFINE_DERIVED_FLOAT1_16BIT(ACosh16Bit, acosh, x, log(x + sqrt(alternatives((x + constant((deFloat16)FLOAT16_1_0)) * (x - constant((deFloat16)FLOAT16_1_0)),
3309 																 (x * x - constant((deFloat16)FLOAT16_1_0))))))
3310 DEFINE_DERIVED_FLOAT1_16BIT(ATanh16Bit, atanh, x, constant((deFloat16)FLOAT16_0_5) * log((constant((deFloat16)FLOAT16_1_0) + x) /
3311 															(constant((deFloat16)FLOAT16_1_0) - x)))
3312 
3313 DEFINE_DERIVED_DOUBLE1(ASin64Bit, asin, x, atan2(x, sqrt(constant(1.0) - pow(x, constant(2.0)))))
3314 DEFINE_DERIVED_DOUBLE1(ACos64Bit, acos, x, atan2(sqrt(constant(1.0) - pow(x, constant(2.0))), x))
3315 DEFINE_DERIVED_DOUBLE1(ASinh64Bit, asinh, x, log(x + sqrt(x * x + constant(1.0))))
3316 DEFINE_DERIVED_DOUBLE1(ACosh64Bit, acosh, x, log(x + sqrt(alternatives((x + constant(1.0)) * (x - constant(1.0)),
3317 																 (x * x - constant(1.0))))))
3318 DEFINE_DERIVED_DOUBLE1(ATanh64Bit, atanh, x, constant(0.5) * log((constant(1.0) + x) /
3319 															(constant(1.0) - x)))
3320 
3321 template <typename T>
3322 class GetComponent : public PrimitiveFunc<Signature<typename T::Element, T, int> >
3323 {
3324 public:
3325 	typedef		typename GetComponent::IRet	IRet;
3326 
getName(void) const3327 	string		getName		(void) const { return "_getComponent"; }
3328 
print(ostream & os,const BaseArgExprs & args) const3329 	void		print		(ostream&				os,
3330 							 const BaseArgExprs&	args) const
3331 	{
3332 		os << *args[0] << "[" << *args[1] << "]";
3333 	}
3334 
3335 protected:
doApply(const EvalContext &,const typename GetComponent::IArgs & iargs) const3336 	IRet		doApply		(const EvalContext&,
3337 							 const typename GetComponent::IArgs& iargs) const
3338 	{
3339 		IRet ret;
3340 
3341 		for (int compNdx = 0; compNdx < T::SIZE; ++compNdx)
3342 		{
3343 			if (iargs.b.contains(compNdx))
3344 				ret = unionIVal<typename T::Element>(ret, iargs.a[compNdx]);
3345 		}
3346 
3347 		return ret;
3348 	}
3349 
3350 };
3351 
3352 template <typename T>
getComponent(const ExprP<T> & container,int ndx)3353 ExprP<typename T::Element> getComponent (const ExprP<T>& container, int ndx)
3354 {
3355 	DE_ASSERT(0 <= ndx && ndx < T::SIZE);
3356 	return app<GetComponent<T> >(container, constant(ndx));
3357 }
3358 
3359 template <typename T>	string	vecNamePrefix			(void);
vecNamePrefix(void)3360 template <>				string	vecNamePrefix<float>	(void) { return ""; }
vecNamePrefix(void)3361 template <>				string	vecNamePrefix<deFloat16>(void) { return ""; }
vecNamePrefix(void)3362 template <>				string	vecNamePrefix<double>	(void) { return "d"; }
vecNamePrefix(void)3363 template <>				string	vecNamePrefix<int>		(void) { return "i"; }
vecNamePrefix(void)3364 template <>				string	vecNamePrefix<bool>		(void) { return "b"; }
3365 
3366 template <typename T, int Size>
vecName(void)3367 string vecName (void) { return vecNamePrefix<T>() + "vec" + de::toString(Size); }
3368 
3369 template <typename T, int Size> class GenVec;
3370 
3371 template <typename T>
3372 class GenVec<T, 1> : public DerivedFunc<Signature<T, T> >
3373 {
3374 public:
3375 	typedef typename GenVec<T, 1>::ArgExprs ArgExprs;
3376 
getName(void) const3377 	string		getName		(void) const
3378 	{
3379 		return "_" + vecName<T, 1>();
3380 	}
3381 
3382 protected:
3383 
doExpand(ExpandContext &,const ArgExprs & args) const3384 	ExprP<T>	doExpand	(ExpandContext&, const ArgExprs& args) const { return args.a; }
3385 };
3386 
3387 template <typename T>
3388 class GenVec<T, 2> : public PrimitiveFunc<Signature<Vector<T, 2>, T, T> >
3389 {
3390 public:
3391 	typedef typename GenVec::IRet	IRet;
3392 	typedef typename GenVec::IArgs	IArgs;
3393 
getName(void) const3394 	string		getName		(void) const
3395 	{
3396 		return vecName<T, 2>();
3397 	}
3398 
3399 protected:
doApply(const EvalContext &,const IArgs & iargs) const3400 	IRet		doApply		(const EvalContext&, const IArgs& iargs) const
3401 	{
3402 		return IRet(iargs.a, iargs.b);
3403 	}
3404 };
3405 
3406 template <typename T>
3407 class GenVec<T, 3> : public PrimitiveFunc<Signature<Vector<T, 3>, T, T, T> >
3408 {
3409 public:
3410 	typedef typename GenVec::IRet	IRet;
3411 	typedef typename GenVec::IArgs	IArgs;
3412 
getName(void) const3413 	string	getName		(void) const
3414 	{
3415 		return vecName<T, 3>();
3416 	}
3417 
3418 protected:
doApply(const EvalContext &,const IArgs & iargs) const3419 	IRet	doApply		(const EvalContext&, const IArgs& iargs) const
3420 	{
3421 		return IRet(iargs.a, iargs.b, iargs.c);
3422 	}
3423 };
3424 
3425 template <typename T>
3426 class GenVec<T, 4> : public PrimitiveFunc<Signature<Vector<T, 4>, T, T, T, T> >
3427 {
3428 public:
3429 	typedef typename GenVec::IRet	IRet;
3430 	typedef typename GenVec::IArgs	IArgs;
3431 
getName(void) const3432 	string		getName		(void) const { return vecName<T, 4>(); }
3433 
3434 protected:
doApply(const EvalContext &,const IArgs & iargs) const3435 	IRet		doApply		(const EvalContext&, const IArgs& iargs) const
3436 	{
3437 		return IRet(iargs.a, iargs.b, iargs.c, iargs.d);
3438 	}
3439 };
3440 
3441 template <typename T, int Rows, int Columns>
3442 class GenMat;
3443 
3444 template <typename T, int Rows>
3445 class GenMat<T, Rows, 2> : public PrimitiveFunc<
3446 	Signature<Matrix<T, Rows, 2>, Vector<T, Rows>, Vector<T, Rows> > >
3447 {
3448 public:
3449 	typedef typename GenMat::Ret	Ret;
3450 	typedef typename GenMat::IRet	IRet;
3451 	typedef typename GenMat::IArgs	IArgs;
3452 
getName(void) const3453 	string		getName		(void) const
3454 	{
3455 		return dataTypeNameOf<Ret>();
3456 	}
3457 
3458 protected:
3459 
doApply(const EvalContext &,const IArgs & iargs) const3460 	IRet		doApply		(const EvalContext&, const IArgs& iargs) const
3461 	{
3462 		IRet	ret;
3463 		ret[0] = iargs.a;
3464 		ret[1] = iargs.b;
3465 		return ret;
3466 	}
3467 };
3468 
3469 template <typename T, int Rows>
3470 class GenMat<T, Rows, 3> : public PrimitiveFunc<
3471 	Signature<Matrix<T, Rows, 3>, Vector<T, Rows>, Vector<T, Rows>, Vector<T, Rows> > >
3472 {
3473 public:
3474 	typedef typename GenMat::Ret	Ret;
3475 	typedef typename GenMat::IRet	IRet;
3476 	typedef typename GenMat::IArgs	IArgs;
3477 
getName(void) const3478 	string	getName	(void) const
3479 	{
3480 		return dataTypeNameOf<Ret>();
3481 	}
3482 
3483 protected:
3484 
doApply(const EvalContext &,const IArgs & iargs) const3485 	IRet	doApply	(const EvalContext&, const IArgs& iargs) const
3486 	{
3487 		IRet	ret;
3488 		ret[0] = iargs.a;
3489 		ret[1] = iargs.b;
3490 		ret[2] = iargs.c;
3491 		return ret;
3492 	}
3493 };
3494 
3495 template <typename T, int Rows>
3496 class GenMat<T, Rows, 4> : public PrimitiveFunc<
3497 	Signature<Matrix<T, Rows, 4>,
3498 			  Vector<T, Rows>, Vector<T, Rows>, Vector<T, Rows>, Vector<T, Rows> > >
3499 {
3500 public:
3501 	typedef typename GenMat::Ret	Ret;
3502 	typedef typename GenMat::IRet	IRet;
3503 	typedef typename GenMat::IArgs	IArgs;
3504 
getName(void) const3505 	string	getName	(void) const
3506 	{
3507 		return dataTypeNameOf<Ret>();
3508 	}
3509 
3510 protected:
doApply(const EvalContext &,const IArgs & iargs) const3511 	IRet	doApply	(const EvalContext&, const IArgs& iargs) const
3512 	{
3513 		IRet	ret;
3514 		ret[0] = iargs.a;
3515 		ret[1] = iargs.b;
3516 		ret[2] = iargs.c;
3517 		ret[3] = iargs.d;
3518 		return ret;
3519 	}
3520 };
3521 
3522 template <typename T, int Rows>
mat2(const ExprP<Vector<T,Rows>> & arg0,const ExprP<Vector<T,Rows>> & arg1)3523 ExprP<Matrix<T, Rows, 2> > mat2 (const ExprP<Vector<T, Rows> >& arg0,
3524 								 const ExprP<Vector<T, Rows> >& arg1)
3525 {
3526 	return app<GenMat<T, Rows, 2> >(arg0, arg1);
3527 }
3528 
3529 template <typename T, int Rows>
mat3(const ExprP<Vector<T,Rows>> & arg0,const ExprP<Vector<T,Rows>> & arg1,const ExprP<Vector<T,Rows>> & arg2)3530 ExprP<Matrix<T, Rows, 3> > mat3 (const ExprP<Vector<T, Rows> >& arg0,
3531 								 const ExprP<Vector<T, Rows> >& arg1,
3532 								 const ExprP<Vector<T, Rows> >& arg2)
3533 {
3534 	return app<GenMat<T, Rows, 3> >(arg0, arg1, arg2);
3535 }
3536 
3537 template <typename T, int Rows>
mat4(const ExprP<Vector<T,Rows>> & arg0,const ExprP<Vector<T,Rows>> & arg1,const ExprP<Vector<T,Rows>> & arg2,const ExprP<Vector<T,Rows>> & arg3)3538 ExprP<Matrix<T, Rows, 4> > mat4 (const ExprP<Vector<T, Rows> >& arg0,
3539 								 const ExprP<Vector<T, Rows> >& arg1,
3540 								 const ExprP<Vector<T, Rows> >& arg2,
3541 								 const ExprP<Vector<T, Rows> >& arg3)
3542 {
3543 	return app<GenMat<T, Rows, 4> >(arg0, arg1, arg2, arg3);
3544 }
3545 
3546 template <typename T, int Rows, int Cols>
3547 class MatNeg : public PrimitiveFunc<Signature<Matrix<T, Rows, Cols>,
3548 											  Matrix<T, Rows, Cols> > >
3549 {
3550 public:
3551 	typedef typename MatNeg::IRet		IRet;
3552 	typedef typename MatNeg::IArgs		IArgs;
3553 
getName(void) const3554 	string	getName	(void) const
3555 	{
3556 		return "_matNeg";
3557 	}
3558 
3559 protected:
doPrint(ostream & os,const BaseArgExprs & args) const3560 	void	doPrint	(ostream& os, const BaseArgExprs& args) const
3561 	{
3562 		os << "-(" << *args[0] << ")";
3563 	}
3564 
doApply(const EvalContext &,const IArgs & iargs) const3565 	IRet	doApply	(const EvalContext&, const IArgs& iargs)			const
3566 	{
3567 		IRet	ret;
3568 
3569 		for (int col = 0; col < Cols; ++col)
3570 		{
3571 			for (int row = 0; row < Rows; ++row)
3572 				ret[col][row] = -iargs.a[col][row];
3573 		}
3574 
3575 		return ret;
3576 	}
3577 };
3578 
3579 template <typename T, typename Sig>
3580 class CompWiseFunc : public PrimitiveFunc<Sig>
3581 {
3582 public:
3583 	typedef Func<Signature<T, T, T> >	ScalarFunc;
3584 
getName(void) const3585 	string				getName			(void)									const
3586 	{
3587 		return doGetScalarFunc().getName();
3588 	}
3589 protected:
doPrint(ostream & os,const BaseArgExprs & args) const3590 	void				doPrint			(ostream&				os,
3591 										 const BaseArgExprs&	args)			const
3592 	{
3593 		doGetScalarFunc().print(os, args);
3594 	}
3595 
3596 	virtual
3597 	const ScalarFunc&	doGetScalarFunc	(void)									const = 0;
3598 };
3599 
3600 template <typename T, int Rows, int Cols>
3601 class CompMatFuncBase : public CompWiseFunc<T, Signature<Matrix<T, Rows, Cols>,
3602 														 Matrix<T, Rows, Cols>,
3603 														 Matrix<T, Rows, Cols> > >
3604 {
3605 public:
3606 	typedef typename CompMatFuncBase::IRet		IRet;
3607 	typedef typename CompMatFuncBase::IArgs		IArgs;
3608 
3609 protected:
3610 
doApply(const EvalContext & ctx,const IArgs & iargs) const3611 	IRet	doApply	(const EvalContext& ctx, const IArgs& iargs) const
3612 	{
3613 		IRet			ret;
3614 
3615 		for (int col = 0; col < Cols; ++col)
3616 		{
3617 			for (int row = 0; row < Rows; ++row)
3618 				ret[col][row] = this->doGetScalarFunc().apply(ctx,
3619 															  iargs.a[col][row],
3620 															  iargs.b[col][row]);
3621 		}
3622 
3623 		return ret;
3624 	}
3625 };
3626 
3627 template <typename F, typename T, int Rows, int Cols>
3628 class CompMatFunc : public CompMatFuncBase<T, Rows, Cols>
3629 {
3630 protected:
doGetScalarFunc(void) const3631 	const typename CompMatFunc::ScalarFunc&	doGetScalarFunc	(void) const
3632 	{
3633 		return instance<F>();
3634 	}
3635 };
3636 
3637 template <class T>
3638 class ScalarMatrixCompMult : public Mul< Signature<T, T, T> >
3639 {
3640 public:
3641 
getName(void) const3642 	string	getName	(void) const
3643 	{
3644 		return "matrixCompMult";
3645 	}
3646 
doPrint(ostream & os,const BaseArgExprs & args) const3647 	void	doPrint	(ostream& os, const BaseArgExprs& args) const
3648 	{
3649 		Func<Signature<T, T, T> >::doPrint(os, args);
3650 	}
3651 };
3652 
3653 template <int Rows, int Cols, class T>
3654 class MatrixCompMult : public CompMatFunc<ScalarMatrixCompMult<T>, T, Rows, Cols>
3655 {
3656 };
3657 
3658 template <int Rows, int Cols>
3659 class ScalarMatFuncBase : public CompWiseFunc<float, Signature<Matrix<float, Rows, Cols>,
3660 															   Matrix<float, Rows, Cols>,
3661 															   float> >
3662 {
3663 public:
3664 	typedef typename ScalarMatFuncBase::IRet	IRet;
3665 	typedef typename ScalarMatFuncBase::IArgs	IArgs;
3666 
3667 protected:
3668 
doApply(const EvalContext & ctx,const IArgs & iargs) const3669 	IRet	doApply	(const EvalContext& ctx, const IArgs& iargs) const
3670 	{
3671 		IRet	ret;
3672 
3673 		for (int col = 0; col < Cols; ++col)
3674 		{
3675 			for (int row = 0; row < Rows; ++row)
3676 				ret[col][row] = this->doGetScalarFunc().apply(ctx, iargs.a[col][row], iargs.b);
3677 		}
3678 
3679 		return ret;
3680 	}
3681 };
3682 
3683 template <typename F, int Rows, int Cols>
3684 class ScalarMatFunc : public ScalarMatFuncBase<Rows, Cols>
3685 {
3686 protected:
doGetScalarFunc(void) const3687 	const typename ScalarMatFunc::ScalarFunc&	doGetScalarFunc	(void)	const
3688 	{
3689 		return instance<F>();
3690 	}
3691 };
3692 
3693 template<typename T, int Size> struct GenXType;
3694 
3695 template<typename T>
3696 struct GenXType<T, 1>
3697 {
genXTypevkt::shaderexecutor::Functions::GenXType3698 	static ExprP<T>	genXType	(const ExprP<T>& x) { return x; }
3699 };
3700 
3701 template<typename T>
3702 struct GenXType<T, 2>
3703 {
genXTypevkt::shaderexecutor::Functions::GenXType3704 	static ExprP<Vector<T, 2> >	genXType	(const ExprP<T>& x)
3705 	{
3706 		return app<GenVec<T, 2> >(x, x);
3707 	}
3708 };
3709 
3710 template<typename T>
3711 struct GenXType<T, 3>
3712 {
genXTypevkt::shaderexecutor::Functions::GenXType3713 	static ExprP<Vector<T, 3> >	genXType	(const ExprP<T>& x)
3714 	{
3715 		return app<GenVec<T, 3> >(x, x, x);
3716 	}
3717 };
3718 
3719 template<typename T>
3720 struct GenXType<T, 4>
3721 {
genXTypevkt::shaderexecutor::Functions::GenXType3722 	static ExprP<Vector<T, 4> >	genXType	(const ExprP<T>& x)
3723 	{
3724 		return app<GenVec<T, 4> >(x, x, x, x);
3725 	}
3726 };
3727 
3728 //! Returns an expression of vector of size `Size` (or scalar if Size == 1),
3729 //! with each element initialized with the expression `x`.
3730 template<typename T, int Size>
genXType(const ExprP<T> & x)3731 ExprP<typename ContainerOf<T, Size>::Container> genXType (const ExprP<T>& x)
3732 {
3733 	return GenXType<T, Size>::genXType(x);
3734 }
3735 
3736 typedef GenVec<float, 2> FloatVec2;
3737 DEFINE_CONSTRUCTOR2(FloatVec2, Vec2, vec2, float, float)
3738 
3739 typedef GenVec<deFloat16, 2> FloatVec2_16bit;
3740 DEFINE_CONSTRUCTOR2(FloatVec2_16bit, Vec2_16Bit, vec2, deFloat16, deFloat16)
3741 
3742 typedef GenVec<double, 2> DoubleVec2;
3743 DEFINE_CONSTRUCTOR2(DoubleVec2, Vec2_64Bit, vec2, double, double)
3744 
3745 typedef GenVec<float, 3> FloatVec3;
3746 DEFINE_CONSTRUCTOR3(FloatVec3, Vec3, vec3, float, float, float)
3747 
3748 typedef GenVec<deFloat16, 3> FloatVec3_16bit;
3749 DEFINE_CONSTRUCTOR3(FloatVec3_16bit, Vec3_16Bit, vec3, deFloat16, deFloat16, deFloat16)
3750 
3751 typedef GenVec<double, 3> DoubleVec3;
3752 DEFINE_CONSTRUCTOR3(DoubleVec3, Vec3_64Bit, vec3, double, double, double)
3753 
3754 typedef GenVec<float, 4> FloatVec4;
3755 DEFINE_CONSTRUCTOR4(FloatVec4, Vec4, vec4, float, float, float, float)
3756 
3757 typedef GenVec<deFloat16, 4> FloatVec4_16bit;
3758 DEFINE_CONSTRUCTOR4(FloatVec4_16bit, Vec4_16Bit, vec4, deFloat16, deFloat16, deFloat16, deFloat16)
3759 
3760 typedef GenVec<double, 4> DoubleVec4;
3761 DEFINE_CONSTRUCTOR4(DoubleVec4, Vec4_64Bit, vec4, double, double, double, double)
3762 
3763 template <class T>
3764 const ExprP<T> getConstZero(void);
3765 template <class T>
3766 const ExprP<T> getConstOne(void);
3767 template <class T>
3768 const ExprP<T> getConstTwo(void);
3769 
3770 template <>
getConstZero(void)3771 const ExprP<float> getConstZero<float>(void)
3772 {
3773 	return constant(0.0f);
3774 }
3775 
3776 template <>
getConstZero(void)3777 const ExprP<deFloat16> getConstZero<deFloat16>(void)
3778 {
3779 	return constant((deFloat16)FLOAT16_0_0);
3780 }
3781 
3782 template <>
getConstZero(void)3783 const ExprP<double> getConstZero<double>(void)
3784 {
3785 	return constant(0.0);
3786 }
3787 
3788 template <>
getConstOne(void)3789 const ExprP<float> getConstOne<float>(void)
3790 {
3791 	return constant(1.0f);
3792 }
3793 
3794 template <>
getConstOne(void)3795 const ExprP<deFloat16> getConstOne<deFloat16>(void)
3796 {
3797 	return constant((deFloat16)FLOAT16_1_0);
3798 }
3799 
3800 template <>
getConstOne(void)3801 const ExprP<double> getConstOne<double>(void)
3802 {
3803 	return constant(1.0);
3804 }
3805 
3806 template <>
getConstTwo(void)3807 const ExprP<float> getConstTwo<float>(void)
3808 {
3809 	return constant(2.0f);
3810 }
3811 
3812 template <>
getConstTwo(void)3813 const ExprP<deFloat16> getConstTwo<deFloat16>(void)
3814 {
3815 	return constant((deFloat16)FLOAT16_2_0);
3816 }
3817 
3818 template <>
getConstTwo(void)3819 const ExprP<double> getConstTwo<double>(void)
3820 {
3821 	return constant(2.0);
3822 }
3823 
3824 template <int Size, class T>
3825 class Dot : public DerivedFunc<Signature<T, Vector<T, Size>, Vector<T, Size> > >
3826 {
3827 public:
3828 	typedef typename Dot::ArgExprs ArgExprs;
3829 
getName(void) const3830 	string			getName		(void) const
3831 	{
3832 		return "dot";
3833 	}
3834 
3835 protected:
doExpand(ExpandContext &,const ArgExprs & args) const3836 	ExprP<T>	doExpand	(ExpandContext&, const ArgExprs& args) const
3837 	{
3838 		ExprP<T> op[Size];
3839 		// Precompute all products.
3840 		for (int ndx = 0; ndx < Size; ++ndx)
3841 			op[ndx] = args.a[ndx] * args.b[ndx];
3842 
3843 		int idx[Size];
3844 		//Prepare an array of indices.
3845 		for (int ndx = 0; ndx < Size; ++ndx)
3846 			idx[ndx] = ndx;
3847 
3848 		ExprP<T> res = op[0];
3849 		// Compute the first dot alternative: SUM(a[i]*b[i]), i = 0 .. Size-1
3850 		for (int ndx = 1; ndx < Size; ++ndx)
3851 			res = res + op[ndx];
3852 
3853 		// Generate all permutations of indices and
3854 		// using a permutation compute a dot alternative.
3855 		// Generates all possible variants fo summation of products in the dot product expansion expression.
