1 /*
2 * jchuff.c
3 *
4 * This file was part of the Independent JPEG Group's software:
5 * Copyright (C) 1991-1997, Thomas G. Lane.
6 * libjpeg-turbo Modifications:
7 * Copyright (C) 2009-2011, 2014-2016, 2018-2021, D. R. Commander.
8 * Copyright (C) 2015, Matthieu Darbois.
9 * Copyright (C) 2018, Matthias Räncker.
10 * Copyright (C) 2020, Arm Limited.
11 * For conditions of distribution and use, see the accompanying README.ijg
12 * file.
13 *
14 * This file contains Huffman entropy encoding routines.
15 *
16 * Much of the complexity here has to do with supporting output suspension.
17 * If the data destination module demands suspension, we want to be able to
18 * back up to the start of the current MCU. To do this, we copy state
19 * variables into local working storage, and update them back to the
20 * permanent JPEG objects only upon successful completion of an MCU.
21 *
22 * NOTE: All referenced figures are from
23 * Recommendation ITU-T T.81 (1992) | ISO/IEC 10918-1:1994.
24 */
25
26 #define JPEG_INTERNALS
27 #include "jinclude.h"
28 #include "jpeglib.h"
29 #include "jsimd.h"
30 #include "jconfigint.h"
31 #include <limits.h>
32
33 /*
34 * NOTE: If USE_CLZ_INTRINSIC is defined, then clz/bsr instructions will be
35 * used for bit counting rather than the lookup table. This will reduce the
36 * memory footprint by 64k, which is important for some mobile applications
37 * that create many isolated instances of libjpeg-turbo (web browsers, for
38 * instance.) This may improve performance on some mobile platforms as well.
39 * This feature is enabled by default only on Arm processors, because some x86
40 * chips have a slow implementation of bsr, and the use of clz/bsr cannot be
41 * shown to have a significant performance impact even on the x86 chips that
42 * have a fast implementation of it. When building for Armv6, you can
43 * explicitly disable the use of clz/bsr by adding -mthumb to the compiler
44 * flags (this defines __thumb__).
45 */
46
47 /* NOTE: Both GCC and Clang define __GNUC__ */
48 #if (defined(__GNUC__) && (defined(__arm__) || defined(__aarch64__))) || \
49 defined(_M_ARM) || defined(_M_ARM64)
50 #if !defined(__thumb__) || defined(__thumb2__)
51 #define USE_CLZ_INTRINSIC
52 #endif
53 #endif
54
55 #ifdef USE_CLZ_INTRINSIC
56 #if defined(_MSC_VER) && !defined(__clang__)
57 #define JPEG_NBITS_NONZERO(x) (32 - _CountLeadingZeros(x))
58 #else
59 #define JPEG_NBITS_NONZERO(x) (32 - __builtin_clz(x))
60 #endif
61 #define JPEG_NBITS(x) (x ? JPEG_NBITS_NONZERO(x) : 0)
62 #else
63 #include "jpeg_nbits_table.h"
64 #define JPEG_NBITS(x) (jpeg_nbits_table[x])
65 #define JPEG_NBITS_NONZERO(x) JPEG_NBITS(x)
66 #endif
67
68
69 /* Expanded entropy encoder object for Huffman encoding.
70 *
71 * The savable_state subrecord contains fields that change within an MCU,
72 * but must not be updated permanently until we complete the MCU.
73 */
74
75 #if defined(__x86_64__) && defined(__ILP32__)
76 typedef unsigned long long bit_buf_type;
77 #else
78 typedef size_t bit_buf_type;
79 #endif
80
81 /* NOTE: The more optimal Huffman encoding algorithm is only used by the
82 * intrinsics implementation of the Arm Neon SIMD extensions, which is why we
83 * retain the old Huffman encoder behavior when using the GAS implementation.
84 */
85 #if defined(WITH_SIMD) && !(defined(__arm__) || defined(__aarch64__) || \
86 defined(_M_ARM) || defined(_M_ARM64))
87 typedef unsigned long long simd_bit_buf_type;
88 #else
89 typedef bit_buf_type simd_bit_buf_type;
90 #endif
91
92 #if (defined(SIZEOF_SIZE_T) && SIZEOF_SIZE_T == 8) || defined(_WIN64) || \
93 (defined(__x86_64__) && defined(__ILP32__))
94 #define BIT_BUF_SIZE 64
95 #elif (defined(SIZEOF_SIZE_T) && SIZEOF_SIZE_T == 4) || defined(_WIN32)
96 #define BIT_BUF_SIZE 32
97 #else
98 #error Cannot determine word size
99 #endif
100 #define SIMD_BIT_BUF_SIZE (sizeof(simd_bit_buf_type) * 8)
101
102 typedef struct {
103 union {
104 bit_buf_type c;
105 simd_bit_buf_type simd;
106 } put_buffer; /* current bit accumulation buffer */
107 int free_bits; /* # of bits available in it */
108 /* (Neon GAS: # of bits now in it) */
109 int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
110 } savable_state;
111
112 typedef struct {
113 struct jpeg_entropy_encoder pub; /* public fields */
114
115 savable_state saved; /* Bit buffer & DC state at start of MCU */
116
117 /* These fields are NOT loaded into local working state. */
118 unsigned int restarts_to_go; /* MCUs left in this restart interval */
119 int next_restart_num; /* next restart number to write (0-7) */
120
121 /* Pointers to derived tables (these workspaces have image lifespan) */
122 c_derived_tbl *dc_derived_tbls[NUM_HUFF_TBLS];
123 c_derived_tbl *ac_derived_tbls[NUM_HUFF_TBLS];
124
125 #ifdef ENTROPY_OPT_SUPPORTED /* Statistics tables for optimization */
126 long *dc_count_ptrs[NUM_HUFF_TBLS];
127 long *ac_count_ptrs[NUM_HUFF_TBLS];
128 #endif
129
130 int simd;
131 } huff_entropy_encoder;
132
133 typedef huff_entropy_encoder *huff_entropy_ptr;
134
135 /* Working state while writing an MCU.
