• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
2 
3 Licensed under the Apache License, Version 2.0 (the "License");
4 you may not use this file except in compliance with the License.
5 You may obtain a copy of the License at
6 
7     http://www.apache.org/licenses/LICENSE-2.0
8 
9 Unless required by applicable law or agreed to in writing, software
10 distributed under the License is distributed on an "AS IS" BASIS,
11 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 See the License for the specific language governing permissions and
13 limitations under the License.
14 ==============================================================================*/
15 
16 #include "tensorflow/compiler/jit/introduce_floating_point_jitter_pass.h"
17 #include "absl/algorithm/container.h"
18 #include "absl/container/flat_hash_map.h"
19 #include "tensorflow/cc/framework/scope_internal.h"
20 #include "tensorflow/cc/ops/const_op.h"
21 #include "tensorflow/cc/ops/math_ops.h"
22 #include "tensorflow/compiler/jit/flags.h"
23 #include "tensorflow/core/graph/tensor_id.h"
24 
25 namespace tensorflow {
26 namespace {
GetNodesToModify(const Graph & g,absl::Span<const string> tensor_names)27 std::vector<std::pair<Node*, std::vector<int>>> GetNodesToModify(
28     const Graph& g, absl::Span<const string> tensor_names) {
29   absl::flat_hash_map<string, Node*> name_to_node;
30   for (Node* n : g.op_nodes()) {
31     name_to_node[n->name()] = n;
32   }
33 
34   absl::flat_hash_map<Node*, std::vector<int>> nodes_to_modify_map;
35 
36   for (const string& tensor_name : tensor_names) {
37     TensorId tensor_id = ParseTensorName(tensor_name);
38     auto it = name_to_node.find(tensor_id.node());
39     DCHECK(it != name_to_node.end());
40     nodes_to_modify_map[it->second].push_back(tensor_id.index());
41   }
42 
43   std::vector<std::pair<Node*, std::vector<int>>> nodes_to_modify;
44   absl::c_copy(nodes_to_modify_map, std::back_inserter(nodes_to_modify));
45 
46   absl::c_sort(nodes_to_modify,
47                [](const std::pair<Node*, std::vector<int>>& a,
48                   const std::pair<Node*, std::vector<int>>& b) {
49                  return a.first->id() < b.first->id();
50                });
51 
52   for (auto& p : nodes_to_modify) {
53     absl::c_sort(p.second);
54     p.second.erase(std::unique(p.second.begin(), p.second.end()),
55                    p.second.end());
56   }
57 
58   return nodes_to_modify;
59 }
60 
IntroduceJitterToTensor(Graph * g,Node * n,int oidx,float jitter_amount,absl::flat_hash_map<std::pair<DataType,Node * >,Output> * node_to_jitter_constant)61 Status IntroduceJitterToTensor(
62     Graph* g, Node* n, int oidx, float jitter_amount,
63     absl::flat_hash_map<std::pair<DataType, Node*>, Output>*
64         node_to_jitter_constant) {
65   std::vector<const Edge*> edges_to_update;
66   absl::c_copy_if(n->out_edges(), std::back_inserter(edges_to_update),
67                   [&](const Edge* e) { return e->src_output() == oidx; });
68 
69   if (edges_to_update.empty()) {
70     VLOG(1) << "No users for " << TensorId(n->name(), oidx).ToString();
71     return OkStatus();
72   }
73 
74   VLOG(1) << "Updating " << edges_to_update.size() << " users for  "
75           << TensorId(n->name(), oidx).ToString();
76 
77   Status status;
78   Scope s = NewInternalScope(g, &status, /*refiner=*/nullptr)
79                 .NewSubScope(absl::StrCat(n->name(), "/jitter"));
80 
81   Output node_out(n, oidx);
82   Output jitter_constant;
83   DataType dtype = n->output_type(oidx);
84   auto it = node_to_jitter_constant->find({dtype, n});
85   if (it == node_to_jitter_constant->end()) {
86     Tensor constant_tensor;
87     if (dtype == DT_FLOAT) {
88       constant_tensor = Tensor(static_cast<float>(jitter_amount));
89     } else if (dtype == DT_HALF) {
90       constant_tensor = Tensor(Eigen::half(jitter_amount));
91     } else {
92       return errors::Unimplemented("Only float and half are supported");
93     }
94 
95     jitter_constant =
96         ops::Const(s.WithOpName("jitter_amount"), constant_tensor);
97     (*node_to_jitter_constant)[{dtype, n}] = jitter_constant;
98   } else {
99     jitter_constant = it->second;
100   }
101 
102   Output jittered_output =
103       ops::Add(s.NewSubScope(absl::StrCat(oidx)).WithOpName("jittered_output"),
104                jitter_constant, node_out);
105 
106   TF_RETURN_IF_ERROR(status);
107 
108   for (const Edge* e : edges_to_update) {
109     VLOG(3) << "Updating " << e->dst()->name();
110     TF_RETURN_IF_ERROR(
111         g->UpdateEdge(jittered_output.node(), 0, e->dst(), e->dst_input()));
112   }
113 
114   // Add a control edge to make sure that the two inputs to jittered_output are
115   // from the same frame.
116   g->AddControlEdge(n, jitter_constant.node());
117 
118   return OkStatus();
119 }
120 }  // namespace
121 
IntroduceFloatingPointJitter(Graph * graph,absl::Span<string const> tensor_names,float jitter_amount)122 Status IntroduceFloatingPointJitter(Graph* graph,
123                                     absl::Span<string const> tensor_names,
124                                     float jitter_amount) {
125   if (tensor_names.empty()) {
126     VLOG(3) << "Nothing to do";
127     return OkStatus();
128   }
129 
130   std::vector<std::pair<Node*, std::vector<int>>> nodes_to_modify =
131       GetNodesToModify(*graph, tensor_names);
132 
133   absl::flat_hash_map<std::pair<DataType, Node*>, Output>
134       node_to_jitter_constant;
135   for (const auto& p : nodes_to_modify) {
136     for (int oidx : p.second) {
137       TF_RETURN_IF_ERROR(IntroduceJitterToTensor(
138           graph, p.first, oidx, jitter_amount, &node_to_jitter_constant));
139     }
140   }
141 
142   return OkStatus();
143 }
144 
Run(const GraphOptimizationPassOptions & options)145 Status IntroduceFloatingPointJitterPass::Run(
146     const GraphOptimizationPassOptions& options) {
147   const IntroduceFloatingPointJitterPassFlags& flags =
148       GetIntroduceFloatingPointJitterPassFlags();
149 
150   return IntroduceFloatingPointJitter(options.graph->get(), flags.tensor_names,
151                                       flags.jitter_amount);
152 }
153 }  // namespace tensorflow
154