1 /*
2 * Copyright (C) 2016 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "system/graphics-base-v1.0.h"
18 #include "system/graphics-base-v1.1.h"
19 #define LOG_TAG "CameraProviderManager"
20 #define ATRACE_TAG ATRACE_TAG_CAMERA
21 //#define LOG_NDEBUG 0
22
23 #include "CameraProviderManager.h"
24
25 #include <aidl/android/hardware/camera/device/ICameraDevice.h>
26
27 #include <algorithm>
28 #include <chrono>
29 #include "common/DepthPhotoProcessor.h"
30 #include "hidl/HidlProviderInfo.h"
31 #include "aidl/AidlProviderInfo.h"
32 #include <dlfcn.h>
33 #include <future>
34 #include <inttypes.h>
35 #include <android/binder_manager.h>
36 #include <android/hidl/manager/1.2/IServiceManager.h>
37 #include <hidl/ServiceManagement.h>
38 #include <functional>
39 #include <camera_metadata_hidden.h>
40 #include <android-base/parseint.h>
41 #include <android-base/logging.h>
42 #include <cutils/properties.h>
43 #include <hwbinder/IPCThreadState.h>
44 #include <utils/Trace.h>
45 #include <ui/PublicFormat.h>
46
47 #include "api2/HeicCompositeStream.h"
48 #include "device3/ZoomRatioMapper.h"
49
50 namespace android {
51
52 using namespace ::android::hardware::camera;
53 using namespace ::android::camera3;
54 using android::hardware::camera::common::V1_0::Status;
55 using namespace camera3::SessionConfigurationUtils;
56 using std::literals::chrono_literals::operator""s;
57 using hardware::camera2::utils::CameraIdAndSessionConfiguration;
58
59 namespace {
60 const bool kEnableLazyHal(property_get_bool("ro.camera.enableLazyHal", false));
61 const std::string kExternalProviderName = "external/0";
62 } // anonymous namespace
63
64 const float CameraProviderManager::kDepthARTolerance = .1f;
65 const bool CameraProviderManager::kFrameworkJpegRDisabled =
66 property_get_bool("ro.camera.disableJpegR", false);
67
68 CameraProviderManager::HidlServiceInteractionProxyImpl
69 CameraProviderManager::sHidlServiceInteractionProxy{};
70
~CameraProviderManager()71 CameraProviderManager::~CameraProviderManager() {
72 }
73
FrameworkTorchStatusToString(const TorchModeStatus & s)74 const char* FrameworkTorchStatusToString(const TorchModeStatus& s) {
75 switch (s) {
76 case TorchModeStatus::NOT_AVAILABLE:
77 return "NOT_AVAILABLE";
78 case TorchModeStatus::AVAILABLE_OFF:
79 return "AVAILABLE_OFF";
80 case TorchModeStatus::AVAILABLE_ON:
81 return "AVAILABLE_ON";
82 }
83 ALOGW("Unexpected HAL torch mode status code %d", s);
84 return "UNKNOWN_STATUS";
85 }
86
FrameworkDeviceStatusToString(const CameraDeviceStatus & s)87 const char* FrameworkDeviceStatusToString(const CameraDeviceStatus& s) {
88 switch (s) {
89 case CameraDeviceStatus::NOT_PRESENT:
90 return "NOT_PRESENT";
91 case CameraDeviceStatus::PRESENT:
92 return "PRESENT";
93 case CameraDeviceStatus::ENUMERATING:
94 return "ENUMERATING";
95 }
96 ALOGW("Unexpected HAL device status code %d", s);
97 return "UNKNOWN_STATUS";
98 }
99
100 hardware::hidl_vec<hardware::hidl_string>
listServices()101 CameraProviderManager::HidlServiceInteractionProxyImpl::listServices() {
102 hardware::hidl_vec<hardware::hidl_string> ret;
103 auto manager = hardware::defaultServiceManager1_2();
104 if (manager != nullptr) {
105 manager->listManifestByInterface(provider::V2_4::ICameraProvider::descriptor,
106 [&ret](const hardware::hidl_vec<hardware::hidl_string> ®istered) {
107 ret = registered;
108 });
109 }
110 return ret;
111 }
112
tryToInitAndAddHidlProvidersLocked(HidlServiceInteractionProxy * hidlProxy)113 status_t CameraProviderManager::tryToInitAndAddHidlProvidersLocked(
114 HidlServiceInteractionProxy *hidlProxy) {
115 mHidlServiceProxy = hidlProxy;
116 // Registering will trigger notifications for all already-known providers
117 bool success = mHidlServiceProxy->registerForNotifications(
118 /* instance name, empty means no filter */ "",
119 this);
120 if (!success) {
121 ALOGE("%s: Unable to register with hardware service manager for notifications "
122 "about camera providers", __FUNCTION__);
123 return INVALID_OPERATION;
124 }
125
126 for (const auto& instance : mHidlServiceProxy->listServices()) {
127 this->addHidlProviderLocked(instance);
128 }
129 return OK;
130 }
131
getFullAidlProviderName(const std::string instance)132 static std::string getFullAidlProviderName(const std::string instance) {
133 std::string aidlHalServiceDescriptor =
134 std::string(aidl::android::hardware::camera::provider::ICameraProvider::descriptor);
135 return aidlHalServiceDescriptor + "/" + instance;
136 }
137
tryToAddAidlProvidersLocked()138 status_t CameraProviderManager::tryToAddAidlProvidersLocked() {
139 const char * aidlHalServiceDescriptor =
140 aidl::android::hardware::camera::provider::ICameraProvider::descriptor;
141 auto sm = defaultServiceManager();
142 auto aidlProviders = sm->getDeclaredInstances(
143 String16(aidlHalServiceDescriptor));
144 for (const auto &aidlInstance : aidlProviders) {
145 std::string aidlServiceName =
146 getFullAidlProviderName(std::string(String8(aidlInstance).c_str()));
147 auto res = sm->registerForNotifications(String16(aidlServiceName.c_str()), this);
148 if (res != OK) {
149 ALOGE("%s Unable to register for notifications with AIDL service manager",
150 __FUNCTION__);
151 return res;
152 }
153 addAidlProviderLocked(aidlServiceName);
154 }
155 return OK;
156 }
157
initialize(wp<CameraProviderManager::StatusListener> listener,HidlServiceInteractionProxy * hidlProxy)158 status_t CameraProviderManager::initialize(wp<CameraProviderManager::StatusListener> listener,
159 HidlServiceInteractionProxy* hidlProxy) {
160 std::lock_guard<std::mutex> lock(mInterfaceMutex);
161 if (hidlProxy == nullptr) {
162 ALOGE("%s: No valid service interaction proxy provided", __FUNCTION__);
163 return BAD_VALUE;
164 }
165 mListener = listener;
166 mDeviceState = 0;
167 auto res = tryToInitAndAddHidlProvidersLocked(hidlProxy);
168 if (res != OK) {
169 // Logging done in called function;
170 return res;
171 }
172 res = tryToAddAidlProvidersLocked();
173
174 IPCThreadState::self()->flushCommands();
175
176 return res;
177 }
178
getCameraCount() const179 std::pair<int, int> CameraProviderManager::getCameraCount() const {
180 std::lock_guard<std::mutex> lock(mInterfaceMutex);
181 int systemCameraCount = 0;
182 int publicCameraCount = 0;
183 for (auto& provider : mProviders) {
184 for (auto &id : provider->mUniqueCameraIds) {
185 SystemCameraKind deviceKind = SystemCameraKind::PUBLIC;
186 if (getSystemCameraKindLocked(id, &deviceKind) != OK) {
187 ALOGE("%s: Invalid camera id %s, skipping", __FUNCTION__, id.c_str());
188 continue;
189 }