136 * This struct contains all the fields that are needed by subroutines.
137 */
138
139 typedef struct {
140 JOCTET *next_output_byte; /* => next byte to write in buffer */
141 size_t free_in_buffer; /* # of byte spaces remaining in buffer */
142 savable_state cur; /* Current bit buffer & DC state */
143 j_compress_ptr cinfo; /* dump_buffer needs access to this */
144 int simd;
145 } working_state;
146
147
148 /* Forward declarations */
149 METHODDEF(boolean) encode_mcu_huff(j_compress_ptr cinfo, JBLOCKROW *MCU_data);
150 METHODDEF(void) finish_pass_huff(j_compress_ptr cinfo);
151 #ifdef ENTROPY_OPT_SUPPORTED
152 METHODDEF(boolean) encode_mcu_gather(j_compress_ptr cinfo,
153 JBLOCKROW *MCU_data);
154 METHODDEF(void) finish_pass_gather(j_compress_ptr cinfo);
155 #endif
156
157
158 /*
159 * Initialize for a Huffman-compressed scan.
160 * If gather_statistics is TRUE, we do not output anything during the scan,
161 * just count the Huffman symbols used and generate Huffman code tables.
162 */
163
164 METHODDEF(void)
start_pass_huff(j_compress_ptr cinfo,boolean gather_statistics)165 start_pass_huff(j_compress_ptr cinfo, boolean gather_statistics)
166 {
167 huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
168 int ci, dctbl, actbl;
169 jpeg_component_info *compptr;
170
171 if (gather_statistics) {
172 #ifdef ENTROPY_OPT_SUPPORTED
173 entropy->pub.encode_mcu = encode_mcu_gather;
174 entropy->pub.finish_pass = finish_pass_gather;
175 #else
176 ERREXIT(cinfo, JERR_NOT_COMPILED);
177 #endif
178 } else {
179 entropy->pub.encode_mcu = encode_mcu_huff;
180 entropy->pub.finish_pass = finish_pass_huff;
181 }
182
183 entropy->simd = jsimd_can_huff_encode_one_block();
184
185 for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
186 compptr = cinfo->cur_comp_info[ci];
187 dctbl = compptr->dc_tbl_no;
188 actbl = compptr->ac_tbl_no;
189 if (gather_statistics) {
190 #ifdef ENTROPY_OPT_SUPPORTED
191 /* Check for invalid table indexes */
192 /* (make_c_derived_tbl does this in the other path) */
193 if (dctbl < 0 || dctbl >= NUM_HUFF_TBLS)
194 ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, dctbl);
195 if (actbl < 0 || actbl >= NUM_HUFF_TBLS)
196 ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, actbl);
197 /* Allocate and zero the statistics tables */
198 /* Note that jpeg_gen_optimal_table expects 257 entries in each table! */
199 if (entropy->dc_count_ptrs[dctbl] == NULL)
200 entropy->dc_count_ptrs[dctbl] = (long *)
201 (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
202 257 * sizeof(long));
203 MEMZERO(entropy->dc_count_ptrs[dctbl], 257 * sizeof(long));
204 if (entropy->ac_count_ptrs[actbl] == NULL)
205 entropy->ac_count_ptrs[actbl] = (long *)
206 (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
207 257 * sizeof(long));
208 MEMZERO(entropy->ac_count_ptrs[actbl], 257 * sizeof(long));
209 #endif
210 } else {
211 /* Compute derived values for Huffman tables */
212 /* We may do this more than once for a table, but it's not expensive */
213 jpeg_make_c_derived_tbl(cinfo, TRUE, dctbl,
214 &entropy->dc_derived_tbls[dctbl]);
215 jpeg_make_c_derived_tbl(cinfo, FALSE, actbl,
216 &entropy->ac_derived_tbls[actbl]);
217 }
218 /* Initialize DC predictions to 0 */
219 entropy->saved.last_dc_val[ci] = 0;
220 }
221
222 /* Initialize bit buffer to empty */
223 if (entropy->simd) {
224 entropy->saved.put_buffer.simd = 0;
225 #if defined(__aarch64__) && !defined(NEON_INTRINSICS)
226 entropy->saved.free_bits = 0;
227 #else
228 entropy->saved.free_bits = SIMD_BIT_BUF_SIZE;
229 #endif
230 } else {
231 entropy->saved.put_buffer.c = 0;
232 entropy->saved.free_bits = BIT_BUF_SIZE;
233 }
234
235 /* Initialize restart stuff */
236 entropy->restarts_to_go = cinfo->restart_interval;
237 entropy->next_restart_num = 0;
238 }
239
240
241 /*
242 * Compute the derived values for a Huffman table.
243 * This routine also performs some validation checks on the table.
244 *
245 * Note this is also used by jcphuff.c.
246 */
247
248 GLOBAL(void)
jpeg_make_c_derived_tbl(j_compress_ptr cinfo,boolean isDC,int tblno,c_derived_tbl ** pdtbl)249 jpeg_make_c_derived_tbl(j_compress_ptr cinfo, boolean isDC, int tblno,
250 c_derived_tbl **pdtbl)
251 {
252 JHUFF_TBL *htbl;
253 c_derived_tbl *dtbl;
254 int p, i, l, lastp, si, maxsymbol;
255 char huffsize[257];
256 unsigned int huffcode[257];
257 unsigned int code;
258
259 /* Note that huffsize[] and huffcode[] are filled in code-length order,
260 * paralleling the order of the symbols themselves in htbl->huffval[].