3856 		do {
3857 			ExprP<T> alt = getConstZero<T>();
3858 			for (int ndx = 0; ndx < Size; ++ndx)
3859 				alt = alt + op[idx[ndx]];
3860 			res = alternatives(res, alt);
3861 		} while (std::next_permutation(idx, idx + Size));
3862 
3863 		return res;
3864 	}
3865 };
3866 
3867 template <class T>
3868 class Dot<1, T> : public DerivedFunc<Signature<T, T, T> >
3869 {
3870 public:
3871 	typedef typename DerivedFunc<Signature<T, T, T> >::ArgExprs	TArgExprs;
3872 
getName(void) const3873 	string			getName		(void) const
3874 	{
3875 		return "dot";
3876 	}
3877 
doExpand(ExpandContext &,const TArgExprs & args) const3878 	ExprP<T>	doExpand	(ExpandContext&, const TArgExprs& args) const
3879 	{
3880 		return args.a * args.b;
3881 	}
3882 };
3883 
3884 template <int Size>
dot(const ExprP<Vector<deFloat16,Size>> & x,const ExprP<Vector<deFloat16,Size>> & y)3885 ExprP<deFloat16> dot (const ExprP<Vector<deFloat16, Size> >& x, const ExprP<Vector<deFloat16, Size> >& y)
3886 {
3887 	return app<Dot<Size, deFloat16> >(x, y);
3888 }
3889 
dot(const ExprP<deFloat16> & x,const ExprP<deFloat16> & y)3890 ExprP<deFloat16> dot (const ExprP<deFloat16>& x, const ExprP<deFloat16>& y)
3891 {
3892 	return app<Dot<1, deFloat16> >(x, y);
3893 }
3894 
3895 template <int Size>
dot(const ExprP<Vector<float,Size>> & x,const ExprP<Vector<float,Size>> & y)3896 ExprP<float> dot (const ExprP<Vector<float, Size> >& x, const ExprP<Vector<float, Size> >& y)
3897 {
3898 	return app<Dot<Size, float> >(x, y);
3899 }
3900 
dot(const ExprP<float> & x,const ExprP<float> & y)3901 ExprP<float> dot (const ExprP<float>& x, const ExprP<float>& y)
3902 {
3903 	return app<Dot<1, float> >(x, y);
3904 }
3905 
3906 template <int Size>
dot(const ExprP<Vector<double,Size>> & x,const ExprP<Vector<double,Size>> & y)3907 ExprP<double> dot (const ExprP<Vector<double, Size> >& x, const ExprP<Vector<double, Size> >& y)
3908 {
3909 	return app<Dot<Size, double> >(x, y);
3910 }
3911 
dot(const ExprP<double> & x,const ExprP<double> & y)3912 ExprP<double> dot (const ExprP<double>& x, const ExprP<double>& y)
3913 {
3914 	return app<Dot<1, double> >(x, y);
3915 }
3916 
3917 template <int Size, class T>
3918 class Length : public DerivedFunc<
3919 	Signature<T, typename ContainerOf<T, Size>::Container> >
3920 {
3921 public:
3922 	typedef typename Length::ArgExprs ArgExprs;
3923 
getName(void) const3924 	string			getName		(void) const
3925 	{
3926 		return "length";
3927 	}
3928 
3929 protected:
doExpand(ExpandContext &,const ArgExprs & args) const3930 	ExprP<T>		doExpand	(ExpandContext&, const ArgExprs& args) const
3931 	{
3932 		return sqrt(dot(args.a, args.a));
3933 	}
3934 };
3935 
3936 
3937 template <class T, class TRet>
length(const ExprP<T> & x)3938 ExprP<TRet> length (const ExprP<T>& x)
3939 {
3940 	return app<Length<1, T> >(x);
3941 }
3942 
3943 template <int Size, class T, class TRet>
length(const ExprP<typename ContainerOf<T,Size>::Container> & x)3944 ExprP<TRet> length (const ExprP<typename ContainerOf<T, Size>::Container>& x)
3945 {
3946 	return app<Length<Size, T> >(x);
3947 }
3948 
3949 template <int Size, class T>
3950 class Distance : public DerivedFunc<
3951 	Signature<T,
3952 			  typename ContainerOf<T, Size>::Container,
3953 			  typename ContainerOf<T, Size>::Container> >
3954 {
3955 public:
3956 	typedef typename	Distance::Ret		Ret;
3957 	typedef typename	Distance::ArgExprs	ArgExprs;
3958 
getName(void) const3959 	string		getName		(void) const
3960 	{
3961 		return "distance";
3962 	}
3963 
3964 protected:
doExpand(ExpandContext &,const ArgExprs & args) const3965 	ExprP<Ret>	doExpand	(ExpandContext&, const ArgExprs& args) const
3966 	{
3967 		return length<Size, T, Ret>(args.a - args.b);
3968 	}
3969 };
3970 
3971 // cross
3972 
3973 class Cross : public DerivedFunc<Signature<Vec3, Vec3, Vec3> >
3974 {
3975 public:
getName(void) const3976 	string			getName		(void) const
3977 	{
3978 		return "cross";
3979 	}
3980 
3981 protected:
doExpand(ExpandContext &,const ArgExprs & x) const3982 	ExprP<Vec3>		doExpand	(ExpandContext&, const ArgExprs& x) const
3983 	{
3984 		return vec3(x.a[1] * x.b[2] - x.b[1] * x.a[2],
3985 					x.a[2] * x.b[0] - x.b[2] * x.a[0],
3986 					x.a[0] * x.b[1] - x.b[0] * x.a[1]);
3987 	}
3988 };
3989 
3990 class Cross16Bit : public DerivedFunc<Signature<Vec3_16Bit, Vec3_16Bit, Vec3_16Bit> >
3991 {
3992 public:
getName(void) const3993 	string			getName		(void) const
3994 	{
3995 		return "cross";
3996 	}
3997 
3998 protected:
doExpand(ExpandContext &,const ArgExprs & x) const3999 	ExprP<Vec3_16Bit>		doExpand	(ExpandContext&, const ArgExprs& x) const
4000 	{
4001 		return vec3(x.a[1] * x.b[2] - x.b[1] * x.a[2],
4002 					x.a[2] * x.b[0] - x.b[2] * x.a[0],
4003 					x.a[0] * x.b[1] - x.b[0] * x.a[1]);
4004 	}
4005 };
4006 
4007 class Cross64Bit : public DerivedFunc<Signature<Vec3_64Bit, Vec3_64Bit, Vec3_64Bit> >
4008 {
4009 public:
getName(void) const4010 	string			getName		(void) const
4011 	{
4012 		return "cross";
4013 	}
4014 
4015 protected:
doExpand(ExpandContext &,const ArgExprs & x) const4016 	ExprP<Vec3_64Bit>		doExpand	(ExpandContext&, const ArgExprs& x) const
4017 	{
4018 		return vec3(x.a[1] * x.b[2] - x.b[1] * x.a[2],
4019 					x.a[2] * x.b[0] - x.b[2] * x.a[0],
4020 					x.a[0] * x.b[1] - x.b[0] * x.a[1]);
4021 	}
4022 };
4023 
4024 DEFINE_CONSTRUCTOR2(Cross, Vec3, cross, Vec3, Vec3)
4025 DEFINE_CONSTRUCTOR2(Cross16Bit, Vec3_16Bit, cross, Vec3_16Bit, Vec3_16Bit)
4026 DEFINE_CONSTRUCTOR2(Cross64Bit, Vec3_64Bit, cross, Vec3_64Bit, Vec3_64Bit)
4027 
4028 template<int Size, class T>
4029 class Normalize : public DerivedFunc<
4030 	Signature<typename ContainerOf<T, Size>::Container,
4031 			  typename ContainerOf<T, Size>::Container> >
4032 {
4033 public:
4034 	typedef typename	Normalize::Ret		Ret;
4035 	typedef typename	Normalize::ArgExprs	ArgExprs;
4036 
getName(void) const4037 	string		getName		(void) const
4038 	{
4039 		return "normalize";
4040 	}
4041 
4042 protected:
doExpand(ExpandContext &,const ArgExprs & args) const4043 	ExprP<Ret>	doExpand	(ExpandContext&, const ArgExprs& args) const
4044 	{
4045 		return args.a / length<Size, T, T>(args.a);
4046 	}
4047 };
4048 
4049 template <int Size, class T>
4050 class FaceForward : public DerivedFunc<
4051 	Signature<typename ContainerOf<T, Size>::Container,
4052 			  typename ContainerOf<T, Size>::Container,
4053 			  typename ContainerOf<T, Size>::Container,
4054 			  typename ContainerOf<T, Size>::Container> >
4055 {
4056 public:
4057 	typedef typename	FaceForward::Ret		Ret;
4058 	typedef typename	FaceForward::ArgExprs	ArgExprs;
4059 
getName(void) const4060 	string		getName		(void) const
4061 	{
4062 		return "faceforward";
4063 	}
4064 
4065 protected:
doExpand(ExpandContext &,const ArgExprs & args) const4066 	ExprP<Ret>	doExpand	(ExpandContext&, const ArgExprs& args) const
4067 	{
4068 		return cond(dot(args.c, args.b) < getConstZero<T>(), args.a, -args.a);
4069 	}
4070 };
4071 
4072 template <int Size, class T>
4073 class Reflect : public DerivedFunc<
4074 	Signature<typename ContainerOf<T, Size>::Container,
4075 			  typename ContainerOf<T, Size>::Container,
4076 			  typename ContainerOf<T, Size>::Container> >
4077 {
4078 public:
4079 	typedef typename	Reflect::Ret		Ret;
4080 	typedef typename	Reflect::Arg0		Arg0;
4081 	typedef typename	Reflect::Arg1		Arg1;
4082 	typedef typename	Reflect::ArgExprs	ArgExprs;
4083 
getName(void) const4084 	string		getName		(void) const
4085 	{
4086 		return "reflect";
4087 	}
4088 
4089 protected:
doExpand(ExpandContext & ctx,const ArgExprs & args) const4090 	ExprP<Ret>	doExpand	(ExpandContext& ctx, const ArgExprs& args) const
4091 	{
4092 		const ExprP<Arg0>&	i		= args.a;
4093 		const ExprP<Arg1>&	n		= args.b;
4094 		const ExprP<T>	dotNI	= bindExpression("dotNI", ctx, dot(n, i));
4095 
4096 		return i - alternatives((n * dotNI) * getConstTwo<T>(),
4097 								   alternatives( n * (dotNI * getConstTwo<T>()),
4098 												alternatives(n * dot(i * getConstTwo<T>(), n),
4099 															 n * dot(i, n * getConstTwo<T>())
4100 												)
4101 									)
4102 								);
4103 	}
4104 };
4105 
4106 template <class T>
4107 class Reflect<1, T> : public DerivedFunc<
4108 	Signature<T, T, T> >
4109 {
4110 public:
4111 	typedef typename	Reflect::Ret		Ret;
4112 	typedef typename	Reflect::Arg0		Arg0;
4113 	typedef typename	Reflect::Arg1		Arg1;
4114 	typedef typename	Reflect::ArgExprs	ArgExprs;
4115 
getName(void) const4116 	string		getName		(void) const
4117 	{
4118 		return "reflect";
4119 	}
4120 
4121 protected:
doExpand(ExpandContext & ctx,const ArgExprs & args) const4122 	ExprP<Ret>	doExpand	(ExpandContext& ctx, const ArgExprs& args) const
4123 	{
4124 		const ExprP<Arg0>&	i		= args.a;
4125 		const ExprP<Arg1>&	n		= args.b;
4126 		const ExprP<T>	dotNI	= bindExpression("dotNI", ctx, dot(n, i));
4127 
4128 		return i - alternatives((n * dotNI) * getConstTwo<T>(),
4129 								   alternatives( n * (dotNI * getConstTwo<T>()),
4130 												alternatives(n * dot(i * getConstTwo<T>(), n),
4131 															 alternatives(n * dot(i, n * getConstTwo<T>()),
4132 																	dot(n * n, i * getConstTwo<T>()))
4133 												)
4134 									)
4135 								);
4136 	}
4137 };
4138 
4139 template <int Size, class T>
4140 class Refract : public DerivedFunc<
4141 	Signature<typename ContainerOf<T, Size>::Container,
4142 			  typename ContainerOf<T, Size>::Container,
4143 			  typename ContainerOf<T, Size>::Container,
4144 			  T> >
4145 {
4146 public:
4147 	typedef typename	Refract::Ret		Ret;
4148 	typedef typename	Refract::Arg0		Arg0;
4149 	typedef typename	Refract::Arg1		Arg1;
4150 	typedef typename	Refract::Arg2		Arg2;
4151 	typedef typename	Refract::ArgExprs	ArgExprs;
4152 
getName(void) const4153 	string		getName		(void) const
4154 	{
4155 		return "refract";
4156 	}
4157 
4158 protected:
doExpand(ExpandContext & ctx,const ArgExprs & args) const4159 	ExprP<Ret>	doExpand	(ExpandContext&	ctx, const ArgExprs& args) const
4160 	{
4161 		const ExprP<Arg0>&	i		= args.a;
4162 		const ExprP<Arg1>&	n		= args.b;
4163 		const ExprP<Arg2>&	eta		= args.c;
4164 		const ExprP<T>	dotNI	= bindExpression("dotNI", ctx, dot(n, i));
4165 		const ExprP<T>	k		= bindExpression("k", ctx, getConstOne<T>() - eta * eta *
4166 												 (getConstOne<T>() - dotNI * dotNI));
4167 		return cond(k < getConstZero<T>(),
4168 					genXType<T, Size>(getConstZero<T>()),
4169 					i * eta - n * (eta * dotNI + sqrt(k)));
4170 	}
4171 };
4172 
4173 template <class T>
4174 class PreciseFunc1 : public CFloatFunc1<T>
4175 {
4176 public:
PreciseFunc1(const string & name,DoubleFunc1 & func)4177 			PreciseFunc1	(const string& name, DoubleFunc1& func) : CFloatFunc1<T> (name, func) {}
4178 protected:
precision(const EvalContext &,double,double) const4179 	double	precision		(const EvalContext&, double, double) const	{ return 0.0; }
4180 };
4181 
4182 template <class T>
4183 class Abs : public PreciseFunc1<T>
4184 {
4185 public:
Abs(void)4186 	Abs (void) : PreciseFunc1<T> ("abs", deAbs) {}
4187 };
4188 
4189 template <class T>
4190 class Sign : public PreciseFunc1<T>
4191 {
4192 public:
Sign(void)4193 	Sign (void) : PreciseFunc1<T> ("sign", deSign) {}
4194 };
4195 
4196 template <class T>
4197 class Floor : public PreciseFunc1<T>
4198 {
4199 public:
Floor(void)4200 	Floor (void) : PreciseFunc1<T> ("floor", deFloor) {}
4201 };
4202 
4203 template <class T>
4204 class Trunc : public PreciseFunc1<T>
4205 {
4206 public:
Trunc(void)4207 	Trunc (void) : PreciseFunc1<T> ("trunc", deTrunc) {}
4208 };
4209 
4210 template <class T>
4211 class Round : public FloatFunc1<T>
4212 {
4213 public:
getName(void) const4214 	string		getName		(void) const								{ return "round"; }
4215 
4216 protected:
applyPoint(const EvalContext &,double x) const4217 	Interval	applyPoint	(const EvalContext&, double x) const
4218 	{
4219 		double			truncated	= 0.0;
4220 		const double	fract		= deModf(x, &truncated);
4221 		Interval		ret;
4222 
4223 		if (fabs(fract) <= 0.5)
4224 			ret |= truncated;
4225 		if (fabs(fract) >= 0.5)
4226 			ret |= truncated + deSign(fract);
4227 
4228 		return ret;
4229 	}
4230 
precision(const EvalContext &,double,double) const4231 	double		precision	(const EvalContext&, double, double) const	{ return 0.0; }
4232 };
4233 
4234 template <class T>
4235 class RoundEven : public PreciseFunc1<T>
4236 {
4237 public:
RoundEven(void)4238 	RoundEven (void) : PreciseFunc1<T> ("roundEven", deRoundEven) {}
4239 };
4240 
4241 template <class T>
4242 class Ceil : public PreciseFunc1<T>
4243 {
4244 public:
Ceil(void)4245 	Ceil (void) : PreciseFunc1<T> ("ceil", deCeil) {}
4246 };
4247 
4248 typedef Floor< Signature<float, float> > Floor32Bit;
4249 typedef Floor< Signature<deFloat16, deFloat16> > Floor16Bit;
4250 typedef Floor< Signature<double, double> > Floor64Bit;
4251 
4252 typedef Trunc< Signature<float, float> > Trunc32Bit;
4253 typedef Trunc< Signature<deFloat16, deFloat16> > Trunc16Bit;
4254 typedef Trunc< Signature<double, double> > Trunc64Bit;
4255 
4256 typedef Trunc< Signature<float, float> > Trunc32Bit;
4257 typedef Trunc< Signature<deFloat16, deFloat16> > Trunc16Bit;
4258 
4259 DEFINE_DERIVED_FLOAT1(Fract, fract, x, x - app<Floor32Bit>(x))
4260 DEFINE_DERIVED_FLOAT1_16BIT(Fract16Bit, fract, x, x - app<Floor16Bit>(x))
4261 DEFINE_DERIVED_DOUBLE1(Fract64Bit, fract, x, x - app<Floor64Bit>(x))
4262 
4263 template <class T>
4264 class PreciseFunc2 : public CFloatFunc2<T>
4265 {
4266 public:
PreciseFunc2(const string & name,DoubleFunc2 & func)4267 			PreciseFunc2	(const string& name, DoubleFunc2& func) : CFloatFunc2<T> (name, func) {}
4268 protected:
precision(const EvalContext &,double,double,double) const4269 	double	precision		(const EvalContext&, double, double, double) const { return 0.0; }
4270 };
4271 
4272 DEFINE_DERIVED_FLOAT2(Mod32Bit, mod, x, y, x - y * app<Floor32Bit>(x / y))
4273 DEFINE_DERIVED_FLOAT2_16BIT(Mod16Bit, mod, x, y, x - y * app<Floor16Bit>(x / y))
4274 DEFINE_DERIVED_DOUBLE2(Mod64Bit, mod, x, y, x - y * app<Floor64Bit>(x / y))
4275 
4276 DEFINE_CASED_DERIVED_FLOAT2(FRem32Bit, frem, x, y, x - y * app<Trunc32Bit>(x / y), SPIRV_CASETYPE_FREM)
4277 DEFINE_CASED_DERIVED_FLOAT2_16BIT(FRem16Bit, frem, x, y, x - y * app<Trunc16Bit>(x / y), SPIRV_CASETYPE_FREM)
4278 DEFINE_CASED_DERIVED_DOUBLE2(FRem64Bit, frem, x, y, x - y * app<Trunc64Bit>(x / y), SPIRV_CASETYPE_FREM)
4279 
4280 template <class T>
4281 class Modf : public PrimitiveFunc<T>
4282 {
4283 public:
4284 	typedef typename Modf<T>::IArgs	TIArgs;
4285 	typedef typename Modf<T>::IRet	TIRet;
getName(void) const4286 	string	getName				(void) const
4287 	{
4288 		return "modf";
4289 	}
4290 
4291 protected:
doApply(const EvalContext & ctx,const TIArgs & iargs) const4292 	TIRet	doApply				(const EvalContext& ctx, const TIArgs& iargs) const
4293 	{
4294 		Interval	fracIV;
4295 		Interval&	wholeIV		= const_cast<Interval&>(iargs.b);
4296 		double		intPart		= 0;
4297 
4298 		TCU_INTERVAL_APPLY_MONOTONE1(fracIV, x, iargs.a, frac, frac = deModf(x, &intPart));
4299 		TCU_INTERVAL_APPLY_MONOTONE1(wholeIV, x, iargs.a, whole,
4300 									 deModf(x, &intPart); whole = intPart);
4301 
4302 		if (!iargs.a.isFinite(ctx.format.getMaxValue()))
4303 		{
4304 			// Behavior on modf(Inf) not well-defined, allow anything as a fractional part
4305 			// See Khronos bug 13907
4306 			fracIV |= TCU_NAN;
4307 		}
4308 
4309 		return fracIV;
4310 	}
4311 
getOutParamIndex(void) const4312 	int		getOutParamIndex	(void) const
4313 	{
4314 		return 1;
4315 	}
4316 };
4317 typedef Modf< Signature<float, float, float> >				Modf32Bit;
4318 typedef Modf< Signature<deFloat16, deFloat16, deFloat16> >	Modf16Bit;
4319 typedef Modf< Signature<double, double, double> >			Modf64Bit;
4320 
4321 template <class T>
4322 class ModfStruct : public Modf<T>
4323 {
4324 public:
getName(void) const4325 	virtual string		getName			(void) const	{ return "modfstruct"; }
getSpirvCase(void) const4326 	virtual SpirVCaseT	getSpirvCase	(void) const	{ return SPIRV_CASETYPE_MODFSTRUCT; }
4327 };
4328 typedef ModfStruct< Signature<float, float, float> >				ModfStruct32Bit;
4329 typedef ModfStruct< Signature<deFloat16, deFloat16, deFloat16> >	ModfStruct16Bit;
4330 typedef ModfStruct< Signature<double, double, double> >				ModfStruct64Bit;
4331 
4332 template <class T>
Min(void)4333 class Min : public PreciseFunc2<T> { public: Min (void) : PreciseFunc2<T> ("min", deMin) {} };
4334 template <class T>
Max(void)4335 class Max : public PreciseFunc2<T> { public: Max (void) : PreciseFunc2<T> ("max", deMax) {} };
4336 
4337 template <class T>
4338 class Clamp : public FloatFunc3<T>
4339 {
4340 public:
getName(void) const4341 	string	getName		(void) const { return "clamp"; }
4342 
applyExact(double x,double minVal,double maxVal) const4343 	double	applyExact	(double x, double minVal, double maxVal) const
4344 	{
4345 		return de::min(de::max(x, minVal), maxVal);
4346 	}
4347 
precision(const EvalContext &,double,double,double minVal,double maxVal) const4348 	double	precision	(const EvalContext&, double, double, double minVal, double maxVal) const
4349 	{
4350 		return minVal > maxVal ? TCU_NAN : 0.0;
4351 	}
4352 };
4353 
clamp(const ExprP<deFloat16> & x,const ExprP<deFloat16> & minVal,const ExprP<deFloat16> & maxVal)4354 ExprP<deFloat16> clamp(const ExprP<deFloat16>& x, const ExprP<deFloat16>& minVal, const ExprP<deFloat16>& maxVal)
4355 {
4356 	return app<Clamp< Signature<deFloat16, deFloat16, deFloat16, deFloat16> > >(x, minVal, maxVal);
4357 }
4358 
clamp(const ExprP<float> & x,const ExprP<float> & minVal,const ExprP<float> & maxVal)4359 ExprP<float> clamp(const ExprP<float>& x, const ExprP<float>& minVal, const ExprP<float>& maxVal)
4360 {
4361 	return app<Clamp< Signature<float, float, float, float> > >(x, minVal, maxVal);
4362 }
4363 
clamp(const ExprP<double> & x,const ExprP<double> & minVal,const ExprP<double> & maxVal)4364 ExprP<double> clamp(const ExprP<double>& x, const ExprP<double>& minVal, const ExprP<double>& maxVal)
4365 {
4366 	return app<Clamp< Signature<double, double, double, double> > >(x, minVal, maxVal);
4367 }
4368 
4369 template <class T>
4370 class NanIfGreaterOrEqual : public FloatFunc2<T>
4371 {
4372 public:
getName(void) const4373 	string	getName		(void) const { return "nanIfGreaterOrEqual"; }
4374 
applyExact(double edge0,double edge1) const4375 	double	applyExact	(double edge0, double edge1) const
4376 	{
4377 		return (edge0 >= edge1) ? TCU_NAN : 0.0;
4378 	}
4379 
precision(const EvalContext &,double,double edge0,double edge1) const4380 	double	precision	(const EvalContext&, double, double edge0, double edge1) const
4381 	{
4382 		return (edge0 >= edge1) ? TCU_NAN : 0.0;
4383 	}
4384 };
4385 
nanIfGreaterOrEqual(const ExprP<deFloat16> & edge0,const ExprP<deFloat16> & edge1)4386 ExprP<deFloat16> nanIfGreaterOrEqual(const ExprP<deFloat16>& edge0, const ExprP<deFloat16>& edge1)
4387 {
4388 	return app<NanIfGreaterOrEqual< Signature<deFloat16, deFloat16, deFloat16> > >(edge0, edge1);
4389 }
4390 
nanIfGreaterOrEqual(const ExprP<float> & edge0,const ExprP<float> & edge1)4391 ExprP<float> nanIfGreaterOrEqual(const ExprP<float>& edge0, const ExprP<float>& edge1)
4392 {
4393 	return app<NanIfGreaterOrEqual< Signature<float, float, float> > >(edge0, edge1);
4394 }
4395 
nanIfGreaterOrEqual(const ExprP<double> & edge0,const ExprP<double> & edge1)4396 ExprP<double> nanIfGreaterOrEqual(const ExprP<double>& edge0, const ExprP<double>& edge1)
4397 {
4398 	return app<NanIfGreaterOrEqual< Signature<double, double, double> > >(edge0, edge1);
4399 }
4400 
4401 DEFINE_DERIVED_FLOAT3(Mix, mix, x, y, a, alternatives((x * (constant(1.0f) - a)) + y * a,
4402 													  x + (y - x) * a))
4403 
4404 DEFINE_DERIVED_FLOAT3_16BIT(Mix16Bit, mix, x, y, a, alternatives((x * (constant((deFloat16)FLOAT16_1_0) - a)) + y * a,
4405 													  x + (y - x) * a))
4406 
4407 DEFINE_DERIVED_DOUBLE3(Mix64Bit, mix, x, y, a, alternatives((x * (constant(1.0) - a)) + y * a,
4408 													  x + (y - x) * a))
4409 
step(double edge,double x)4410 static double step (double edge, double x)
4411 {
4412 	return x < edge ? 0.0 : 1.0;
4413 }
4414 
4415 template <class T>
Step(void)4416 class Step : public PreciseFunc2<T> { public: Step (void) : PreciseFunc2<T> ("step", step) {} };
4417 
4418 template <class T>
4419 class SmoothStep : public DerivedFunc<T>
4420 {
4421 public:
4422 	typedef typename SmoothStep<T>::ArgExprs	TArgExprs;
4423 	typedef typename SmoothStep<T>::Ret			TRet;
getName(void) const4424 	string		getName		(void) const
4425 	{
4426 		return "smoothstep";
4427 	}
4428 
4429 protected:
4430 
4431 	ExprP<TRet>	doExpand	(ExpandContext& ctx, const TArgExprs& args) const;
4432 };
4433 
4434 template<>
doExpand(ExpandContext & ctx,const SmoothStep<Signature<float,float,float,float>>::ArgExprs & args) const4435 ExprP<SmoothStep< Signature<float, float, float, float> >::Ret>	SmoothStep< Signature<float, float, float, float> >::doExpand (ExpandContext& ctx, const SmoothStep< Signature<float, float, float, float> >::ArgExprs& args) const
4436 {
4437 	const ExprP<float>&		edge0	= args.a;
4438 	const ExprP<float>&		edge1	= args.b;
4439 	const ExprP<float>&		x		= args.c;
4440 	const ExprP<float>		tExpr	= clamp((x - edge0) / (edge1 - edge0), constant(0.0f), constant(1.0f))
4441 									+ nanIfGreaterOrEqual(edge0, edge1); // force NaN (and non-analyzable result) for cases edge0 >= edge1
4442 	const ExprP<float>		t		= bindExpression("t", ctx, tExpr);
4443 
4444 	return (t * t * (constant(3.0f) - constant(2.0f) * t));
4445 }
4446 
4447 template<>
doExpand(ExpandContext & ctx,const TArgExprs & args) const4448 ExprP<SmoothStep< Signature<deFloat16, deFloat16, deFloat16, deFloat16> >::TRet>	SmoothStep< Signature<deFloat16, deFloat16, deFloat16, deFloat16> >::doExpand (ExpandContext& ctx, const TArgExprs& args) const
4449 {
4450 	const ExprP<deFloat16>&		edge0	= args.a;
4451 	const ExprP<deFloat16>&		edge1	= args.b;
4452 	const ExprP<deFloat16>&		x		= args.c;
4453 	const ExprP<deFloat16>		tExpr	= clamp(( x - edge0 ) / ( edge1 - edge0 ),
4454 											constant((deFloat16)FLOAT16_0_0), constant((deFloat16)FLOAT16_1_0))
4455 										+ nanIfGreaterOrEqual(edge0, edge1); // force NaN (and non-analyzable result) for cases edge0 >= edge1
4456 	const ExprP<deFloat16>		t		= bindExpression("t", ctx, tExpr);
4457 
4458 	return (t * t * (constant((deFloat16)FLOAT16_3_0) - constant((deFloat16)FLOAT16_2_0) * t));
4459 }
4460 
4461 template<>
doExpand(ExpandContext & ctx,const SmoothStep<Signature<double,double,double,double>>::ArgExprs & args) const4462 ExprP<SmoothStep< Signature<double, double, double, double> >::Ret>	SmoothStep< Signature<double, double, double, double> >::doExpand (ExpandContext& ctx, const SmoothStep< Signature<double, double, double, double> >::ArgExprs& args) const
4463 {
4464 	const ExprP<double>&	edge0	= args.a;
4465 	const ExprP<double>&	edge1	= args.b;
4466 	const ExprP<double>&	x		= args.c;
4467 	const ExprP<double>		tExpr	= clamp((x - edge0) / (edge1 - edge0), constant(0.0), constant(1.0))
4468 									+ nanIfGreaterOrEqual(edge0, edge1); // force NaN (and non-analyzable result) for cases edge0 >= edge1
4469 	const ExprP<double>		t		= bindExpression("t", ctx, tExpr);
4470 
4471 	return (t * t * (constant(3.0) - constant(2.0) * t));
4472 }
4473 
4474 //Signature<float, float, int>
4475 //Signature<float, deFloat16, int>
4476 //Signature<double, double, int>
4477 template <class T>
4478 class FrExp : public PrimitiveFunc<T>
4479 {
4480 public:
getName(void) const4481 	string	getName			(void) const
4482 	{
4483 		return "frexp";
4484 	}
4485 
4486 	typedef typename	FrExp::IRet		IRet;
4487 	typedef typename	FrExp::IArgs	IArgs;
4488 	typedef typename	FrExp::IArg0	IArg0;
4489 	typedef typename	FrExp::IArg1	IArg1;
4490 
4491 protected:
doApply(const EvalContext &,const IArgs & iargs) const4492 	IRet	doApply			(const EvalContext&, const IArgs& iargs) const
4493 	{
4494 		IRet			ret;
4495 		const IArg0&	x			= iargs.a;
4496 		IArg1&			exponent	= const_cast<IArg1&>(iargs.b);
4497 
4498 		if (x.hasNaN() || x.contains(TCU_INFINITY) || x.contains(-TCU_INFINITY))
4499 		{
4500 			// GLSL (in contrast to IEEE) says that result of applying frexp
4501 			// to infinity is undefined
4502 			ret = Interval::unbounded() | TCU_NAN;
4503 			exponent = Interval(-deLdExp(1.0, 31), deLdExp(1.0, 31)-1);
4504 		}
4505 		else if (!x.empty())
4506 		{
4507 			int				loExp	= 0;
4508 			const double	loFrac	= deFrExp(x.lo(), &loExp);
4509 			int				hiExp	= 0;
4510 			const double	hiFrac	= deFrExp(x.hi(), &hiExp);
4511 
4512 			if (deSign(loFrac) != deSign(hiFrac))
4513 			{
4514 				exponent = Interval(-TCU_INFINITY, de::max(loExp, hiExp));
4515 				ret = Interval();
4516 				if (deSign(loFrac) < 0)
4517 					ret |= Interval(-1.0 + DBL_EPSILON*0.5, 0.0);
4518 				if (deSign(hiFrac) > 0)
4519 					ret |= Interval(0.0, 1.0 - DBL_EPSILON*0.5);
4520 			}
4521 			else
4522 			{
4523 				exponent = Interval(loExp, hiExp);
4524 				if (loExp == hiExp)
4525 					ret = Interval(loFrac, hiFrac);
4526 				else
4527 					ret = deSign(loFrac) * Interval(0.5, 1.0 - DBL_EPSILON*0.5);
4528 			}
4529 		}
4530 
4531 		return ret;
4532 	}
4533 
getOutParamIndex(void) const4534 	int	getOutParamIndex	(void) const
4535 	{
4536 		return 1;
4537 	}
4538 };
4539 typedef FrExp< Signature<float, float, int> >			Frexp32Bit;
4540 typedef FrExp< Signature<deFloat16, deFloat16, int> >	Frexp16Bit;
4541 typedef FrExp< Signature<double, double, int> >			Frexp64Bit;
4542 
4543 template <class T>
4544 class FrexpStruct : public FrExp<T>
4545 {
4546 public:
getName(void) const4547 	virtual string		getName			(void) const	{ return "frexpstruct"; }
getSpirvCase(void) const4548 	virtual SpirVCaseT	getSpirvCase	(void) const	{ return SPIRV_CASETYPE_FREXPSTRUCT; }
4549 };
4550 typedef FrexpStruct< Signature<float, float, int> >				FrexpStruct32Bit;
4551 typedef FrexpStruct< Signature<deFloat16, deFloat16, int> >		FrexpStruct16Bit;
4552 typedef FrexpStruct< Signature<double, double, int> >			FrexpStruct64Bit;
4553 
4554 //Signature<float, float, int>
4555 //Signature<deFloat16, deFloat16, int>
4556 //Signature<double, double, int>
4557 template <class T>
4558 class LdExp : public PrimitiveFunc<T >
4559 {
4560 public:
4561 	typedef typename	LdExp::IRet		IRet;
4562 	typedef typename	LdExp::IArgs	IArgs;
4563 
getName(void) const4564 	string		getName			(void) const
4565 	{
4566 		return "ldexp";
4567 	}
4568 
4569 protected:
doApply(const EvalContext & ctx,const IArgs & iargs) const4570 	Interval	doApply			(const EvalContext& ctx, const IArgs& iargs) const
4571 	{
4572 		const int minExp = ctx.format.getMinExp();
4573 		const int maxExp = ctx.format.getMaxExp();
4574 		// Restrictions from the GLSL.std.450 instruction set.