190 switch(deviceKind) {
191 case SystemCameraKind::PUBLIC:
192 publicCameraCount++;
193 break;
194 case SystemCameraKind::SYSTEM_ONLY_CAMERA:
195 systemCameraCount++;
196 break;
197 default:
198 break;
199 }
200 }
201 }
202 return std::make_pair(systemCameraCount, publicCameraCount);
203 }
204
getCameraDeviceIds(std::unordered_map<std::string,std::set<std::string>> * unavailablePhysicalIds) const205 std::vector<std::string> CameraProviderManager::getCameraDeviceIds(std::unordered_map<
206 std::string, std::set<std::string>>* unavailablePhysicalIds) const {
207 std::lock_guard<std::mutex> lock(mInterfaceMutex);
208 std::vector<std::string> deviceIds;
209 for (auto& provider : mProviders) {
210 for (auto& id : provider->mUniqueCameraIds) {
211 deviceIds.push_back(id);
212 if (unavailablePhysicalIds != nullptr &&
213 provider->mUnavailablePhysicalCameras.count(id) > 0) {
214 (*unavailablePhysicalIds)[id] = provider->mUnavailablePhysicalCameras.at(id);
215 }
216 }
217 }
218 return deviceIds;
219 }
220
collectDeviceIdsLocked(const std::vector<std::string> deviceIds,std::vector<std::string> & publicDeviceIds,std::vector<std::string> & systemDeviceIds) const221 void CameraProviderManager::collectDeviceIdsLocked(const std::vector<std::string> deviceIds,
222 std::vector<std::string>& publicDeviceIds,
223 std::vector<std::string>& systemDeviceIds) const {
224 for (auto &deviceId : deviceIds) {
225 SystemCameraKind deviceKind = SystemCameraKind::PUBLIC;
226 if (getSystemCameraKindLocked(deviceId, &deviceKind) != OK) {
227 ALOGE("%s: Invalid camera id %s, skipping", __FUNCTION__, deviceId.c_str());
228 continue;
229 }
230 if (deviceKind == SystemCameraKind::SYSTEM_ONLY_CAMERA) {
231 systemDeviceIds.push_back(deviceId);
232 } else {
233 publicDeviceIds.push_back(deviceId);
234 }
235 }
236 }
237
getAPI1CompatibleCameraDeviceIds() const238 std::vector<std::string> CameraProviderManager::getAPI1CompatibleCameraDeviceIds() const {
239 std::lock_guard<std::mutex> lock(mInterfaceMutex);
240 std::vector<std::string> publicDeviceIds;
241 std::vector<std::string> systemDeviceIds;
242 std::vector<std::string> deviceIds;
243 for (auto& provider : mProviders) {
244 std::vector<std::string> providerDeviceIds = provider->mUniqueAPI1CompatibleCameraIds;
245 // Secure cameras should not be exposed through camera 1 api
246 providerDeviceIds.erase(std::remove_if(providerDeviceIds.begin(), providerDeviceIds.end(),
247 [this](const std::string& s) {
248 SystemCameraKind deviceKind = SystemCameraKind::PUBLIC;
249 if (getSystemCameraKindLocked(s, &deviceKind) != OK) {
250 ALOGE("%s: Invalid camera id %s, skipping", __FUNCTION__, s.c_str());
251 return true;
252 }
253 return deviceKind == SystemCameraKind::HIDDEN_SECURE_CAMERA;}),
254 providerDeviceIds.end());
255 // API1 app doesn't handle logical and physical camera devices well. So
256 // for each camera facing, only take the first id advertised by HAL in
257 // all [logical, physical1, physical2, ...] id combos, and filter out the rest.
258 filterLogicalCameraIdsLocked(providerDeviceIds);
259 collectDeviceIdsLocked(providerDeviceIds, publicDeviceIds, systemDeviceIds);
260 }
261 auto sortFunc =
262 [](const std::string& a, const std::string& b) -> bool {
263 uint32_t aUint = 0, bUint = 0;
264 bool aIsUint = base::ParseUint(a, &aUint);
265 bool bIsUint = base::ParseUint(b, &bUint);
266
267 // Uint device IDs first
268 if (aIsUint && bIsUint) {
269 return aUint < bUint;
270 } else if (aIsUint) {
271 return true;
272 } else if (bIsUint) {
273 return false;
274 }
275 // Simple string compare if both id are not uint
276 return a < b;
277 };
278 // We put device ids for system cameras at the end since they will be pared
279 // off for processes not having system camera permissions.
280 std::sort(publicDeviceIds.begin(), publicDeviceIds.end(), sortFunc);
281 std::sort(systemDeviceIds.begin(), systemDeviceIds.end(), sortFunc);
282 deviceIds.insert(deviceIds.end(), publicDeviceIds.begin(), publicDeviceIds.end());
283 deviceIds.insert(deviceIds.end(), systemDeviceIds.begin(), systemDeviceIds.end());
284 return deviceIds;
285 }
286
isValidDeviceLocked(const std::string & id,uint16_t majorVersion,IPCTransport transport) const287 bool CameraProviderManager::isValidDeviceLocked(const std::string &id, uint16_t majorVersion,
288 IPCTransport transport) const {
289 for (auto& provider : mProviders) {
290 IPCTransport providerTransport = provider->getIPCTransport();
291 for (auto& deviceInfo : provider->mDevices) {
292 if (deviceInfo->mId == id && deviceInfo->mVersion.get_major() == majorVersion &&
293 transport == providerTransport) {
294 return true;
295 }
296 }
297 }
298 return false;
299 }
300
hasFlashUnit(const std::string & id) const301 bool CameraProviderManager::hasFlashUnit(const std::string &id) const {
302 std::lock_guard<std::mutex> lock(mInterfaceMutex);
303
304 auto deviceInfo = findDeviceInfoLocked(id);
305 if (deviceInfo == nullptr) return false;
306
307 return deviceInfo->hasFlashUnit();
308 }
309
supportNativeZoomRatio(const std::string & id) const310 bool CameraProviderManager::supportNativeZoomRatio(const std::string &id) const {
311 std::lock_guard<std::mutex> lock(mInterfaceMutex);
312
313 auto deviceInfo = findDeviceInfoLocked(id);
314 if (deviceInfo == nullptr) return false;
315
316 return deviceInfo->supportNativeZoomRatio();
317 }
318
isCompositeJpegRDisabled(const std::string & id) const319 bool CameraProviderManager::isCompositeJpegRDisabled(const std::string &id) const {
320 std::lock_guard<std::mutex> lock(mInterfaceMutex);
321 return isCompositeJpegRDisabledLocked(id);
322 }
323
isCompositeJpegRDisabledLocked(const std::string & id) const324 bool CameraProviderManager::isCompositeJpegRDisabledLocked(const std::string &id) const {
325 auto deviceInfo = findDeviceInfoLocked(id);
326 if (deviceInfo == nullptr) return false;
327
328 return deviceInfo->isCompositeJpegRDisabled();
329 }
330
getResourceCost(const std::string & id,CameraResourceCost * cost) const331 status_t CameraProviderManager::getResourceCost(const std::string &id,
332 CameraResourceCost* cost) const {
333 std::lock_guard<std::mutex> lock(mInterfaceMutex);
334
335 auto deviceInfo = findDeviceInfoLocked(id);
336 if (deviceInfo == nullptr) return NAME_NOT_FOUND;
337
338 *cost = deviceInfo->mResourceCost;
339 return OK;
340 }
341
getCameraInfo(const std::string & id,bool overrideToPortrait,int * portraitRotation,hardware::CameraInfo * info) const342 status_t CameraProviderManager::getCameraInfo(const std::string &id,