261 */
262
263 /* Find the input Huffman table */
264 if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
265 ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
266 htbl =
267 isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
268 if (htbl == NULL)
269 ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
270
271 /* Allocate a workspace if we haven't already done so. */
272 if (*pdtbl == NULL)
273 *pdtbl = (c_derived_tbl *)
274 (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
275 sizeof(c_derived_tbl));
276 dtbl = *pdtbl;
277
278 /* Figure C.1: make table of Huffman code length for each symbol */
279
280 p = 0;
281 for (l = 1; l <= 16; l++) {
282 i = (int)htbl->bits[l];
283 if (i < 0 || p + i > 256) /* protect against table overrun */
284 ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
285 while (i--)
286 huffsize[p++] = (char)l;
287 }
288 huffsize[p] = 0;
289 lastp = p;
290
291 /* Figure C.2: generate the codes themselves */
292 /* We also validate that the counts represent a legal Huffman code tree. */
293
294 code = 0;
295 si = huffsize[0];
296 p = 0;
297 while (huffsize[p]) {
298 while (((int)huffsize[p]) == si) {
299 huffcode[p++] = code;
300 code++;
301 }
302 /* code is now 1 more than the last code used for codelength si; but
303 * it must still fit in si bits, since no code is allowed to be all ones.
304 */
305 if (((JLONG)code) >= (((JLONG)1) << si))
306 ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
307 code <<= 1;
308 si++;
309 }
310
311 /* Figure C.3: generate encoding tables */
312 /* These are code and size indexed by symbol value */
313
314 /* Set all codeless symbols to have code length 0;
315 * this lets us detect duplicate VAL entries here, and later
316 * allows emit_bits to detect any attempt to emit such symbols.
317 */
318 MEMZERO(dtbl->ehufco, sizeof(dtbl->ehufco));
319 MEMZERO(dtbl->ehufsi, sizeof(dtbl->ehufsi));
320
321 /* This is also a convenient place to check for out-of-range
322 * and duplicated VAL entries. We allow 0..255 for AC symbols
323 * but only 0..15 for DC. (We could constrain them further
324 * based on data depth and mode, but this seems enough.)
325 */
326 maxsymbol = isDC ? 15 : 255;
327
328 for (p = 0; p < lastp; p++) {
329 i = htbl->huffval[p];
330 if (i < 0 || i > maxsymbol || dtbl->ehufsi[i])
331 ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
332 dtbl->ehufco[i] = huffcode[p];
333 dtbl->ehufsi[i] = huffsize[p];
334 }
335 }
336
337
338 /* Outputting bytes to the file */
339
340 /* Emit a byte, taking 'action' if must suspend. */
341 #define emit_byte(state, val, action) { \
342 *(state)->next_output_byte++ = (JOCTET)(val); \
343 if (--(state)->free_in_buffer == 0) \
344 if (!dump_buffer(state)) \
345 { action; } \
346 }
347
348
349 LOCAL(boolean)
dump_buffer(working_state * state)350 dump_buffer(working_state *state)
351 /* Empty the output buffer; return TRUE if successful, FALSE if must suspend */
352 {
353 struct jpeg_destination_mgr *dest = state->cinfo->dest;
354
355 if (!(*dest->empty_output_buffer) (state->cinfo))
356 return FALSE;
357 /* After a successful buffer dump, must reset buffer pointers */
358 state->next_output_byte = dest->next_output_byte;
359 state->free_in_buffer = dest->free_in_buffer;
360 return TRUE;
361 }
362
363
364 /* Outputting bits to the file */
365
366 /* Output byte b and, speculatively, an additional 0 byte. 0xFF must be
367 * encoded as 0xFF 0x00, so the output buffer pointer is advanced by 2 if the
368 * byte is 0xFF. Otherwise, the output buffer pointer is advanced by 1, and
369 * the speculative 0 byte will be overwritten by the next byte.
370 */
371 #define EMIT_BYTE(b) { \
372 buffer[0] = (JOCTET)(b); \
373 buffer[1] = 0; \
374 buffer -= -2 + ((JOCTET)(b) < 0xFF); \
375 }
376
377 /* Output the entire bit buffer. If there are no 0xFF bytes in it, then write
378 * directly to the output buffer. Otherwise, use the EMIT_BYTE() macro to
379 * encode 0xFF as 0xFF 0x00.
380 */
381 #if BIT_BUF_SIZE == 64
382
383 #define FLUSH() { \
384 if (put_buffer & 0x8080808080808080 & ~(put_buffer + 0x0101010101010101)) { \
385 EMIT_BYTE(put_buffer >> 56) \
386 EMIT_BYTE(put_buffer >> 48) \
387 EMIT_BYTE(put_buffer >> 40) \
388 EMIT_BYTE(put_buffer >> 32) \
389 EMIT_BYTE(put_buffer >> 24) \
390 EMIT_BYTE(put_buffer >> 16) \
391 EMIT_BYTE(put_buffer >> 8) \
392 EMIT_BYTE(put_buffer ) \
393 } else { \
394 buffer[0] = (JOCTET)(put_buffer >> 56); \
395 buffer[1] = (JOCTET)(put_buffer >> 48); \
396 buffer[2] = (JOCTET)(put_buffer >> 40); \
397 buffer[3] = (JOCTET)(put_buffer >> 32); \
398 buffer[4] = (JOCTET)(put_buffer >> 24); \
399 buffer[5] = (JOCTET)(put_buffer >> 16); \
400 buffer[6] = (JOCTET)(put_buffer >> 8); \
401 buffer[7] = (JOCTET)(put_buffer); \
402 buffer += 8; \
403 } \
404 }
405
406 #else
407
408 #define FLUSH() { \
409 if (put_buffer & 0x80808080 & ~(put_buffer + 0x01010101)) { \
410 EMIT_BYTE(put_buffer >> 24) \
411 EMIT_BYTE(put_buffer >> 16) \
412 EMIT_BYTE(put_buffer >> 8) \
413 EMIT_BYTE(put_buffer ) \
414 } else { \
415 buffer[0] = (JOCTET)(put_buffer >> 24); \
416 buffer[1] = (JOCTET)(put_buffer >> 16); \
417 buffer[2] = (JOCTET)(put_buffer >> 8); \
418 buffer[3] = (JOCTET)(put_buffer); \
419 buffer += 4; \
420 } \
421 }
422
423 #endif
424
425 /* Fill the bit buffer to capacity with the leading bits from code, then output
426 * the bit buffer and put the remaining bits from code into the bit buffer.
