• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * jchuff.c
3  *
4  * This file was part of the Independent JPEG Group's software:
5  * Copyright (C) 1991-1997, Thomas G. Lane.
6  * libjpeg-turbo Modifications:
7  * Copyright (C) 2009-2011, 2014-2016, 2018-2021, D. R. Commander.
8  * Copyright (C) 2015, Matthieu Darbois.
9  * Copyright (C) 2018, Matthias Räncker.
10  * Copyright (C) 2020, Arm Limited.
11  * For conditions of distribution and use, see the accompanying README.ijg
12  * file.
13  *
14  * This file contains Huffman entropy encoding routines.
15  *
16  * Much of the complexity here has to do with supporting output suspension.
17  * If the data destination module demands suspension, we want to be able to
18  * back up to the start of the current MCU.  To do this, we copy state
19  * variables into local working storage, and update them back to the
20  * permanent JPEG objects only upon successful completion of an MCU.
21  *
22  * NOTE: All referenced figures are from
23  * Recommendation ITU-T T.81 (1992) | ISO/IEC 10918-1:1994.
24  */
25 
26 #define JPEG_INTERNALS
27 #include "jinclude.h"
28 #include "jpeglib.h"
29 #include "jsimd.h"
30 #include "jconfigint.h"
31 #include <limits.h>
32 
33 /*
34  * NOTE: If USE_CLZ_INTRINSIC is defined, then clz/bsr instructions will be
35  * used for bit counting rather than the lookup table.  This will reduce the
36  * memory footprint by 64k, which is important for some mobile applications
37  * that create many isolated instances of libjpeg-turbo (web browsers, for
38  * instance.)  This may improve performance on some mobile platforms as well.
39  * This feature is enabled by default only on Arm processors, because some x86
40  * chips have a slow implementation of bsr, and the use of clz/bsr cannot be
41  * shown to have a significant performance impact even on the x86 chips that
42  * have a fast implementation of it.  When building for Armv6, you can
43  * explicitly disable the use of clz/bsr by adding -mthumb to the compiler
44  * flags (this defines __thumb__).
45  */
46 
47 /* NOTE: Both GCC and Clang define __GNUC__ */
48 #if (defined(__GNUC__) && (defined(__arm__) || defined(__aarch64__))) || \
49     defined(_M_ARM) || defined(_M_ARM64)
50 #if !defined(__thumb__) || defined(__thumb2__)
51 #define USE_CLZ_INTRINSIC
52 #endif
53 #endif
54 
55 #ifdef USE_CLZ_INTRINSIC
56 #if defined(_MSC_VER) && !defined(__clang__)
57 #define JPEG_NBITS_NONZERO(x)  (32 - _CountLeadingZeros(x))
58 #else
59 #define JPEG_NBITS_NONZERO(x)  (32 - __builtin_clz(x))
60 #endif
61 #define JPEG_NBITS(x)          (x ? JPEG_NBITS_NONZERO(x) : 0)
62 #else
63 #include "jpeg_nbits_table.h"
64 #define JPEG_NBITS(x)          (jpeg_nbits_table[x])
65 #define JPEG_NBITS_NONZERO(x)  JPEG_NBITS(x)
66 #endif
67 
68 
69 /* Expanded entropy encoder object for Huffman encoding.
70  *
71  * The savable_state subrecord contains fields that change within an MCU,
72  * but must not be updated permanently until we complete the MCU.
73  */
74 
75 #if defined(__x86_64__) && defined(__ILP32__)
76 typedef unsigned long long bit_buf_type;
77 #else
78 typedef size_t bit_buf_type;
79 #endif
80 
81 /* NOTE: The more optimal Huffman encoding algorithm is only used by the
82  * intrinsics implementation of the Arm Neon SIMD extensions, which is why we
83  * retain the old Huffman encoder behavior when using the GAS implementation.
84  */
85 #if defined(WITH_SIMD) && !(defined(__arm__) || defined(__aarch64__) || \
86                             defined(_M_ARM) || defined(_M_ARM64))
87 typedef unsigned long long simd_bit_buf_type;
88 #else
89 typedef bit_buf_type simd_bit_buf_type;
90 #endif
91 
92 #if (defined(SIZEOF_SIZE_T) && SIZEOF_SIZE_T == 8) || defined(_WIN64) || \
93     (defined(__x86_64__) && defined(__ILP32__))
94 #define BIT_BUF_SIZE  64
95 #elif (defined(SIZEOF_SIZE_T) && SIZEOF_SIZE_T == 4) || defined(_WIN32)
96 #define BIT_BUF_SIZE  32
97 #else
98 #error Cannot determine word size
99 #endif
100 #define SIMD_BIT_BUF_SIZE  (sizeof(simd_bit_buf_type) * 8)
101 
102 typedef struct {
103   union {
104     bit_buf_type c;
105     simd_bit_buf_type simd;
106   } put_buffer;                         /* current bit accumulation buffer */
107   int free_bits;                        /* # of bits available in it */
108                                         /* (Neon GAS: # of bits now in it) */
109   int last_dc_val[MAX_COMPS_IN_SCAN];   /* last DC coef for each component */
110 } savable_state;
111 
112 typedef struct {
113   struct jpeg_entropy_encoder pub; /* public fields */
114 
115   savable_state saved;          /* Bit buffer & DC state at start of MCU */
116 
117   /* These fields are NOT loaded into local working state. */
118   unsigned int restarts_to_go;  /* MCUs left in this restart interval */
119   int next_restart_num;         /* next restart number to write (0-7) */
120 
121   /* Pointers to derived tables (these workspaces have image lifespan) */
122   c_derived_tbl *dc_derived_tbls[NUM_HUFF_TBLS];
123   c_derived_tbl *ac_derived_tbls[NUM_HUFF_TBLS];
124 
125 #ifdef ENTROPY_OPT_SUPPORTED    /* Statistics tables for optimization */
126   long *dc_count_ptrs[NUM_HUFF_TBLS];
127   long *ac_count_ptrs[NUM_HUFF_TBLS];
128 #endif
129 
130   int simd;
131 } huff_entropy_encoder;
132 
133 typedef huff_entropy_encoder *huff_entropy_ptr;
134 
135 /* Working state while writing an MCU.