343 bool overrideToPortrait, int *portraitRotation, hardware::CameraInfo* info) const {
344 std::lock_guard<std::mutex> lock(mInterfaceMutex);
345
346 auto deviceInfo = findDeviceInfoLocked(id);
347 if (deviceInfo == nullptr) return NAME_NOT_FOUND;
348
349 return deviceInfo->getCameraInfo(overrideToPortrait, portraitRotation, info);
350 }
351
isSessionConfigurationSupported(const std::string & id,const SessionConfiguration & configuration,bool overrideForPerfClass,metadataGetter getMetadata,bool * status) const352 status_t CameraProviderManager::isSessionConfigurationSupported(const std::string& id,
353 const SessionConfiguration &configuration, bool overrideForPerfClass,
354 metadataGetter getMetadata, bool *status /*out*/) const {
355 std::lock_guard<std::mutex> lock(mInterfaceMutex);
356 auto deviceInfo = findDeviceInfoLocked(id);
357 if (deviceInfo == nullptr) {
358 return NAME_NOT_FOUND;
359 }
360
361 return deviceInfo->isSessionConfigurationSupported(configuration,
362 overrideForPerfClass, getMetadata, status);
363 }
364
getCameraIdIPCTransport(const std::string & id,IPCTransport * providerTransport) const365 status_t CameraProviderManager::getCameraIdIPCTransport(const std::string &id,
366 IPCTransport *providerTransport) const {
367 std::lock_guard<std::mutex> lock(mInterfaceMutex);
368 auto deviceInfo = findDeviceInfoLocked(id);
369 if (deviceInfo == nullptr) {
370 return NAME_NOT_FOUND;
371 }
372 sp<ProviderInfo> parentProvider = deviceInfo->mParentProvider.promote();
373 if (parentProvider == nullptr) {
374 return DEAD_OBJECT;
375 }
376 *providerTransport = parentProvider->getIPCTransport();
377 return OK;
378 }
379
getCameraCharacteristics(const std::string & id,bool overrideForPerfClass,CameraMetadata * characteristics,bool overrideToPortrait) const380 status_t CameraProviderManager::getCameraCharacteristics(const std::string &id,
381 bool overrideForPerfClass, CameraMetadata* characteristics,
382 bool overrideToPortrait) const {
383 std::lock_guard<std::mutex> lock(mInterfaceMutex);
384 return getCameraCharacteristicsLocked(id, overrideForPerfClass, characteristics,
385 overrideToPortrait);
386 }
387
getHighestSupportedVersion(const std::string & id,hardware::hidl_version * v,IPCTransport * transport)388 status_t CameraProviderManager::getHighestSupportedVersion(const std::string &id,
389 hardware::hidl_version *v, IPCTransport *transport) {
390 if (v == nullptr || transport == nullptr) {
391 return BAD_VALUE;
392 }
393 std::lock_guard<std::mutex> lock(mInterfaceMutex);
394
395 hardware::hidl_version maxVersion{0,0};
396 bool found = false;
397 IPCTransport providerTransport = IPCTransport::INVALID;
398 for (auto& provider : mProviders) {
399 for (auto& deviceInfo : provider->mDevices) {
400 if (deviceInfo->mId == id) {
401 if (deviceInfo->mVersion > maxVersion) {
402 maxVersion = deviceInfo->mVersion;
403 providerTransport = provider->getIPCTransport();
404 found = true;
405 }
406 }
407 }
408 }
409 if (!found || providerTransport == IPCTransport::INVALID) {
410 return NAME_NOT_FOUND;
411 }
412 *v = maxVersion;
413 *transport = providerTransport;
414 return OK;
415 }
416
getTorchStrengthLevel(const std::string & id,int32_t * torchStrength)417 status_t CameraProviderManager::getTorchStrengthLevel(const std::string &id,
418 int32_t* torchStrength /*out*/) {
419 std::lock_guard<std::mutex> lock(mInterfaceMutex);
420
421 auto deviceInfo = findDeviceInfoLocked(id);
422 if (deviceInfo == nullptr) return NAME_NOT_FOUND;
423
424 return deviceInfo->getTorchStrengthLevel(torchStrength);
425 }
426
turnOnTorchWithStrengthLevel(const std::string & id,int32_t torchStrength)427 status_t CameraProviderManager::turnOnTorchWithStrengthLevel(const std::string &id,
428 int32_t torchStrength) {
429 std::lock_guard<std::mutex> lock(mInterfaceMutex);
430
431 auto deviceInfo = findDeviceInfoLocked(id);
432 if (deviceInfo == nullptr) return NAME_NOT_FOUND;
433
434 return deviceInfo->turnOnTorchWithStrengthLevel(torchStrength);
435 }
436
shouldSkipTorchStrengthUpdate(const std::string & id,int32_t torchStrength) const437 bool CameraProviderManager::shouldSkipTorchStrengthUpdate(const std::string &id,
438 int32_t torchStrength) const {
439 std::lock_guard<std::mutex> lock(mInterfaceMutex);
440
441 auto deviceInfo = findDeviceInfoLocked(id);
442 if (deviceInfo == nullptr) return NAME_NOT_FOUND;
443
444 if (deviceInfo->mTorchStrengthLevel == torchStrength) {
445 ALOGV("%s: Skipping torch strength level updates prev_level: %d, new_level: %d",
446 __FUNCTION__, deviceInfo->mTorchStrengthLevel, torchStrength);
447 return true;
448 }
449 return false;
450 }
451
getTorchDefaultStrengthLevel(const std::string & id) const452 int32_t CameraProviderManager::getTorchDefaultStrengthLevel(const std::string &id) const {
453 std::lock_guard<std::mutex> lock(mInterfaceMutex);
454
455 auto deviceInfo = findDeviceInfoLocked(id);
456 if (deviceInfo == nullptr) return NAME_NOT_FOUND;
457
458 return deviceInfo->mTorchDefaultStrengthLevel;
459 }
460
supportSetTorchMode(const std::string & id) const461 bool CameraProviderManager::supportSetTorchMode(const std::string &id) const {
462 std::lock_guard<std::mutex> lock(mInterfaceMutex);
463 for (auto& provider : mProviders) {
464 for (auto& deviceInfo : provider->mDevices) {
465 if (deviceInfo->mId == id) {
466 return provider->mSetTorchModeSupported;
467 }
468 }
469 }
470 return false;
471 }
472
473 template <class ProviderInfoType, class HalCameraProviderType>
setTorchModeT(sp<ProviderInfo> & parentProvider,std::shared_ptr<HalCameraProvider> * halCameraProvider)474 status_t CameraProviderManager::setTorchModeT(sp<ProviderInfo> &parentProvider,
475 std::shared_ptr<HalCameraProvider> *halCameraProvider) {
476 if (halCameraProvider == nullptr) {
477 return BAD_VALUE;
478 }
479 ProviderInfoType *idlProviderInfo = static_cast<ProviderInfoType *>(parentProvider.get());
480 auto idlInterface = idlProviderInfo->startProviderInterface();
481 if (idlInterface == nullptr) {
482 return DEAD_OBJECT;
483 }
484 *halCameraProvider =
485 std::make_shared<HalCameraProviderType>(idlInterface, idlInterface->descriptor);
486 return OK;
487 }
488
setTorchMode(const std::string & id,bool enabled)489 status_t CameraProviderManager::setTorchMode(const std::string &id, bool enabled) {
490 std::lock_guard<std::mutex> lock(mInterfaceMutex);
491
492 auto deviceInfo = findDeviceInfoLocked(id);
493 if (deviceInfo == nullptr) return NAME_NOT_FOUND;
494
495 // Pass the camera ID to start interface so that it will save it to the map of ICameraProviders
496 // that are currently in use.