4575 		// See Khronos bugzilla 11180 for rationale.
4576 		bool any = iargs.a.hasNaN() || iargs.b.hi() > (maxExp + 1);
4577 		Interval ret(any, ldexp(iargs.a.lo(), (int)iargs.b.lo()), ldexp(iargs.a.hi(), (int)iargs.b.hi()));
4578 		if (iargs.b.lo() < minExp) ret |= 0.0;
4579 		if (!ret.isFinite(ctx.format.getMaxValue())) ret |= TCU_NAN;
4580 		return ctx.format.convert(ret);
4581 	}
4582 };
4583 
4584 template <>
doApply(const EvalContext & ctx,const IArgs & iargs) const4585 Interval LdExp <Signature<double, double, int>>::doApply(const EvalContext& ctx, const IArgs& iargs) const
4586 {
4587 	const int minExp = ctx.format.getMinExp();
4588 	const int maxExp = ctx.format.getMaxExp();
4589 	// Restrictions from the GLSL.std.450 instruction set.
4590 	// See Khronos bugzilla 11180 for rationale.
4591 	bool any = iargs.a.hasNaN() || iargs.b.hi() > (maxExp + 1);
4592 	Interval ret(any, ldexp(iargs.a.lo(), (int)iargs.b.lo()), ldexp(iargs.a.hi(), (int)iargs.b.hi()));
4593 	// Add 1ULP precision tolerance to account for differing rounding modes between the GPU and deLdExp.
4594 	ret += Interval(-ctx.format.ulp(ret.lo()), ctx.format.ulp(ret.hi()));
4595 	if (iargs.b.lo() < minExp) ret |= 0.0;
4596 	if (!ret.isFinite(ctx.format.getMaxValue())) ret |= TCU_NAN;
4597 	return ctx.format.convert(ret);
4598 }
4599 
4600 template<int Rows, int Columns, class T>
4601 class Transpose : public PrimitiveFunc<Signature<Matrix<T, Rows, Columns>,
4602 												 Matrix<T, Columns, Rows> > >
4603 {
4604 public:
4605 	typedef typename Transpose::IRet	IRet;
4606 	typedef typename Transpose::IArgs	IArgs;
4607 
getName(void) const4608 	string		getName		(void) const
4609 	{
4610 		return "transpose";
4611 	}
4612 
4613 protected:
doApply(const EvalContext &,const IArgs & iargs) const4614 	IRet		doApply		(const EvalContext&, const IArgs& iargs) const
4615 	{
4616 		IRet ret;
4617 
4618 		for (int rowNdx = 0; rowNdx < Rows; ++rowNdx)
4619 		{
4620 			for (int colNdx = 0; colNdx < Columns; ++colNdx)
4621 				ret(rowNdx, colNdx) = iargs.a(colNdx, rowNdx);
4622 		}
4623 
4624 		return ret;
4625 	}
4626 };
4627 
4628 template<typename Ret, typename Arg0, typename Arg1>
4629 class MulFunc : public PrimitiveFunc<Signature<Ret, Arg0, Arg1> >
4630 {
4631 public:
getName(void) const4632 	string	getName	(void) const									{ return "mul"; }
4633 
4634 protected:
doPrint(ostream & os,const BaseArgExprs & args) const4635 	void	doPrint	(ostream& os, const BaseArgExprs& args) const
4636 	{
4637 		os << "(" << *args[0] << " * " << *args[1] << ")";
4638 	}
4639 };
4640 
4641 template<typename T, int LeftRows, int Middle, int RightCols>
4642 class MatMul : public MulFunc<Matrix<T, LeftRows, RightCols>,
4643 							  Matrix<T, LeftRows, Middle>,
4644 							  Matrix<T, Middle, RightCols> >
4645 {
4646 protected:
4647 	typedef typename MatMul::IRet	IRet;
4648 	typedef typename MatMul::IArgs	IArgs;
4649 	typedef typename MatMul::IArg0	IArg0;
4650 	typedef typename MatMul::IArg1	IArg1;
4651 
doApply(const EvalContext & ctx,const IArgs & iargs) const4652 	IRet	doApply	(const EvalContext&	ctx, const IArgs& iargs) const
4653 	{
4654 		const IArg0&	left	= iargs.a;
4655 		const IArg1&	right	= iargs.b;
4656 		IRet			ret;
4657 
4658 		for (int row = 0; row < LeftRows; ++row)
4659 		{
4660 			for (int col = 0; col < RightCols; ++col)
4661 			{
4662 				Interval	element	(0.0);
4663 
4664 				for (int ndx = 0; ndx < Middle; ++ndx)
4665 					element = call<Add< Signature<T, T, T> > >(ctx, element,
4666 										call<Mul< Signature<T, T, T> > >(ctx, left[ndx][row], right[col][ndx]));
4667 
4668 				ret[col][row] = element;
4669 			}
4670 		}
4671 
4672 		return ret;
4673 	}
4674 };
4675 
4676 template<typename T, int Rows, int Cols>
4677 class VecMatMul : public MulFunc<Vector<T, Cols>,
4678 								 Vector<T, Rows>,
4679 								 Matrix<T, Rows, Cols> >
4680 {
4681 public:
4682 	typedef typename VecMatMul::IRet	IRet;
4683 	typedef typename VecMatMul::IArgs	IArgs;
4684 	typedef typename VecMatMul::IArg0	IArg0;
4685 	typedef typename VecMatMul::IArg1	IArg1;
4686 
4687 protected:
doApply(const EvalContext & ctx,const IArgs & iargs) const4688 	IRet	doApply	(const EvalContext& ctx, const IArgs& iargs) const
4689 	{
4690 		const IArg0&	left	= iargs.a;
4691 		const IArg1&	right	= iargs.b;
4692 		IRet			ret;
4693 
4694 		for (int col = 0; col < Cols; ++col)
4695 		{
4696 			Interval	element	(0.0);
4697 
4698 			for (int row = 0; row < Rows; ++row)
4699 				element = call<Add< Signature<T, T, T> > >(ctx, element, call<Mul< Signature<T, T, T> > >(ctx, left[row], right[col][row]));
4700 
4701 			ret[col] = element;
4702 		}
4703 
4704 		return ret;
4705 	}
4706 };
4707 
4708 template<int Rows, int Cols, class T>
4709 class MatVecMul : public MulFunc<Vector<T, Rows>,
4710 								 Matrix<T, Rows, Cols>,
4711 								 Vector<T, Cols> >
4712 {
4713 public:
4714 	typedef typename MatVecMul::IRet	IRet;
4715 	typedef typename MatVecMul::IArgs	IArgs;
4716 	typedef typename MatVecMul::IArg0	IArg0;
4717 	typedef typename MatVecMul::IArg1	IArg1;
4718 
4719 protected:
doApply(const EvalContext & ctx,const IArgs & iargs) const4720 	IRet	doApply	(const EvalContext& ctx, const IArgs& iargs) const
4721 	{
4722 		const IArg0&	left	= iargs.a;
4723 		const IArg1&	right	= iargs.b;
4724 
4725 		return call<VecMatMul<T, Cols, Rows> >(ctx, right,
4726 											call<Transpose<Rows, Cols, T> >(ctx, left));
4727 	}
4728 };
4729 
4730 template<int Rows, int Cols, class T>
4731 class OuterProduct : public PrimitiveFunc<Signature<Matrix<T, Rows, Cols>,
4732 													Vector<T, Rows>,
4733 													Vector<T, Cols> > >
4734 {
4735 public:
4736 	typedef typename OuterProduct::IRet		IRet;
4737 	typedef typename OuterProduct::IArgs	IArgs;
4738 
getName(void) const4739 	string	getName	(void) const
4740 	{
4741 		return "outerProduct";
4742 	}
4743 
4744 protected:
doApply(const EvalContext & ctx,const IArgs & iargs) const4745 	IRet	doApply	(const EvalContext& ctx, const IArgs& iargs) const
4746 	{
4747 		IRet	ret;
4748 
4749 		for (int row = 0; row < Rows; ++row)
4750 		{
4751 			for (int col = 0; col < Cols; ++col)
4752 				ret[col][row] = call<Mul< Signature<T, T, T> > >(ctx, iargs.a[row], iargs.b[col]);
4753 		}
4754 
4755 		return ret;
4756 	}
4757 };
4758 
4759 template<int Rows, int Cols, class T>
outerProduct(const ExprP<Vector<T,Rows>> & left,const ExprP<Vector<T,Cols>> & right)4760 ExprP<Matrix<T, Rows, Cols> > outerProduct (const ExprP<Vector<T, Rows> >& left,
4761 												const ExprP<Vector<T, Cols> >& right)
4762 {
4763 	return app<OuterProduct<Rows, Cols, T> >(left, right);
4764 }
4765 
4766 template<class T>
4767 class DeterminantBase : public DerivedFunc<T>
4768 {
4769 public:
getName(void) const4770 	string	getName	(void) const { return "determinant"; }
4771 };
4772 
4773 template<int Size> class Determinant;
4774 template<int Size> class Determinant16bit;
4775 template<int Size> class Determinant64bit;
4776 
4777 template<int Size>
determinant(ExprP<Matrix<float,Size,Size>> mat)4778 ExprP<float> determinant (ExprP<Matrix<float, Size, Size> > mat)
4779 {
4780 	return app<Determinant<Size> >(mat);
4781 }
4782 
4783 template<int Size>
determinant(ExprP<Matrix<deFloat16,Size,Size>> mat)4784 ExprP<deFloat16> determinant (ExprP<Matrix<deFloat16, Size, Size> > mat)
4785 {
4786 	return app<Determinant16bit<Size> >(mat);
4787 }
4788 
4789 template<int Size>
determinant(ExprP<Matrix<double,Size,Size>> mat)4790 ExprP<double> determinant (ExprP<Matrix<double, Size, Size> > mat)
4791 {
4792 	return app<Determinant64bit<Size> >(mat);
4793 }
4794 
4795 template<>
4796 class Determinant<2> : public DeterminantBase<Signature<float, Matrix<float, 2, 2> > >
4797 {
4798 protected:
doExpand(ExpandContext &,const ArgExprs & args) const4799 	ExprP<Ret>	doExpand (ExpandContext&, const ArgExprs& args)	const
4800 	{
4801 		ExprP<Mat2>	mat	= args.a;
4802 
4803 		return mat[0][0] * mat[1][1] - mat[1][0] * mat[0][1];
4804 	}
4805 };
4806 
4807 template<>
4808 class Determinant<3> : public DeterminantBase<Signature<float, Matrix<float, 3, 3> > >
4809 {
4810 protected:
doExpand(ExpandContext &,const ArgExprs & args) const4811 	ExprP<Ret> doExpand (ExpandContext&, const ArgExprs& args) const
4812 	{
4813 		ExprP<Mat3>	mat	= args.a;
4814 
4815 		return (mat[0][0] * (mat[1][1] * mat[2][2] - mat[1][2] * mat[2][1]) +
4816 				mat[0][1] * (mat[1][2] * mat[2][0] - mat[1][0] * mat[2][2]) +
4817 				mat[0][2] * (mat[1][0] * mat[2][1] - mat[1][1] * mat[2][0]));
4818 	}
4819 };
4820 
4821 template<>
4822 class Determinant<4> : public DeterminantBase<Signature<float, Matrix<float, 4, 4> > >
4823 {
4824 protected:
doExpand(ExpandContext & ctx,const ArgExprs & args) const4825 	 ExprP<Ret>	doExpand	(ExpandContext& ctx, const ArgExprs& args) const
4826 	{
4827 		ExprP<Mat4>	mat	= args.a;
4828 		ExprP<Mat3>	minors[4];
4829 
4830 		for (int ndx = 0; ndx < 4; ++ndx)
4831 		{
4832 			ExprP<Vec4>		minorColumns[3];
4833 			ExprP<Vec3>		columns[3];
4834 
4835 			for (int col = 0; col < 3; ++col)
4836 				minorColumns[col] = mat[col < ndx ? col : col + 1];
4837 
4838 			for (int col = 0; col < 3; ++col)
4839 				columns[col] = vec3(minorColumns[0][col+1],
4840 									minorColumns[1][col+1],
4841 									minorColumns[2][col+1]);
4842 
4843 			minors[ndx] = bindExpression("minor", ctx,
4844 										 mat3(columns[0], columns[1], columns[2]));
4845 		}
4846 
4847 		return (mat[0][0] * determinant(minors[0]) -
4848 				mat[1][0] * determinant(minors[1]) +
4849 				mat[2][0] * determinant(minors[2]) -
4850 				mat[3][0] * determinant(minors[3]));
4851 	}
4852 };
4853 
4854 template<>
4855 class Determinant16bit<2> : public DeterminantBase<Signature<deFloat16, Matrix<deFloat16, 2, 2> > >
4856 {
4857 protected:
doExpand(ExpandContext &,const ArgExprs & args) const4858 	ExprP<Ret>	doExpand (ExpandContext&, const ArgExprs& args)	const
4859 	{
4860 		ExprP<Mat2_16b>	mat	= args.a;
4861 
4862 		return mat[0][0] * mat[1][1] - mat[1][0] * mat[0][1];
4863 	}
4864 };
4865 
4866 template<>
4867 class Determinant16bit<3> : public DeterminantBase<Signature<deFloat16, Matrix<deFloat16, 3, 3> > >
4868 {
4869 protected:
doExpand(ExpandContext &,const ArgExprs & args) const4870 	ExprP<Ret> doExpand(ExpandContext&, const ArgExprs& args) const
4871 	{
4872 		ExprP<Mat3_16b>	mat = args.a;
4873 
4874 		return (mat[0][0] * (mat[1][1] * mat[2][2] - mat[1][2] * mat[2][1]) +
4875 			mat[0][1] * (mat[1][2] * mat[2][0] - mat[1][0] * mat[2][2]) +
4876 			mat[0][2] * (mat[1][0] * mat[2][1] - mat[1][1] * mat[2][0]));
4877 	}
4878 };
4879 
4880 template<>
4881 class Determinant16bit<4> : public DeterminantBase<Signature<deFloat16, Matrix<deFloat16, 4, 4> > >
4882 {
4883 protected:
doExpand(ExpandContext & ctx,const ArgExprs & args) const4884 	ExprP<Ret>	doExpand(ExpandContext& ctx, const ArgExprs& args) const
4885 	{
4886 		ExprP<Mat4_16b>	mat = args.a;
4887 		ExprP<Mat3_16b>	minors[4];
4888 
4889 		for (int ndx = 0; ndx < 4; ++ndx)
4890 		{
4891 			ExprP<Vec4_16Bit>		minorColumns[3];
4892 			ExprP<Vec3_16Bit>		columns[3];
4893 
4894 			for (int col = 0; col < 3; ++col)
4895 				minorColumns[col] = mat[col < ndx ? col : col + 1];
4896 
4897 			for (int col = 0; col < 3; ++col)
4898 				columns[col] = vec3(minorColumns[0][col + 1],
4899 					minorColumns[1][col + 1],
4900 					minorColumns[2][col + 1]);
4901 
4902 			minors[ndx] = bindExpression("minor", ctx,
4903 				mat3(columns[0], columns[1], columns[2]));
4904 		}
4905 
4906 		return (mat[0][0] * determinant(minors[0]) -
4907 			mat[1][0] * determinant(minors[1]) +
4908 			mat[2][0] * determinant(minors[2]) -
4909 			mat[3][0] * determinant(minors[3]));
4910 	}
4911 };
4912 
4913 template<>
4914 class Determinant64bit<2> : public DeterminantBase<Signature<double, Matrix<double, 2, 2> > >
4915 {
4916 protected:
doExpand(ExpandContext &,const ArgExprs & args) const4917 	ExprP<Ret>	doExpand (ExpandContext&, const ArgExprs& args)	const
4918 	{
4919 		ExprP<Matrix2d>	mat	= args.a;
4920 
4921 		return mat[0][0] * mat[1][1] - mat[1][0] * mat[0][1];
4922 	}
4923 };
4924 
4925 template<>
4926 class Determinant64bit<3> : public DeterminantBase<Signature<double, Matrix<double, 3, 3> > >
4927 {
4928 protected:
doExpand(ExpandContext &,const ArgExprs & args) const4929 	ExprP<Ret> doExpand(ExpandContext&, const ArgExprs& args) const
4930 	{
4931 		ExprP<Matrix3d>	mat = args.a;
4932 
4933 		return (mat[0][0] * (mat[1][1] * mat[2][2] - mat[1][2] * mat[2][1]) +
4934 			mat[0][1] * (mat[1][2] * mat[2][0] - mat[1][0] * mat[2][2]) +
4935 			mat[0][2] * (mat[1][0] * mat[2][1] - mat[1][1] * mat[2][0]));
4936 	}
4937 };
4938 
4939 template<>
4940 class Determinant64bit<4> : public DeterminantBase<Signature<double, Matrix<double, 4, 4> > >
4941 {
4942 protected:
doExpand(ExpandContext & ctx,const ArgExprs & args) const4943 	ExprP<Ret>	doExpand(ExpandContext& ctx, const ArgExprs& args) const
4944 	{
4945 		ExprP<Matrix4d>	mat = args.a;
4946 		ExprP<Matrix3d>	minors[4];
4947 
4948 		for (int ndx = 0; ndx < 4; ++ndx)
4949 		{
4950 			ExprP<Vec4_64Bit>		minorColumns[3];
4951 			ExprP<Vec3_64Bit>		columns[3];
4952 
4953 			for (int col = 0; col < 3; ++col)
4954 				minorColumns[col] = mat[col < ndx ? col : col + 1];
4955 
4956 			for (int col = 0; col < 3; ++col)
4957 				columns[col] = vec3(minorColumns[0][col + 1],
4958 					minorColumns[1][col + 1],
4959 					minorColumns[2][col + 1]);
4960 
4961 			minors[ndx] = bindExpression("minor", ctx,
4962 				mat3(columns[0], columns[1], columns[2]));
4963 		}
4964 
4965 		return (mat[0][0] * determinant(minors[0]) -
4966 			mat[1][0] * determinant(minors[1]) +
4967 			mat[2][0] * determinant(minors[2]) -
4968 			mat[3][0] * determinant(minors[3]));
4969 	}
4970 };
4971 
4972 template<int Size> class Inverse;
4973 
4974 template <int Size>
inverse(ExprP<Matrix<float,Size,Size>> mat)4975 ExprP<Matrix<float, Size, Size> > inverse (ExprP<Matrix<float, Size, Size> > mat)
4976 {
4977 	return app<Inverse<Size> >(mat);
4978 }
4979 
4980 template<int Size> class Inverse16bit;
4981 
4982 template <int Size>
inverse(ExprP<Matrix<deFloat16,Size,Size>> mat)4983 ExprP<Matrix<deFloat16, Size, Size> > inverse (ExprP<Matrix<deFloat16, Size, Size> > mat)
4984 {
4985 	return app<Inverse16bit<Size> >(mat);
4986 }
4987 
4988 template<int Size> class Inverse64bit;
4989 
4990 template <int Size>
inverse(ExprP<Matrix<double,Size,Size>> mat)4991 ExprP<Matrix<double, Size, Size> > inverse (ExprP<Matrix<double, Size, Size> > mat)
4992 {
4993 	return app<Inverse64bit<Size> >(mat);
4994 }
4995 
4996 template<>
4997 class Inverse<2> : public DerivedFunc<Signature<Mat2, Mat2> >
4998 {
4999 public:
getName(void) const5000 	string		getName	(void) const
5001 	{
5002 		return "inverse";
5003 	}
5004 
5005 protected:
doExpand(ExpandContext & ctx,const ArgExprs & args) const5006 	ExprP<Ret>	doExpand (ExpandContext& ctx, const ArgExprs& args) const
5007 	{
5008 		ExprP<Mat2>		mat = args.a;
5009 		ExprP<float>	det	= bindExpression("det", ctx, determinant(mat));
5010 
5011 		return mat2(vec2(mat[1][1] / det, -mat[0][1] / det),
5012 					vec2(-mat[1][0] / det, mat[0][0] / det));
5013 	}
5014 };
5015 
5016 template<>
5017 class Inverse<3> : public DerivedFunc<Signature<Mat3, Mat3> >
5018 {
5019 public:
getName(void) const5020 	string		getName		(void) const
5021 	{
5022 		return "inverse";
5023 	}
5024 
5025 protected:
doExpand(ExpandContext & ctx,const ArgExprs & args) const5026 	ExprP<Ret>	doExpand	(ExpandContext& ctx, const ArgExprs& args)			const
5027 	{
5028 		ExprP<Mat3>		mat		= args.a;
5029 		ExprP<Mat2>		invA	= bindExpression("invA", ctx,
5030 												 inverse(mat2(vec2(mat[0][0], mat[0][1]),
5031 															  vec2(mat[1][0], mat[1][1]))));
5032 
5033 		ExprP<Vec2>		matB	= bindExpression("matB", ctx, vec2(mat[2][0], mat[2][1]));
5034 		ExprP<Vec2>		matC	= bindExpression("matC", ctx, vec2(mat[0][2], mat[1][2]));
5035 		ExprP<float>	matD	= bindExpression("matD", ctx, mat[2][2]);
5036 
5037 		ExprP<float>	schur	= bindExpression("schur", ctx,
5038 												 constant(1.0f) /
5039 												 (matD - dot(matC * invA, matB)));
5040 
5041 		ExprP<Vec2>		t1		= invA * matB;
5042 		ExprP<Vec2>		t2		= t1 * schur;
5043 		ExprP<Mat2>		t3		= outerProduct(t2, matC);
5044 		ExprP<Mat2>		t4		= t3 * invA;
5045 		ExprP<Mat2>		t5		= invA + t4;
5046 		ExprP<Mat2>		blockA	= bindExpression("blockA", ctx, t5);
5047 		ExprP<Vec2>		blockB	= bindExpression("blockB", ctx,
5048 												 (invA * matB) * -schur);
5049 		ExprP<Vec2>		blockC	= bindExpression("blockC", ctx,
5050 												 (matC * invA) * -schur);
5051 
5052 		return mat3(vec3(blockA[0][0], blockA[0][1], blockC[0]),
5053 					vec3(blockA[1][0], blockA[1][1], blockC[1]),
5054 					vec3(blockB[0], blockB[1], schur));
5055 	}
5056 };
5057 
5058 template<>
5059 class Inverse<4> : public DerivedFunc<Signature<Mat4, Mat4> >
5060 {
5061 public:
getName(void) const5062 	string		getName		(void) const { return "inverse"; }
5063 
5064 protected:
doExpand(ExpandContext & ctx,const ArgExprs & args) const5065 	ExprP<Ret>			doExpand			(ExpandContext&		ctx,
5066 											 const ArgExprs&	args)			const
5067 	{
5068 		ExprP<Mat4>	mat		= args.a;
5069 		ExprP<Mat2>	invA	= bindExpression("invA", ctx,