136  * This struct contains all the fields that are needed by subroutines.
137  */
138 
139 typedef struct {
140   JOCTET *next_output_byte;     /* => next byte to write in buffer */
141   size_t free_in_buffer;        /* # of byte spaces remaining in buffer */
142   savable_state cur;            /* Current bit buffer & DC state */
143   j_compress_ptr cinfo;         /* dump_buffer needs access to this */
144   int simd;
145 } working_state;
146 
147 
148 /* Forward declarations */
149 METHODDEF(boolean) encode_mcu_huff(j_compress_ptr cinfo, JBLOCKROW *MCU_data);
150 METHODDEF(void) finish_pass_huff(j_compress_ptr cinfo);
151 #ifdef ENTROPY_OPT_SUPPORTED
152 METHODDEF(boolean) encode_mcu_gather(j_compress_ptr cinfo,
153                                      JBLOCKROW *MCU_data);
154 METHODDEF(void) finish_pass_gather(j_compress_ptr cinfo);
155 #endif
156 
157 
158 /*
159  * Initialize for a Huffman-compressed scan.
160  * If gather_statistics is TRUE, we do not output anything during the scan,
161  * just count the Huffman symbols used and generate Huffman code tables.
162  */
163 
164 METHODDEF(void)
start_pass_huff(j_compress_ptr cinfo,boolean gather_statistics)165 start_pass_huff(j_compress_ptr cinfo, boolean gather_statistics)
166 {
167   huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
168   int ci, dctbl, actbl;
169   jpeg_component_info *compptr;
170 
171   if (gather_statistics) {
172 #ifdef ENTROPY_OPT_SUPPORTED
173     entropy->pub.encode_mcu = encode_mcu_gather;
174     entropy->pub.finish_pass = finish_pass_gather;
175 #else
176     ERREXIT(cinfo, JERR_NOT_COMPILED);
177 #endif
178   } else {
179     entropy->pub.encode_mcu = encode_mcu_huff;
180     entropy->pub.finish_pass = finish_pass_huff;
181   }
182 
183   entropy->simd = jsimd_can_huff_encode_one_block();
184 
185   for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
186     compptr = cinfo->cur_comp_info[ci];
187     dctbl = compptr->dc_tbl_no;
188     actbl = compptr->ac_tbl_no;
189     if (gather_statistics) {
190 #ifdef ENTROPY_OPT_SUPPORTED
191       /* Check for invalid table indexes */
192       /* (make_c_derived_tbl does this in the other path) */
193       if (dctbl < 0 || dctbl >= NUM_HUFF_TBLS)
194         ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, dctbl);
195       if (actbl < 0 || actbl >= NUM_HUFF_TBLS)
196         ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, actbl);
197       /* Allocate and zero the statistics tables */
198       /* Note that jpeg_gen_optimal_table expects 257 entries in each table! */
199       if (entropy->dc_count_ptrs[dctbl] == NULL)
200         entropy->dc_count_ptrs[dctbl] = (long *)
201           (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
202                                       257 * sizeof(long));
203       MEMZERO(entropy->dc_count_ptrs[dctbl], 257 * sizeof(long));
204       if (entropy->ac_count_ptrs[actbl] == NULL)
205         entropy->ac_count_ptrs[actbl] = (long *)
206           (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
207                                       257 * sizeof(long));
208       MEMZERO(entropy->ac_count_ptrs[actbl], 257 * sizeof(long));
209 #endif
210     } else {
211       /* Compute derived values for Huffman tables */
212       /* We may do this more than once for a table, but it's not expensive */
213       jpeg_make_c_derived_tbl(cinfo, TRUE, dctbl,
214                               &entropy->dc_derived_tbls[dctbl]);
215       jpeg_make_c_derived_tbl(cinfo, FALSE, actbl,
216                               &entropy->ac_derived_tbls[actbl]);
217     }
218     /* Initialize DC predictions to 0 */
219     entropy->saved.last_dc_val[ci] = 0;
220   }
221 
222   /* Initialize bit buffer to empty */
223   if (entropy->simd) {
224     entropy->saved.put_buffer.simd = 0;
225 #if defined(__aarch64__) && !defined(NEON_INTRINSICS)
226     entropy->saved.free_bits = 0;
227 #else
228     entropy->saved.free_bits = SIMD_BIT_BUF_SIZE;
229 #endif
230   } else {
231     entropy->saved.put_buffer.c = 0;
232     entropy->saved.free_bits = BIT_BUF_SIZE;
233   }
234 
235   /* Initialize restart stuff */
236   entropy->restarts_to_go = cinfo->restart_interval;
237   entropy->next_restart_num = 0;
238 }
239 
240 
241 /*
242  * Compute the derived values for a Huffman table.
243  * This routine also performs some validation checks on the table.
244  *
245  * Note this is also used by jcphuff.c.
246  */
247 
248 GLOBAL(void)
jpeg_make_c_derived_tbl(j_compress_ptr cinfo,boolean isDC,int tblno,c_derived_tbl ** pdtbl)249 jpeg_make_c_derived_tbl(j_compress_ptr cinfo, boolean isDC, int tblno,
250                         c_derived_tbl **pdtbl)
251 {
252   JHUFF_TBL *htbl;
253   c_derived_tbl *dtbl;
254   int p, i, l, lastp, si, maxsymbol;
255   char huffsize[257];
256   unsigned int huffcode[257];
257   unsigned int code;
258 
259   /* Note that huffsize[] and huffcode[] are filled in code-length order,
260    * paralleling the order of the symbols themselves in htbl->huffval[].