497 sp<ProviderInfo> parentProvider = deviceInfo->mParentProvider.promote();
498 if (parentProvider == nullptr) {
499 return DEAD_OBJECT;
500 }
501 std::shared_ptr<HalCameraProvider> halCameraProvider = nullptr;
502 IPCTransport providerTransport = parentProvider->getIPCTransport();
503 status_t res = OK;
504 if (providerTransport == IPCTransport::HIDL) {
505 res = setTorchModeT<HidlProviderInfo, HidlHalCameraProvider>(parentProvider,
506 &halCameraProvider);
507 if (res != OK) {
508 return res;
509 }
510 } else if (providerTransport == IPCTransport::AIDL) {
511 res = setTorchModeT<AidlProviderInfo, AidlHalCameraProvider>(parentProvider,
512 &halCameraProvider);
513 if (res != OK) {
514 return res;
515 }
516 } else {
517 ALOGE("%s Invalid provider transport", __FUNCTION__);
518 return INVALID_OPERATION;
519 }
520 saveRef(DeviceMode::TORCH, deviceInfo->mId, halCameraProvider);
521
522 return deviceInfo->setTorchMode(enabled);
523 }
524
setUpVendorTags()525 status_t CameraProviderManager::setUpVendorTags() {
526 sp<VendorTagDescriptorCache> tagCache = new VendorTagDescriptorCache();
527
528 for (auto& provider : mProviders) {
529 tagCache->addVendorDescriptor(provider->mProviderTagid, provider->mVendorTagDescriptor);
530 }
531
532 VendorTagDescriptorCache::setAsGlobalVendorTagCache(tagCache);
533
534 return OK;
535 }
536
startExternalLazyProvider() const537 sp<CameraProviderManager::ProviderInfo> CameraProviderManager::startExternalLazyProvider() const {
538 std::lock_guard<std::mutex> providerLock(mProviderLifecycleLock);
539 std::lock_guard<std::mutex> lock(mInterfaceMutex);
540
541 for (const auto& providerInfo : mProviders) {
542 if (providerInfo->isExternalLazyHAL()) {
543 if (!providerInfo->successfullyStartedProviderInterface()) {
544 return nullptr;
545 } else {
546 return providerInfo;
547 }
548 }
549 }
550 return nullptr;
551 }
552
notifyUsbDeviceEvent(int32_t eventId,const std::string & usbDeviceId)553 status_t CameraProviderManager::notifyUsbDeviceEvent(int32_t eventId,
554 const std::string& usbDeviceId) {
555 if (!kEnableLazyHal) {
556 return OK;
557 }
558
559 ALOGV("notifySystemEvent: %d usbDeviceId : %s", eventId, usbDeviceId.c_str());
560
561 if (eventId == android::hardware::ICameraService::EVENT_USB_DEVICE_ATTACHED) {
562 sp<ProviderInfo> externalProvider = startExternalLazyProvider();
563 if (externalProvider != nullptr) {
564 auto usbDevices = mExternalUsbDevicesForProvider.first;
565 usbDevices.push_back(usbDeviceId);
566 mExternalUsbDevicesForProvider = {usbDevices, externalProvider};
567 }
568 } else if (eventId
569 == android::hardware::ICameraService::EVENT_USB_DEVICE_DETACHED) {
570 usbDeviceDetached(usbDeviceId);
571 }
572
573 return OK;
574 }
575
usbDeviceDetached(const std::string & usbDeviceId)576 status_t CameraProviderManager::usbDeviceDetached(const std::string &usbDeviceId) {
577 std::lock_guard<std::mutex> providerLock(mProviderLifecycleLock);
578 std::lock_guard<std::mutex> interfaceLock(mInterfaceMutex);
579
580 auto usbDevices = mExternalUsbDevicesForProvider.first;
581 auto foundId = std::find(usbDevices.begin(), usbDevices.end(), usbDeviceId);
582 if (foundId != usbDevices.end()) {
583 sp<ProviderInfo> providerInfo = mExternalUsbDevicesForProvider.second;
584 if (providerInfo == nullptr) {
585 ALOGE("%s No valid external provider for USB device: %s",
586 __FUNCTION__,
587 usbDeviceId.c_str());
588 mExternalUsbDevicesForProvider = {std::vector<std::string>(), nullptr};
589 return DEAD_OBJECT;
590 } else {
591 mInterfaceMutex.unlock();
592 providerInfo->removeAllDevices();
593 mInterfaceMutex.lock();
594 mExternalUsbDevicesForProvider = {std::vector<std::string>(), nullptr};
595 }
596 } else {
597 return DEAD_OBJECT;
598 }
599 return OK;
600 }
601
notifyDeviceStateChange(int64_t newState)602 status_t CameraProviderManager::notifyDeviceStateChange(int64_t newState) {
603 std::lock_guard<std::mutex> lock(mInterfaceMutex);
604 mDeviceState = newState;
605 status_t res = OK;
606 // Make a copy of mProviders because we unlock mInterfaceMutex temporarily
607 // within the loop. It's possible that during the time mInterfaceMutex is
608 // unlocked, mProviders has changed.
609 auto providers = mProviders;
610 for (auto& provider : providers) {
611 ALOGV("%s: Notifying %s for new state 0x%" PRIx64,
612 __FUNCTION__, provider->mProviderName.c_str(), newState);
613 // b/199240726 Camera providers can for example try to add/remove
614 // camera devices as part of the state change notification. Holding
615 // 'mInterfaceMutex' while calling 'notifyDeviceStateChange' can
616 // result in a recursive deadlock.
617 mInterfaceMutex.unlock();
618 status_t singleRes = provider->notifyDeviceStateChange(mDeviceState);
619 mInterfaceMutex.lock();
620 if (singleRes != OK) {
621 ALOGE("%s: Unable to notify provider %s about device state change",
622 __FUNCTION__,
623 provider->mProviderName.c_str());
624 res = singleRes;
625 // continue to do the rest of the providers instead of returning now
626 }
627 provider->notifyDeviceInfoStateChangeLocked(mDeviceState);
628 }
629 return res;
630 }
631
openAidlSession(const std::string & id,const std::shared_ptr<aidl::android::hardware::camera::device::ICameraDeviceCallback> & callback,std::shared_ptr<aidl::android::hardware::camera::device::ICameraDeviceSession> * session)632 status_t CameraProviderManager::openAidlSession(const std::string &id,
633 const std::shared_ptr<
634 aidl::android::hardware::camera::device::ICameraDeviceCallback>& callback,
635 /*out*/
636 std::shared_ptr<aidl::android::hardware::camera::device::ICameraDeviceSession> *session) {
637
638 std::lock_guard<std::mutex> lock(mInterfaceMutex);
639
640 auto deviceInfo = findDeviceInfoLocked(id);
641 if (deviceInfo == nullptr) return NAME_NOT_FOUND;
642
643 auto *aidlDeviceInfo3 = static_cast<AidlProviderInfo::AidlDeviceInfo3*>(deviceInfo);
644 sp<ProviderInfo> parentProvider = deviceInfo->mParentProvider.promote();
645 if (parentProvider == nullptr) {
646 return DEAD_OBJECT;
647 }
648 auto provider =
649 static_cast<AidlProviderInfo *>(parentProvider.get())->startProviderInterface();
650 if (provider == nullptr) {
651 return DEAD_OBJECT;
652 }
653 std::shared_ptr<HalCameraProvider> halCameraProvider =
654 std::make_shared<AidlHalCameraProvider>(provider, provider->descriptor);
655 saveRef(DeviceMode::CAMERA, id, halCameraProvider);
656
657 auto interface = aidlDeviceInfo3->startDeviceInterface();
658 if (interface == nullptr) {
659 removeRef(DeviceMode::CAMERA, id);
660 return DEAD_OBJECT;
661 }
662
663 auto ret = interface->open(callback, session);
664 if (!ret.isOk()) {
665 removeRef(DeviceMode::CAMERA, id);
666 ALOGE("%s: Transaction error opening a session for camera device %s: %s",
667 __FUNCTION__, id.c_str(), ret.getMessage());
668 return AidlProviderInfo::mapToStatusT(ret);
669 }
670 return OK;
671 }
672
openAidlInjectionSession(const std::string & id,const std::shared_ptr<aidl::android::hardware::camera::device::ICameraDeviceCallback> & callback,std::shared_ptr<aidl::android::hardware::camera::device::ICameraInjectionSession> * session)673 status_t CameraProviderManager::openAidlInjectionSession(const std::string &id,
674 const std::shared_ptr<
675 aidl::android::hardware::camera::device::ICameraDeviceCallback>& callback,
676 /*out*/
677 std::shared_ptr<
678 aidl::android::hardware::camera::device::ICameraInjectionSession> *session) {
679
680 std::lock_guard<std::mutex> lock(mInterfaceMutex);
681
682 auto deviceInfo = findDeviceInfoLocked(id);
683 if (deviceInfo == nullptr) return NAME_NOT_FOUND;
684
685 auto *aidlDeviceInfo3 = static_cast<AidlProviderInfo::AidlDeviceInfo3*>(deviceInfo);
686 sp<ProviderInfo> parentProvider = deviceInfo->mParentProvider.promote();