427 */
428 #define PUT_AND_FLUSH(code, size) { \
429 put_buffer = (put_buffer << (size + free_bits)) | (code >> -free_bits); \
430 FLUSH() \
431 free_bits += BIT_BUF_SIZE; \
432 put_buffer = code; \
433 }
434
435 /* Insert code into the bit buffer and output the bit buffer if needed.
436 * NOTE: We can't flush with free_bits == 0, since the left shift in
437 * PUT_AND_FLUSH() would have undefined behavior.
438 */
439 #define PUT_BITS(code, size) { \
440 free_bits -= size; \
441 if (free_bits < 0) \
442 PUT_AND_FLUSH(code, size) \
443 else \
444 put_buffer = (put_buffer << size) | code; \
445 }
446
447 #define PUT_CODE(code, size) { \
448 temp &= (((JLONG)1) << nbits) - 1; \
449 temp |= code << nbits; \
450 nbits += size; \
451 PUT_BITS(temp, nbits) \
452 }
453
454
455 /* Although it is exceedingly rare, it is possible for a Huffman-encoded
456 * coefficient block to be larger than the 128-byte unencoded block. For each
457 * of the 64 coefficients, PUT_BITS is invoked twice, and each invocation can
458 * theoretically store 16 bits (for a maximum of 2048 bits or 256 bytes per
459 * encoded block.) If, for instance, one artificially sets the AC
460 * coefficients to alternating values of 32767 and -32768 (using the JPEG
461 * scanning order-- 1, 8, 16, etc.), then this will produce an encoded block
462 * larger than 200 bytes.
463 */
464 #define BUFSIZE (DCTSIZE2 * 8)
465
466 #define LOAD_BUFFER() { \
467 if (state->free_in_buffer < BUFSIZE) { \
468 localbuf = 1; \
469 buffer = _buffer; \
470 } else \
471 buffer = state->next_output_byte; \
472 }
473
474 #define STORE_BUFFER() { \
475 if (localbuf) { \
476 size_t bytes, bytestocopy; \
477 bytes = buffer - _buffer; \
478 buffer = _buffer; \
479 while (bytes > 0) { \
480 bytestocopy = MIN(bytes, state->free_in_buffer); \
481 MEMCOPY(state->next_output_byte, buffer, bytestocopy); \
482 state->next_output_byte += bytestocopy; \
483 buffer += bytestocopy; \
484 state->free_in_buffer -= bytestocopy; \
485 if (state->free_in_buffer == 0) \
486 if (!dump_buffer(state)) return FALSE; \
487 bytes -= bytestocopy; \
488 } \
489 } else { \
490 state->free_in_buffer -= (buffer - state->next_output_byte); \
491 state->next_output_byte = buffer; \
492 } \
493 }
494
495
496 LOCAL(boolean)
flush_bits(working_state * state)497 flush_bits(working_state *state)
498 {
499 JOCTET _buffer[BUFSIZE], *buffer, temp;
500 simd_bit_buf_type put_buffer; int put_bits;
501 int localbuf = 0;
502
503 if (state->simd) {
504 #if defined(__aarch64__) && !defined(NEON_INTRINSICS)
505 put_bits = state->cur.free_bits;
506 #else
507 put_bits = SIMD_BIT_BUF_SIZE - state->cur.free_bits;
508 #endif
509 put_buffer = state->cur.put_buffer.simd;
510 } else {
511 put_bits = BIT_BUF_SIZE - state->cur.free_bits;
512 put_buffer = state->cur.put_buffer.c;
513 }
514
515 LOAD_BUFFER()
516
517 while (put_bits >= 8) {
518 put_bits -= 8;
519 temp = (JOCTET)(put_buffer >> put_bits);
520 EMIT_BYTE(temp)
521 }
522 if (put_bits) {
523 /* fill partial byte with ones */
524 temp = (JOCTET)((put_buffer << (8 - put_bits)) | (0xFF >> put_bits));
525 EMIT_BYTE(temp)
526 }
527
528 if (state->simd) { /* and reset bit buffer to empty */
529 state->cur.put_buffer.simd = 0;
530 #if defined(__aarch64__) && !defined(NEON_INTRINSICS)
531 state->cur.free_bits = 0;
532 #else
533 state->cur.free_bits = SIMD_BIT_BUF_SIZE;
534 #endif
535 } else {
536 state->cur.put_buffer.c = 0;
537 state->cur.free_bits = BIT_BUF_SIZE;
538 }
539 STORE_BUFFER()
540
541 return TRUE;
542 }
543
544
545 /* Encode a single block's worth of coefficients */
546
547 LOCAL(boolean)
encode_one_block_simd(working_state * state,JCOEFPTR block,int last_dc_val,c_derived_tbl * dctbl,c_derived_tbl * actbl)548 encode_one_block_simd(working_state *state, JCOEFPTR block, int last_dc_val,
549 c_derived_tbl *dctbl, c_derived_tbl *actbl)
550 {
551 JOCTET _buffer[BUFSIZE], *buffer;
552 int localbuf = 0;
553
554 LOAD_BUFFER()
555
556 buffer = jsimd_huff_encode_one_block(state, buffer, block, last_dc_val,
557 dctbl, actbl);
558
559 STORE_BUFFER()
560
561 return TRUE;
562 }
563
564 LOCAL(boolean)
encode_one_block(working_state * state,JCOEFPTR block,int last_dc_val,c_derived_tbl * dctbl,c_derived_tbl * actbl)565 encode_one_block(working_state *state, JCOEFPTR block, int last_dc_val,
566 c_derived_tbl *dctbl, c_derived_tbl *actbl)
567 {
568 int temp, nbits, free_bits;
569 bit_buf_type put_buffer;
570 JOCTET _buffer[BUFSIZE], *buffer;
571 int localbuf = 0;
572
573 free_bits = state->cur.free_bits;
574 put_buffer = state->cur.put_buffer.c;
575 LOAD_BUFFER()
576
577 /* Encode the DC coefficient difference per section F.1.2.1 */
578
579 temp = block[0] - last_dc_val;
580
581 /* This is a well-known technique for obtaining the absolute value without a
582 * branch. It is derived from an assembly language technique presented in
583 * "How to Optimize for the Pentium Processors", Copyright (c) 1996, 1997 by
584 * Agner Fog. This code assumes we are on a two's complement machine.