261    */
262 
263   /* Find the input Huffman table */
264   if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
265     ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
266   htbl =
267     isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
268   if (htbl == NULL)
269     ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
270 
271   /* Allocate a workspace if we haven't already done so. */
272   if (*pdtbl == NULL)
273     *pdtbl = (c_derived_tbl *)
274       (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
275                                   sizeof(c_derived_tbl));
276   dtbl = *pdtbl;
277 
278   /* Figure C.1: make table of Huffman code length for each symbol */
279 
280   p = 0;
281   for (l = 1; l <= 16; l++) {
282     i = (int)htbl->bits[l];
283     if (i < 0 || p + i > 256)   /* protect against table overrun */
284       ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
285     while (i--)
286       huffsize[p++] = (char)l;
287   }
288   huffsize[p] = 0;
289   lastp = p;
290 
291   /* Figure C.2: generate the codes themselves */
292   /* We also validate that the counts represent a legal Huffman code tree. */
293 
294   code = 0;
295   si = huffsize[0];
296   p = 0;
297   while (huffsize[p]) {
298     while (((int)huffsize[p]) == si) {
299       huffcode[p++] = code;
300       code++;
301     }
302     /* code is now 1 more than the last code used for codelength si; but
303      * it must still fit in si bits, since no code is allowed to be all ones.
304      */
305     if (((JLONG)code) >= (((JLONG)1) << si))
306       ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
307     code <<= 1;
308     si++;
309   }
310 
311   /* Figure C.3: generate encoding tables */
312   /* These are code and size indexed by symbol value */
313 
314   /* Set all codeless symbols to have code length 0;
315    * this lets us detect duplicate VAL entries here, and later
316    * allows emit_bits to detect any attempt to emit such symbols.
317    */
318   MEMZERO(dtbl->ehufco, sizeof(dtbl->ehufco));
319   MEMZERO(dtbl->ehufsi, sizeof(dtbl->ehufsi));
320 
321   /* This is also a convenient place to check for out-of-range
322    * and duplicated VAL entries.  We allow 0..255 for AC symbols
323    * but only 0..15 for DC.  (We could constrain them further
324    * based on data depth and mode, but this seems enough.)
325    */
326   maxsymbol = isDC ? 15 : 255;
327 
328   for (p = 0; p < lastp; p++) {
329     i = htbl->huffval[p];
330     if (i < 0 || i > maxsymbol || dtbl->ehufsi[i])
331       ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
332     dtbl->ehufco[i] = huffcode[p];
333     dtbl->ehufsi[i] = huffsize[p];
334   }
335 }
336 
337 
338 /* Outputting bytes to the file */
339 
340 /* Emit a byte, taking 'action' if must suspend. */
341 #define emit_byte(state, val, action) { \
342   *(state)->next_output_byte++ = (JOCTET)(val); \
343   if (--(state)->free_in_buffer == 0) \
344     if (!dump_buffer(state)) \
345       { action; } \
346 }
347 
348 
349 LOCAL(boolean)
dump_buffer(working_state * state)350 dump_buffer(working_state *state)
351 /* Empty the output buffer; return TRUE if successful, FALSE if must suspend */
352 {
353   struct jpeg_destination_mgr *dest = state->cinfo->dest;
354 
355   if (!(*dest->empty_output_buffer) (state->cinfo))
356     return FALSE;
357   /* After a successful buffer dump, must reset buffer pointers */
358   state->next_output_byte = dest->next_output_byte;
359   state->free_in_buffer = dest->free_in_buffer;
360   return TRUE;
361 }
362 
363 
364 /* Outputting bits to the file */
365 
366 /* Output byte b and, speculatively, an additional 0 byte.  0xFF must be
367  * encoded as 0xFF 0x00, so the output buffer pointer is advanced by 2 if the
368  * byte is 0xFF.  Otherwise, the output buffer pointer is advanced by 1, and
369  * the speculative 0 byte will be overwritten by the next byte.
370  */
371 #define EMIT_BYTE(b) { \
372   buffer[0] = (JOCTET)(b); \
373   buffer[1] = 0; \
374   buffer -= -2 + ((JOCTET)(b) < 0xFF); \
375 }
376 
377 /* Output the entire bit buffer.  If there are no 0xFF bytes in it, then write
378  * directly to the output buffer.  Otherwise, use the EMIT_BYTE() macro to
379  * encode 0xFF as 0xFF 0x00.
380  */
381 #if BIT_BUF_SIZE == 64
382 
383 #define FLUSH() { \
384   if (put_buffer & 0x8080808080808080 & ~(put_buffer + 0x0101010101010101)) { \
385     EMIT_BYTE(put_buffer >> 56) \
386     EMIT_BYTE(put_buffer >> 48) \
387     EMIT_BYTE(put_buffer >> 40) \
388     EMIT_BYTE(put_buffer >> 32) \
389     EMIT_BYTE(put_buffer >> 24) \
390     EMIT_BYTE(put_buffer >> 16) \
391     EMIT_BYTE(put_buffer >>  8) \
392     EMIT_BYTE(put_buffer      ) \
393   } else { \
394     buffer[0] = (JOCTET)(put_buffer >> 56); \
395     buffer[1] = (JOCTET)(put_buffer >> 48); \
396     buffer[2] = (JOCTET)(put_buffer >> 40); \
397     buffer[3] = (JOCTET)(put_buffer >> 32); \
398     buffer[4] = (JOCTET)(put_buffer >> 24); \
399     buffer[5] = (JOCTET)(put_buffer >> 16); \
400     buffer[6] = (JOCTET)(put_buffer >> 8); \
401     buffer[7] = (JOCTET)(put_buffer); \
402     buffer += 8; \
403   } \
404 }
405 
406 #else
407 
408 #define FLUSH() { \
409   if (put_buffer & 0x80808080 & ~(put_buffer + 0x01010101)) { \
410     EMIT_BYTE(put_buffer >> 24) \
411     EMIT_BYTE(put_buffer >> 16) \
412     EMIT_BYTE(put_buffer >>  8) \
413     EMIT_BYTE(put_buffer      ) \
414   } else { \
415     buffer[0] = (JOCTET)(put_buffer >> 24); \
416     buffer[1] = (JOCTET)(put_buffer >> 16); \
417     buffer[2] = (JOCTET)(put_buffer >> 8); \
418     buffer[3] = (JOCTET)(put_buffer); \
419     buffer += 4; \
420   } \
421 }
422 
423 #endif
424 
425 /* Fill the bit buffer to capacity with the leading bits from code, then output
426  * the bit buffer and put the remaining bits from code into the bit buffer.