687 if (parentProvider == nullptr) {
688 return DEAD_OBJECT;
689 }
690 auto provider =
691 static_cast<AidlProviderInfo *>(parentProvider.get())->startProviderInterface();
692 if (provider == nullptr) {
693 return DEAD_OBJECT;
694 }
695 std::shared_ptr<HalCameraProvider> halCameraProvider =
696 std::make_shared<AidlHalCameraProvider>(provider, provider->descriptor);
697 saveRef(DeviceMode::CAMERA, id, halCameraProvider);
698
699 auto interface = aidlDeviceInfo3->startDeviceInterface();
700 if (interface == nullptr) {
701 return DEAD_OBJECT;
702 }
703
704 auto ret = interface->openInjectionSession(callback, session);
705 if (!ret.isOk()) {
706 removeRef(DeviceMode::CAMERA, id);
707 ALOGE("%s: Transaction error opening a session for camera device %s: %s",
708 __FUNCTION__, id.c_str(), ret.getMessage());
709 return DEAD_OBJECT;
710 }
711 return OK;
712 }
713
openHidlSession(const std::string & id,const sp<device::V3_2::ICameraDeviceCallback> & callback,sp<device::V3_2::ICameraDeviceSession> * session)714 status_t CameraProviderManager::openHidlSession(const std::string &id,
715 const sp<device::V3_2::ICameraDeviceCallback>& callback,
716 /*out*/
717 sp<device::V3_2::ICameraDeviceSession> *session) {
718
719 std::lock_guard<std::mutex> lock(mInterfaceMutex);
720
721 auto deviceInfo = findDeviceInfoLocked(id);
722 if (deviceInfo == nullptr) return NAME_NOT_FOUND;
723
724 auto *hidlDeviceInfo3 = static_cast<HidlProviderInfo::HidlDeviceInfo3*>(deviceInfo);
725 sp<ProviderInfo> parentProvider = deviceInfo->mParentProvider.promote();
726 if (parentProvider == nullptr) {
727 return DEAD_OBJECT;
728 }
729 const sp<provider::V2_4::ICameraProvider> provider =
730 static_cast<HidlProviderInfo *>(parentProvider.get())->startProviderInterface();
731 if (provider == nullptr) {
732 return DEAD_OBJECT;
733 }
734 std::shared_ptr<HalCameraProvider> halCameraProvider =
735 std::make_shared<HidlHalCameraProvider>(provider, provider->descriptor);
736 saveRef(DeviceMode::CAMERA, id, halCameraProvider);
737
738 Status status;
739 hardware::Return<void> ret;
740 auto interface = hidlDeviceInfo3->startDeviceInterface();
741 if (interface == nullptr) {
742 return DEAD_OBJECT;
743 }
744
745 ret = interface->open(callback, [&status, &session]
746 (Status s, const sp<device::V3_2::ICameraDeviceSession>& cameraSession) {
747 status = s;
748 if (status == Status::OK) {
749 *session = cameraSession;
750 }
751 });
752 if (!ret.isOk()) {
753 removeRef(DeviceMode::CAMERA, id);
754 ALOGE("%s: Transaction error opening a session for camera device %s: %s",
755 __FUNCTION__, id.c_str(), ret.description().c_str());
756 return DEAD_OBJECT;
757 }
758 return HidlProviderInfo::mapToStatusT(status);
759 }
760
saveRef(DeviceMode usageType,const std::string & cameraId,std::shared_ptr<HalCameraProvider> provider)761 void CameraProviderManager::saveRef(DeviceMode usageType, const std::string &cameraId,
762 std::shared_ptr<HalCameraProvider> provider) {
763 if (!kEnableLazyHal) {
764 return;
765 }
766 ALOGV("Saving camera provider %s for camera device %s", provider->mDescriptor.c_str(),
767 cameraId.c_str());
768 std::lock_guard<std::mutex> lock(mProviderInterfaceMapLock);
769 std::unordered_map<std::string, std::shared_ptr<HalCameraProvider>> *primaryMap, *alternateMap;
770 if (usageType == DeviceMode::TORCH) {
771 primaryMap = &mTorchProviderByCameraId;
772 alternateMap = &mCameraProviderByCameraId;
773 } else {
774 primaryMap = &mCameraProviderByCameraId;
775 alternateMap = &mTorchProviderByCameraId;
776 }
777 auto id = cameraId.c_str();
778 (*primaryMap)[id] = provider;
779 auto search = alternateMap->find(id);
780 if (search != alternateMap->end()) {
781 ALOGW("%s: Camera device %s is using both torch mode and camera mode simultaneously. "
782 "That should not be possible", __FUNCTION__, id);
783 }
784 ALOGV("%s: Camera device %s connected", __FUNCTION__, id);
785 }
786
removeRef(DeviceMode usageType,const std::string & cameraId)787 void CameraProviderManager::removeRef(DeviceMode usageType, const std::string &cameraId) {
788 if (!kEnableLazyHal) {
789 return;
790 }
791 ALOGV("Removing camera device %s", cameraId.c_str());
792 std::unordered_map<std::string, std::shared_ptr<HalCameraProvider>> *providerMap;
793 if (usageType == DeviceMode::TORCH) {
794 providerMap = &mTorchProviderByCameraId;
795 } else {
796 providerMap = &mCameraProviderByCameraId;
797 }
798 std::lock_guard<std::mutex> lock(mProviderInterfaceMapLock);
799 auto search = providerMap->find(cameraId.c_str());
800 if (search != providerMap->end()) {
801 // Drop the reference to this ICameraProvider. This is safe to do immediately (without an
802 // added delay) because hwservicemanager guarantees to hold the reference for at least five
803 // more seconds. We depend on this behavior so that if the provider is unreferenced and
804 // then referenced again quickly, we do not let the HAL exit and then need to immediately
805 // restart it. An example when this could happen is switching from a front-facing to a
806 // rear-facing camera. If the HAL were to exit during the camera switch, the camera could
807 // appear janky to the user.
808 providerMap->erase(cameraId.c_str());
809 IPCThreadState::self()->flushCommands();
810 } else {
811 ALOGE("%s: Asked to remove reference for camera %s, but no reference to it was found. This "
812 "could mean removeRef was called twice for the same camera ID.", __FUNCTION__,
813 cameraId.c_str());
814 }
815 }
816
817 // We ignore sp<IBinder> param here since we need std::shared_ptr<...> which
818 // will be retrieved through the ndk api through addAidlProviderLocked ->
819 // tryToInitializeAidlProvider.
onServiceRegistration(const String16 & name,const sp<IBinder> &)820 void CameraProviderManager::onServiceRegistration(const String16 &name, const sp<IBinder>&) {
821 status_t res = OK;
822 std::lock_guard<std::mutex> providerLock(mProviderLifecycleLock);
823 {
824 std::lock_guard<std::mutex> lock(mInterfaceMutex);
825
826 res = addAidlProviderLocked(String8(name).c_str());
827 }
828
829 sp<StatusListener> listener = getStatusListener();
830 if (nullptr != listener.get() && res == OK) {
831 listener->onNewProviderRegistered();
832 }
833
834 IPCThreadState::self()->flushCommands();
835 }
836
onRegistration(const hardware::hidl_string &,const hardware::hidl_string & name,bool preexisting)837 hardware::Return<void> CameraProviderManager::onRegistration(
838 const hardware::hidl_string& /*fqName*/,
839 const hardware::hidl_string& name,
840 bool preexisting) {
841 status_t res = OK;
842 std::lock_guard<std::mutex> providerLock(mProviderLifecycleLock);
843 {
844 std::lock_guard<std::mutex> lock(mInterfaceMutex);
845
846 res = addHidlProviderLocked(name, preexisting);
847 }
848
849 sp<StatusListener> listener = getStatusListener();
850 if (nullptr != listener.get() && res == OK) {
851 listener->onNewProviderRegistered();
852 }
853
854 IPCThreadState::self()->flushCommands();
855
856 return hardware::Return<void>();
857 }
858
dump(int fd,const Vector<String16> & args)859 status_t CameraProviderManager::dump(int fd, const Vector<String16>& args) {
860 std::lock_guard<std::mutex> lock(mInterfaceMutex);
861
862 for (auto& provider : mProviders) {
863 provider->dump(fd, args);
864 }
865 return OK;
866 }
867
initializeProviderInfoCommon(const std::vector<std::string> & devices)868 void CameraProviderManager::ProviderInfo::initializeProviderInfoCommon(
869 const std::vector<std::string> &devices) {
870 for (auto& device : devices) {
871 std::string id;
872 status_t res = addDevice(device, CameraDeviceStatus::PRESENT, &id);
873 if (res != OK) {
874 ALOGE("%s: Unable to enumerate camera device '%s': %s (%d)",
875 __FUNCTION__, device.c_str(), strerror(-res), res);
876 continue;
877 }