585 */
586 nbits = temp >> (CHAR_BIT * sizeof(int) - 1);
587 temp += nbits;
588 nbits ^= temp;
589
590 /* Find the number of bits needed for the magnitude of the coefficient */
591 nbits = JPEG_NBITS(nbits);
592
593 /* Emit the Huffman-coded symbol for the number of bits.
594 * Emit that number of bits of the value, if positive,
595 * or the complement of its magnitude, if negative.
596 */
597 PUT_CODE(dctbl->ehufco[nbits], dctbl->ehufsi[nbits])
598
599 /* Encode the AC coefficients per section F.1.2.2 */
600
601 {
602 int r = 0; /* r = run length of zeros */
603
604 /* Manually unroll the k loop to eliminate the counter variable. This
605 * improves performance greatly on systems with a limited number of
606 * registers (such as x86.)
607 */
608 #define kloop(jpeg_natural_order_of_k) { \
609 if ((temp = block[jpeg_natural_order_of_k]) == 0) { \
610 r += 16; \
611 } else { \
612 /* Branch-less absolute value, bitwise complement, etc., same as above */ \
613 nbits = temp >> (CHAR_BIT * sizeof(int) - 1); \
614 temp += nbits; \
615 nbits ^= temp; \
616 nbits = JPEG_NBITS_NONZERO(nbits); \
617 /* if run length > 15, must emit special run-length-16 codes (0xF0) */ \
618 while (r >= 16 * 16) { \
619 r -= 16 * 16; \
620 PUT_BITS(actbl->ehufco[0xf0], actbl->ehufsi[0xf0]) \
621 } \
622 /* Emit Huffman symbol for run length / number of bits */ \
623 r += nbits; \
624 PUT_CODE(actbl->ehufco[r], actbl->ehufsi[r]) \
625 r = 0; \
626 } \
627 }
628
629 /* One iteration for each value in jpeg_natural_order[] */
630 kloop(1); kloop(8); kloop(16); kloop(9); kloop(2); kloop(3);
631 kloop(10); kloop(17); kloop(24); kloop(32); kloop(25); kloop(18);
632 kloop(11); kloop(4); kloop(5); kloop(12); kloop(19); kloop(26);
633 kloop(33); kloop(40); kloop(48); kloop(41); kloop(34); kloop(27);
634 kloop(20); kloop(13); kloop(6); kloop(7); kloop(14); kloop(21);
635 kloop(28); kloop(35); kloop(42); kloop(49); kloop(56); kloop(57);
636 kloop(50); kloop(43); kloop(36); kloop(29); kloop(22); kloop(15);
637 kloop(23); kloop(30); kloop(37); kloop(44); kloop(51); kloop(58);
638 kloop(59); kloop(52); kloop(45); kloop(38); kloop(31); kloop(39);
639 kloop(46); kloop(53); kloop(60); kloop(61); kloop(54); kloop(47);
640 kloop(55); kloop(62); kloop(63);
641
642 /* If the last coef(s) were zero, emit an end-of-block code */
643 if (r > 0) {
644 PUT_BITS(actbl->ehufco[0], actbl->ehufsi[0])
645 }
646 }
647
648 state->cur.put_buffer.c = put_buffer;
649 state->cur.free_bits = free_bits;
650 STORE_BUFFER()
651
652 return TRUE;
653 }
654
655
656 /*
657 * Emit a restart marker & resynchronize predictions.
658 */
659
660 LOCAL(boolean)
emit_restart(working_state * state,int restart_num)661 emit_restart(working_state *state, int restart_num)
662 {
663 int ci;
664
665 if (!flush_bits(state))
666 return FALSE;
667
668 emit_byte(state, 0xFF, return FALSE);
669 emit_byte(state, JPEG_RST0 + restart_num, return FALSE);
670
671 /* Re-initialize DC predictions to 0 */
672 for (ci = 0; ci < state->cinfo->comps_in_scan; ci++)
673 state->cur.last_dc_val[ci] = 0;
674
675 /* The restart counter is not updated until we successfully write the MCU. */
676
677 return TRUE;
678 }
679
680
681 /*
682 * Encode and output one MCU's worth of Huffman-compressed coefficients.