427  */
428 #define PUT_AND_FLUSH(code, size) { \
429   put_buffer = (put_buffer << (size + free_bits)) | (code >> -free_bits); \
430   FLUSH() \
431   free_bits += BIT_BUF_SIZE; \
432   put_buffer = code; \
433 }
434 
435 /* Insert code into the bit buffer and output the bit buffer if needed.
436  * NOTE: We can't flush with free_bits == 0, since the left shift in
437  * PUT_AND_FLUSH() would have undefined behavior.
438  */
439 #define PUT_BITS(code, size) { \
440   free_bits -= size; \
441   if (free_bits < 0) \
442     PUT_AND_FLUSH(code, size) \
443   else \
444     put_buffer = (put_buffer << size) | code; \
445 }
446 
447 #define PUT_CODE(code, size) { \
448   temp &= (((JLONG)1) << nbits) - 1; \
449   temp |= code << nbits; \
450   nbits += size; \
451   PUT_BITS(temp, nbits) \
452 }
453 
454 
455 /* Although it is exceedingly rare, it is possible for a Huffman-encoded
456  * coefficient block to be larger than the 128-byte unencoded block.  For each
457  * of the 64 coefficients, PUT_BITS is invoked twice, and each invocation can
458  * theoretically store 16 bits (for a maximum of 2048 bits or 256 bytes per
459  * encoded block.)  If, for instance, one artificially sets the AC
460  * coefficients to alternating values of 32767 and -32768 (using the JPEG
461  * scanning order-- 1, 8, 16, etc.), then this will produce an encoded block
462  * larger than 200 bytes.
463  */
464 #define BUFSIZE  (DCTSIZE2 * 8)
465 
466 #define LOAD_BUFFER() { \
467   if (state->free_in_buffer < BUFSIZE) { \
468     localbuf = 1; \
469     buffer = _buffer; \
470   } else \
471     buffer = state->next_output_byte; \
472 }
473 
474 #define STORE_BUFFER() { \
475   if (localbuf) { \
476     size_t bytes, bytestocopy; \
477     bytes = buffer - _buffer; \
478     buffer = _buffer; \
479     while (bytes > 0) { \
480       bytestocopy = MIN(bytes, state->free_in_buffer); \
481       MEMCOPY(state->next_output_byte, buffer, bytestocopy); \
482       state->next_output_byte += bytestocopy; \
483       buffer += bytestocopy; \
484       state->free_in_buffer -= bytestocopy; \
485       if (state->free_in_buffer == 0) \
486         if (!dump_buffer(state)) return FALSE; \
487       bytes -= bytestocopy; \
488     } \
489   } else { \
490     state->free_in_buffer -= (buffer - state->next_output_byte); \
491     state->next_output_byte = buffer; \
492   } \
493 }
494 
495 
496 LOCAL(boolean)
flush_bits(working_state * state)497 flush_bits(working_state *state)
498 {
499   JOCTET _buffer[BUFSIZE], *buffer, temp;
500   simd_bit_buf_type put_buffer;  int put_bits;
501   int localbuf = 0;
502 
503   if (state->simd) {
504 #if defined(__aarch64__) && !defined(NEON_INTRINSICS)
505     put_bits = state->cur.free_bits;
506 #else
507     put_bits = SIMD_BIT_BUF_SIZE - state->cur.free_bits;
508 #endif
509     put_buffer = state->cur.put_buffer.simd;
510   } else {
511     put_bits = BIT_BUF_SIZE - state->cur.free_bits;
512     put_buffer = state->cur.put_buffer.c;
513   }
514 
515   LOAD_BUFFER()
516 
517   while (put_bits >= 8) {
518     put_bits -= 8;
519     temp = (JOCTET)(put_buffer >> put_bits);
520     EMIT_BYTE(temp)
521   }
522   if (put_bits) {
523     /* fill partial byte with ones */
524     temp = (JOCTET)((put_buffer << (8 - put_bits)) | (0xFF >> put_bits));
525     EMIT_BYTE(temp)
526   }
527 
528   if (state->simd) {                    /* and reset bit buffer to empty */
529     state->cur.put_buffer.simd = 0;
530 #if defined(__aarch64__) && !defined(NEON_INTRINSICS)
531     state->cur.free_bits = 0;
532 #else
533     state->cur.free_bits = SIMD_BIT_BUF_SIZE;
534 #endif
535   } else {
536     state->cur.put_buffer.c = 0;
537     state->cur.free_bits = BIT_BUF_SIZE;
538   }
539   STORE_BUFFER()
540 
541   return TRUE;
542 }
543 
544 
545 /* Encode a single block's worth of coefficients */
546 
547 LOCAL(boolean)
encode_one_block_simd(working_state * state,JCOEFPTR block,int last_dc_val,c_derived_tbl * dctbl,c_derived_tbl * actbl)548 encode_one_block_simd(working_state *state, JCOEFPTR block, int last_dc_val,
549                       c_derived_tbl *dctbl, c_derived_tbl *actbl)
550 {
551   JOCTET _buffer[BUFSIZE], *buffer;
552   int localbuf = 0;
553 
554   LOAD_BUFFER()
555 
556   buffer = jsimd_huff_encode_one_block(state, buffer, block, last_dc_val,
557                                        dctbl, actbl);
558 
559   STORE_BUFFER()
560 
561   return TRUE;
562 }
563 
564 LOCAL(boolean)
encode_one_block(working_state * state,JCOEFPTR block,int last_dc_val,c_derived_tbl * dctbl,c_derived_tbl * actbl)565 encode_one_block(working_state *state, JCOEFPTR block, int last_dc_val,
566                  c_derived_tbl *dctbl, c_derived_tbl *actbl)
567 {
568   int temp, nbits, free_bits;
569   bit_buf_type put_buffer;
570   JOCTET _buffer[BUFSIZE], *buffer;
571   int localbuf = 0;
572 
573   free_bits = state->cur.free_bits;
574   put_buffer = state->cur.put_buffer.c;
575   LOAD_BUFFER()
576 
577   /* Encode the DC coefficient difference per section F.1.2.1 */
578 
579   temp = block[0] - last_dc_val;
580 
581   /* This is a well-known technique for obtaining the absolute value without a
582    * branch.  It is derived from an assembly language technique presented in
583    * "How to Optimize for the Pentium Processors", Copyright (c) 1996, 1997 by
584    * Agner Fog.  This code assumes we are on a two's complement machine.