878 }
879
880 ALOGI("Camera provider %s ready with %zu camera devices",
881 mProviderName.c_str(), mDevices.size());
882
883 // Process cached status callbacks
884 {
885 std::lock_guard<std::mutex> lock(mInitLock);
886
887 for (auto& statusInfo : mCachedStatus) {
888 std::string id, physicalId;
889 if (statusInfo.isPhysicalCameraStatus) {
890 physicalCameraDeviceStatusChangeLocked(&id, &physicalId,
891 statusInfo.cameraId, statusInfo.physicalCameraId, statusInfo.status);
892 } else {
893 cameraDeviceStatusChangeLocked(&id, statusInfo.cameraId, statusInfo.status);
894 }
895 }
896 mCachedStatus.clear();
897
898 mInitialized = true;
899 }
900 }
901
findDeviceInfoLocked(const std::string & id) const902 CameraProviderManager::ProviderInfo::DeviceInfo* CameraProviderManager::findDeviceInfoLocked(
903 const std::string& id) const {
904 for (auto& provider : mProviders) {
905 using hardware::hidl_version;
906 IPCTransport transport = provider->getIPCTransport();
907 // AIDL min version starts at major: 1 minor: 1
908 hidl_version minVersion =
909 (transport == IPCTransport::HIDL) ? hidl_version{3, 2} : hidl_version{1, 1} ;
910 hidl_version maxVersion =
911 (transport == IPCTransport::HIDL) ? hidl_version{3, 7} : hidl_version{1000, 0};
912
913 for (auto& deviceInfo : provider->mDevices) {
914 if (deviceInfo->mId == id &&
915 minVersion <= deviceInfo->mVersion && maxVersion >= deviceInfo->mVersion) {
916 return deviceInfo.get();
917 }
918 }
919 }
920 return nullptr;
921 }
922
getProviderTagIdLocked(const std::string & id) const923 metadata_vendor_id_t CameraProviderManager::getProviderTagIdLocked(
924 const std::string& id) const {
925 metadata_vendor_id_t ret = CAMERA_METADATA_INVALID_VENDOR_ID;
926
927 std::lock_guard<std::mutex> lock(mInterfaceMutex);
928 for (auto& provider : mProviders) {
929 for (auto& deviceInfo : provider->mDevices) {
930 if (deviceInfo->mId == id) {
931 return provider->mProviderTagid;
932 }
933 }
934 }
935
936 return ret;
937 }
938
queryPhysicalCameraIds()939 void CameraProviderManager::ProviderInfo::DeviceInfo3::queryPhysicalCameraIds() {
940 camera_metadata_entry_t entryCap;
941
942 entryCap = mCameraCharacteristics.find(ANDROID_REQUEST_AVAILABLE_CAPABILITIES);
943 for (size_t i = 0; i < entryCap.count; ++i) {
944 uint8_t capability = entryCap.data.u8[i];
945 if (capability == ANDROID_REQUEST_AVAILABLE_CAPABILITIES_LOGICAL_MULTI_CAMERA) {
946 mIsLogicalCamera = true;
947 break;
948 }
949 }
950 if (!mIsLogicalCamera) {
951 return;
952 }
953
954 camera_metadata_entry_t entryIds = mCameraCharacteristics.find(
955 ANDROID_LOGICAL_MULTI_CAMERA_PHYSICAL_IDS);
956 const uint8_t* ids = entryIds.data.u8;
957 size_t start = 0;
958 for (size_t i = 0; i < entryIds.count; ++i) {
959 if (ids[i] == '\0') {
960 if (start != i) {
961 mPhysicalIds.push_back((const char*)ids+start);
962 }
963 start = i+1;
964 }
965 }
966 }
967
getSystemCameraKind()968 SystemCameraKind CameraProviderManager::ProviderInfo::DeviceInfo3::getSystemCameraKind() {
969 camera_metadata_entry_t entryCap;
970 entryCap = mCameraCharacteristics.find(ANDROID_REQUEST_AVAILABLE_CAPABILITIES);
971 if (entryCap.count == 1 &&
972 entryCap.data.u8[0] == ANDROID_REQUEST_AVAILABLE_CAPABILITIES_SECURE_IMAGE_DATA) {
973 return SystemCameraKind::HIDDEN_SECURE_CAMERA;
974 }
975
976 // Go through the capabilities and check if it has
977 // ANDROID_REQUEST_AVAILABLE_CAPABILITIES_SYSTEM_CAMERA
978 for (size_t i = 0; i < entryCap.count; ++i) {
979 uint8_t capability = entryCap.data.u8[i];
980 if (capability == ANDROID_REQUEST_AVAILABLE_CAPABILITIES_SYSTEM_CAMERA) {
981 return SystemCameraKind::SYSTEM_ONLY_CAMERA;
982 }
983 }
984 return SystemCameraKind::PUBLIC;
985 }
986
getSupportedSizes(const CameraMetadata & ch,uint32_t tag,android_pixel_format_t format,std::vector<std::tuple<size_t,size_t>> * sizes)987 void CameraProviderManager::ProviderInfo::DeviceInfo3::getSupportedSizes(
988 const CameraMetadata& ch, uint32_t tag, android_pixel_format_t format,
989 std::vector<std::tuple<size_t, size_t>> *sizes/*out*/) {
990 if (sizes == nullptr) {
991 return;
992 }
993
994 auto scalerDims = ch.find(tag);
995 if (scalerDims.count > 0) {
996 // Scaler entry contains 4 elements (format, width, height, type)
997 for (size_t i = 0; i < scalerDims.count; i += 4) {
998 if ((scalerDims.data.i32[i] == format) &&
999 (scalerDims.data.i32[i+3] ==
1000 ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS_OUTPUT)) {
1001 sizes->push_back(std::make_tuple(scalerDims.data.i32[i+1],
1002 scalerDims.data.i32[i+2]));
1003 }
1004 }
1005 }
1006 }
1007
getSupportedDurations(const CameraMetadata & ch,uint32_t tag,android_pixel_format_t format,const std::vector<std::tuple<size_t,size_t>> & sizes,std::vector<int64_t> * durations)1008 void CameraProviderManager::ProviderInfo::DeviceInfo3::getSupportedDurations(
1009 const CameraMetadata& ch, uint32_t tag, android_pixel_format_t format,
1010 const std::vector<std::tuple<size_t, size_t>>& sizes,
1011 std::vector<int64_t> *durations/*out*/) {
1012 if (durations == nullptr) {
1013 return;
1014 }
1015
1016 auto availableDurations = ch.find(tag);
1017 if (availableDurations.count > 0) {
1018 // Duration entry contains 4 elements (format, width, height, duration)
1019 for (const auto& size : sizes) {
1020 int64_t width = std::get<0>(size);
1021 int64_t height = std::get<1>(size);
1022 for (size_t i = 0; i < availableDurations.count; i += 4) {
1023 if ((availableDurations.data.i64[i] == format) &&
1024 (availableDurations.data.i64[i+1] == width) &&
1025 (availableDurations.data.i64[i+2] == height)) {
1026 durations->push_back(availableDurations.data.i64[i+3]);
1027 break;
1028 }
1029 }
1030 }
1031 }
1032 }
1033
getSupportedDynamicDepthDurations(const std::vector<int64_t> & depthDurations,const std::vector<int64_t> & blobDurations,std::vector<int64_t> * dynamicDepthDurations)1034 void CameraProviderManager::ProviderInfo::DeviceInfo3::getSupportedDynamicDepthDurations(
1035 const std::vector<int64_t>& depthDurations, const std::vector<int64_t>& blobDurations,
1036 std::vector<int64_t> *dynamicDepthDurations /*out*/) {
1037 if ((dynamicDepthDurations == nullptr) || (depthDurations.size() != blobDurations.size())) {
1038 return;
1039 }
1040
1041 // Unfortunately there is no direct way to calculate the dynamic depth stream duration.
1042 // Processing time on camera service side can vary greatly depending on multiple
1043 // variables which are not under our control. Make a guesstimate by taking the maximum
1044 // corresponding duration value from depth and blob.
1045 auto depthDuration = depthDurations.begin();
1046 auto blobDuration = blobDurations.begin();
1047 dynamicDepthDurations->reserve(depthDurations.size());
1048 while ((depthDuration != depthDurations.end()) && (blobDuration != blobDurations.end())) {
1049 dynamicDepthDurations->push_back(std::max(*depthDuration, *blobDuration));
1050 depthDuration++; blobDuration++;
1051 }
1052 }
1053
getSupportedDynamicDepthSizes(const std::vector<std::tuple<size_t,size_t>> & blobSizes,const std::vector<std::tuple<size_t,size_t>> & depthSizes,std::vector<std::tuple<size_t,size_t>> * dynamicDepthSizes,std::vector<std::tuple<size_t,size_t>> * internalDepthSizes)1054 void CameraProviderManager::ProviderInfo::DeviceInfo3::getSupportedDynamicDepthSizes(
1055 const std::vector<std::tuple<size_t, size_t>>& blobSizes,
1056 const std::vector<std::tuple<size_t, size_t>>& depthSizes,
1057 std::vector<std::tuple<size_t, size_t>> *dynamicDepthSizes /*out*/,
1058 std::vector<std::tuple<size_t, size_t>> *internalDepthSizes /*out*/) {
1059 if (dynamicDepthSizes == nullptr || internalDepthSizes == nullptr) {
1060 return;
1061 }
1062
1063 // The dynamic depth spec. does not mention how close the AR ratio should be.