5070 											 inverse(mat2(vec2(mat[0][0], mat[0][1]),
5071 														  vec2(mat[1][0], mat[1][1]))));
5072 		ExprP<Mat2>	matB	= bindExpression("matB", ctx,
5073 											 mat2(vec2(mat[2][0], mat[2][1]),
5074 												  vec2(mat[3][0], mat[3][1])));
5075 		ExprP<Mat2>	matC	= bindExpression("matC", ctx,
5076 											 mat2(vec2(mat[0][2], mat[0][3]),
5077 												  vec2(mat[1][2], mat[1][3])));
5078 		ExprP<Mat2>	matD	= bindExpression("matD", ctx,
5079 											 mat2(vec2(mat[2][2], mat[2][3]),
5080 												  vec2(mat[3][2], mat[3][3])));
5081 		ExprP<Mat2>	schur	= bindExpression("schur", ctx,
5082 											 inverse(matD + -(matC * invA * matB)));
5083 		ExprP<Mat2>	blockA	= bindExpression("blockA", ctx,
5084 											 invA + (invA * matB * schur * matC * invA));
5085 		ExprP<Mat2>	blockB	= bindExpression("blockB", ctx,
5086 											 (-invA) * matB * schur);
5087 		ExprP<Mat2>	blockC	= bindExpression("blockC", ctx,
5088 											 (-schur) * matC * invA);
5089 
5090 		return mat4(vec4(blockA[0][0], blockA[0][1], blockC[0][0], blockC[0][1]),
5091 					vec4(blockA[1][0], blockA[1][1], blockC[1][0], blockC[1][1]),
5092 					vec4(blockB[0][0], blockB[0][1], schur[0][0], schur[0][1]),
5093 					vec4(blockB[1][0], blockB[1][1], schur[1][0], schur[1][1]));
5094 	}
5095 };
5096 
5097 template<>
5098 class Inverse16bit<2> : public DerivedFunc<Signature<Mat2_16b, Mat2_16b> >
5099 {
5100 public:
getName(void) const5101 	string		getName	(void) const
5102 	{
5103 		return "inverse";
5104 	}
5105 
5106 protected:
doExpand(ExpandContext & ctx,const ArgExprs & args) const5107 	ExprP<Ret>	doExpand (ExpandContext& ctx, const ArgExprs& args) const
5108 	{
5109 		ExprP<Mat2_16b>		mat = args.a;
5110 		ExprP<deFloat16>	det	= bindExpression("det", ctx, determinant(mat));
5111 
5112 		return mat2(vec2((mat[1][1] / det), (-mat[0][1] / det)),
5113 					vec2((-mat[1][0] / det), (mat[0][0] / det)));
5114 	}
5115 };
5116 
5117 template<>
5118 class Inverse16bit<3> : public DerivedFunc<Signature<Mat3_16b, Mat3_16b> >
5119 {
5120 public:
getName(void) const5121 	string		getName(void) const
5122 	{
5123 		return "inverse";
5124 	}
5125 
5126 protected:
doExpand(ExpandContext & ctx,const ArgExprs & args) const5127 	ExprP<Ret>	doExpand(ExpandContext& ctx, const ArgExprs& args)			const
5128 	{
5129 		ExprP<Mat3_16b>		mat = args.a;
5130 		ExprP<Mat2_16b>		invA = bindExpression("invA", ctx,
5131 			inverse(mat2(vec2(mat[0][0], mat[0][1]),
5132 				vec2(mat[1][0], mat[1][1]))));
5133 
5134 		ExprP<Vec2_16Bit>		matB = bindExpression("matB", ctx, vec2(mat[2][0], mat[2][1]));
5135 		ExprP<Vec2_16Bit>		matC = bindExpression("matC", ctx, vec2(mat[0][2], mat[1][2]));
5136 		ExprP<Mat3_16b::Scalar>	matD = bindExpression("matD", ctx, mat[2][2]);
5137 
5138 		ExprP<Mat3_16b::Scalar>	schur = bindExpression("schur", ctx,
5139 			constant((deFloat16)FLOAT16_1_0) /
5140 			(matD - dot(matC * invA, matB)));
5141 
5142 		ExprP<Vec2_16Bit>		t1 = invA * matB;
5143 		ExprP<Vec2_16Bit>		t2 = t1 * schur;
5144 		ExprP<Mat2_16b>		t3 = outerProduct(t2, matC);
5145 		ExprP<Mat2_16b>		t4 = t3 * invA;
5146 		ExprP<Mat2_16b>		t5 = invA + t4;
5147 		ExprP<Mat2_16b>		blockA = bindExpression("blockA", ctx, t5);
5148 		ExprP<Vec2_16Bit>		blockB = bindExpression("blockB", ctx,
5149 			(invA * matB) * -schur);
5150 		ExprP<Vec2_16Bit>		blockC = bindExpression("blockC", ctx,
5151 			(matC * invA) * -schur);
5152 
5153 		return mat3(vec3(blockA[0][0], blockA[0][1], blockC[0]),
5154 			vec3(blockA[1][0], blockA[1][1], blockC[1]),
5155 			vec3(blockB[0], blockB[1], schur));
5156 	}
5157 };
5158 
5159 template<>
5160 class Inverse16bit<4> : public DerivedFunc<Signature<Mat4_16b, Mat4_16b> >
5161 {
5162 public:
getName(void) const5163 	string		getName(void) const { return "inverse"; }
5164 
5165 protected:
doExpand(ExpandContext & ctx,const ArgExprs & args) const5166 	ExprP<Ret>			doExpand(ExpandContext&		ctx,
5167 		const ArgExprs&	args)			const
5168 	{
5169 		ExprP<Mat4_16b>	mat = args.a;
5170 		ExprP<Mat2_16b>	invA = bindExpression("invA", ctx,
5171 			inverse(mat2(vec2(mat[0][0], mat[0][1]),
5172 				vec2(mat[1][0], mat[1][1]))));
5173 		ExprP<Mat2_16b>	matB = bindExpression("matB", ctx,
5174 			mat2(vec2(mat[2][0], mat[2][1]),
5175 				vec2(mat[3][0], mat[3][1])));
5176 		ExprP<Mat2_16b>	matC = bindExpression("matC", ctx,
5177 			mat2(vec2(mat[0][2], mat[0][3]),
5178 				vec2(mat[1][2], mat[1][3])));
5179 		ExprP<Mat2_16b>	matD = bindExpression("matD", ctx,
5180 			mat2(vec2(mat[2][2], mat[2][3]),
5181 				vec2(mat[3][2], mat[3][3])));
5182 		ExprP<Mat2_16b>	schur = bindExpression("schur", ctx,
5183 			inverse(matD + -(matC * invA * matB)));
5184 		ExprP<Mat2_16b>	blockA = bindExpression("blockA", ctx,
5185 			invA + (invA * matB * schur * matC * invA));
5186 		ExprP<Mat2_16b>	blockB = bindExpression("blockB", ctx,
5187 			(-invA) * matB * schur);
5188 		ExprP<Mat2_16b>	blockC = bindExpression("blockC", ctx,
5189 			(-schur) * matC * invA);
5190 
5191 		return mat4(vec4(blockA[0][0], blockA[0][1], blockC[0][0], blockC[0][1]),
5192 			vec4(blockA[1][0], blockA[1][1], blockC[1][0], blockC[1][1]),
5193 			vec4(blockB[0][0], blockB[0][1], schur[0][0], schur[0][1]),
5194 			vec4(blockB[1][0], blockB[1][1], schur[1][0], schur[1][1]));
5195 	}
5196 };
5197 
5198 template<>
5199 class Inverse64bit<2> : public DerivedFunc<Signature<Matrix2d, Matrix2d> >
5200 {
5201 public:
getName(void) const5202 	string		getName	(void) const
5203 	{
5204 		return "inverse";
5205 	}
5206 
5207 protected:
doExpand(ExpandContext & ctx,const ArgExprs & args) const5208 	ExprP<Ret>	doExpand (ExpandContext& ctx, const ArgExprs& args) const
5209 	{
5210 		ExprP<Matrix2d>		mat = args.a;
5211 		ExprP<double>		det	= bindExpression("det", ctx, determinant(mat));
5212 
5213 		return mat2(vec2((mat[1][1] / det), (-mat[0][1] / det)),
5214 					vec2((-mat[1][0] / det), (mat[0][0] / det)));
5215 	}
5216 };
5217 
5218 template<>
5219 class Inverse64bit<3> : public DerivedFunc<Signature<Matrix3d, Matrix3d> >
5220 {
5221 public:
getName(void) const5222 	string		getName(void) const
5223 	{
5224 		return "inverse";
5225 	}
5226 
5227 protected:
doExpand(ExpandContext & ctx,const ArgExprs & args) const5228 	ExprP<Ret>	doExpand(ExpandContext& ctx, const ArgExprs& args)			const
5229 	{
5230 		ExprP<Matrix3d>		mat = args.a;
5231 		ExprP<Matrix2d>		invA = bindExpression("invA", ctx,
5232 			inverse(mat2(vec2(mat[0][0], mat[0][1]),
5233 				vec2(mat[1][0], mat[1][1]))));
5234 
5235 		ExprP<Vec2_64Bit>		matB = bindExpression("matB", ctx, vec2(mat[2][0], mat[2][1]));
5236 		ExprP<Vec2_64Bit>		matC = bindExpression("matC", ctx, vec2(mat[0][2], mat[1][2]));
5237 		ExprP<Matrix3d::Scalar>	matD = bindExpression("matD", ctx, mat[2][2]);
5238 
5239 		ExprP<Matrix3d::Scalar>	schur = bindExpression("schur", ctx,
5240 			constant(1.0) /
5241 			(matD - dot(matC * invA, matB)));
5242 
5243 		ExprP<Vec2_64Bit>		t1 = invA * matB;
5244 		ExprP<Vec2_64Bit>		t2 = t1 * schur;
5245 		ExprP<Matrix2d>			t3 = outerProduct(t2, matC);
5246 		ExprP<Matrix2d>			t4 = t3 * invA;
5247 		ExprP<Matrix2d>			t5 = invA + t4;
5248 		ExprP<Matrix2d>			blockA = bindExpression("blockA", ctx, t5);
5249 		ExprP<Vec2_64Bit>		blockB = bindExpression("blockB", ctx,
5250 			(invA * matB) * -schur);
5251 		ExprP<Vec2_64Bit>		blockC = bindExpression("blockC", ctx,
5252 			(matC * invA) * -schur);
5253 
5254 		return mat3(vec3(blockA[0][0], blockA[0][1], blockC[0]),
5255 			vec3(blockA[1][0], blockA[1][1], blockC[1]),
5256 			vec3(blockB[0], blockB[1], schur));
5257 	}
5258 };
5259 
5260 template<>
5261 class Inverse64bit<4> : public DerivedFunc<Signature<Matrix4d, Matrix4d> >
5262 {
5263 public:
getName(void) const5264 	string		getName(void) const { return "inverse"; }
5265 
5266 protected:
doExpand(ExpandContext & ctx,const ArgExprs & args) const5267 	ExprP<Ret>			doExpand(ExpandContext&		ctx,
5268 		const ArgExprs&	args)			const
5269 	{
5270 		ExprP<Matrix4d>	mat = args.a;
5271 		ExprP<Matrix2d>	invA = bindExpression("invA", ctx,
5272 			inverse(mat2(vec2(mat[0][0], mat[0][1]),
5273 				vec2(mat[1][0], mat[1][1]))));
5274 		ExprP<Matrix2d>	matB = bindExpression("matB", ctx,
5275 			mat2(vec2(mat[2][0], mat[2][1]),
5276 				vec2(mat[3][0], mat[3][1])));
5277 		ExprP<Matrix2d>	matC = bindExpression("matC", ctx,
5278 			mat2(vec2(mat[0][2], mat[0][3]),
5279 				vec2(mat[1][2], mat[1][3])));
5280 		ExprP<Matrix2d>	matD = bindExpression("matD", ctx,
5281 			mat2(vec2(mat[2][2], mat[2][3]),
5282 				vec2(mat[3][2], mat[3][3])));
5283 		ExprP<Matrix2d>	schur = bindExpression("schur", ctx,
5284 			inverse(matD + -(matC * invA * matB)));
5285 		ExprP<Matrix2d>	blockA = bindExpression("blockA", ctx,
5286 			invA + (invA * matB * schur * matC * invA));
5287 		ExprP<Matrix2d>	blockB = bindExpression("blockB", ctx,
5288 			(-invA) * matB * schur);
5289 		ExprP<Matrix2d>	blockC = bindExpression("blockC", ctx,
5290 			(-schur) * matC * invA);
5291 
5292 		return mat4(vec4(blockA[0][0], blockA[0][1], blockC[0][0], blockC[0][1]),
5293 			vec4(blockA[1][0], blockA[1][1], blockC[1][0], blockC[1][1]),
5294 			vec4(blockB[0][0], blockB[0][1], schur[0][0], schur[0][1]),
5295 			vec4(blockB[1][0], blockB[1][1], schur[1][0], schur[1][1]));
5296 	}
5297 };
5298 
5299 //Signature<float, float, float, float>
5300 //Signature<deFloat16, deFloat16, deFloat16, deFloat16>
5301 //Signature<double, double, double, double>
5302 template <class T>
5303 class Fma : public DerivedFunc<T>
5304 {
5305 public:
5306 	typedef typename	Fma::ArgExprs		ArgExprs;
5307 	typedef typename	Fma::Ret			Ret;
5308 
getName(void) const5309 	string			getName					(void) const
5310 	{
5311 		return "fma";
5312 	}
5313 
5314 protected:
doExpand(ExpandContext &,const ArgExprs & x) const5315 	ExprP<Ret>	doExpand				(ExpandContext&, const ArgExprs& x) const
5316 	{
5317 		return x.a * x.b + x.c;
5318 	}
5319 };
5320 
5321 } // Functions
5322 
5323 using namespace Functions;
5324 
5325 template <typename T>
operator [](int i) const5326 ExprP<typename T::Element> ContainerExprPBase<T>::operator[] (int i) const
5327 {
5328 	return Functions::getComponent(exprP<T>(*this), i);
5329 }
5330 
operator +(const ExprP<float> & arg0,const ExprP<float> & arg1)5331 ExprP<float> operator+ (const ExprP<float>& arg0, const ExprP<float>& arg1)
5332 {
5333 	return app<Add< Signature<float, float, float> > >(arg0, arg1);
5334 }
5335 
operator +(const ExprP<deFloat16> & arg0,const ExprP<deFloat16> & arg1)5336 ExprP<deFloat16> operator+ (const ExprP<deFloat16>& arg0, const ExprP<deFloat16>& arg1)
5337 {
5338 	return app<Add< Signature<deFloat16, deFloat16, deFloat16> > >(arg0, arg1);
5339 }
5340 
operator +(const ExprP<double> & arg0,const ExprP<double> & arg1)5341 ExprP<double> operator+ (const ExprP<double>& arg0, const ExprP<double>& arg1)
5342 {
5343 	return app<Add< Signature<double, double, double> > >(arg0, arg1);
5344 }
5345 
5346 template <typename T>
operator -(const ExprP<T> & arg0,const ExprP<T> & arg1)5347 ExprP<T> operator- (const ExprP<T>& arg0, const ExprP<T>& arg1)
5348 {
5349 	return app<Sub <Signature <T,T,T> > >(arg0, arg1);
5350 }
5351 
5352 template <typename T>
operator -(const ExprP<T> & arg0)5353 ExprP<T> operator- (const ExprP<T>& arg0)
5354 {
5355 	return app<Negate< Signature<T, T> > >(arg0);
5356 }
5357 
operator *(const ExprP<float> & arg0,const ExprP<float> & arg1)5358 ExprP<float> operator* (const ExprP<float>& arg0, const ExprP<float>& arg1)
5359 {
5360 	return app<Mul< Signature<float, float, float> > >(arg0, arg1);
5361 }
5362 
operator *(const ExprP<deFloat16> & arg0,const ExprP<deFloat16> & arg1)5363 ExprP<deFloat16> operator* (const ExprP<deFloat16>& arg0, const ExprP<deFloat16>& arg1)
5364 {
5365 	return app<Mul< Signature<deFloat16, deFloat16, deFloat16> > >(arg0, arg1);
5366 }
5367 
operator *(const ExprP<double> & arg0,const ExprP<double> & arg1)5368 ExprP<double> operator* (const ExprP<double>& arg0, const ExprP<double>& arg1)
5369 {
5370 	return app<Mul< Signature<double, double, double> > >(arg0, arg1);
5371 }
5372 
5373 template <typename T>
operator /(const ExprP<T> & arg0,const ExprP<T> & arg1)5374 ExprP<T> operator/ (const ExprP<T>& arg0, const ExprP<T>& arg1)
5375 {
5376 	return app<Div< Signature<T, T, T> > >(arg0, arg1);
5377 }
5378 
5379 
5380 template <typename Sig_, int Size>
5381 class GenFunc : public PrimitiveFunc<Signature<
5382 	typename ContainerOf<typename Sig_::Ret, Size>::Container,
5383 	typename ContainerOf<typename Sig_::Arg0, Size>::Container,
5384 	typename ContainerOf<typename Sig_::Arg1, Size>::Container,
5385 	typename ContainerOf<typename Sig_::Arg2, Size>::Container,
5386 	typename ContainerOf<typename Sig_::Arg3, Size>::Container> >
5387 {
5388 public:
5389 	typedef typename GenFunc::IArgs		IArgs;
5390 	typedef typename GenFunc::IRet		IRet;
5391 
GenFunc(const Func<Sig_> & scalarFunc)5392 				GenFunc					(const Func<Sig_>&	scalarFunc) : m_func (scalarFunc) {}
5393 
getSpirvCase(void) const5394 	SpirVCaseT	getSpirvCase			(void) const
5395 	{
5396 		return m_func.getSpirvCase();
5397 	}
5398 
getName(void) const5399 	string		getName					(void) const
5400 	{
5401 		return m_func.getName();
5402 	}
5403 
getOutParamIndex(void) const5404 	int			getOutParamIndex		(void) const
5405 	{
5406 		return m_func.getOutParamIndex();
5407 	}
5408 
getRequiredExtension(void) const5409 	string		getRequiredExtension	(void) const
5410 	{
5411 		return m_func.getRequiredExtension();
5412 	}
5413 
getInputRange(const bool is16bit) const5414 	Interval	getInputRange			(const bool is16bit) const
5415 	{
5416 		return m_func.getInputRange(is16bit);
5417 	}
5418 
5419 protected:
doPrint(ostream & os,const BaseArgExprs & args) const5420 	void		doPrint					(ostream& os, const BaseArgExprs& args) const
5421 	{
5422 		m_func.print(os, args);
5423 	}
5424 
doApply(const EvalContext & ctx,const IArgs & iargs) const5425 	IRet		doApply					(const EvalContext& ctx, const IArgs& iargs) const
5426 	{
5427 		IRet ret;
5428 
5429 		for (int ndx = 0; ndx < Size; ++ndx)
5430 		{
5431 			ret[ndx] =
5432 				m_func.apply(ctx, iargs.a[ndx], iargs.b[ndx], iargs.c[ndx], iargs.d[ndx]);
5433 		}
5434 
5435 		return ret;
5436 	}
5437 
doFail(const EvalContext & ctx,const IArgs & iargs) const5438 	IRet		doFail					(const EvalContext& ctx, const IArgs& iargs) const
5439 	{
5440 		IRet ret;
5441 
5442 		for (int ndx = 0; ndx < Size; ++ndx)
5443 		{
5444 			ret[ndx] =
5445 				m_func.fail(ctx, iargs.a[ndx], iargs.b[ndx], iargs.c[ndx], iargs.d[ndx]);
5446 		}
5447 
5448 		return ret;
5449 	}
5450 
doGetUsedFuncs(FuncSet & dst) const5451 	void		doGetUsedFuncs			(FuncSet& dst) const
5452 	{
5453 		m_func.getUsedFuncs(dst);
5454 	}
5455 
5456 	const Func<Sig_>&	m_func;
5457 };
5458 
5459 template <typename F, int Size>
5460 class VectorizedFunc : public GenFunc<typename F::Sig, Size>
5461 {
5462 public:
VectorizedFunc(void)5463 	VectorizedFunc	(void) : GenFunc<typename F::Sig, Size>(instance<F>()) {}
5464 };
5465 
5466 template <typename Sig_, int Size>
5467 class FixedGenFunc : public PrimitiveFunc <Signature<
5468 	typename ContainerOf<typename Sig_::Ret, Size>::Container,
5469 	typename ContainerOf<typename Sig_::Arg0, Size>::Container,
5470 	typename Sig_::Arg1,
5471 	typename ContainerOf<typename Sig_::Arg2, Size>::Container,
5472 	typename ContainerOf<typename Sig_::Arg3, Size>::Container> >
5473 {
5474 public:
5475 	typedef typename FixedGenFunc::IArgs		IArgs;
5476 	typedef typename FixedGenFunc::IRet			IRet;
5477 
getName(void) const5478 	string						getName			(void) const
5479 	{
5480 		return this->doGetScalarFunc().getName();
5481 	}
5482 
getSpirvCase(void) const5483 	SpirVCaseT					getSpirvCase	(void) const
5484 	{
5485 		return this->doGetScalarFunc().getSpirvCase();
5486 	}
5487 
5488 protected:
doPrint(ostream & os,const BaseArgExprs & args) const5489 	void						doPrint			(ostream& os, const BaseArgExprs& args) const
5490 	{
5491 		this->doGetScalarFunc().print(os, args);
5492 	}
5493 
doApply(const EvalContext & ctx,const IArgs & iargs) const5494 	IRet						doApply			(const EvalContext& ctx,
5495 												 const IArgs&		iargs) const
5496 	{
5497 		IRet				ret;
5498 		const Func<Sig_>&	func	= this->doGetScalarFunc();
5499 
5500 		for (int ndx = 0; ndx < Size; ++ndx)
5501 			ret[ndx] = func.apply(ctx, iargs.a[ndx], iargs.b, iargs.c[ndx], iargs.d[ndx]);
5502 
5503 		return ret;
5504 	}
5505 
5506 	virtual const Func<Sig_>&	doGetScalarFunc	(void) const = 0;
5507 };
5508 
5509 template <typename F, int Size>
5510 class FixedVecFunc : public FixedGenFunc<typename F::Sig, Size>
5511 {
5512 protected:
doGetScalarFunc(void) const5513 	const Func<typename F::Sig>& doGetScalarFunc	(void) const { return instance<F>(); }
5514 };
5515 
5516 template<typename Sig>
5517 struct GenFuncs
5518 {
GenFuncsvkt::shaderexecutor::GenFuncs5519 	GenFuncs (const Func<Sig>&			func_,
5520 			  const GenFunc<Sig, 2>&	func2_,
5521 			  const GenFunc<Sig, 3>&	func3_,
5522 			  const GenFunc<Sig, 4>&	func4_)
5523 		: func	(func_)
5524 		, func2	(func2_)
5525 		, func3	(func3_)
5526 		, func4	(func4_)
5527 	{}
5528 
5529 	const Func<Sig>&		func;
5530 	const GenFunc<Sig, 2>&	func2;