585    */
586   nbits = temp >> (CHAR_BIT * sizeof(int) - 1);
587   temp += nbits;
588   nbits ^= temp;
589 
590   /* Find the number of bits needed for the magnitude of the coefficient */
591   nbits = JPEG_NBITS(nbits);
592 
593   /* Emit the Huffman-coded symbol for the number of bits.
594    * Emit that number of bits of the value, if positive,
595    * or the complement of its magnitude, if negative.
596    */
597   PUT_CODE(dctbl->ehufco[nbits], dctbl->ehufsi[nbits])
598 
599   /* Encode the AC coefficients per section F.1.2.2 */
600 
601   {
602     int r = 0;                  /* r = run length of zeros */
603 
604 /* Manually unroll the k loop to eliminate the counter variable.  This
605  * improves performance greatly on systems with a limited number of
606  * registers (such as x86.)
607  */
608 #define kloop(jpeg_natural_order_of_k) { \
609   if ((temp = block[jpeg_natural_order_of_k]) == 0) { \
610     r += 16; \
611   } else { \
612     /* Branch-less absolute value, bitwise complement, etc., same as above */ \
613     nbits = temp >> (CHAR_BIT * sizeof(int) - 1); \
614     temp += nbits; \
615     nbits ^= temp; \
616     nbits = JPEG_NBITS_NONZERO(nbits); \
617     /* if run length > 15, must emit special run-length-16 codes (0xF0) */ \
618     while (r >= 16 * 16) { \
619       r -= 16 * 16; \
620       PUT_BITS(actbl->ehufco[0xf0], actbl->ehufsi[0xf0]) \
621     } \
622     /* Emit Huffman symbol for run length / number of bits */ \
623     r += nbits; \
624     PUT_CODE(actbl->ehufco[r], actbl->ehufsi[r]) \
625     r = 0; \
626   } \
627 }
628 
629     /* One iteration for each value in jpeg_natural_order[] */
630     kloop(1);   kloop(8);   kloop(16);  kloop(9);   kloop(2);   kloop(3);
631     kloop(10);  kloop(17);  kloop(24);  kloop(32);  kloop(25);  kloop(18);
632     kloop(11);  kloop(4);   kloop(5);   kloop(12);  kloop(19);  kloop(26);
633     kloop(33);  kloop(40);  kloop(48);  kloop(41);  kloop(34);  kloop(27);
634     kloop(20);  kloop(13);  kloop(6);   kloop(7);   kloop(14);  kloop(21);
635     kloop(28);  kloop(35);  kloop(42);  kloop(49);  kloop(56);  kloop(57);
636     kloop(50);  kloop(43);  kloop(36);  kloop(29);  kloop(22);  kloop(15);
637     kloop(23);  kloop(30);  kloop(37);  kloop(44);  kloop(51);  kloop(58);
638     kloop(59);  kloop(52);  kloop(45);  kloop(38);  kloop(31);  kloop(39);
639     kloop(46);  kloop(53);  kloop(60);  kloop(61);  kloop(54);  kloop(47);
640     kloop(55);  kloop(62);  kloop(63);
641 
642     /* If the last coef(s) were zero, emit an end-of-block code */
643     if (r > 0) {
644       PUT_BITS(actbl->ehufco[0], actbl->ehufsi[0])
645     }
646   }
647 
648   state->cur.put_buffer.c = put_buffer;
649   state->cur.free_bits = free_bits;
650   STORE_BUFFER()
651 
652   return TRUE;
653 }
654 
655 
656 /*
657  * Emit a restart marker & resynchronize predictions.
658  */
659 
660 LOCAL(boolean)
emit_restart(working_state * state,int restart_num)661 emit_restart(working_state *state, int restart_num)
662 {
663   int ci;
664 
665   if (!flush_bits(state))
666     return FALSE;
667 
668   emit_byte(state, 0xFF, return FALSE);
669   emit_byte(state, JPEG_RST0 + restart_num, return FALSE);
670 
671   /* Re-initialize DC predictions to 0 */
672   for (ci = 0; ci < state->cinfo->comps_in_scan; ci++)
673     state->cur.last_dc_val[ci] = 0;
674 
675   /* The restart counter is not updated until we successfully write the MCU. */
676 
677   return TRUE;
678 }
679 
680 
681 /*
682  * Encode and output one MCU's worth of Huffman-compressed coefficients.