683 */
684
685 METHODDEF(boolean)
encode_mcu_huff(j_compress_ptr cinfo,JBLOCKROW * MCU_data)686 encode_mcu_huff(j_compress_ptr cinfo, JBLOCKROW *MCU_data)
687 {
688 huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
689 working_state state;
690 int blkn, ci;
691 jpeg_component_info *compptr;
692
693 /* Load up working state */
694 state.next_output_byte = cinfo->dest->next_output_byte;
695 state.free_in_buffer = cinfo->dest->free_in_buffer;
696 state.cur = entropy->saved;
697 state.cinfo = cinfo;
698 state.simd = entropy->simd;
699
700 /* Emit restart marker if needed */
701 if (cinfo->restart_interval) {
702 if (entropy->restarts_to_go == 0)
703 if (!emit_restart(&state, entropy->next_restart_num))
704 return FALSE;
705 }
706
707 /* Encode the MCU data blocks */
708 if (entropy->simd) {
709 for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
710 ci = cinfo->MCU_membership[blkn];
711 compptr = cinfo->cur_comp_info[ci];
712 if (!encode_one_block_simd(&state,
713 MCU_data[blkn][0], state.cur.last_dc_val[ci],
714 entropy->dc_derived_tbls[compptr->dc_tbl_no],
715 entropy->ac_derived_tbls[compptr->ac_tbl_no]))
716 return FALSE;
717 /* Update last_dc_val */
718 state.cur.last_dc_val[ci] = MCU_data[blkn][0][0];
719 }
720 } else {
721 for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
722 ci = cinfo->MCU_membership[blkn];
723 compptr = cinfo->cur_comp_info[ci];
724 if (!encode_one_block(&state,
725 MCU_data[blkn][0], state.cur.last_dc_val[ci],
726 entropy->dc_derived_tbls[compptr->dc_tbl_no],
727 entropy->ac_derived_tbls[compptr->ac_tbl_no]))
728 return FALSE;
729 /* Update last_dc_val */
730 state.cur.last_dc_val[ci] = MCU_data[blkn][0][0];
731 }
732 }
733
734 /* Completed MCU, so update state */
735 cinfo->dest->next_output_byte = state.next_output_byte;
736 cinfo->dest->free_in_buffer = state.free_in_buffer;
737 entropy->saved = state.cur;
738
739 /* Update restart-interval state too */
740 if (cinfo->restart_interval) {
741 if (entropy->restarts_to_go == 0) {
742 entropy->restarts_to_go = cinfo->restart_interval;
743 entropy->next_restart_num++;
744 entropy->next_restart_num &= 7;
745 }
746 entropy->restarts_to_go--;
747 }
748
749 return TRUE;
750 }
751
752
753 /*
754 * Finish up at the end of a Huffman-compressed scan.
755 */
756
757 METHODDEF(void)
finish_pass_huff(j_compress_ptr cinfo)758 finish_pass_huff(j_compress_ptr cinfo)
759 {
760 huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
761 working_state state;
762
763 /* Load up working state ... flush_bits needs it */
764 state.next_output_byte = cinfo->dest->next_output_byte;
765 state.free_in_buffer = cinfo->dest->free_in_buffer;
766 state.cur = entropy->saved;
767 state.cinfo = cinfo;
768 state.simd = entropy->simd;
769
770 /* Flush out the last data */
771 if (!flush_bits(&state))
772 ERREXIT(cinfo, JERR_CANT_SUSPEND);
773
774 /* Update state */
775 cinfo->dest->next_output_byte = state.next_output_byte;
776 cinfo->dest->free_in_buffer = state.free_in_buffer;
777 entropy->saved = state.cur;
778 }
779
780
781 /*
782 * Huffman coding optimization.
783 *
784 * We first scan the supplied data and count the number of uses of each symbol
785 * that is to be Huffman-coded. (This process MUST agree with the code above.)
786 * Then we build a Huffman coding tree for the observed counts.
787 * Symbols which are not needed at all for the particular image are not
788 * assigned any code, which saves space in the DHT marker as well as in
789 * the compressed data.
790 */
791
792 #ifdef ENTROPY_OPT_SUPPORTED
793
794
795 /* Process a single block's worth of coefficients */
796
797 LOCAL(void)
htest_one_block(j_compress_ptr cinfo,JCOEFPTR block,int last_dc_val,long dc_counts[],long ac_counts[])798 htest_one_block(j_compress_ptr cinfo, JCOEFPTR block, int last_dc_val,
799 long dc_counts[], long ac_counts[])
800 {
801 register int temp;
802 register int nbits;
803 register int k, r;
804
805 /* Encode the DC coefficient difference per section F.1.2.1 */
806
807 temp = block[0] - last_dc_val;
808 if (temp < 0)
809 temp = -temp;
810
811 /* Find the number of bits needed for the magnitude of the coefficient */
812 nbits = 0;
813 while (temp) {
814 nbits++;
815 temp >>= 1;
816 }
817 /* Check for out-of-range coefficient values.
818 * Since we're encoding a difference, the range limit is twice as much.
819 */
820 if (nbits > MAX_COEF_BITS + 1)
821 ERREXIT(cinfo, JERR_BAD_DCT_COEF);
822
823 /* Count the Huffman symbol for the number of bits */
824 dc_counts[nbits]++;
825
826 /* Encode the AC coefficients per section F.1.2.2 */
827
828 r = 0; /* r = run length of zeros */
829
830 for (k = 1; k < DCTSIZE2; k++) {
831 if ((temp = block[jpeg_natural_order[k]]) == 0) {
832 r++;
833 } else {
834 /* if run length > 15, must emit special run-length-16 codes (0xF0) */
835 while (r > 15) {
836 ac_counts[0xF0]++;
837 r -= 16;
838 }
839
840 /* Find the number of bits needed for the magnitude of the coefficient */
841 if (temp < 0)
842 temp = -temp;
843
844 /* Find the number of bits needed for the magnitude of the coefficient */
845 nbits = 1; /* there must be at least one 1 bit */
846 while ((temp >>= 1))
847 nbits++;
848 /* Check for out-of-range coefficient values */
849 if (nbits > MAX_COEF_BITS)
850 ERREXIT(cinfo, JERR_BAD_DCT_COEF);
851
852 /* Count Huffman symbol for run length / number of bits */
853 ac_counts[(r << 4) + nbits]++;
854
855 r = 0;
856 }
857 }
858
859 /* If the last coef(s) were zero, emit an end-of-block code */
860 if (r > 0)
861 ac_counts[0]++;
862 }
863
864
865 /*
866 * Trial-encode one MCU's worth of Huffman-compressed coefficients.