5531 	const GenFunc<Sig, 3>&	func3;
5532 	const GenFunc<Sig, 4>&	func4;
5533 };
5534 
5535 template<typename F>
makeVectorizedFuncs(void)5536 GenFuncs<typename F::Sig> makeVectorizedFuncs (void)
5537 {
5538 	return GenFuncs<typename F::Sig>(instance<F>(),
5539 									 instance<VectorizedFunc<F, 2> >(),
5540 									 instance<VectorizedFunc<F, 3> >(),
5541 									 instance<VectorizedFunc<F, 4> >());
5542 }
5543 
5544 template<typename T, int Size>
operator /(const ExprP<Vector<T,Size>> & arg0,const ExprP<T> & arg1)5545 ExprP<Vector<T, Size> > operator/(const ExprP<Vector<T, Size> >&	arg0,
5546 									  const ExprP<T>&					arg1)
5547 {
5548 	return app<FixedVecFunc<Div< Signature<T, T, T> >, Size> >(arg0, arg1);
5549 }
5550 
5551 template<typename T, int Size>
operator -(const ExprP<Vector<T,Size>> & arg0)5552 ExprP<Vector<T, Size> > operator-(const ExprP<Vector<T, Size> >& arg0)
5553 {
5554 	return app<VectorizedFunc<Negate< Signature<T, T> >, Size> >(arg0);
5555 }
5556 
5557 template<typename T, int Size>
operator -(const ExprP<Vector<T,Size>> & arg0,const ExprP<Vector<T,Size>> & arg1)5558 ExprP<Vector<T, Size> > operator-(const ExprP<Vector<T, Size> >& arg0,
5559 									  const ExprP<Vector<T, Size> >& arg1)
5560 {
5561 	return app<VectorizedFunc<Sub<Signature<T, T, T> >, Size> >(arg0, arg1);
5562 }
5563 
5564 template<int Size, typename T>
operator *(const ExprP<Vector<T,Size>> & arg0,const ExprP<T> & arg1)5565 ExprP<Vector<T, Size> > operator*(const ExprP<Vector<T, Size> >&	arg0,
5566 								  const ExprP<T>&					arg1)
5567 {
5568 	return app<FixedVecFunc<Mul< Signature<T, T, T> >, Size> >(arg0, arg1);
5569 }
5570 
5571 template<typename T, int Size>
operator *(const ExprP<Vector<T,Size>> & arg0,const ExprP<Vector<T,Size>> & arg1)5572 ExprP<Vector<T, Size> > operator*(const ExprP<Vector<T, Size> >& arg0,
5573 								  const ExprP<Vector<T, Size> >& arg1)
5574 {
5575 	return app<VectorizedFunc<Mul< Signature<T, T, T> >, Size> >(arg0, arg1);
5576 }
5577 
5578 template<int LeftRows, int Middle, int RightCols, typename T>
5579 ExprP<Matrix<T, LeftRows, RightCols> >
operator *(const ExprP<Matrix<T,LeftRows,Middle>> & left,const ExprP<Matrix<T,Middle,RightCols>> & right)5580 operator* (const ExprP<Matrix<T, LeftRows, Middle> >&	left,
5581 		   const ExprP<Matrix<T, Middle, RightCols> >&	right)
5582 {
5583 	return app<MatMul<T, LeftRows, Middle, RightCols> >(left, right);
5584 }
5585 
5586 template<int Rows, int Cols, typename T>
operator *(const ExprP<Vector<T,Cols>> & left,const ExprP<Matrix<T,Rows,Cols>> & right)5587 ExprP<Vector<T, Rows> > operator* (const ExprP<Vector<T, Cols> >&		left,
5588 								   const ExprP<Matrix<T, Rows, Cols> >&	right)
5589 {
5590 	return app<VecMatMul<T, Rows, Cols> >(left, right);
5591 }
5592 
5593 template<int Rows, int Cols, class T>
operator *(const ExprP<Matrix<T,Rows,Cols>> & left,const ExprP<Vector<T,Rows>> & right)5594 ExprP<Vector<T, Cols> > operator* (const ExprP<Matrix<T, Rows, Cols> >&	left,
5595 								   const ExprP<Vector<T, Rows> >&		right)
5596 {
5597 	return app<MatVecMul<Rows, Cols, T> >(left, right);
5598 }
5599 
5600 template<int Rows, int Cols, typename T>
operator *(const ExprP<Matrix<T,Rows,Cols>> & left,const ExprP<T> & right)5601 ExprP<Matrix<T, Rows, Cols> > operator* (const ExprP<Matrix<T, Rows, Cols> >&	left,
5602 										 const ExprP<T>&						right)
5603 {
5604 	return app<ScalarMatFunc<Mul< Signature<T, T, T> >, Rows, Cols> >(left, right);
5605 }
5606 
5607 template<int Rows, int Cols>
operator +(const ExprP<Matrix<float,Rows,Cols>> & left,const ExprP<Matrix<float,Rows,Cols>> & right)5608 ExprP<Matrix<float, Rows, Cols> > operator+ (const ExprP<Matrix<float, Rows, Cols> >&	left,
5609 											 const ExprP<Matrix<float, Rows, Cols> >&	right)
5610 {
5611 	return app<CompMatFunc<Add< Signature<float, float, float> >,float, Rows, Cols> >(left, right);
5612 }
5613 
5614 template<int Rows, int Cols>
operator +(const ExprP<Matrix<deFloat16,Rows,Cols>> & left,const ExprP<Matrix<deFloat16,Rows,Cols>> & right)5615 ExprP<Matrix<deFloat16, Rows, Cols> > operator+ (const ExprP<Matrix<deFloat16, Rows, Cols> >&	left,
5616 												 const ExprP<Matrix<deFloat16, Rows, Cols> >&	right)
5617 {
5618 	return app<CompMatFunc<Add< Signature<deFloat16, deFloat16, deFloat16> >, deFloat16, Rows, Cols> >(left, right);
5619 }
5620 
5621 template<int Rows, int Cols>
operator +(const ExprP<Matrix<double,Rows,Cols>> & left,const ExprP<Matrix<double,Rows,Cols>> & right)5622 ExprP<Matrix<double, Rows, Cols> > operator+ (const ExprP<Matrix<double, Rows, Cols> >&	left,
5623 											  const ExprP<Matrix<double, Rows, Cols> >&	right)
5624 {
5625 	return app<CompMatFunc<Add< Signature<double, double, double> >, double, Rows, Cols> >(left, right);
5626 }
5627 
5628 template<typename T, int Rows, int Cols>
operator -(const ExprP<Matrix<T,Rows,Cols>> & mat)5629 ExprP<Matrix<T, Rows, Cols> > operator- (const ExprP<Matrix<T, Rows, Cols> >&	mat)
5630 {
5631 	return app<MatNeg<T, Rows, Cols> >(mat);
5632 }
5633 
5634 template <typename T>
5635 class Sampling
5636 {
5637 public:
genFixeds(const FloatFormat &,const Precision,vector<T> &,const Interval &) const5638 	virtual void	genFixeds			(const FloatFormat&, const Precision, vector<T>&, const Interval&)	const {}
genRandom(const FloatFormat &,const Precision,Random &,const Interval &) const5639 	virtual T		genRandom			(const FloatFormat&,const Precision, Random&, const Interval&)		const { return T(); }
removeNotInRange(vector<T> &,const Interval &,const Precision) const5640 	virtual void	removeNotInRange	(vector<T>&, const Interval&, const Precision)						const {}
5641 };
5642 
5643 template <>
5644 class DefaultSampling<Void> : public Sampling<Void>
5645 {
5646 public:
genFixeds(const FloatFormat &,const Precision,vector<Void> & dst,const Interval &) const5647 	void	genFixeds	(const FloatFormat&, const Precision, vector<Void>& dst, const Interval&) const { dst.push_back(Void()); }
5648 };
5649 
5650 template <>
5651 class DefaultSampling<bool> : public Sampling<bool>
5652 {
5653 public:
genFixeds(const FloatFormat &,const Precision,vector<bool> & dst,const Interval &) const5654 	void	genFixeds	(const FloatFormat&, const Precision, vector<bool>& dst, const Interval&) const
5655 	{
5656 		dst.push_back(true);
5657 		dst.push_back(false);
5658 	}
5659 };
5660 
5661 template <>
5662 class DefaultSampling<int> : public Sampling<int>
5663 {
5664 public:
genRandom(const FloatFormat &,const Precision prec,Random & rnd,const Interval &) const5665 	int		genRandom	(const FloatFormat&, const Precision prec, Random& rnd, const Interval&) const
5666 	{
5667 		const int	exp		= rnd.getInt(0, getNumBits(prec)-2);
5668 		const int	sign	= rnd.getBool() ? -1 : 1;
5669 
5670 		return sign * rnd.getInt(0, (deInt32)1 << exp);
5671 	}
5672 
genFixeds(const FloatFormat &,const Precision,vector<int> & dst,const Interval &) const5673 	void	genFixeds	(const FloatFormat&, const Precision, vector<int>& dst, const Interval&) const
5674 	{
5675 		dst.push_back(0);
5676 		dst.push_back(-1);
5677 		dst.push_back(1);
5678 	}
5679 
5680 private:
getNumBits(Precision prec)5681 	static inline int getNumBits (Precision prec)
5682 	{
5683 		switch (prec)
5684 		{
5685 			case glu::PRECISION_LAST:
5686 			case glu::PRECISION_MEDIUMP:	return 16;
5687 			case glu::PRECISION_HIGHP:		return 32;
5688 			default:
5689 				DE_ASSERT(false);
5690 				return 0;
5691 		}
5692 	}
5693 };
5694 
5695 template <>
5696 class DefaultSampling<float> : public Sampling<float>
5697 {
5698 public:
5699 	float	genRandom			(const FloatFormat& format, const Precision prec, Random& rnd, const Interval& inputRange)			const;
5700 	void	genFixeds			(const FloatFormat& format, const Precision prec, vector<float>& dst, const Interval& inputRange)	const;
5701 	void	removeNotInRange	(vector<float>& dst, const Interval& inputRange, const Precision prec)								const;
5702 };
5703 
5704 template <>
5705 class DefaultSampling<double> : public Sampling<double>
5706 {
5707 public:
5708 	double	genRandom			(const FloatFormat& format, const Precision prec, Random& rnd, const Interval& inputRange)			const;
5709 	void	genFixeds			(const FloatFormat& format, const Precision prec, vector<double>& dst, const Interval& inputRange)	const;
5710 	void	removeNotInRange	(vector<double>& dst, const Interval& inputRange, const Precision prec)								const;
5711 };
5712 
isDenorm16(deFloat16 v)5713 static bool isDenorm16(deFloat16 v)
5714 {
5715 	const deUint16 mantissa = 0x03FF;
5716 	const deUint16 exponent = 0x7C00;
5717 	return ((exponent & v) == 0 && (mantissa & v) != 0);
5718 }
5719 
5720 //! Generate a random double from a reasonable general-purpose distribution.
randomDouble(const FloatFormat & format,Random & rnd,const Interval & inputRange)5721 double randomDouble(const FloatFormat& format, Random& rnd, const Interval& inputRange)
5722 {
5723 	// No testing of subnormals. TODO: Could integrate float controls for some operations.
5724 	const int		minExp			= format.getMinExp();
5725 	const int		maxExp			= format.getMaxExp();
5726 	const bool		haveSubnormal	= false;
5727 	const double	midpoint		= inputRange.midpoint();
5728 
5729 	// Choose exponent so that the cumulative distribution is cubic.
5730 	// This makes the probability distribution quadratic, with the peak centered on zero.
5731 	const double	minRoot			= deCbrt(minExp - 0.5 - (haveSubnormal ? 1.0 : 0.0));
5732 	const double	maxRoot			= deCbrt(maxExp + 0.5);
5733 	const int		fractionBits	= format.getFractionBits();
5734 	const int		exp				= int(deRoundEven(dePow(rnd.getDouble(minRoot, maxRoot), 3.0)));
5735 
5736 	// Generate some occasional special numbers
5737 	switch (rnd.getInt(0, 64))
5738 	{
5739 		case 0:		return inputRange.contains(0)				? 0				: midpoint;
5740 		case 1:		return inputRange.contains(TCU_INFINITY)	? TCU_INFINITY	: midpoint;
5741 		case 2:		return inputRange.contains(-TCU_INFINITY)	? -TCU_INFINITY	: midpoint;
5742 		case 3:		return inputRange.contains(TCU_NAN)			? TCU_NAN		: midpoint;
5743 		default:	break;
5744 	}
5745 
5746 	DE_ASSERT(fractionBits < std::numeric_limits<double>::digits);
5747 
5748 	// Normal number
5749 	double base = deLdExp(1.0, exp);
5750 	double quantum = deLdExp(1.0, exp - fractionBits); // smallest representable difference in the binade
5751 	double significand = 0.0;
5752 	switch (rnd.getInt(0, 16))
5753 	{
5754 		case 0: // The highest number in this binade, significand is all bits one.
5755 			significand = base - quantum;
5756 			break;
5757 		case 1: // Significand is one.
5758 			significand = quantum;
5759 			break;
5760 		case 2: // Significand is zero.
5761 			significand = 0.0;
5762 			break;
5763 		default: // Random (evenly distributed) significand.
5764 		{
5765 			deUint64 intFraction = rnd.getUint64() & ((1 << fractionBits) - 1);
5766 			significand = double(intFraction) * quantum;
5767 		}
5768 	}
5769 
5770 	// Produce positive numbers more often than negative.
5771 	double value = (rnd.getInt(0, 3) == 0 ? -1.0 : 1.0) * (base + significand);
5772 	return inputRange.contains(value) ? value : midpoint;
5773 }
5774 
5775 //! Generate a random float from a reasonable general-purpose distribution.
genRandom(const FloatFormat & format,Precision prec,Random & rnd,const Interval & inputRange) const5776 float DefaultSampling<float>::genRandom (const FloatFormat&	format,
5777 										 Precision			prec,
5778 										 Random&			rnd,
5779 										 const Interval&	inputRange) const
5780 {
5781 	DE_UNREF(prec);
5782 	return (float)randomDouble(format, rnd, inputRange);
5783 }
5784 
5785 //! Generate a standard set of floats that should always be tested.
genFixeds(const FloatFormat & format,const Precision prec,vector<float> & dst,const Interval & inputRange) const5786 void DefaultSampling<float>::genFixeds (const FloatFormat& format, const Precision prec, vector<float>& dst, const Interval& inputRange) const
5787 {
5788 	const int			minExp			= format.getMinExp();
5789 	const int			maxExp			= format.getMaxExp();
5790 	const int			fractionBits	= format.getFractionBits();
5791 	const float			minQuantum		= deFloatLdExp(1.0f, minExp - fractionBits);
5792 	const float			minNormalized	= deFloatLdExp(1.0f, minExp);
5793 	const float			maxQuantum		= deFloatLdExp(1.0f, maxExp - fractionBits);
5794 
5795 	// NaN
5796 	dst.push_back(TCU_NAN);
5797 	// Zero
5798 	dst.push_back(0.0f);
5799 
5800 	for (int sign = -1; sign <= 1; sign += 2)
5801 	{
5802 		// Smallest normalized
5803 		dst.push_back((float)sign * minNormalized);
5804 
5805 		// Next smallest normalized
5806 		dst.push_back((float)sign * (minNormalized + minQuantum));
5807 
5808 		dst.push_back((float)sign * 0.5f);
5809 		dst.push_back((float)sign * 1.0f);
5810 		dst.push_back((float)sign * 2.0f);
5811 
5812 		// Largest number
5813 		dst.push_back((float)sign * (deFloatLdExp(1.0f, maxExp) +
5814 									(deFloatLdExp(1.0f, maxExp) - maxQuantum)));
5815 
5816 		dst.push_back((float)sign * TCU_INFINITY);
5817 	}
5818 	removeNotInRange(dst, inputRange, prec);
5819 }
5820 
removeNotInRange(vector<float> & dst,const Interval & inputRange,const Precision prec) const5821 void DefaultSampling<float>::removeNotInRange (vector<float>& dst, const Interval& inputRange, const Precision prec) const
5822 {
5823 	for (vector<float>::iterator it = dst.begin(); it < dst.end();)
5824 	{
5825 		// Remove out of range values. PRECISION_LAST means this is an FP16 test so remove any values that
5826 		// will be denorms when converted to FP16. (This is used in the precision_fp16_storage32b test group).
5827 		if ( !inputRange.contains(static_cast<double>(*it)) || (prec == glu::PRECISION_LAST && isDenorm16(deFloat32To16Round(*it, DE_ROUNDINGMODE_TO_ZERO))))
5828 			it = dst.erase(it);
5829 		else
5830 			++it;
5831 	}
5832 }
5833 
5834 //! Generate a random double from a reasonable general-purpose distribution.
genRandom(const FloatFormat & format,Precision prec,Random & rnd,const Interval & inputRange) const5835 double DefaultSampling<double>::genRandom (const FloatFormat&	format,
5836 										   Precision			prec,
5837 										   Random&				rnd,
5838 										   const Interval&		inputRange) const
5839 {
5840 	DE_UNREF(prec);
5841 	return randomDouble(format, rnd, inputRange);
5842 }
5843 
5844 //! Generate a standard set of floats that should always be tested.
genFixeds(const FloatFormat & format,const Precision prec,vector<double> & dst,const Interval & inputRange) const5845 void DefaultSampling<double>::genFixeds (const FloatFormat& format, const Precision prec, vector<double>& dst, const Interval& inputRange) const
5846 {
5847 	const int			minExp			= format.getMinExp();
5848 	const int			maxExp			= format.getMaxExp();
5849 	const int			fractionBits	= format.getFractionBits();
5850 	const double		minQuantum		= deLdExp(1.0, minExp - fractionBits);
5851 	const double		minNormalized	= deLdExp(1.0, minExp);
5852 	const double		maxQuantum		= deLdExp(1.0, maxExp - fractionBits);
5853 
5854 	// NaN
5855 	dst.push_back(TCU_NAN);
5856 	// Zero
5857 	dst.push_back(0.0);
5858 
5859 	for (int sign = -1; sign <= 1; sign += 2)
5860 	{
5861 		// Smallest normalized
5862 		dst.push_back((double)sign * minNormalized);
5863 
5864 		// Next smallest normalized
5865 		dst.push_back((double)sign * (minNormalized + minQuantum));
5866 
5867 		dst.push_back((double)sign * 0.5);
5868 		dst.push_back((double)sign * 1.0);
5869 		dst.push_back((double)sign * 2.0);
5870 
5871 		// Largest number
5872 		dst.push_back((double)sign * (deLdExp(1.0, maxExp) + (deLdExp(1.0, maxExp) - maxQuantum)));
5873 
5874 		dst.push_back((double)sign * TCU_INFINITY);
5875 	}
5876 	removeNotInRange(dst, inputRange, prec);
5877 }
5878 
removeNotInRange(vector<double> & dst,const Interval & inputRange,const Precision) const5879 void DefaultSampling<double>::removeNotInRange (vector<double>& dst, const Interval& inputRange, const Precision) const
5880 {
5881 	for (vector<double>::iterator it = dst.begin(); it < dst.end();)
5882 	{
5883 		if ( !inputRange.contains(*it) )
5884 			it = dst.erase(it);
5885 		else
5886 			++it;
5887 	}
5888 }
5889 
5890 template <>
5891 class DefaultSampling<deFloat16> : public Sampling<deFloat16>
5892 {
5893 public:
5894 	deFloat16	genRandom			(const FloatFormat& format, const Precision prec, Random& rnd, const Interval& inputRange) const;
5895 	void		genFixeds			(const FloatFormat& format, const Precision prec, vector<deFloat16>& dst, const Interval& inputRange) const;
5896 private:
5897 	void		removeNotInRange(vector<deFloat16>& dst, const Interval& inputRange, const Precision prec) const;
5898 };
5899 
5900 //! Generate a random float from a reasonable general-purpose distribution.
genRandom(const FloatFormat & format,const Precision prec,Random & rnd,const Interval & inputRange) const5901 deFloat16 DefaultSampling<deFloat16>::genRandom (const FloatFormat& format, const Precision prec,
5902 												Random& rnd, const Interval& inputRange) const
5903 {
5904 	DE_UNREF(prec);
5905 	return deFloat64To16Round(randomDouble(format, rnd, inputRange), DE_ROUNDINGMODE_TO_NEAREST_EVEN);
5906 }
5907 
5908 //! Generate a standard set of floats that should always be tested.