683  */
684 
685 METHODDEF(boolean)
encode_mcu_huff(j_compress_ptr cinfo,JBLOCKROW * MCU_data)686 encode_mcu_huff(j_compress_ptr cinfo, JBLOCKROW *MCU_data)
687 {
688   huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
689   working_state state;
690   int blkn, ci;
691   jpeg_component_info *compptr;
692 
693   /* Load up working state */
694   state.next_output_byte = cinfo->dest->next_output_byte;
695   state.free_in_buffer = cinfo->dest->free_in_buffer;
696   state.cur = entropy->saved;
697   state.cinfo = cinfo;
698   state.simd = entropy->simd;
699 
700   /* Emit restart marker if needed */
701   if (cinfo->restart_interval) {
702     if (entropy->restarts_to_go == 0)
703       if (!emit_restart(&state, entropy->next_restart_num))
704         return FALSE;
705   }
706 
707   /* Encode the MCU data blocks */
708   if (entropy->simd) {
709     for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
710       ci = cinfo->MCU_membership[blkn];
711       compptr = cinfo->cur_comp_info[ci];
712       if (!encode_one_block_simd(&state,
713                                  MCU_data[blkn][0], state.cur.last_dc_val[ci],
714                                  entropy->dc_derived_tbls[compptr->dc_tbl_no],
715                                  entropy->ac_derived_tbls[compptr->ac_tbl_no]))
716         return FALSE;
717       /* Update last_dc_val */
718       state.cur.last_dc_val[ci] = MCU_data[blkn][0][0];
719     }
720   } else {
721     for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
722       ci = cinfo->MCU_membership[blkn];
723       compptr = cinfo->cur_comp_info[ci];
724       if (!encode_one_block(&state,
725                             MCU_data[blkn][0], state.cur.last_dc_val[ci],
726                             entropy->dc_derived_tbls[compptr->dc_tbl_no],
727                             entropy->ac_derived_tbls[compptr->ac_tbl_no]))
728         return FALSE;
729       /* Update last_dc_val */
730       state.cur.last_dc_val[ci] = MCU_data[blkn][0][0];
731     }
732   }
733 
734   /* Completed MCU, so update state */
735   cinfo->dest->next_output_byte = state.next_output_byte;
736   cinfo->dest->free_in_buffer = state.free_in_buffer;
737   entropy->saved = state.cur;
738 
739   /* Update restart-interval state too */
740   if (cinfo->restart_interval) {
741     if (entropy->restarts_to_go == 0) {
742       entropy->restarts_to_go = cinfo->restart_interval;
743       entropy->next_restart_num++;
744       entropy->next_restart_num &= 7;
745     }
746     entropy->restarts_to_go--;
747   }
748 
749   return TRUE;
750 }
751 
752 
753 /*
754  * Finish up at the end of a Huffman-compressed scan.
755  */
756 
757 METHODDEF(void)
finish_pass_huff(j_compress_ptr cinfo)758 finish_pass_huff(j_compress_ptr cinfo)
759 {
760   huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
761   working_state state;
762 
763   /* Load up working state ... flush_bits needs it */
764   state.next_output_byte = cinfo->dest->next_output_byte;
765   state.free_in_buffer = cinfo->dest->free_in_buffer;
766   state.cur = entropy->saved;
767   state.cinfo = cinfo;
768   state.simd = entropy->simd;
769 
770   /* Flush out the last data */
771   if (!flush_bits(&state))
772     ERREXIT(cinfo, JERR_CANT_SUSPEND);
773 
774   /* Update state */
775   cinfo->dest->next_output_byte = state.next_output_byte;
776   cinfo->dest->free_in_buffer = state.free_in_buffer;
777   entropy->saved = state.cur;
778 }
779 
780 
781 /*
782  * Huffman coding optimization.
783  *
784  * We first scan the supplied data and count the number of uses of each symbol
785  * that is to be Huffman-coded. (This process MUST agree with the code above.)
786  * Then we build a Huffman coding tree for the observed counts.
787  * Symbols which are not needed at all for the particular image are not
788  * assigned any code, which saves space in the DHT marker as well as in
789  * the compressed data.
790  */
791 
792 #ifdef ENTROPY_OPT_SUPPORTED
793 
794 
795 /* Process a single block's worth of coefficients */
796 
797 LOCAL(void)
htest_one_block(j_compress_ptr cinfo,JCOEFPTR block,int last_dc_val,long dc_counts[],long ac_counts[])798 htest_one_block(j_compress_ptr cinfo, JCOEFPTR block, int last_dc_val,
799                 long dc_counts[], long ac_counts[])
800 {
801   register int temp;
802   register int nbits;
803   register int k, r;
804 
805   /* Encode the DC coefficient difference per section F.1.2.1 */
806 
807   temp = block[0] - last_dc_val;
808   if (temp < 0)
809     temp = -temp;
810 
811   /* Find the number of bits needed for the magnitude of the coefficient */
812   nbits = 0;
813   while (temp) {
814     nbits++;
815     temp >>= 1;
816   }
817   /* Check for out-of-range coefficient values.
818    * Since we're encoding a difference, the range limit is twice as much.
819    */
820   if (nbits > MAX_COEF_BITS + 1)
821     ERREXIT(cinfo, JERR_BAD_DCT_COEF);
822 
823   /* Count the Huffman symbol for the number of bits */
824   dc_counts[nbits]++;
825 
826   /* Encode the AC coefficients per section F.1.2.2 */
827 
828   r = 0;                        /* r = run length of zeros */
829 
830   for (k = 1; k < DCTSIZE2; k++) {
831     if ((temp = block[jpeg_natural_order[k]]) == 0) {
832       r++;
833     } else {
834       /* if run length > 15, must emit special run-length-16 codes (0xF0) */
835       while (r > 15) {
836         ac_counts[0xF0]++;
837         r -= 16;
838       }
839 
840       /* Find the number of bits needed for the magnitude of the coefficient */
841       if (temp < 0)
842         temp = -temp;
843 
844       /* Find the number of bits needed for the magnitude of the coefficient */
845       nbits = 1;                /* there must be at least one 1 bit */
846       while ((temp >>= 1))
847         nbits++;
848       /* Check for out-of-range coefficient values */
849       if (nbits > MAX_COEF_BITS)
850         ERREXIT(cinfo, JERR_BAD_DCT_COEF);
851 
852       /* Count Huffman symbol for run length / number of bits */
853       ac_counts[(r << 4) + nbits]++;
854 
855       r = 0;
856     }
857   }
858 
859   /* If the last coef(s) were zero, emit an end-of-block code */
860   if (r > 0)
861     ac_counts[0]++;
862 }
863 
864 
865 /*
866  * Trial-encode one MCU's worth of Huffman-compressed coefficients.