867 * No data is actually output, so no suspension return is possible.
868 */
869
870 METHODDEF(boolean)
encode_mcu_gather(j_compress_ptr cinfo,JBLOCKROW * MCU_data)871 encode_mcu_gather(j_compress_ptr cinfo, JBLOCKROW *MCU_data)
872 {
873 huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
874 int blkn, ci;
875 jpeg_component_info *compptr;
876
877 /* Take care of restart intervals if needed */
878 if (cinfo->restart_interval) {
879 if (entropy->restarts_to_go == 0) {
880 /* Re-initialize DC predictions to 0 */
881 for (ci = 0; ci < cinfo->comps_in_scan; ci++)
882 entropy->saved.last_dc_val[ci] = 0;
883 /* Update restart state */
884 entropy->restarts_to_go = cinfo->restart_interval;
885 }
886 entropy->restarts_to_go--;
887 }
888
889 for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
890 ci = cinfo->MCU_membership[blkn];
891 compptr = cinfo->cur_comp_info[ci];
892 htest_one_block(cinfo, MCU_data[blkn][0], entropy->saved.last_dc_val[ci],
893 entropy->dc_count_ptrs[compptr->dc_tbl_no],
894 entropy->ac_count_ptrs[compptr->ac_tbl_no]);
895 entropy->saved.last_dc_val[ci] = MCU_data[blkn][0][0];
896 }
897
898 return TRUE;
899 }
900
901
902 /*
903 * Generate the best Huffman code table for the given counts, fill htbl.
904 * Note this is also used by jcphuff.c.
905 *
906 * The JPEG standard requires that no symbol be assigned a codeword of all
907 * one bits (so that padding bits added at the end of a compressed segment
908 * can't look like a valid code). Because of the canonical ordering of
909 * codewords, this just means that there must be an unused slot in the
910 * longest codeword length category. Annex K (Clause K.2) of
911 * Rec. ITU-T T.81 (1992) | ISO/IEC 10918-1:1994 suggests reserving such a slot
912 * by pretending that symbol 256 is a valid symbol with count 1. In theory
913 * that's not optimal; giving it count zero but including it in the symbol set
914 * anyway should give a better Huffman code. But the theoretically better code
915 * actually seems to come out worse in practice, because it produces more
916 * all-ones bytes (which incur stuffed zero bytes in the final file). In any
917 * case the difference is tiny.
918 *
919 * The JPEG standard requires Huffman codes to be no more than 16 bits long.
920 * If some symbols have a very small but nonzero probability, the Huffman tree
921 * must be adjusted to meet the code length restriction. We currently use
922 * the adjustment method suggested in JPEG section K.2. This method is *not*
923 * optimal; it may not choose the best possible limited-length code. But
924 * typically only very-low-frequency symbols will be given less-than-optimal
925 * lengths, so the code is almost optimal. Experimental comparisons against
926 * an optimal limited-length-code algorithm indicate that the difference is
927 * microscopic --- usually less than a hundredth of a percent of total size.
928 * So the extra complexity of an optimal algorithm doesn't seem worthwhile.
929 */
930
931 GLOBAL(void)
jpeg_gen_optimal_table(j_compress_ptr cinfo,JHUFF_TBL * htbl,long freq[])932 jpeg_gen_optimal_table(j_compress_ptr cinfo, JHUFF_TBL *htbl, long freq[])
933 {
934 #define MAX_CLEN 32 /* assumed maximum initial code length */
935 UINT8 bits[MAX_CLEN + 1]; /* bits[k] = # of symbols with code length k */
936 int codesize[257]; /* codesize[k] = code length of symbol k */
937 int others[257]; /* next symbol in current branch of tree */
938 int c1, c2;
939 int p, i, j;
940 long v;
941
942 /* This algorithm is explained in section K.2 of the JPEG standard */
943
944 MEMZERO(bits, sizeof(bits));
945 MEMZERO(codesize, sizeof(codesize));
946 for (i = 0; i < 257; i++)
947 others[i] = -1; /* init links to empty */
948
949 freq[256] = 1; /* make sure 256 has a nonzero count */
950 /* Including the pseudo-symbol 256 in the Huffman procedure guarantees
951 * that no real symbol is given code-value of all ones, because 256
952 * will be placed last in the largest codeword category.
953 */
954
955 /* Huffman's basic algorithm to assign optimal code lengths to symbols */
956
957 for (;;) {
958 /* Find the smallest nonzero frequency, set c1 = its symbol */
959 /* In case of ties, take the larger symbol number */
960 c1 = -1;
961 v = 1000000000L;
962 for (i = 0; i <= 256; i++) {
963 if (freq[i] && freq[i] <= v) {
964 v = freq[i];
965 c1 = i;
966 }
967 }
968
969 /* Find the next smallest nonzero frequency, set c2 = its symbol */
970 /* In case of ties, take the larger symbol number */
971 c2 = -1;
972 v = 1000000000L;
973 for (i = 0; i <= 256; i++) {
974 if (freq[i] && freq[i] <= v && i != c1) {
975 v = freq[i];
976 c2 = i;
977 }
978 }
979
980 /* Done if we've merged everything into one frequency */
981 if (c2 < 0)
982 break;
983
984 /* Else merge the two counts/trees */
985 freq[c1] += freq[c2];
986 freq[c2] = 0;
987
988 /* Increment the codesize of everything in c1's tree branch */
989 codesize[c1]++;
990 while (others[c1] >= 0) {
991 c1 = others[c1];
992 codesize[c1]++;
993 }
994
995 others[c1] = c2; /* chain c2 onto c1's tree branch */
996
997 /* Increment the codesize of everything in c2's tree branch */
998 codesize[c2]++;
999 while (others[c2] >= 0) {
1000 c2 = others[c2];
1001 codesize[c2]++;
1002 }
1003 }
1004
1005 /* Now count the number of symbols of each code length */
1006 for (i = 0; i <= 256; i++) {
1007 if (codesize[i]) {
1008 /* The JPEG standard seems to think that this can't happen, */
1009 /* but I'm paranoid... */
1010 if (codesize[i] > MAX_CLEN)
1011 ERREXIT(cinfo, JERR_HUFF_CLEN_OVERFLOW);
1012
1013 bits[codesize[i]]++;
1014 }
1015 }
1016
1017 /* JPEG doesn't allow symbols with code lengths over 16 bits, so if the pure
1018 * Huffman procedure assigned any such lengths, we must adjust the coding.