genFixeds(const FloatFormat & format,const Precision prec,vector<deFloat16> & dst,const Interval & inputRange) const5909 void DefaultSampling<deFloat16>::genFixeds (const FloatFormat& format, const Precision prec, vector<deFloat16>& dst, const Interval& inputRange) const
5910 {
5911 	dst.push_back(deUint16(0x3E00)); //1.5
5912 	dst.push_back(deUint16(0x3D00)); //1.25
5913 	dst.push_back(deUint16(0x3F00)); //1.75
5914 	// Zero
5915 	dst.push_back(deUint16(0x0000));
5916 	dst.push_back(deUint16(0x8000));
5917 	// Infinity
5918 	dst.push_back(deUint16(0x7c00));
5919 	dst.push_back(deUint16(0xfc00));
5920 	// SNaN
5921 	dst.push_back(deUint16(0x7c0f));
5922 	dst.push_back(deUint16(0xfc0f));
5923 	// QNaN
5924 	dst.push_back(deUint16(0x7cf0));
5925 	dst.push_back(deUint16(0xfcf0));
5926 	// Normalized
5927 	dst.push_back(deUint16(0x0401));
5928 	dst.push_back(deUint16(0x8401));
5929 	// Some normal number
5930 	dst.push_back(deUint16(0x14cb));
5931 	dst.push_back(deUint16(0x94cb));
5932 
5933 	const int			minExp			= format.getMinExp();
5934 	const int			maxExp			= format.getMaxExp();
5935 	const int			fractionBits	= format.getFractionBits();
5936 	const float			minQuantum		= deFloatLdExp(1.0f, minExp - fractionBits);
5937 	const float			minNormalized	= deFloatLdExp(1.0f, minExp);
5938 	const float			maxQuantum		= deFloatLdExp(1.0f, maxExp - fractionBits);
5939 
5940 	for (float sign = -1.0; sign <= 1.0f; sign += 2.0f)
5941 	{
5942 		// Smallest normalized
5943 		dst.push_back(deFloat32To16Round(sign * minNormalized, DE_ROUNDINGMODE_TO_NEAREST_EVEN));
5944 
5945 		// Next smallest normalized
5946 		dst.push_back(deFloat32To16Round(sign * (minNormalized + minQuantum), DE_ROUNDINGMODE_TO_NEAREST_EVEN));
5947 
5948 		dst.push_back(deFloat32To16Round(sign * 0.5f, DE_ROUNDINGMODE_TO_NEAREST_EVEN));
5949 		dst.push_back(deFloat32To16Round(sign * 1.0f, DE_ROUNDINGMODE_TO_NEAREST_EVEN));
5950 		dst.push_back(deFloat32To16Round(sign * 2.0f, DE_ROUNDINGMODE_TO_NEAREST_EVEN));
5951 
5952 		// Largest number
5953 		dst.push_back(deFloat32To16Round(sign * (deFloatLdExp(1.0f, maxExp) +
5954 									(deFloatLdExp(1.0f, maxExp) - maxQuantum)), DE_ROUNDINGMODE_TO_NEAREST_EVEN));
5955 
5956 		dst.push_back(deFloat32To16Round(sign * TCU_INFINITY, DE_ROUNDINGMODE_TO_NEAREST_EVEN));
5957 	}
5958 	removeNotInRange(dst, inputRange, prec);
5959 }
5960 
removeNotInRange(vector<deFloat16> & dst,const Interval & inputRange,const Precision) const5961 void DefaultSampling<deFloat16>::removeNotInRange(vector<deFloat16>& dst, const Interval& inputRange, const Precision) const
5962 {
5963 	for (vector<deFloat16>::iterator it = dst.begin(); it < dst.end();)
5964 	{
5965 		if (inputRange.contains(static_cast<double>(*it)))
5966 			++it;
5967 		else
5968 			it = dst.erase(it);
5969 	}
5970 }
5971 
5972 template <typename T, int Size>
5973 class DefaultSampling<Vector<T, Size> > : public Sampling<Vector<T, Size> >
5974 {
5975 public:
5976 	typedef Vector<T, Size>		Value;
5977 
genRandom(const FloatFormat & fmt,const Precision prec,Random & rnd,const Interval & inputRange) const5978 	Value	genRandom	(const FloatFormat& fmt, const Precision prec, Random& rnd, const Interval& inputRange) const
5979 	{
5980 		Value ret;
5981 
5982 		for (int ndx = 0; ndx < Size; ++ndx)
5983 			ret[ndx] = instance<DefaultSampling<T> >().genRandom(fmt, prec, rnd, inputRange);
5984 
5985 		return ret;
5986 	}
5987 
genFixeds(const FloatFormat & fmt,const Precision prec,vector<Value> & dst,const Interval & inputRange) const5988 	void	genFixeds	(const FloatFormat& fmt, const Precision prec, vector<Value>& dst, const Interval& inputRange) const
5989 	{
5990 		vector<T> scalars;
5991 
5992 		instance<DefaultSampling<T> >().genFixeds(fmt, prec, scalars, inputRange);
5993 
5994 		for (size_t scalarNdx = 0; scalarNdx < scalars.size(); ++scalarNdx)
5995 			dst.push_back(Value(scalars[scalarNdx]));
5996 	}
5997 };
5998 
5999 template <typename T, int Rows, int Columns>
6000 class DefaultSampling<Matrix<T, Rows, Columns> > : public Sampling<Matrix<T, Rows, Columns> >
6001 {
6002 public:
6003 	typedef Matrix<T, Rows, Columns>		Value;
6004 
genRandom(const FloatFormat & fmt,const Precision prec,Random & rnd,const Interval & inputRange) const6005 	Value	genRandom	(const FloatFormat& fmt, const Precision prec, Random& rnd, const Interval& inputRange) const
6006 	{
6007 		Value ret;
6008 
6009 		for (int rowNdx = 0; rowNdx < Rows; ++rowNdx)
6010 			for (int colNdx = 0; colNdx < Columns; ++colNdx)
6011 				ret(rowNdx, colNdx) = instance<DefaultSampling<T> >().genRandom(fmt, prec, rnd, inputRange);
6012 
6013 		return ret;
6014 	}
6015 
genFixeds(const FloatFormat & fmt,const Precision prec,vector<Value> & dst,const Interval & inputRange) const6016 	void	genFixeds	(const FloatFormat& fmt, const Precision prec, vector<Value>& dst, const Interval& inputRange) const
6017 	{
6018 		vector<T> scalars;
6019 
6020 		instance<DefaultSampling<T> >().genFixeds(fmt, prec, scalars, inputRange);
6021 
6022 		for (size_t scalarNdx = 0; scalarNdx < scalars.size(); ++scalarNdx)
6023 			dst.push_back(Value(scalars[scalarNdx]));
6024 
6025 		if (Columns == Rows)
6026 		{
6027 			Value	mat	(T(0.0));
6028 			T		x	= T(1.0f);
6029 			mat[0][0] = x;
6030 			for (int ndx = 0; ndx < Columns; ++ndx)
6031 			{
6032 				mat[Columns-1-ndx][ndx] = x;
6033 				x = static_cast<T>(x * static_cast<T>(2.0f));
6034 			}
6035 			dst.push_back(mat);
6036 		}
6037 	}
6038 };
6039 
6040 struct CaseContext
6041 {
CaseContextvkt::shaderexecutor::CaseContext6042 					CaseContext		(const string&							name_,
6043 									 TestContext&							testContext_,
6044 									 const FloatFormat&						floatFormat_,
6045 									 const FloatFormat&						highpFormat_,
6046 									 const Precision						precision_,
6047 									 const ShaderType						shaderType_,
6048 									 const size_t							numRandoms_,
6049 									 const PrecisionTestFeatures	precisionTestFeatures_ = PRECISION_TEST_FEATURES_NONE,
6050 									 const bool						isPackFloat16b_ = false,
6051 									 const bool						isFloat64b_ = false)
6052 						: name						(name_)
6053 						, testContext				(testContext_)
6054 						, floatFormat				(floatFormat_)
6055 						, highpFormat				(highpFormat_)
6056 						, precision					(precision_)
6057 						, shaderType				(shaderType_)
6058 						, numRandoms				(numRandoms_)
6059 						, inputRange				(-TCU_INFINITY, TCU_INFINITY)
6060 						, precisionTestFeatures		(precisionTestFeatures_)
6061 						, isPackFloat16b			(isPackFloat16b_)
6062 						, isFloat64b				(isFloat64b_)
6063 					{}
6064 
6065 	string							name;
6066 	TestContext&					testContext;
6067 	FloatFormat						floatFormat;
6068 	FloatFormat						highpFormat;
6069 	Precision						precision;
6070 	ShaderType						shaderType;
6071 	size_t							numRandoms;
6072 	Interval						inputRange;
6073 	PrecisionTestFeatures	precisionTestFeatures;
6074 	bool							isPackFloat16b;
6075 	bool					isFloat64b;
6076 };
6077 
6078 template<typename In0_ = Void, typename In1_ = Void, typename In2_ = Void, typename In3_ = Void>
6079 struct InTypes
6080 {
6081 	typedef	In0_	In0;
6082 	typedef	In1_	In1;
6083 	typedef	In2_	In2;
6084 	typedef	In3_	In3;
6085 };
6086 
6087 template <typename In>
numInputs(void)6088 int numInputs (void)
6089 {
6090 	return (!isTypeValid<typename In::In0>() ? 0 :
6091 			!isTypeValid<typename In::In1>() ? 1 :
6092 			!isTypeValid<typename In::In2>() ? 2 :
6093 			!isTypeValid<typename In::In3>() ? 3 :
6094 			4);
6095 }
6096 
6097 template<typename Out0_, typename Out1_ = Void>
6098 struct OutTypes
6099 {
6100 	typedef	Out0_	Out0;
6101 	typedef	Out1_	Out1;
6102 };
6103 
6104 template <typename Out>
numOutputs(void)6105 int numOutputs (void)
6106 {
6107 	return (!isTypeValid<typename Out::Out0>() ? 0 :
6108 			!isTypeValid<typename Out::Out1>() ? 1 :
6109 			2);
6110 }
6111 
6112 template<typename In>
6113 struct Inputs
6114 {
6115 	vector<typename In::In0>	in0;
6116 	vector<typename In::In1>	in1;
6117 	vector<typename In::In2>	in2;
6118 	vector<typename In::In3>	in3;
6119 };
6120 
6121 template<typename Out>
6122 struct Outputs
6123 {
Outputsvkt::shaderexecutor::Outputs6124 	Outputs	(size_t size) : out0(size), out1(size) {}
6125 
6126 	vector<typename Out::Out0>	out0;
6127 	vector<typename Out::Out1>	out1;
6128 };
6129 
6130 template<typename In, typename Out>
6131 struct Variables
6132 {
6133 	VariableP<typename In::In0>		in0;
6134 	VariableP<typename In::In1>		in1;
6135 	VariableP<typename In::In2>		in2;
6136 	VariableP<typename In::In3>		in3;
6137 	VariableP<typename Out::Out0>	out0;
6138 	VariableP<typename Out::Out1>	out1;
6139 };
6140 
6141 template<typename In>
6142 struct Samplings
6143 {
Samplingsvkt::shaderexecutor::Samplings6144 	Samplings	(const Sampling<typename In::In0>&	in0_,
6145 				 const Sampling<typename In::In1>&	in1_,
6146 				 const Sampling<typename In::In2>&	in2_,
6147 				 const Sampling<typename In::In3>&	in3_)
6148 		: in0 (in0_), in1 (in1_), in2 (in2_), in3 (in3_) {}
6149 
6150 	const Sampling<typename In::In0>&	in0;
6151 	const Sampling<typename In::In1>&	in1;
6152 	const Sampling<typename In::In2>&	in2;
6153 	const Sampling<typename In::In3>&	in3;
6154 };
6155 
6156 template<typename In>
6157 struct DefaultSamplings : Samplings<In>
6158 {
DefaultSamplingsvkt::shaderexecutor::DefaultSamplings6159 	DefaultSamplings	(void)
6160 		: Samplings<In>(instance<DefaultSampling<typename In::In0> >(),
6161 						instance<DefaultSampling<typename In::In1> >(),
6162 						instance<DefaultSampling<typename In::In2> >(),
6163 						instance<DefaultSampling<typename In::In3> >()) {}
6164 };
6165 
6166 template <typename In, typename Out>
6167 class BuiltinPrecisionCaseTestInstance : public TestInstance
6168 {
6169 public:
BuiltinPrecisionCaseTestInstance(Context & context,const CaseContext caseCtx,const ShaderSpec & shaderSpec,const Variables<In,Out> variables,const Samplings<In> & samplings,const StatementP stmt,bool modularOp=false)6170 									BuiltinPrecisionCaseTestInstance	(Context&						context,
6171 																		 const CaseContext				caseCtx,
6172 																		 const ShaderSpec&				shaderSpec,
6173 																		 const Variables<In, Out>		variables,
6174 																		 const Samplings<In>&			samplings,
6175 																		 const StatementP				stmt,
6176 																		 bool							modularOp = false)
6177 										: TestInstance	(context)
6178 										, m_caseCtx		(caseCtx)
6179 										, m_variables	(variables)
6180 										, m_samplings	(samplings)
6181 										, m_stmt		(stmt)
6182 										, m_executor	(createExecutor(context, caseCtx.shaderType, shaderSpec))
6183 										, m_modularOp	(modularOp)
6184 									{
6185 									}
6186 	virtual tcu::TestStatus			iterate								(void);
6187 
6188 protected:
6189 	CaseContext						m_caseCtx;
6190 	Variables<In, Out>				m_variables;
6191 	const Samplings<In>&			m_samplings;
6192 	StatementP						m_stmt;
6193 	de::UniquePtr<ShaderExecutor>	m_executor;
6194 	bool							m_modularOp;
6195 };
6196 
6197 template<class In, class Out>
iterate(void)6198 tcu::TestStatus BuiltinPrecisionCaseTestInstance<In, Out>::iterate (void)
6199 {
6200 	typedef typename	In::In0		In0;
6201 	typedef typename	In::In1		In1;
6202 	typedef typename	In::In2		In2;
6203 	typedef typename	In::In3		In3;
6204 	typedef typename	Out::Out0	Out0;
6205 	typedef typename	Out::Out1	Out1;
6206 
6207 	areFeaturesSupported(m_context, m_caseCtx.precisionTestFeatures);
6208 	Inputs<In>			inputs		= generateInputs(m_samplings, m_caseCtx.floatFormat, m_caseCtx.precision, m_caseCtx.numRandoms, 0xdeadbeefu + m_caseCtx.testContext.getCommandLine().getBaseSeed(), m_caseCtx.inputRange);
6209 	const FloatFormat&	fmt			= m_caseCtx.floatFormat;
6210 	const int			inCount		= numInputs<In>();
6211 	const int			outCount	= numOutputs<Out>();
6212 	const size_t		numValues	= (inCount > 0) ? inputs.in0.size() : 1;
6213 	Outputs<Out>		outputs		(numValues);
6214 	const FloatFormat	highpFmt	= m_caseCtx.highpFormat;
6215 	const int			maxMsgs		= 100;
6216 	int					numErrors	= 0;
6217 	Environment			env;		// Hoisted out of the inner loop for optimization.
6218 	ResultCollector		status;
6219 	TestLog&			testLog		= m_context.getTestContext().getLog();
6220 
6221 	// Module operations need exactly two inputs and have exactly one output.
6222 	if (m_modularOp)
6223 	{
6224 		DE_ASSERT(inCount == 2);
6225 		DE_ASSERT(outCount == 1);
6226 	}
6227 
6228 	const void*			inputArr[]	=
6229 	{
6230 		inputs.in0.data(), inputs.in1.data(), inputs.in2.data(), inputs.in3.data(),
6231 	};
6232 	void*				outputArr[]	=
6233 	{
6234 		outputs.out0.data(), outputs.out1.data(),
6235 	};
6236 
6237 	// Print out the statement and its definitions
6238 	testLog << TestLog::Message << "Statement: " << m_stmt << TestLog::EndMessage;
6239 	{
6240 		ostringstream	oss;
6241 		FuncSet			funcs;
6242 
6243 		m_stmt->getUsedFuncs(funcs);
6244 		for (FuncSet::const_iterator it = funcs.begin(); it != funcs.end(); ++it)
6245 		{
6246 			(*it)->printDefinition(oss);
6247 		}
6248 		if (!funcs.empty())
6249 			testLog << TestLog::Message << "Reference definitions:\n" << oss.str()
6250 				  << TestLog::EndMessage;
6251 	}
6252 	switch (inCount)
6253 	{
6254 		case 4:
6255 			DE_ASSERT(inputs.in3.size() == numValues);
6256 		// Fallthrough
6257 		case 3:
6258 			DE_ASSERT(inputs.in2.size() == numValues);
6259 		// Fallthrough
6260 		case 2:
6261 			DE_ASSERT(inputs.in1.size() == numValues);
6262 		// Fallthrough
6263 		case 1:
6264 			DE_ASSERT(inputs.in0.size() == numValues);
6265 		// Fallthrough
6266 		default:
6267 			break;
6268 	}
6269 
6270 	m_executor->execute(int(numValues), inputArr, outputArr);
6271 
6272 	// Initialize environment with unused values so we don't need to bind in inner loop.
6273 	{
6274 		const typename Traits<In0>::IVal		in0;
6275 		const typename Traits<In1>::IVal		in1;
6276 		const typename Traits<In2>::IVal		in2;
6277 		const typename Traits<In3>::IVal		in3;
6278 		const typename Traits<Out0>::IVal		reference0;
6279 		const typename Traits<Out1>::IVal		reference1;
6280 
6281 		env.bind(*m_variables.in0, in0);
6282 		env.bind(*m_variables.in1, in1);
6283 		env.bind(*m_variables.in2, in2);
6284 		env.bind(*m_variables.in3, in3);
6285 		env.bind(*m_variables.out0, reference0);
6286 		env.bind(*m_variables.out1, reference1);
6287 	}
6288 
6289 	// For each input tuple, compute output reference interval and compare
6290 	// shader output to the reference.
6291 	for (size_t valueNdx = 0; valueNdx < numValues; valueNdx++)
6292 	{
6293 		bool						result			= true;
6294 		const bool					isInput16Bit	= m_executor->areInputs16Bit();
6295 		const bool					isInput64Bit	= m_executor->areInputs64Bit();
6296 
6297 		DE_ASSERT(!(isInput16Bit && isInput64Bit));
6298 
6299 		typename Traits<Out0>::IVal	reference0;
6300 		typename Traits<Out1>::IVal	reference1;
6301 
6302 		if (valueNdx % (size_t)TOUCH_WATCHDOG_VALUE_FREQUENCY == 0)
6303 			m_context.getTestContext().touchWatchdog();
6304 
6305 		env.lookup(*m_variables.in0) = convert<In0>(fmt, round(fmt, inputs.in0[valueNdx]));
6306 		env.lookup(*m_variables.in1) = convert<In1>(fmt, round(fmt, inputs.in1[valueNdx]));
6307 		env.lookup(*m_variables.in2) = convert<In2>(fmt, round(fmt, inputs.in2[valueNdx]));
6308 		env.lookup(*m_variables.in3) = convert<In3>(fmt, round(fmt, inputs.in3[valueNdx]));
6309 
6310 		{
6311 			EvalContext	ctx (fmt, m_caseCtx.precision, env, 0);
6312 			m_stmt->execute(ctx);
6313 
6314 			switch (outCount)
6315 			{
6316 				case 2:
6317 					reference1 = convert<Out1>(highpFmt, env.lookup(*m_variables.out1));
6318 					if (!status.check(contains(reference1, outputs.out1[valueNdx], m_caseCtx.isPackFloat16b), "Shader output 1 is outside acceptable range"))
6319 						result = false;
6320 				// Fallthrough
6321 				case 1:
6322 					{
6323 						// Pass b from mod(a, b) if we are in the modulo operation.
6324 						const tcu::Maybe<In1> modularDivisor = (m_modularOp ? tcu::just(inputs.in1[valueNdx]) : tcu::Nothing);
6325 
6326 						reference0 = convert<Out0>(highpFmt, env.lookup(*m_variables.out0));
6327 						if (!status.check(contains(reference0, outputs.out0[valueNdx], m_caseCtx.isPackFloat16b, modularDivisor), "Shader output 0 is outside acceptable range"))
6328 						{
6329 							m_stmt->failed(ctx);
6330 							reference0 = convert<Out0>(highpFmt, env.lookup(*m_variables.out0));
6331 							if (!status.check(contains(reference0, outputs.out0[valueNdx], m_caseCtx.isPackFloat16b, modularDivisor), "Shader output 0 is outside acceptable range"))
6332 								result = false;
6333 						}
6334 					}
6335 				// Fallthrough
6336 				default: break;
6337 			}
6338 
6339 		}
6340 		if (!result)
6341 			++numErrors;
6342 
6343 		if ((!result && numErrors <= maxMsgs) || GLS_LOG_ALL_RESULTS)
6344 		{
6345 			MessageBuilder	builder	= testLog.message();
6346 
6347 			builder << (result ? "Passed" : "Failed") << " sample:\n";
6348 
6349 			if (inCount > 0)
6350 			{
6351 				builder << "\t" << m_variables.in0->getName() << " = "
6352 						<< (isInput64Bit ? value64ToString(highpFmt, inputs.in0[valueNdx]) : (isInput16Bit ? value16ToString(highpFmt, inputs.in0[valueNdx]) : value32ToString(highpFmt, inputs.in0[valueNdx]))) << "\n";
6353 			}
6354 
6355 			if (inCount > 1)
6356 			{
6357 				builder << "\t" << m_variables.in1->getName() << " = "
6358 						<< (isInput64Bit ? value64ToString(highpFmt, inputs.in1[valueNdx]) : (isInput16Bit ? value16ToString(highpFmt, inputs.in1[valueNdx]) : value32ToString(highpFmt, inputs.in1[valueNdx]))) << "\n";
6359 			}
6360 
6361 			if (inCount > 2)
6362 			{
6363 				builder << "\t" << m_variables.in2->getName() << " = "
6364 						<< (isInput64Bit ? value64ToString(highpFmt, inputs.in2[valueNdx]) : (isInput16Bit ? value16ToString(highpFmt, inputs.in2[valueNdx]) : value32ToString(highpFmt, inputs.in2[valueNdx]))) << "\n";
6365 			}
6366 
6367 			if (inCount > 3)
6368 			{
6369 				builder << "\t" << m_variables.in3->getName() << " = "
6370 						<< (isInput64Bit ? value64ToString(highpFmt, inputs.in3[valueNdx]) : (isInput16Bit ? value16ToString(highpFmt, inputs.in3[valueNdx]) : value32ToString(highpFmt, inputs.in3[valueNdx]))) << "\n";
6371 			}
6372 
6373 			if (outCount > 0)
6374 			{
6375 				if (m_executor->spirvCase() == SPIRV_CASETYPE_COMPARE)
6376 				{
6377 					builder << "Output:\n"
6378 							<< comparisonMessage(outputs.out0[valueNdx])
6379 							<< "Expected result:\n"
6380 							<< comparisonMessageInterval<typename Out::Out0>(reference0) << "\n";
6381 				}
6382 				else
6383 				{
6384 					builder << "\t" << m_variables.out0->getName() << " = "
6385 						<< (m_executor->isOutput64Bit(0u) ? value64ToString(highpFmt, outputs.out0[valueNdx]) : (m_executor->isOutput16Bit(0u) || m_caseCtx.isPackFloat16b ? value16ToString(highpFmt, outputs.out0[valueNdx]) : value32ToString(highpFmt, outputs.out0[valueNdx]))) << "\n"
6386 						<< "\tExpected range: "
6387 						<< intervalToString<typename Out::Out0>(highpFmt, reference0) << "\n";
6388 				}
6389 			}
6390 
6391 			if (outCount > 1)
6392 			{
6393 				builder << "\t" << m_variables.out1->getName() << " = "
6394 						<< (m_executor->isOutput64Bit(1u) ? value64ToString(highpFmt, outputs.out1[valueNdx]) : (m_executor->isOutput16Bit(1u) || m_caseCtx.isPackFloat16b ? value16ToString(highpFmt, outputs.out1[valueNdx]) : value32ToString(highpFmt, outputs.out1[valueNdx]))) << "\n"
6395 						<< "\tExpected range: "
6396 						<< intervalToString<typename Out::Out1>(highpFmt, reference1) << "\n";
6397 			}
6398 
6399 			builder << TestLog::EndMessage;
6400 		}
6401 	}
6402 
6403 	if (numErrors > maxMsgs)
6404 	{
6405 		testLog << TestLog::Message << "(Skipped " << (numErrors - maxMsgs) << " messages.)"
6406 			  << TestLog::EndMessage;
6407 	}
6408 
6409 	if (numErrors == 0)
6410 	{
6411 		testLog << TestLog::Message << "All " << numValues << " inputs passed."
6412 			  << TestLog::EndMessage;
6413 	}
6414 	else
6415 	{
6416 		testLog << TestLog::Message << numErrors << "/" << numValues << " inputs failed."
6417 			  << TestLog::EndMessage;
6418 	}
6419 
6420 	if (numErrors)
6421 		return tcu::TestStatus::fail(de::toString(numErrors) + string(" test failed. Check log for the details"));
6422 	else
6423 		return tcu::TestStatus::pass("Pass");
6424 
6425 }
6426 
6427 class PrecisionCase : public TestCase
6428 {
6429 protected:
PrecisionCase(const CaseContext & context,const string & name,const Interval & inputRange,const string & extension="")6430 						PrecisionCase	(const CaseContext& context, const string& name, const Interval& inputRange, const string& extension = "")
6431 							: TestCase		(context.testContext, name.c_str(), name.c_str())
6432 							, m_ctx			(context)
6433 							, m_extension	(extension)
6434 							{
6435 								m_ctx.inputRange = inputRange;
6436 								m_spec.packFloat16Bit = context.isPackFloat16b;
6437 							}
6438 
initPrograms(vk::SourceCollections & programCollection) const6439 	virtual void		initPrograms	(vk::SourceCollections& programCollection) const
6440 	{
6441 		generateSources(m_ctx.shaderType, m_spec, programCollection);
6442 	}
6443 
getFormat(void) const6444 	const FloatFormat&	getFormat		(void) const			{ return m_ctx.floatFormat; }
6445 
6446 	template <typename In, typename Out>
6447 	void				testStatement	(const Variables<In, Out>& variables, const Statement& stmt, SpirVCaseT spirvCase);
6448 
6449 	template<typename T>
makeSymbol(const Variable<T> & variable)6450 	Symbol				makeSymbol		(const Variable<T>& variable)
6451 	{
6452 		return Symbol(variable.getName(), getVarTypeOf<T>(m_ctx.precision));
6453 	}
6454 
6455 	CaseContext			m_ctx;
6456 	const string		m_extension;
6457 	ShaderSpec			m_spec;
6458 };
6459 
6460 template <typename In, typename Out>
testStatement(const Variables<In,Out> & variables,const Statement & stmt,SpirVCaseT spirvCase)6461 void PrecisionCase::testStatement (const Variables<In, Out>& variables, const Statement& stmt, SpirVCaseT spirvCase)
6462 {
6463 	const int		inCount		= numInputs<In>();
6464 	const int		outCount	= numOutputs<Out>();
6465 	Environment		env;		// Hoisted out of the inner loop for optimization.
6466 
6467 	// Initialize ShaderSpec from precision, variables and statement.