867  * No data is actually output, so no suspension return is possible.
868  */
869 
870 METHODDEF(boolean)
encode_mcu_gather(j_compress_ptr cinfo,JBLOCKROW * MCU_data)871 encode_mcu_gather(j_compress_ptr cinfo, JBLOCKROW *MCU_data)
872 {
873   huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
874   int blkn, ci;
875   jpeg_component_info *compptr;
876 
877   /* Take care of restart intervals if needed */
878   if (cinfo->restart_interval) {
879     if (entropy->restarts_to_go == 0) {
880       /* Re-initialize DC predictions to 0 */
881       for (ci = 0; ci < cinfo->comps_in_scan; ci++)
882         entropy->saved.last_dc_val[ci] = 0;
883       /* Update restart state */
884       entropy->restarts_to_go = cinfo->restart_interval;
885     }
886     entropy->restarts_to_go--;
887   }
888 
889   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
890     ci = cinfo->MCU_membership[blkn];
891     compptr = cinfo->cur_comp_info[ci];
892     htest_one_block(cinfo, MCU_data[blkn][0], entropy->saved.last_dc_val[ci],
893                     entropy->dc_count_ptrs[compptr->dc_tbl_no],
894                     entropy->ac_count_ptrs[compptr->ac_tbl_no]);
895     entropy->saved.last_dc_val[ci] = MCU_data[blkn][0][0];
896   }
897 
898   return TRUE;
899 }
900 
901 
902 /*
903  * Generate the best Huffman code table for the given counts, fill htbl.
904  * Note this is also used by jcphuff.c.
905  *
906  * The JPEG standard requires that no symbol be assigned a codeword of all
907  * one bits (so that padding bits added at the end of a compressed segment
908  * can't look like a valid code).  Because of the canonical ordering of
909  * codewords, this just means that there must be an unused slot in the
910  * longest codeword length category.  Annex K (Clause K.2) of
911  * Rec. ITU-T T.81 (1992) | ISO/IEC 10918-1:1994 suggests reserving such a slot
912  * by pretending that symbol 256 is a valid symbol with count 1.  In theory
913  * that's not optimal; giving it count zero but including it in the symbol set
914  * anyway should give a better Huffman code.  But the theoretically better code
915  * actually seems to come out worse in practice, because it produces more
916  * all-ones bytes (which incur stuffed zero bytes in the final file).  In any
917  * case the difference is tiny.
918  *
919  * The JPEG standard requires Huffman codes to be no more than 16 bits long.
920  * If some symbols have a very small but nonzero probability, the Huffman tree
921  * must be adjusted to meet the code length restriction.  We currently use
922  * the adjustment method suggested in JPEG section K.2.  This method is *not*
923  * optimal; it may not choose the best possible limited-length code.  But
924  * typically only very-low-frequency symbols will be given less-than-optimal
925  * lengths, so the code is almost optimal.  Experimental comparisons against
926  * an optimal limited-length-code algorithm indicate that the difference is
927  * microscopic --- usually less than a hundredth of a percent of total size.
928  * So the extra complexity of an optimal algorithm doesn't seem worthwhile.
929  */
930 
931 GLOBAL(void)
jpeg_gen_optimal_table(j_compress_ptr cinfo,JHUFF_TBL * htbl,long freq[])932 jpeg_gen_optimal_table(j_compress_ptr cinfo, JHUFF_TBL *htbl, long freq[])
933 {
934 #define MAX_CLEN  32            /* assumed maximum initial code length */
935   UINT8 bits[MAX_CLEN + 1];     /* bits[k] = # of symbols with code length k */
936   int codesize[257];            /* codesize[k] = code length of symbol k */
937   int others[257];              /* next symbol in current branch of tree */
938   int c1, c2;
939   int p, i, j;
940   long v;
941 
942   /* This algorithm is explained in section K.2 of the JPEG standard */
943 
944   MEMZERO(bits, sizeof(bits));
945   MEMZERO(codesize, sizeof(codesize));
946   for (i = 0; i < 257; i++)
947     others[i] = -1;             /* init links to empty */
948 
949   freq[256] = 1;                /* make sure 256 has a nonzero count */
950   /* Including the pseudo-symbol 256 in the Huffman procedure guarantees
951    * that no real symbol is given code-value of all ones, because 256
952    * will be placed last in the largest codeword category.
953    */
954 
955   /* Huffman's basic algorithm to assign optimal code lengths to symbols */
956 
957   for (;;) {
958     /* Find the smallest nonzero frequency, set c1 = its symbol */
959     /* In case of ties, take the larger symbol number */
960     c1 = -1;
961     v = 1000000000L;
962     for (i = 0; i <= 256; i++) {
963       if (freq[i] && freq[i] <= v) {
964         v = freq[i];
965         c1 = i;
966       }
967     }
968 
969     /* Find the next smallest nonzero frequency, set c2 = its symbol */
970     /* In case of ties, take the larger symbol number */
971     c2 = -1;
972     v = 1000000000L;
973     for (i = 0; i <= 256; i++) {
974       if (freq[i] && freq[i] <= v && i != c1) {
975         v = freq[i];
976         c2 = i;
977       }
978     }
979 
980     /* Done if we've merged everything into one frequency */
981     if (c2 < 0)
982       break;
983 
984     /* Else merge the two counts/trees */
985     freq[c1] += freq[c2];
986     freq[c2] = 0;
987 
988     /* Increment the codesize of everything in c1's tree branch */
989     codesize[c1]++;
990     while (others[c1] >= 0) {
991       c1 = others[c1];
992       codesize[c1]++;
993     }
994 
995     others[c1] = c2;            /* chain c2 onto c1's tree branch */
996 
997     /* Increment the codesize of everything in c2's tree branch */
998     codesize[c2]++;
999     while (others[c2] >= 0) {
1000       c2 = others[c2];
1001       codesize[c2]++;
1002     }
1003   }
1004 
1005   /* Now count the number of symbols of each code length */
1006   for (i = 0; i <= 256; i++) {
1007     if (codesize[i]) {
1008       /* The JPEG standard seems to think that this can't happen, */
1009       /* but I'm paranoid... */
1010       if (codesize[i] > MAX_CLEN)
1011         ERREXIT(cinfo, JERR_HUFF_CLEN_OVERFLOW);
1012 
1013       bits[codesize[i]]++;
1014     }
1015   }
1016 
1017   /* JPEG doesn't allow symbols with code lengths over 16 bits, so if the pure
1018    * Huffman procedure assigned any such lengths, we must adjust the coding.