1064 // Try using something appropriate.
1065 float ARTolerance = kDepthARTolerance;
1066
1067 for (const auto& blobSize : blobSizes) {
1068 float jpegAR = static_cast<float> (std::get<0>(blobSize)) /
1069 static_cast<float>(std::get<1>(blobSize));
1070 bool found = false;
1071 for (const auto& depthSize : depthSizes) {
1072 if (depthSize == blobSize) {
1073 internalDepthSizes->push_back(depthSize);
1074 found = true;
1075 break;
1076 } else {
1077 float depthAR = static_cast<float> (std::get<0>(depthSize)) /
1078 static_cast<float>(std::get<1>(depthSize));
1079 if (std::fabs(jpegAR - depthAR) <= ARTolerance) {
1080 internalDepthSizes->push_back(depthSize);
1081 found = true;
1082 break;
1083 }
1084 }
1085 }
1086
1087 if (found) {
1088 dynamicDepthSizes->push_back(blobSize);
1089 }
1090 }
1091 }
1092
isConcurrentDynamicRangeCaptureSupported(const CameraMetadata & deviceInfo,int64_t profile,int64_t concurrentProfile)1093 bool CameraProviderManager::isConcurrentDynamicRangeCaptureSupported(
1094 const CameraMetadata& deviceInfo, int64_t profile, int64_t concurrentProfile) {
1095 auto entry = deviceInfo.find(ANDROID_REQUEST_AVAILABLE_CAPABILITIES);
1096 if (entry.count == 0) {
1097 return false;
1098 }
1099
1100 const auto it = std::find(entry.data.u8, entry.data.u8 + entry.count,
1101 ANDROID_REQUEST_AVAILABLE_CAPABILITIES_DYNAMIC_RANGE_TEN_BIT);
1102 if (it == entry.data.u8 + entry.count) {
1103 return false;
1104 }
1105
1106 entry = deviceInfo.find(ANDROID_REQUEST_AVAILABLE_DYNAMIC_RANGE_PROFILES_MAP);
1107 if (entry.count == 0 || ((entry.count % 3) != 0)) {
1108 return false;
1109 }
1110
1111 for (size_t i = 0; i < entry.count; i += 3) {
1112 if (entry.data.i64[i] == profile) {
1113 if ((entry.data.i64[i+1] == 0) || (entry.data.i64[i+1] & concurrentProfile)) {
1114 return true;
1115 }
1116 }
1117 }
1118
1119 return false;
1120 }
1121
deriveJpegRTags(bool maxResolution)1122 status_t CameraProviderManager::ProviderInfo::DeviceInfo3::deriveJpegRTags(bool maxResolution) {
1123 if (kFrameworkJpegRDisabled || mCompositeJpegRDisabled) {
1124 return OK;
1125 }
1126
1127 const int32_t scalerSizesTag =
1128 SessionConfigurationUtils::getAppropriateModeTag(
1129 ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS, maxResolution);
1130 const int32_t scalerMinFrameDurationsTag = SessionConfigurationUtils::getAppropriateModeTag(
1131 ANDROID_SCALER_AVAILABLE_MIN_FRAME_DURATIONS, maxResolution);
1132 const int32_t scalerStallDurationsTag =
1133 SessionConfigurationUtils::getAppropriateModeTag(
1134 ANDROID_SCALER_AVAILABLE_STALL_DURATIONS, maxResolution);
1135
1136 const int32_t jpegRSizesTag =
1137 SessionConfigurationUtils::getAppropriateModeTag(
1138 ANDROID_JPEGR_AVAILABLE_JPEG_R_STREAM_CONFIGURATIONS, maxResolution);
1139 const int32_t jpegRStallDurationsTag =
1140 SessionConfigurationUtils::getAppropriateModeTag(
1141 ANDROID_JPEGR_AVAILABLE_JPEG_R_STALL_DURATIONS, maxResolution);
1142 const int32_t jpegRMinFrameDurationsTag =
1143 SessionConfigurationUtils::getAppropriateModeTag(
1144 ANDROID_JPEGR_AVAILABLE_JPEG_R_MIN_FRAME_DURATIONS, maxResolution);
1145
1146 auto& c = mCameraCharacteristics;
1147 std::vector<int32_t> supportedChTags;
1148 auto chTags = c.find(ANDROID_REQUEST_AVAILABLE_CHARACTERISTICS_KEYS);
1149 if (chTags.count == 0) {
1150 ALOGE("%s: No supported camera characteristics keys!", __FUNCTION__);
1151 return BAD_VALUE;
1152 }
1153
1154 std::vector<std::tuple<size_t, size_t>> supportedP010Sizes, supportedBlobSizes;
1155 auto capabilities = c.find(ANDROID_REQUEST_AVAILABLE_CAPABILITIES);
1156 if (capabilities.count == 0) {
1157 ALOGE("%s: Supported camera capabilities is empty!", __FUNCTION__);
1158 return BAD_VALUE;
1159 }
1160
1161 auto end = capabilities.data.u8 + capabilities.count;
1162 bool isTenBitOutputSupported = std::find(capabilities.data.u8, end,
1163 ANDROID_REQUEST_AVAILABLE_CAPABILITIES_DYNAMIC_RANGE_TEN_BIT) != end;
1164 if (!isTenBitOutputSupported) {
1165 // No 10-bit support, nothing more to do.
1166 return OK;
1167 }
1168
1169 if (!isConcurrentDynamicRangeCaptureSupported(c,
1170 ANDROID_REQUEST_AVAILABLE_DYNAMIC_RANGE_PROFILES_MAP_HLG10,
1171 ANDROID_REQUEST_AVAILABLE_DYNAMIC_RANGE_PROFILES_MAP_STANDARD) &&
1172 !property_get_bool("ro.camera.enableCompositeAPI0JpegR", false)) {
1173 // API0, P010 only Jpeg/R support is meant to be used only as a reference due to possible
1174 // impact on quality and performance.
1175 // This data path will be turned off by default and individual device builds must enable
1176 // 'ro.camera.enableCompositeAPI0JpegR' in order to experiment using it.
1177 mCompositeJpegRDisabled = true;
1178 return OK;
1179 }
1180
1181 getSupportedSizes(c, scalerSizesTag,
1182 static_cast<android_pixel_format_t>(HAL_PIXEL_FORMAT_BLOB), &supportedBlobSizes);
1183 getSupportedSizes(c, scalerSizesTag,
1184 static_cast<android_pixel_format_t>(HAL_PIXEL_FORMAT_YCBCR_P010), &supportedP010Sizes);
1185 auto it = supportedP010Sizes.begin();
1186 while (it != supportedP010Sizes.end()) {
1187 if (std::find(supportedBlobSizes.begin(), supportedBlobSizes.end(), *it) ==
1188 supportedBlobSizes.end()) {
1189 it = supportedP010Sizes.erase(it);
1190 } else {
1191 it++;
1192 }
1193 }
1194 if (supportedP010Sizes.empty()) {
1195 // Nothing to do in this case.
1196 return OK;
1197 }
1198
1199 std::vector<int32_t> jpegREntries;
1200 for (const auto& it : supportedP010Sizes) {
1201 int32_t entry[4] = {HAL_PIXEL_FORMAT_BLOB, static_cast<int32_t> (std::get<0>(it)),
1202 static_cast<int32_t> (std::get<1>(it)),
1203 ANDROID_JPEGR_AVAILABLE_JPEG_R_STREAM_CONFIGURATIONS_OUTPUT };
1204 jpegREntries.insert(jpegREntries.end(), entry, entry + 4);
1205 }
1206
1207 std::vector<int64_t> blobMinDurations, blobStallDurations;
1208 std::vector<int64_t> jpegRMinDurations, jpegRStallDurations;
1209
1210 // We use the jpeg stall and min frame durations to approximate the respective jpeg/r
1211 // durations.