6468 	if (m_ctx.precision != glu::PRECISION_LAST)
6469 	{
6470 		ostringstream os;
6471 		os << "precision " << glu::getPrecisionName(m_ctx.precision) << " float;\n";
6472 		m_spec.globalDeclarations = os.str();
6473 	}
6474 
6475 	if (!m_extension.empty())
6476 		m_spec.globalDeclarations = "#extension " + m_extension + " : require\n";
6477 
6478 	m_spec.inputs.resize(inCount);
6479 
6480 	switch (inCount)
6481 	{
6482 		case 4:
6483 			m_spec.inputs[3] = makeSymbol(*variables.in3);
6484 		// Fallthrough
6485 		case 3:
6486 			m_spec.inputs[2] = makeSymbol(*variables.in2);
6487 		// Fallthrough
6488 		case 2:
6489 			m_spec.inputs[1] = makeSymbol(*variables.in1);
6490 		// Fallthrough
6491 		case 1:
6492 			m_spec.inputs[0] = makeSymbol(*variables.in0);
6493 		// Fallthrough
6494 		default:
6495 			break;
6496 	}
6497 
6498 	bool inputs16Bit = false;
6499 	for (vector<Symbol>::const_iterator symIter = m_spec.inputs.begin(); symIter != m_spec.inputs.end(); ++symIter)
6500 		inputs16Bit = inputs16Bit || glu::isDataTypeFloat16OrVec(symIter->varType.getBasicType());
6501 
6502 	if (inputs16Bit || m_spec.packFloat16Bit)
6503 		m_spec.globalDeclarations += "#extension GL_EXT_shader_explicit_arithmetic_types: require\n";
6504 
6505 	m_spec.outputs.resize(outCount);
6506 
6507 	switch (outCount)
6508 	{
6509 		case 2:
6510 			m_spec.outputs[1] = makeSymbol(*variables.out1);
6511 		// Fallthrough
6512 		case 1:
6513 			m_spec.outputs[0] = makeSymbol(*variables.out0);
6514 		// Fallthrough
6515 		default:
6516 			break;
6517 	}
6518 
6519 	m_spec.source = de::toString(stmt);
6520 	m_spec.spirvCase = spirvCase;
6521 }
6522 
6523 template <typename T>
6524 struct InputLess
6525 {
operator ()vkt::shaderexecutor::InputLess6526 	bool operator() (const T& val1, const T& val2) const
6527 	{
6528 		return val1 < val2;
6529 	}
6530 };
6531 
6532 template <typename T>
inputLess(const T & val1,const T & val2)6533 bool inputLess (const T& val1, const T& val2)
6534 {
6535 	return InputLess<T>()(val1, val2);
6536 }
6537 
6538 template <>
6539 struct InputLess<float>
6540 {
operator ()vkt::shaderexecutor::InputLess6541 	bool operator() (const float& val1, const float& val2) const
6542 	{
6543 		if (deIsNaN(val1))
6544 			return false;
6545 		if (deIsNaN(val2))
6546 			return true;
6547 		return val1 < val2;
6548 	}
6549 };
6550 
6551 template <typename T, int Size>
6552 struct InputLess<Vector<T, Size> >
6553 {
operator ()vkt::shaderexecutor::InputLess6554 	bool operator() (const Vector<T, Size>& vec1, const Vector<T, Size>& vec2) const
6555 	{
6556 		for (int ndx = 0; ndx < Size; ++ndx)
6557 		{
6558 			if (inputLess(vec1[ndx], vec2[ndx]))
6559 				return true;
6560 			if (inputLess(vec2[ndx], vec1[ndx]))
6561 				return false;
6562 		}
6563 
6564 		return false;
6565 	}
6566 };
6567 
6568 template <typename T, int Rows, int Cols>
6569 struct InputLess<Matrix<T, Rows, Cols> >
6570 {
operator ()vkt::shaderexecutor::InputLess6571 	bool operator() (const Matrix<T, Rows, Cols>& mat1,
6572 					 const Matrix<T, Rows, Cols>& mat2) const
6573 	{
6574 		for (int col = 0; col < Cols; ++col)
6575 		{
6576 			if (inputLess(mat1[col], mat2[col]))
6577 				return true;
6578 			if (inputLess(mat2[col], mat1[col]))
6579 				return false;
6580 		}
6581 
6582 		return false;
6583 	}
6584 };
6585 
6586 template <typename In>
6587 struct InTuple :
6588 	public Tuple4<typename In::In0, typename In::In1, typename In::In2, typename In::In3>
6589 {
InTuplevkt::shaderexecutor::InTuple6590 	InTuple	(const typename In::In0& in0,
6591 			 const typename In::In1& in1,
6592 			 const typename In::In2& in2,
6593 			 const typename In::In3& in3)
6594 		: Tuple4<typename In::In0, typename In::In1, typename In::In2, typename In::In3>
6595 		  (in0, in1, in2, in3) {}
6596 };
6597 
6598 template <typename In>
6599 struct InputLess<InTuple<In> >
6600 {
operator ()vkt::shaderexecutor::InputLess6601 	bool operator() (const InTuple<In>& in1, const InTuple<In>& in2) const
6602 	{
6603 		if (inputLess(in1.a, in2.a))
6604 			return true;
6605 		if (inputLess(in2.a, in1.a))
6606 			return false;
6607 		if (inputLess(in1.b, in2.b))
6608 			return true;
6609 		if (inputLess(in2.b, in1.b))
6610 			return false;
6611 		if (inputLess(in1.c, in2.c))
6612 			return true;
6613 		if (inputLess(in2.c, in1.c))
6614 			return false;
6615 		if (inputLess(in1.d, in2.d))
6616 			return true;
6617 		return false;
6618 	}
6619 };
6620 
6621 template<typename In>
generateInputs(const Samplings<In> & samplings,const FloatFormat & floatFormat,Precision intPrecision,size_t numSamples,deUint32 seed,const Interval & inputRange)6622 Inputs<In> generateInputs (const Samplings<In>&		samplings,
6623 						   const FloatFormat&		floatFormat,
6624 						   Precision				intPrecision,
6625 						   size_t					numSamples,
6626 						   deUint32					seed,
6627 						   const Interval&			inputRange)
6628 {
6629 	Random										rnd(seed);
6630 	Inputs<In>									ret;
6631 	Inputs<In>									fixedInputs;
6632 	set<InTuple<In>, InputLess<InTuple<In> > >	seenInputs;
6633 
6634 	samplings.in0.genFixeds(floatFormat, intPrecision, fixedInputs.in0, inputRange);
6635 	samplings.in1.genFixeds(floatFormat, intPrecision, fixedInputs.in1, inputRange);
6636 	samplings.in2.genFixeds(floatFormat, intPrecision, fixedInputs.in2, inputRange);
6637 	samplings.in3.genFixeds(floatFormat, intPrecision, fixedInputs.in3, inputRange);
6638 
6639 	for (size_t ndx0 = 0; ndx0 < fixedInputs.in0.size(); ++ndx0)
6640 	{
6641 		for (size_t ndx1 = 0; ndx1 < fixedInputs.in1.size(); ++ndx1)
6642 		{
6643 			for (size_t ndx2 = 0; ndx2 < fixedInputs.in2.size(); ++ndx2)
6644 			{
6645 				for (size_t ndx3 = 0; ndx3 < fixedInputs.in3.size(); ++ndx3)
6646 				{
6647 					const InTuple<In>	tuple	(fixedInputs.in0[ndx0],
6648 												 fixedInputs.in1[ndx1],
6649 												 fixedInputs.in2[ndx2],
6650 												 fixedInputs.in3[ndx3]);
6651 
6652 					seenInputs.insert(tuple);
6653 					ret.in0.push_back(tuple.a);
6654 					ret.in1.push_back(tuple.b);
6655 					ret.in2.push_back(tuple.c);
6656 					ret.in3.push_back(tuple.d);
6657 				}
6658 			}
6659 		}
6660 	}
6661 
6662 	for (size_t ndx = 0; ndx < numSamples; ++ndx)
6663 	{
6664 		const typename In::In0	in0		= samplings.in0.genRandom(floatFormat, intPrecision, rnd, inputRange);
6665 		const typename In::In1	in1		= samplings.in1.genRandom(floatFormat, intPrecision, rnd, inputRange);
6666 		const typename In::In2	in2		= samplings.in2.genRandom(floatFormat, intPrecision, rnd, inputRange);
6667 		const typename In::In3	in3		= samplings.in3.genRandom(floatFormat, intPrecision, rnd, inputRange);
6668 		const InTuple<In>		tuple	(in0, in1, in2, in3);
6669 
6670 		if (de::contains(seenInputs, tuple))
6671 			continue;
6672 
6673 		seenInputs.insert(tuple);
6674 		ret.in0.push_back(in0);
6675 		ret.in1.push_back(in1);
6676 		ret.in2.push_back(in2);
6677 		ret.in3.push_back(in3);
6678 	}
6679 
6680 	return ret;
6681 }
6682 
6683 class FuncCaseBase : public PrecisionCase
6684 {
6685 protected:
FuncCaseBase(const CaseContext & context,const string & name,const FuncBase & func)6686 				FuncCaseBase	(const CaseContext& context, const string& name, const FuncBase& func)
6687 									: PrecisionCase	(context, name, func.getInputRange(!context.isFloat64b && (context.precision == glu::PRECISION_LAST || context.isPackFloat16b)), func.getRequiredExtension())
6688 								{
6689 								}
6690 
6691 	StatementP	m_stmt;
6692 };
6693 
6694 template <typename Sig>
6695 class FuncCase : public FuncCaseBase
6696 {
6697 public:
6698 	typedef Func<Sig>						CaseFunc;
6699 	typedef typename Sig::Ret				Ret;
6700 	typedef typename Sig::Arg0				Arg0;
6701 	typedef typename Sig::Arg1				Arg1;
6702 	typedef typename Sig::Arg2				Arg2;
6703 	typedef typename Sig::Arg3				Arg3;
6704 	typedef InTypes<Arg0, Arg1, Arg2, Arg3>	In;
6705 	typedef OutTypes<Ret>					Out;
6706 
FuncCase(const CaseContext & context,const string & name,const CaseFunc & func,bool modularOp=false)6707 											FuncCase		(const CaseContext& context, const string& name, const CaseFunc& func, bool modularOp = false)
6708 												: FuncCaseBase	(context, name, func)
6709 												, m_func		(func)
6710 												, m_modularOp	(modularOp)
6711 												{
6712 													buildTest();
6713 												}
6714 
createInstance(Context & context) const6715 	virtual	TestInstance*					createInstance	(Context& context) const
6716 	{
6717 		return new BuiltinPrecisionCaseTestInstance<In, Out>(context, m_ctx, m_spec, m_variables, getSamplings(), m_stmt, m_modularOp);
6718 	}
6719 
6720 protected:
6721 	void									buildTest		(void);
getSamplings(void) const6722 	virtual const Samplings<In>&			getSamplings	(void) const
6723 	{
6724 		return instance<DefaultSamplings<In> >();
6725 	}
6726 
6727 private:
6728 	const CaseFunc&							m_func;
6729 	Variables<In, Out>						m_variables;
6730 	bool									m_modularOp;
6731 };
6732 
6733 template <typename Sig>
buildTest(void)6734 void FuncCase<Sig>::buildTest (void)
6735 {
6736 	m_variables.out0	= variable<Ret>("out0");
6737 	m_variables.out1	= variable<Void>("out1");
6738 	m_variables.in0		= variable<Arg0>("in0");
6739 	m_variables.in1		= variable<Arg1>("in1");
6740 	m_variables.in2		= variable<Arg2>("in2");
6741 	m_variables.in3		= variable<Arg3>("in3");
6742 
6743 	{
6744 		ExprP<Ret> expr	= applyVar(m_func, m_variables.in0, m_variables.in1, m_variables.in2, m_variables.in3);
6745 		m_stmt			= variableAssignment(m_variables.out0, expr);
6746 
6747 		this->testStatement(m_variables, *m_stmt, m_func.getSpirvCase());
6748 	}
6749 }
6750 
6751 template <typename Sig>
6752 class InOutFuncCase : public FuncCaseBase
6753 {
6754 public:
6755 	typedef Func<Sig>					CaseFunc;
6756 	typedef typename Sig::Ret			Ret;
6757 	typedef typename Sig::Arg0			Arg0;
6758 	typedef typename Sig::Arg1			Arg1;
6759 	typedef typename Sig::Arg2			Arg2;
6760 	typedef typename Sig::Arg3			Arg3;
6761 	typedef InTypes<Arg0, Arg2, Arg3>	In;
6762 	typedef OutTypes<Ret, Arg1>			Out;
6763 
InOutFuncCase(const CaseContext & context,const string & name,const CaseFunc & func,bool modularOp=false)6764 										InOutFuncCase	(const CaseContext& context, const string& name, const CaseFunc& func, bool modularOp = false)
6765 											: FuncCaseBase	(context, name, func)
6766 											, m_func		(func)
6767 											, m_modularOp	(modularOp)
6768 											{
6769 												buildTest();
6770 											}
createInstance(Context & context) const6771 	virtual TestInstance*				createInstance	(Context& context) const
6772 	{
6773 		return new BuiltinPrecisionCaseTestInstance<In, Out>(context, m_ctx, m_spec, m_variables, getSamplings(), m_stmt, m_modularOp);
6774 	}
6775 
6776 protected:
6777 	void								buildTest		(void);
getSamplings(void) const6778 	virtual const Samplings<In>&		getSamplings	(void) const
6779 	{
6780 		return instance<DefaultSamplings<In> >();
6781 	}
6782 
6783 private:
6784 	const CaseFunc&						m_func;
6785 	Variables<In, Out>					m_variables;
6786 	bool								m_modularOp;
6787 };
6788 
6789 template <typename Sig>
buildTest(void)6790 void InOutFuncCase<Sig>::buildTest (void)
6791 {
6792 	m_variables.out0	= variable<Ret>("out0");
6793 	m_variables.out1	= variable<Arg1>("out1");
6794 	m_variables.in0		= variable<Arg0>("in0");
6795 	m_variables.in1		= variable<Arg2>("in1");
6796 	m_variables.in2		= variable<Arg3>("in2");
6797 	m_variables.in3		= variable<Void>("in3");
6798 
6799 	{
6800 		ExprP<Ret> expr	= applyVar(m_func, m_variables.in0, m_variables.out1, m_variables.in1, m_variables.in2);
6801 		m_stmt			= variableAssignment(m_variables.out0, expr);
6802 
6803 		this->testStatement(m_variables, *m_stmt, m_func.getSpirvCase());
6804 	}
6805 }
6806 
6807 template <typename Sig>
createFuncCase(const CaseContext & context,const string & name,const Func<Sig> & func,bool modularOp=false)6808 PrecisionCase* createFuncCase (const CaseContext& context, const string& name, const Func<Sig>&	func, bool modularOp = false)
6809 {
6810 	switch (func.getOutParamIndex())
6811 	{
6812 		case -1:
6813 			return new FuncCase<Sig>(context, name, func, modularOp);
6814 		case 1:
6815 			return new InOutFuncCase<Sig>(context, name, func, modularOp);
6816 		default:
6817 			DE_FATAL("Impossible");
6818 	}
6819 	return DE_NULL;
6820 }
6821 
6822 class CaseFactory
6823 {
6824 public:
~CaseFactory(void)6825 	virtual						~CaseFactory	(void) {}
6826 	virtual MovePtr<TestNode>	createCase		(const CaseContext& ctx) const = 0;
6827 	virtual string				getName			(void) const = 0;
6828 	virtual string				getDesc			(void) const = 0;
6829 };
6830 
6831 class FuncCaseFactory : public CaseFactory
6832 {
6833 public:
6834 	virtual const FuncBase&		getFunc			(void) const = 0;
getName(void) const6835 	string						getName			(void) const { return de::toLower(getFunc().getName()); }
getDesc(void) const6836 	string						getDesc			(void) const { return "Function '" + getFunc().getName() + "'";	}
6837 };
6838 
6839 template <typename Sig>
6840 class GenFuncCaseFactory : public CaseFactory
6841 {
6842 public:
GenFuncCaseFactory(const GenFuncs<Sig> & funcs,const string & name,bool modularOp=false)6843 						GenFuncCaseFactory	(const GenFuncs<Sig>& funcs, const string& name, bool modularOp = false)
6844 							: m_funcs			(funcs)
6845 							, m_name			(de::toLower(name))
6846 							, m_modularOp		(modularOp)
6847 							{
6848 							}
6849 
createCase(const CaseContext & ctx) const6850 	MovePtr<TestNode>	createCase			(const CaseContext& ctx) const
6851 	{
6852 		TestCaseGroup* group = new TestCaseGroup(ctx.testContext, ctx.name.c_str(), ctx.name.c_str());
6853 
6854 		group->addChild(createFuncCase(ctx, "scalar",	m_funcs.func,	m_modularOp));
6855 		group->addChild(createFuncCase(ctx, "vec2",		m_funcs.func2,	m_modularOp));
6856 		group->addChild(createFuncCase(ctx, "vec3",		m_funcs.func3,	m_modularOp));
6857 		group->addChild(createFuncCase(ctx, "vec4",		m_funcs.func4,	m_modularOp));
6858 		return MovePtr<TestNode>(group);
6859 	}
6860 
getName(void) const6861 	string				getName				(void) const { return m_name; }
getDesc(void) const6862 	string				getDesc				(void) const { return "Function '" + m_funcs.func.getName() + "'"; }
6863 
6864 private:
6865 	const GenFuncs<Sig>	m_funcs;
6866 	string				m_name;
6867 	bool				m_modularOp;
6868 };
6869 
6870 template <template <int, class> class GenF, typename T>
6871 class TemplateFuncCaseFactory : public FuncCaseFactory
6872 {
6873 public:
createCase(const CaseContext & ctx) const6874 	MovePtr<TestNode>	createCase		(const CaseContext& ctx) const
6875 	{
6876 		TestCaseGroup*	group = new TestCaseGroup(ctx.testContext, ctx.name.c_str(), ctx.name.c_str());
6877 
6878 		group->addChild(createFuncCase(ctx, "scalar", instance<GenF<1, T> >()));
6879 		group->addChild(createFuncCase(ctx, "vec2", instance<GenF<2, T> >()));
6880 		group->addChild(createFuncCase(ctx, "vec3", instance<GenF<3, T> >()));
6881 		group->addChild(createFuncCase(ctx, "vec4", instance<GenF<4, T> >()));
6882 
6883 		return MovePtr<TestNode>(group);
6884 	}
6885 
getFunc(void) const6886 	const FuncBase&		getFunc			(void) const { return instance<GenF<1, T> >(); }
6887 };
6888 
6889 #ifndef CTS_USES_VULKANSC
6890 template <template <int> class GenF>
6891 class SquareMatrixFuncCaseFactory : public FuncCaseFactory
6892 {
6893 public:
createCase(const CaseContext & ctx) const6894 	MovePtr<TestNode>	createCase		(const CaseContext& ctx) const
6895 	{
6896 		TestCaseGroup* group = new TestCaseGroup(ctx.testContext, ctx.name.c_str(), ctx.name.c_str());
6897 
6898 		group->addChild(createFuncCase(ctx, "mat2", instance<GenF<2> >()));
6899 
6900 		// There is no defined precision for mediump/RelaxedPrecision in Vulkan
6901 		if (ctx.name != "mediump")
6902 		{
6903 			static const char			dataDir[]		= "builtin/precision/square_matrix";
6904 			std::string					fileName		= getFunc().getName() + "_" + ctx.name;
6905 			std::vector<std::string>	requirements;
6906 
6907 			if (ctx.name == "compute")
6908 			{
6909 				if (ctx.isFloat64b)
6910 				{
6911 					requirements.push_back("Features.shaderFloat64");
6912 					fileName += "_fp64";
6913 				}
6914 				else
6915 				{
6916 					requirements.push_back("Float16Int8Features.shaderFloat16");
6917 					requirements.push_back("VK_KHR_16bit_storage");
6918 					requirements.push_back("VK_KHR_storage_buffer_storage_class");
6919 					fileName += "_fp16";
6920 
6921 					if (ctx.isPackFloat16b == true)
6922 					{
6923 						fileName += "_32bit";
6924 					}
6925 					else
6926 					{
6927 						requirements.push_back("Storage16BitFeatures.storageBuffer16BitAccess");
6928 					}
6929 				}
6930 			}
6931 
6932 			group->addChild(cts_amber::createAmberTestCase(ctx.testContext, "mat3", "Square matrix 3x3 precision tests", dataDir, fileName + "_mat_3x3.amber", requirements));
6933 			group->addChild(cts_amber::createAmberTestCase(ctx.testContext, "mat4", "Square matrix 4x4 precision tests", dataDir, fileName + "_mat_4x4.amber", requirements));
6934 		}
6935 
6936 		return MovePtr<TestNode>(group);
6937 	}
6938 
getFunc(void) const6939 	const FuncBase&		getFunc			(void) const { return instance<GenF<2> >(); }
6940 };
6941 #endif // CTS_USES_VULKANSC
6942 
6943 template <template <int, int, class> class GenF, typename T>
6944 class MatrixFuncCaseFactory : public FuncCaseFactory
6945 {
6946 public:
createCase(const CaseContext & ctx) const6947 	MovePtr<TestNode>	createCase		(const CaseContext& ctx) const
6948 	{
6949 		TestCaseGroup*	const group = new TestCaseGroup(ctx.testContext, ctx.name.c_str(), ctx.name.c_str());
6950 
6951 		this->addCase<2, 2>(ctx, group);
6952 		this->addCase<3, 2>(ctx, group);
6953 		this->addCase<4, 2>(ctx, group);
6954 		this->addCase<2, 3>(ctx, group);
6955 		this->addCase<3, 3>(ctx, group);
6956 		this->addCase<4, 3>(ctx, group);
6957 		this->addCase<2, 4>(ctx, group);
6958 		this->addCase<3, 4>(ctx, group);
6959 		this->addCase<4, 4>(ctx, group);
6960 
6961 		return MovePtr<TestNode>(group);
6962 	}
6963 
getFunc(void) const6964 	const FuncBase&		getFunc			(void) const { return instance<GenF<2,2, T> >(); }
6965 
6966 private:
6967 	template <int Rows, int Cols>
addCase(const CaseContext & ctx,TestCaseGroup * group) const6968 	void				addCase			(const CaseContext& ctx, TestCaseGroup* group) const
6969 	{
6970 		const char*	const name = dataTypeNameOf<Matrix<float, Rows, Cols> >();
6971 		group->addChild(createFuncCase(ctx, name, instance<GenF<Rows, Cols, T> >()));
6972 	}
6973 };
6974 
6975 template <typename Sig>
6976 class SimpleFuncCaseFactory : public CaseFactory
6977 {
6978 public:
SimpleFuncCaseFactory(const Func<Sig> & func)6979 						SimpleFuncCaseFactory	(const Func<Sig>& func) : m_func(func) {}
6980 
createCase(const CaseContext & ctx) const6981 	MovePtr<TestNode>	createCase				(const CaseContext& ctx) const	{ return MovePtr<TestNode>(createFuncCase(ctx, ctx.name.c_str(), m_func)); }
getName(void) const6982 	string				getName					(void) const					{ return de::toLower(m_func.getName()); }
getDesc(void) const6983 	string				getDesc					(void) const					{ return "Function '" + getName() + "'"; }
6984 
6985 private:
6986 	const Func<Sig>&	m_func;
6987 };
6988 
6989 template <typename F>
createSimpleFuncCaseFactory(void)6990 SharedPtr<SimpleFuncCaseFactory<typename F::Sig> > createSimpleFuncCaseFactory (void)
6991 {
6992 	return SharedPtr<SimpleFuncCaseFactory<typename F::Sig> >(new SimpleFuncCaseFactory<typename F::Sig>(instance<F>()));
6993 }
6994 
6995 class CaseFactories
6996 {
6997 public:
~CaseFactories(void)6998 	virtual											~CaseFactories	(void) {}
6999 	virtual const std::vector<const CaseFactory*>	getFactories	(void) const = 0;
7000 };
7001 
7002 class BuiltinFuncs : public CaseFactories
7003 {
7004 public:
getFactories(void) const7005 	const vector<const CaseFactory*>		getFactories	(void) const
7006 	{
7007 		vector<const CaseFactory*> ret;
7008 
7009 		for (size_t ndx = 0; ndx < m_factories.size(); ++ndx)
7010 			ret.push_back(m_factories[ndx].get());
7011 
7012 		return ret;
7013 	}
7014 
addFactory(SharedPtr<const CaseFactory> fact)7015 	void									addFactory		(SharedPtr<const CaseFactory> fact) { m_factories.push_back(fact); }
7016 
7017 private:
7018 	vector<SharedPtr<const CaseFactory> >	m_factories;
7019 };
7020 
7021 template <typename F>
addScalarFactory(BuiltinFuncs & funcs,string name="",bool modularOp=false)7022 void addScalarFactory (BuiltinFuncs& funcs, string name = "", bool modularOp = false)
7023 {
7024 	if (name.empty())
7025 		name = instance<F>().getName();
7026 
7027 	funcs.addFactory(SharedPtr<const CaseFactory>(new GenFuncCaseFactory<typename F::Sig>(makeVectorizedFuncs<F>(), name, modularOp)));
7028 }
7029 
createBuiltinCases()7030 MovePtr<const CaseFactories> createBuiltinCases ()
7031 {
7032 	MovePtr<BuiltinFuncs>	funcs	(new BuiltinFuncs());
7033 
7034 	// Tests for ES3 builtins
7035 	addScalarFactory<Comparison< Signature<int, float, float> > >(*funcs);
7036 	addScalarFactory<Add< Signature<float, float, float> > >(*funcs);
7037 	addScalarFactory<Sub< Signature<float, float, float> > >(*funcs);
7038 	addScalarFactory<Mul< Signature<float, float, float> > >(*funcs);
7039 	addScalarFactory<Div< Signature<float, float, float> > >(*funcs);
7040 
7041 	addScalarFactory<Radians>(*funcs);
7042 	addScalarFactory<Degrees>(*funcs);
7043 	addScalarFactory<Sin<Signature<float, float> > >(*funcs);
7044 	addScalarFactory<Cos<Signature<float, float> > >(*funcs);
7045 	addScalarFactory<Tan>(*funcs);
7046 
7047 	addScalarFactory<ASin>(*funcs);
7048 	addScalarFactory<ACos>(*funcs);
7049 	addScalarFactory<ATan2< Signature<float, float, float> > >(*funcs, "atan2");
7050 	addScalarFactory<ATan<Signature<float, float> > >(*funcs);
7051 	addScalarFactory<Sinh>(*funcs);
7052 	addScalarFactory<Cosh>(*funcs);
7053 	addScalarFactory<Tanh>(*funcs);
7054 	addScalarFactory<ASinh>(*funcs);
7055 	addScalarFactory<ACosh>(*funcs);
7056 	addScalarFactory<ATanh>(*funcs);
7057 
7058 	addScalarFactory<Pow>(*funcs);
7059 	addScalarFactory<Exp<Signature<float, float> > >(*funcs);
7060 	addScalarFactory<Log< Signature<float, float> > >(*funcs);
7061 	addScalarFactory<Exp2<Signature<float, float> > >(*funcs);
7062 	addScalarFactory<Log2< Signature<float, float> > >(*funcs);
7063 	addScalarFactory<Sqrt32Bit>(*funcs);
7064 	addScalarFactory<InverseSqrt< Signature<float, float> > >(*funcs);
7065 
7066 	addScalarFactory<Abs< Signature<float, float> > >(*funcs);
7067 	addScalarFactory<Sign< Signature<float, float> > >(*funcs);
7068 	addScalarFactory<Floor32Bit>(*funcs);
7069 	addScalarFactory<Trunc32Bit>(*funcs);
7070 	addScalarFactory<Round< Signature<float, float> > >(*funcs);
7071 	addScalarFactory<RoundEven< Signature<float, float> > >(*funcs);
7072 	addScalarFactory<Ceil< Signature<float, float> > >(*funcs);
7073 	addScalarFactory<Fract>(*funcs);
7074 
7075 	addScalarFactory<Mod32Bit>(*funcs, "mod", true);
7076 	addScalarFactory<FRem32Bit>(*funcs);
7077 
7078 	addScalarFactory<Modf32Bit>(*funcs);
7079 	addScalarFactory<ModfStruct32Bit>(*funcs);
7080 	addScalarFactory<Min< Signature<float, float, float> > >(*funcs);
7081 	addScalarFactory<Max< Signature<float, float, float> > >(*funcs);
7082 	addScalarFactory<Clamp< Signature<float, float, float, float> > >(*funcs);
7083 	addScalarFactory<Mix>(*funcs);
7084 	addScalarFactory<Step< Signature<float, float, float> > >(*funcs);
7085 	addScalarFactory<SmoothStep< Signature<float, float, float, float> > >(*funcs);
7086 
7087 	funcs->addFactory(SharedPtr<const CaseFactory>(new TemplateFuncCaseFactory<Length, float>()));
7088 	funcs->addFactory(SharedPtr<const CaseFactory>(new TemplateFuncCaseFactory<Distance, float>()));
7089 	funcs->addFactory(SharedPtr<const CaseFactory>(new TemplateFuncCaseFactory<Dot, float>()));
7090 	funcs->addFactory(createSimpleFuncCaseFactory<Cross>());
7091 	funcs->addFactory(SharedPtr<const CaseFactory>(new TemplateFuncCaseFactory<Normalize, float>()));
7092 	funcs->addFactory(SharedPtr<const CaseFactory>(new TemplateFuncCaseFactory<FaceForward, float>()));
7093 	funcs->addFactory(SharedPtr<const CaseFactory>(new TemplateFuncCaseFactory<Reflect, float>()));
7094 	funcs->addFactory(SharedPtr<const CaseFactory>(new TemplateFuncCaseFactory<Refract, float>()));
7095 
7096 	funcs->addFactory(SharedPtr<const CaseFactory>(new MatrixFuncCaseFactory<MatrixCompMult, float>()));
7097 	funcs->addFactory(SharedPtr<const CaseFactory>(new MatrixFuncCaseFactory<OuterProduct, float>()));
7098 	funcs->addFactory(SharedPtr<const CaseFactory>(new MatrixFuncCaseFactory<Transpose, float>()));
7099 #ifndef CTS_USES_VULKANSC
7100 	funcs->addFactory(SharedPtr<const CaseFactory>(new SquareMatrixFuncCaseFactory<Determinant>()));
7101 	funcs->addFactory(SharedPtr<const CaseFactory>(new SquareMatrixFuncCaseFactory<Inverse>()));
7102 #endif // CTS_USES_VULKANSC
7103 
7104 	addScalarFactory<Frexp32Bit>(*funcs);
7105 	addScalarFactory<FrexpStruct32Bit>(*funcs);
7106 	addScalarFactory<LdExp <Signature<float, float, int> > >(*funcs);
7107 	addScalarFactory<Fma  <Signature<float, float, float, float> > >(*funcs);
7108 
7109 	return MovePtr<const CaseFactories>(funcs.release());
7110 }
7111 
createBuiltinDoubleCases()7112 MovePtr<const CaseFactories> createBuiltinDoubleCases ()
7113 {
7114 	MovePtr<BuiltinFuncs>	funcs	(new BuiltinFuncs());
7115 
7116 	// Tests for ES3 builtins
7117 	addScalarFactory<Comparison<Signature<int, double, double>>>(*funcs);
7118 	addScalarFactory<Add<Signature<double, double, double>>>(*funcs);
7119 	addScalarFactory<Sub<Signature<double, double, double>>>(*funcs);
7120 	addScalarFactory<Mul<Signature<double, double, double>>>(*funcs);
7121 	addScalarFactory<Div<Signature<double, double, double>>>(*funcs);
7122 
7123 	// Radians, degrees, sin, cos, tan, asin, acos, atan, sinh, cosh, tanh, asinh, acosh, atanh, atan2, pow, exp, log, exp2 and log2
7124 	// only work with 16-bit and 32-bit floating point types according to the spec.