1019 * Here is what Rec. ITU-T T.81 | ISO/IEC 10918-1 says about how this next
1020 * bit works: Since symbols are paired for the longest Huffman code, the
1021 * symbols are removed from this length category two at a time. The prefix
1022 * for the pair (which is one bit shorter) is allocated to one of the pair;
1023 * then, skipping the BITS entry for that prefix length, a code word from the
1024 * next shortest nonzero BITS entry is converted into a prefix for two code
1025 * words one bit longer.
1026 */
1027
1028 for (i = MAX_CLEN; i > 16; i--) {
1029 while (bits[i] > 0) {
1030 j = i - 2; /* find length of new prefix to be used */
1031 while (bits[j] == 0)
1032 j--;
1033
1034 bits[i] -= 2; /* remove two symbols */
1035 bits[i - 1]++; /* one goes in this length */
1036 bits[j + 1] += 2; /* two new symbols in this length */
1037 bits[j]--; /* symbol of this length is now a prefix */
1038 }
1039 }
1040
1041 /* Remove the count for the pseudo-symbol 256 from the largest codelength */
1042 while (bits[i] == 0) /* find largest codelength still in use */
1043 i--;
1044 bits[i]--;
1045
1046 /* Return final symbol counts (only for lengths 0..16) */
1047 MEMCOPY(htbl->bits, bits, sizeof(htbl->bits));
1048
1049 /* Return a list of the symbols sorted by code length */
1050 /* It's not real clear to me why we don't need to consider the codelength
1051 * changes made above, but Rec. ITU-T T.81 | ISO/IEC 10918-1 seems to think
1052 * this works.
1053 */
1054 p = 0;
1055 for (i = 1; i <= MAX_CLEN; i++) {
1056 for (j = 0; j <= 255; j++) {
1057 if (codesize[j] == i) {
1058 htbl->huffval[p] = (UINT8)j;
1059 p++;
1060 }
1061 }
1062 }
1063
1064 /* Set sent_table FALSE so updated table will be written to JPEG file. */
1065 htbl->sent_table = FALSE;
1066 }
1067
1068
1069 /*
1070 * Finish up a statistics-gathering pass and create the new Huffman tables.
1071 */
1072
1073 METHODDEF(void)
finish_pass_gather(j_compress_ptr cinfo)1074 finish_pass_gather(j_compress_ptr cinfo)
1075 {
1076 huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
1077 int ci, dctbl, actbl;
1078 jpeg_component_info *compptr;
1079 JHUFF_TBL **htblptr;
1080 boolean did_dc[NUM_HUFF_TBLS];
1081 boolean did_ac[NUM_HUFF_TBLS];
1082
1083 /* It's important not to apply jpeg_gen_optimal_table more than once
1084 * per table, because it clobbers the input frequency counts!
1085 */
1086 MEMZERO(did_dc, sizeof(did_dc));
1087 MEMZERO(did_ac, sizeof(did_ac));
1088
1089 for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
1090 compptr = cinfo->cur_comp_info[ci];
1091 dctbl = compptr->dc_tbl_no;
1092 actbl = compptr->ac_tbl_no;
1093 if (!did_dc[dctbl]) {
1094 htblptr = &cinfo->dc_huff_tbl_ptrs[dctbl];
1095 if (*htblptr == NULL)
1096 *htblptr = jpeg_alloc_huff_table((j_common_ptr)cinfo);
1097 jpeg_gen_optimal_table(cinfo, *htblptr, entropy->dc_count_ptrs[dctbl]);
1098 did_dc[dctbl] = TRUE;
1099 }
1100 if (!did_ac[actbl]) {
1101 htblptr = &cinfo->ac_huff_tbl_ptrs[actbl];
1102 if (*htblptr == NULL)
1103 *htblptr = jpeg_alloc_huff_table((j_common_ptr)cinfo);
1104 jpeg_gen_optimal_table(cinfo, *htblptr, entropy->ac_count_ptrs[actbl]);
1105 did_ac[actbl] = TRUE;
1106 }
1107 }
1108 }
1109
1110
1111 #endif /* ENTROPY_OPT_SUPPORTED */
1112
1113
1114 /*
1115 * Module initialization routine for Huffman entropy encoding.
1116 */
1117
1118 GLOBAL(void)
jinit_huff_encoder(j_compress_ptr cinfo)1119 jinit_huff_encoder(j_compress_ptr cinfo)
1120 {
1121 huff_entropy_ptr entropy;
1122 int i;
1123
1124 entropy = (huff_entropy_ptr)
1125 (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
1126 sizeof(huff_entropy_encoder));
1127 cinfo->entropy = (struct jpeg_entropy_encoder *)entropy;
1128 entropy->pub.start_pass = start_pass_huff;
1129
1130 /* Mark tables unallocated */
1131 for (i = 0; i < NUM_HUFF_TBLS; i++) {
1132 entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
1133 #ifdef ENTROPY_OPT_SUPPORTED
1134 entropy->dc_count_ptrs[i] = entropy->ac_count_ptrs[i] = NULL;
1135 #endif
1136 }
1137 }
1138