1019    * Here is what Rec. ITU-T T.81 | ISO/IEC 10918-1 says about how this next
1020    * bit works: Since symbols are paired for the longest Huffman code, the
1021    * symbols are removed from this length category two at a time.  The prefix
1022    * for the pair (which is one bit shorter) is allocated to one of the pair;
1023    * then, skipping the BITS entry for that prefix length, a code word from the
1024    * next shortest nonzero BITS entry is converted into a prefix for two code
1025    * words one bit longer.
1026    */
1027 
1028   for (i = MAX_CLEN; i > 16; i--) {
1029     while (bits[i] > 0) {
1030       j = i - 2;                /* find length of new prefix to be used */
1031       while (bits[j] == 0)
1032         j--;
1033 
1034       bits[i] -= 2;             /* remove two symbols */
1035       bits[i - 1]++;            /* one goes in this length */
1036       bits[j + 1] += 2;         /* two new symbols in this length */
1037       bits[j]--;                /* symbol of this length is now a prefix */
1038     }
1039   }
1040 
1041   /* Remove the count for the pseudo-symbol 256 from the largest codelength */
1042   while (bits[i] == 0)          /* find largest codelength still in use */
1043     i--;
1044   bits[i]--;
1045 
1046   /* Return final symbol counts (only for lengths 0..16) */
1047   MEMCOPY(htbl->bits, bits, sizeof(htbl->bits));
1048 
1049   /* Return a list of the symbols sorted by code length */
1050   /* It's not real clear to me why we don't need to consider the codelength
1051    * changes made above, but Rec. ITU-T T.81 | ISO/IEC 10918-1 seems to think
1052    * this works.
1053    */
1054   p = 0;
1055   for (i = 1; i <= MAX_CLEN; i++) {
1056     for (j = 0; j <= 255; j++) {
1057       if (codesize[j] == i) {
1058         htbl->huffval[p] = (UINT8)j;
1059         p++;
1060       }
1061     }
1062   }
1063 
1064   /* Set sent_table FALSE so updated table will be written to JPEG file. */
1065   htbl->sent_table = FALSE;
1066 }
1067 
1068 
1069 /*
1070  * Finish up a statistics-gathering pass and create the new Huffman tables.
1071  */
1072 
1073 METHODDEF(void)
finish_pass_gather(j_compress_ptr cinfo)1074 finish_pass_gather(j_compress_ptr cinfo)
1075 {
1076   huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
1077   int ci, dctbl, actbl;
1078   jpeg_component_info *compptr;
1079   JHUFF_TBL **htblptr;
1080   boolean did_dc[NUM_HUFF_TBLS];
1081   boolean did_ac[NUM_HUFF_TBLS];
1082 
1083   /* It's important not to apply jpeg_gen_optimal_table more than once
1084    * per table, because it clobbers the input frequency counts!
1085    */
1086   MEMZERO(did_dc, sizeof(did_dc));
1087   MEMZERO(did_ac, sizeof(did_ac));
1088 
1089   for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
1090     compptr = cinfo->cur_comp_info[ci];
1091     dctbl = compptr->dc_tbl_no;
1092     actbl = compptr->ac_tbl_no;
1093     if (!did_dc[dctbl]) {
1094       htblptr = &cinfo->dc_huff_tbl_ptrs[dctbl];
1095       if (*htblptr == NULL)
1096         *htblptr = jpeg_alloc_huff_table((j_common_ptr)cinfo);
1097       jpeg_gen_optimal_table(cinfo, *htblptr, entropy->dc_count_ptrs[dctbl]);
1098       did_dc[dctbl] = TRUE;
1099     }
1100     if (!did_ac[actbl]) {
1101       htblptr = &cinfo->ac_huff_tbl_ptrs[actbl];
1102       if (*htblptr == NULL)
1103         *htblptr = jpeg_alloc_huff_table((j_common_ptr)cinfo);
1104       jpeg_gen_optimal_table(cinfo, *htblptr, entropy->ac_count_ptrs[actbl]);
1105       did_ac[actbl] = TRUE;
1106     }
1107   }
1108 }
1109 
1110 
1111 #endif /* ENTROPY_OPT_SUPPORTED */
1112 
1113 
1114 /*
1115  * Module initialization routine for Huffman entropy encoding.
1116  */
1117 
1118 GLOBAL(void)
jinit_huff_encoder(j_compress_ptr cinfo)1119 jinit_huff_encoder(j_compress_ptr cinfo)
1120 {
1121   huff_entropy_ptr entropy;
1122   int i;
1123 
1124   entropy = (huff_entropy_ptr)
1125     (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
1126                                 sizeof(huff_entropy_encoder));
1127   cinfo->entropy = (struct jpeg_entropy_encoder *)entropy;
1128   entropy->pub.start_pass = start_pass_huff;
1129 
1130   /* Mark tables unallocated */
1131   for (i = 0; i < NUM_HUFF_TBLS; i++) {
1132     entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
1133 #ifdef ENTROPY_OPT_SUPPORTED
1134     entropy->dc_count_ptrs[i] = entropy->ac_count_ptrs[i] = NULL;
1135 #endif
1136   }
1137 }
1138