7125 #if 0
7126 	addScalarFactory<Radians64>(*funcs);
7127 	addScalarFactory<Degrees64>(*funcs);
7128 	addScalarFactory<Sin<Signature<double, double>>>(*funcs);
7129 	addScalarFactory<Cos<Signature<double, double>>>(*funcs);
7130 	addScalarFactory<Tan64Bit>(*funcs);
7131 	addScalarFactory<ASin64Bit>(*funcs);
7132 	addScalarFactory<ACos64Bit>(*funcs);
7133 	addScalarFactory<ATan2<Signature<double, double, double>>>(*funcs, "atan2");
7134 	addScalarFactory<ATan<Signature<double, double>>>(*funcs);
7135 	addScalarFactory<Sinh64Bit>(*funcs);
7136 	addScalarFactory<Cosh64Bit>(*funcs);
7137 	addScalarFactory<Tanh64Bit>(*funcs);
7138 	addScalarFactory<ASinh64Bit>(*funcs);
7139 	addScalarFactory<ACosh64Bit>(*funcs);
7140 	addScalarFactory<ATanh64Bit>(*funcs);
7141 
7142 	addScalarFactory<Pow64>(*funcs);
7143 	addScalarFactory<Exp<Signature<double, double>>>(*funcs);
7144 	addScalarFactory<Log<Signature<double, double>>>(*funcs);
7145 	addScalarFactory<Exp2<Signature<double, double>>>(*funcs);
7146 	addScalarFactory<Log2<Signature<double, double>>>(*funcs);
7147 #endif
7148 	addScalarFactory<Sqrt64Bit>(*funcs);
7149 	addScalarFactory<InverseSqrt<Signature<double, double>>>(*funcs);
7150 
7151 	addScalarFactory<Abs<Signature<double, double>>>(*funcs);
7152 	addScalarFactory<Sign<Signature<double, double>>>(*funcs);
7153 	addScalarFactory<Floor64Bit>(*funcs);
7154 	addScalarFactory<Trunc64Bit>(*funcs);
7155 	addScalarFactory<Round<Signature<double, double>>>(*funcs);
7156 	addScalarFactory<RoundEven<Signature<double, double>>>(*funcs);
7157 	addScalarFactory<Ceil<Signature<double, double>>>(*funcs);
7158 	addScalarFactory<Fract64Bit>(*funcs);
7159 
7160 	addScalarFactory<Mod64Bit>(*funcs, "mod", true);
7161 	addScalarFactory<FRem64Bit>(*funcs);
7162 
7163 	addScalarFactory<Modf64Bit>(*funcs);
7164 	addScalarFactory<ModfStruct64Bit>(*funcs);
7165 	addScalarFactory<Min<Signature<double, double, double>>>(*funcs);
7166 	addScalarFactory<Max<Signature<double, double, double>>>(*funcs);
7167 	addScalarFactory<Clamp<Signature<double, double, double, double>>>(*funcs);
7168 	addScalarFactory<Mix64Bit>(*funcs);
7169 	addScalarFactory<Step<Signature<double, double, double>>>(*funcs);
7170 	addScalarFactory<SmoothStep<Signature<double, double, double, double>>>(*funcs);
7171 
7172 	funcs->addFactory(SharedPtr<const CaseFactory>(new TemplateFuncCaseFactory<Length, double>()));
7173 	funcs->addFactory(SharedPtr<const CaseFactory>(new TemplateFuncCaseFactory<Distance, double>()));
7174 	funcs->addFactory(SharedPtr<const CaseFactory>(new TemplateFuncCaseFactory<Dot, double>()));
7175 	funcs->addFactory(createSimpleFuncCaseFactory<Cross64Bit>());
7176 	funcs->addFactory(SharedPtr<const CaseFactory>(new TemplateFuncCaseFactory<Normalize, double>()));
7177 	funcs->addFactory(SharedPtr<const CaseFactory>(new TemplateFuncCaseFactory<FaceForward, double>()));
7178 	funcs->addFactory(SharedPtr<const CaseFactory>(new TemplateFuncCaseFactory<Reflect, double>()));
7179 	funcs->addFactory(SharedPtr<const CaseFactory>(new TemplateFuncCaseFactory<Refract, double>()));
7180 
7181 	funcs->addFactory(SharedPtr<const CaseFactory>(new MatrixFuncCaseFactory<MatrixCompMult, double>()));
7182 	funcs->addFactory(SharedPtr<const CaseFactory>(new MatrixFuncCaseFactory<OuterProduct, double>()));
7183 	funcs->addFactory(SharedPtr<const CaseFactory>(new MatrixFuncCaseFactory<Transpose, double>()));
7184 #ifndef CTS_USES_VULKANSC
7185 	funcs->addFactory(SharedPtr<const CaseFactory>(new SquareMatrixFuncCaseFactory<Determinant64bit>()));
7186 	funcs->addFactory(SharedPtr<const CaseFactory>(new SquareMatrixFuncCaseFactory<Inverse64bit>()));
7187 #endif // CTS_USES_VULKANSC
7188 
7189 	addScalarFactory<Frexp64Bit>(*funcs);
7190 	addScalarFactory<FrexpStruct64Bit>(*funcs);
7191 	addScalarFactory<LdExp<Signature<double, double, int>>>(*funcs);
7192 	addScalarFactory<Fma<Signature<double, double, double, double>>>(*funcs);
7193 
7194 	return MovePtr<const CaseFactories>(funcs.release());
7195 }
7196 
createBuiltinCases16Bit(void)7197 MovePtr<const CaseFactories> createBuiltinCases16Bit(void)
7198 {
7199 	MovePtr<BuiltinFuncs>	funcs(new BuiltinFuncs());
7200 
7201 	addScalarFactory<Comparison< Signature<int, deFloat16, deFloat16> > >(*funcs);
7202 	addScalarFactory<Add< Signature<deFloat16, deFloat16, deFloat16> > >(*funcs);
7203 	addScalarFactory<Sub< Signature<deFloat16, deFloat16, deFloat16> > >(*funcs);
7204 	addScalarFactory<Mul< Signature<deFloat16, deFloat16, deFloat16> > >(*funcs);
7205 	addScalarFactory<Div< Signature<deFloat16, deFloat16, deFloat16> > >(*funcs);
7206 
7207 	addScalarFactory<Radians16>(*funcs);
7208 	addScalarFactory<Degrees16>(*funcs);
7209 
7210 	addScalarFactory<Sin<Signature<deFloat16, deFloat16> > >(*funcs);
7211 	addScalarFactory<Cos<Signature<deFloat16, deFloat16> > >(*funcs);
7212 	addScalarFactory<Tan16Bit>(*funcs);
7213 	addScalarFactory<ASin16Bit>(*funcs);
7214 	addScalarFactory<ACos16Bit>(*funcs);
7215 	addScalarFactory<ATan2< Signature<deFloat16, deFloat16, deFloat16> > >(*funcs, "atan2");
7216 	addScalarFactory<ATan<Signature<deFloat16, deFloat16> > >(*funcs);
7217 
7218 	addScalarFactory<Sinh16Bit>(*funcs);
7219 	addScalarFactory<Cosh16Bit>(*funcs);
7220 	addScalarFactory<Tanh16Bit>(*funcs);
7221 	addScalarFactory<ASinh16Bit>(*funcs);
7222 	addScalarFactory<ACosh16Bit>(*funcs);
7223 	addScalarFactory<ATanh16Bit>(*funcs);
7224 
7225 	addScalarFactory<Pow16>(*funcs);
7226 	addScalarFactory<Exp< Signature<deFloat16, deFloat16> > >(*funcs);
7227 	addScalarFactory<Log< Signature<deFloat16, deFloat16> > >(*funcs);
7228 	addScalarFactory<Exp2< Signature<deFloat16, deFloat16> > >(*funcs);
7229 	addScalarFactory<Log2< Signature<deFloat16, deFloat16> > >(*funcs);
7230 	addScalarFactory<Sqrt16Bit>(*funcs);
7231 	addScalarFactory<InverseSqrt16Bit>(*funcs);
7232 
7233 	addScalarFactory<Abs< Signature<deFloat16, deFloat16> > >(*funcs);
7234 	addScalarFactory<Sign< Signature<deFloat16, deFloat16> > >(*funcs);
7235 	addScalarFactory<Floor16Bit>(*funcs);
7236 	addScalarFactory<Trunc16Bit>(*funcs);
7237 	addScalarFactory<Round< Signature<deFloat16, deFloat16> > >(*funcs);
7238 	addScalarFactory<RoundEven< Signature<deFloat16, deFloat16> > >(*funcs);
7239 	addScalarFactory<Ceil< Signature<deFloat16, deFloat16> > >(*funcs);
7240 	addScalarFactory<Fract16Bit>(*funcs);
7241 
7242 	addScalarFactory<Mod16Bit>(*funcs, "mod", true);
7243 	addScalarFactory<FRem16Bit>(*funcs);
7244 
7245 	addScalarFactory<Modf16Bit>(*funcs);
7246 	addScalarFactory<ModfStruct16Bit>(*funcs);
7247 	addScalarFactory<Min< Signature<deFloat16, deFloat16, deFloat16> > >(*funcs);
7248 	addScalarFactory<Max< Signature<deFloat16, deFloat16, deFloat16> > >(*funcs);
7249 	addScalarFactory<Clamp< Signature<deFloat16, deFloat16, deFloat16, deFloat16> > >(*funcs);
7250 	addScalarFactory<Mix16Bit>(*funcs);
7251 	addScalarFactory<Step< Signature<deFloat16, deFloat16, deFloat16> > >(*funcs);
7252 	addScalarFactory<SmoothStep< Signature<deFloat16, deFloat16, deFloat16, deFloat16> > >(*funcs);
7253 
7254 	funcs->addFactory(SharedPtr<const CaseFactory>(new TemplateFuncCaseFactory<Length, deFloat16>()));
7255 	funcs->addFactory(SharedPtr<const CaseFactory>(new TemplateFuncCaseFactory<Distance, deFloat16>()));
7256 	funcs->addFactory(SharedPtr<const CaseFactory>(new TemplateFuncCaseFactory<Dot, deFloat16>()));
7257 	funcs->addFactory(createSimpleFuncCaseFactory<Cross16Bit>());
7258 	funcs->addFactory(SharedPtr<const CaseFactory>(new TemplateFuncCaseFactory<Normalize, deFloat16>()));
7259 	funcs->addFactory(SharedPtr<const CaseFactory>(new TemplateFuncCaseFactory<FaceForward, deFloat16>()));
7260 	funcs->addFactory(SharedPtr<const CaseFactory>(new TemplateFuncCaseFactory<Reflect, deFloat16>()));
7261 	funcs->addFactory(SharedPtr<const CaseFactory>(new TemplateFuncCaseFactory<Refract, deFloat16>()));
7262 
7263 	funcs->addFactory(SharedPtr<const CaseFactory>(new MatrixFuncCaseFactory<OuterProduct, deFloat16>()));
7264 	funcs->addFactory(SharedPtr<const CaseFactory>(new MatrixFuncCaseFactory<Transpose, deFloat16>()));
7265 #ifndef CTS_USES_VULKANSC
7266 	funcs->addFactory(SharedPtr<const CaseFactory>(new SquareMatrixFuncCaseFactory<Determinant16bit>()));
7267 	funcs->addFactory(SharedPtr<const CaseFactory>(new SquareMatrixFuncCaseFactory<Inverse16bit>()));
7268 #endif // CTS_USES_VULKANSC
7269 
7270 	addScalarFactory<Frexp16Bit>(*funcs);
7271 	addScalarFactory<FrexpStruct16Bit>(*funcs);
7272 	addScalarFactory<LdExp <Signature<deFloat16, deFloat16, int> > >(*funcs);
7273 	addScalarFactory<Fma <Signature<deFloat16, deFloat16, deFloat16, deFloat16> > >(*funcs);
7274 
7275 	return MovePtr<const CaseFactories>(funcs.release());
7276 }
7277 
createFuncGroup(TestContext & ctx,const CaseFactory & factory,int numRandoms)7278 TestCaseGroup* createFuncGroup (TestContext& ctx, const CaseFactory& factory, int numRandoms)
7279 {
7280 	TestCaseGroup* const	group	= new TestCaseGroup(ctx, factory.getName().c_str(), factory.getDesc().c_str());
7281 	const FloatFormat		highp		(-126, 127, 23, true,
7282 										 tcu::MAYBE,	// subnormals
7283 										 tcu::YES,		// infinities
7284 										 tcu::MAYBE);	// NaN
7285 	const FloatFormat       mediump		(-14, 13, 10, false, tcu::MAYBE);
7286 
7287 	for (int precNdx = glu::PRECISION_MEDIUMP; precNdx < glu::PRECISION_LAST; ++precNdx)
7288 	{
7289 		const Precision		precision	= Precision(precNdx);
7290 		const string		precName	(glu::getPrecisionName(precision));
7291 		const FloatFormat&	fmt			= precNdx == glu::PRECISION_MEDIUMP ? mediump : highp;
7292 
7293 		const CaseContext	caseCtx		(precName, ctx, fmt, highp, precision, glu::SHADERTYPE_COMPUTE, numRandoms);
7294 
7295 		group->addChild(factory.createCase(caseCtx).release());
7296 	}
7297 
7298 	return group;
7299 }
7300 
createFuncGroupDouble(TestContext & ctx,const CaseFactory & factory,int numRandoms)7301 TestCaseGroup* createFuncGroupDouble (TestContext& ctx, const CaseFactory& factory, int numRandoms)
7302 {
7303 	TestCaseGroup* const	group		= new TestCaseGroup(ctx, factory.getName().c_str(), factory.getDesc().c_str());
7304 	const Precision			precision	= Precision(glu::PRECISION_LAST);
7305 	const FloatFormat		highp		(-1022, 1023, 52, true,
7306 										 tcu::MAYBE,	// subnormals
7307 										 tcu::YES,		// infinities
7308 										 tcu::MAYBE);	// NaN
7309 
7310 	PrecisionTestFeatures precisionTestFeatures = PRECISION_TEST_FEATURES_64BIT_SHADER_FLOAT;
7311 
7312 	const CaseContext caseCtx("compute", ctx, highp, highp, precision, glu::SHADERTYPE_COMPUTE, numRandoms, precisionTestFeatures, false, true);
7313 	group->addChild(factory.createCase(caseCtx).release());
7314 
7315 	return group;
7316 }
7317 
createFuncGroup16Bit(TestContext & ctx,const CaseFactory & factory,int numRandoms,bool storage32)7318 TestCaseGroup* createFuncGroup16Bit(TestContext& ctx, const CaseFactory& factory, int numRandoms, bool storage32)
7319 {
7320 	TestCaseGroup* const	group = new TestCaseGroup(ctx, factory.getName().c_str(), factory.getDesc().c_str());
7321 	const Precision			precision = Precision(glu::PRECISION_LAST);
7322 	const FloatFormat		float16	(-14, 15, 10, true, tcu::MAYBE);
7323 
7324 	PrecisionTestFeatures precisionTestFeatures = PRECISION_TEST_FEATURES_16BIT_SHADER_FLOAT;
7325 	if (!storage32)
7326 		precisionTestFeatures |= PRECISION_TEST_FEATURES_16BIT_UNIFORM_AND_STORAGE_BUFFER_ACCESS;
7327 
7328 	const CaseContext caseCtx("compute", ctx, float16, float16, precision, glu::SHADERTYPE_COMPUTE, numRandoms, precisionTestFeatures, storage32);
7329 	group->addChild(factory.createCase(caseCtx).release());
7330 
7331 	return group;
7332 }
7333 
7334 const int defRandoms	= 16384;
7335 
addBuiltinPrecisionTests(TestContext & ctx,TestCaseGroup & dstGroup,const bool test16Bit=false,const bool storage32Bit=false)7336 void addBuiltinPrecisionTests (TestContext&				ctx,
7337 								TestCaseGroup&			dstGroup,
7338 								const bool				test16Bit = false,
7339 								const bool				storage32Bit = false)
7340 {
7341 	const int userRandoms	= ctx.getCommandLine().getTestIterationCount();
7342 	const int numRandoms	= userRandoms > 0 ? userRandoms : defRandoms;
7343 
7344 	MovePtr<const CaseFactories> cases = (test16Bit && !storage32Bit)	? createBuiltinCases16Bit()
7345 																		: createBuiltinCases();
7346 	for (size_t ndx = 0; ndx < cases->getFactories().size(); ++ndx)
7347 	{
7348 		if (!test16Bit)
7349 			dstGroup.addChild(createFuncGroup(ctx, *cases->getFactories()[ndx], numRandoms));
7350 		else
7351 			dstGroup.addChild(createFuncGroup16Bit(ctx, *cases->getFactories()[ndx], numRandoms, storage32Bit));
7352 	}
7353 }
7354 
addBuiltinPrecisionDoubleTests(TestContext & ctx,TestCaseGroup & dstGroup)7355 void addBuiltinPrecisionDoubleTests (TestContext&		ctx,
7356 									 TestCaseGroup&		dstGroup)
7357 {
7358 	const int userRandoms	= ctx.getCommandLine().getTestIterationCount();
7359 	const int numRandoms	= userRandoms > 0 ? userRandoms : defRandoms;
7360 
7361 	MovePtr<const CaseFactories> cases = createBuiltinDoubleCases();
7362 	for (size_t ndx = 0; ndx < cases->getFactories().size(); ++ndx)
7363 	{
7364 		dstGroup.addChild(createFuncGroupDouble(ctx, *cases->getFactories()[ndx], numRandoms));
7365 	}
7366 }
7367 
BuiltinPrecisionTests(tcu::TestContext & testCtx)7368 BuiltinPrecisionTests::BuiltinPrecisionTests (tcu::TestContext& testCtx)
7369 	: tcu::TestCaseGroup(testCtx, "precision", "Builtin precision tests")
7370 {
7371 }
7372 
~BuiltinPrecisionTests(void)7373 BuiltinPrecisionTests::~BuiltinPrecisionTests (void)
7374 {
7375 }
7376 
init(void)7377 void BuiltinPrecisionTests::init (void)
7378 {
7379 	addBuiltinPrecisionTests(m_testCtx, *this);
7380 }
7381 
BuiltinPrecisionDoubleTests(tcu::TestContext & testCtx)7382 BuiltinPrecisionDoubleTests::BuiltinPrecisionDoubleTests (tcu::TestContext& testCtx)
7383 	: tcu::TestCaseGroup(testCtx, "precision_double", "Builtin precision tests")
7384 {
7385 }
7386 
~BuiltinPrecisionDoubleTests(void)7387 BuiltinPrecisionDoubleTests::~BuiltinPrecisionDoubleTests (void)
7388 {
7389 }
7390 
init(void)7391 void BuiltinPrecisionDoubleTests::init (void)
7392 {
7393 	addBuiltinPrecisionDoubleTests(m_testCtx, *this);
7394 }
7395 
BuiltinPrecision16BitTests(tcu::TestContext & testCtx)7396 BuiltinPrecision16BitTests::BuiltinPrecision16BitTests (tcu::TestContext& testCtx)
7397 	: tcu::TestCaseGroup(testCtx, "precision_fp16_storage16b", "Builtin precision tests")
7398 {
7399 }
7400 
~BuiltinPrecision16BitTests(void)7401 BuiltinPrecision16BitTests::~BuiltinPrecision16BitTests (void)
7402 {
7403 }
7404 
init(void)7405 void BuiltinPrecision16BitTests::init (void)
7406 {
7407 	addBuiltinPrecisionTests(m_testCtx, *this, true);
7408 }
7409 
BuiltinPrecision16Storage32BitTests(tcu::TestContext & testCtx)7410 BuiltinPrecision16Storage32BitTests::BuiltinPrecision16Storage32BitTests(tcu::TestContext& testCtx)
7411 	: tcu::TestCaseGroup(testCtx, "precision_fp16_storage32b", "Builtin precision tests")
7412 {
7413 }
7414 
~BuiltinPrecision16Storage32BitTests(void)7415 BuiltinPrecision16Storage32BitTests::~BuiltinPrecision16Storage32BitTests(void)
7416 {
7417 }
7418 
init(void)7419 void BuiltinPrecision16Storage32BitTests::init(void)
7420 {
7421 	addBuiltinPrecisionTests(m_testCtx, *this, true, true);
7422 }
7423 
7424 } // shaderexecutor
7425 } // vkt
7426