1212 getSupportedDurations(c, scalerMinFrameDurationsTag, HAL_PIXEL_FORMAT_BLOB,
1213 supportedP010Sizes, &blobMinDurations);
1214 getSupportedDurations(c, scalerStallDurationsTag, HAL_PIXEL_FORMAT_BLOB,
1215 supportedP010Sizes, &blobStallDurations);
1216 if (blobStallDurations.empty() || blobMinDurations.empty() ||
1217 supportedP010Sizes.size() != blobMinDurations.size() ||
1218 blobMinDurations.size() != blobStallDurations.size()) {
1219 ALOGE("%s: Unexpected number of available blob durations! %zu vs. %zu with "
1220 "supportedP010Sizes size: %zu", __FUNCTION__, blobMinDurations.size(),
1221 blobStallDurations.size(), supportedP010Sizes.size());
1222 return BAD_VALUE;
1223 }
1224
1225 auto itDuration = blobMinDurations.begin();
1226 auto itSize = supportedP010Sizes.begin();
1227 while (itDuration != blobMinDurations.end()) {
1228 int64_t entry[4] = {HAL_PIXEL_FORMAT_BLOB, static_cast<int32_t> (std::get<0>(*itSize)),
1229 static_cast<int32_t> (std::get<1>(*itSize)), *itDuration};
1230 jpegRMinDurations.insert(jpegRMinDurations.end(), entry, entry + 4);
1231 itDuration++; itSize++;
1232 }
1233
1234 itDuration = blobStallDurations.begin();
1235 itSize = supportedP010Sizes.begin();
1236 while (itDuration != blobStallDurations.end()) {
1237 int64_t entry[4] = {HAL_PIXEL_FORMAT_BLOB, static_cast<int32_t> (std::get<0>(*itSize)),
1238 static_cast<int32_t> (std::get<1>(*itSize)), *itDuration};
1239 jpegRStallDurations.insert(jpegRStallDurations.end(), entry, entry + 4);
1240 itDuration++; itSize++;
1241 }
1242
1243 supportedChTags.reserve(chTags.count + 3);
1244 supportedChTags.insert(supportedChTags.end(), chTags.data.i32,
1245 chTags.data.i32 + chTags.count);
1246 supportedChTags.push_back(jpegRSizesTag);
1247 supportedChTags.push_back(jpegRMinFrameDurationsTag);
1248 supportedChTags.push_back(jpegRStallDurationsTag);
1249 c.update(jpegRSizesTag, jpegREntries.data(), jpegREntries.size());
1250 c.update(jpegRMinFrameDurationsTag, jpegRMinDurations.data(), jpegRMinDurations.size());
1251 c.update(jpegRStallDurationsTag, jpegRStallDurations.data(), jpegRStallDurations.size());
1252 c.update(ANDROID_REQUEST_AVAILABLE_CHARACTERISTICS_KEYS, supportedChTags.data(),
1253 supportedChTags.size());
1254
1255 auto colorSpaces = c.find(ANDROID_REQUEST_AVAILABLE_COLOR_SPACE_PROFILES_MAP);
1256 if (colorSpaces.count > 0 && !maxResolution) {
1257 bool displayP3Support = false;
1258 int64_t dynamicRange = ANDROID_REQUEST_AVAILABLE_DYNAMIC_RANGE_PROFILES_MAP_STANDARD;
1259 for (size_t i = 0; i < colorSpaces.count; i += 3) {
1260 auto colorSpace = colorSpaces.data.i64[i];
1261 auto format = colorSpaces.data.i64[i+1];
1262 bool formatMatch = (format == static_cast<int64_t>(PublicFormat::JPEG)) ||
1263 (format == static_cast<int64_t>(PublicFormat::UNKNOWN));
1264 bool colorSpaceMatch =
1265 colorSpace == ANDROID_REQUEST_AVAILABLE_COLOR_SPACE_PROFILES_MAP_DISPLAY_P3;
1266 if (formatMatch && colorSpaceMatch) {
1267 displayP3Support = true;
1268 }
1269
1270 // Jpeg/R will support the same dynamic range profiles as P010
1271 if (format == static_cast<int64_t>(PublicFormat::YCBCR_P010)) {
1272 dynamicRange |= colorSpaces.data.i64[i+2];
1273 }
1274 }
1275 if (displayP3Support) {
1276 std::vector<int64_t> supportedColorSpaces;
1277 // Jpeg/R must support the default system as well ase display P3 color space
1278 supportedColorSpaces.reserve(colorSpaces.count + 3*2);
1279 supportedColorSpaces.insert(supportedColorSpaces.end(), colorSpaces.data.i64,
1280 colorSpaces.data.i64 + colorSpaces.count);
1281
1282 supportedColorSpaces.push_back(static_cast<int64_t>(
1283 ANDROID_REQUEST_AVAILABLE_COLOR_SPACE_PROFILES_MAP_SRGB));
1284 supportedColorSpaces.push_back(static_cast<int64_t>(PublicFormat::JPEG_R));
1285 supportedColorSpaces.push_back(dynamicRange);
1286
1287 supportedColorSpaces.push_back(static_cast<int64_t>(
1288 ANDROID_REQUEST_AVAILABLE_COLOR_SPACE_PROFILES_MAP_DISPLAY_P3));
1289 supportedColorSpaces.push_back(static_cast<int64_t>(PublicFormat::JPEG_R));
1290 supportedColorSpaces.push_back(dynamicRange);
1291 c.update(ANDROID_REQUEST_AVAILABLE_COLOR_SPACE_PROFILES_MAP,
1292 supportedColorSpaces.data(), supportedColorSpaces.size());
1293 }
1294 }
1295
1296 return OK;
1297 }
1298
addDynamicDepthTags(bool maxResolution)1299 status_t CameraProviderManager::ProviderInfo::DeviceInfo3::addDynamicDepthTags(
1300 bool maxResolution) {
1301 const int32_t depthExclTag = ANDROID_DEPTH_DEPTH_IS_EXCLUSIVE;
1302
1303 const int32_t scalerSizesTag =
1304 SessionConfigurationUtils::getAppropriateModeTag(
1305 ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS, maxResolution);
1306 const int32_t scalerMinFrameDurationsTag =
1307 ANDROID_SCALER_AVAILABLE_MIN_FRAME_DURATIONS;
1308 const int32_t scalerStallDurationsTag =
1309 SessionConfigurationUtils::getAppropriateModeTag(
1310 ANDROID_SCALER_AVAILABLE_STALL_DURATIONS, maxResolution);
1311
1312 const int32_t depthSizesTag =
1313 SessionConfigurationUtils::getAppropriateModeTag(
1314 ANDROID_DEPTH_AVAILABLE_DEPTH_STREAM_CONFIGURATIONS, maxResolution);
1315 const int32_t depthStallDurationsTag =
1316 SessionConfigurationUtils::getAppropriateModeTag(
1317 ANDROID_DEPTH_AVAILABLE_DEPTH_STALL_DURATIONS, maxResolution);
1318 const int32_t depthMinFrameDurationsTag =
1319 SessionConfigurationUtils::getAppropriateModeTag(
1320 ANDROID_DEPTH_AVAILABLE_DEPTH_MIN_FRAME_DURATIONS, maxResolution);
1321
1322 const int32_t dynamicDepthSizesTag =
1323 SessionConfigurationUtils::getAppropriateModeTag(
1324 ANDROID_DEPTH_AVAILABLE_DYNAMIC_DEPTH_STREAM_CONFIGURATIONS, maxResolution);
1325 const int32_t dynamicDepthStallDurationsTag =
1326 SessionConfigurationUtils::getAppropriateModeTag(
1327 ANDROID_DEPTH_AVAILABLE_DYNAMIC_DEPTH_STALL_DURATIONS, maxResolution);
1328 const int32_t dynamicDepthMinFrameDurationsTag =
1329 SessionConfigurationUtils::getAppropriateModeTag(
1330 ANDROID_DEPTH_AVAILABLE_DYNAMIC_DEPTH_MIN_FRAME_DURATIONS, maxResolution);
1331
1332 auto& c = mCameraCharacteristics;
1333 std::vector<std::tuple<size_t, size_t>> supportedBlobSizes, supportedDepthSizes,
1334 supportedDynamicDepthSizes, internalDepthSizes;
1335 auto chTags = c.find(ANDROID_REQUEST_AVAILABLE_CHARACTERISTICS_KEYS);
1336 if (chTags.count == 0) {
1337 ALOGE("%s: Supported camera characteristics is empty!", __FUNCTION__);
1338 return BAD_VALUE;
1339 }
1340
1341 bool isDepthExclusivePresent = std::find(chTags.data.i32, chTags.data.i32 + chTags.count,
1342 depthExclTag) != (chTags.data.i32 + chTags.count);
1343 bool isDepthSizePresent = std::find(chTags.data.i32, chTags.data.i32 + chTags.count,
1344 depthSizesTag) != (chTags.data.i32 + chTags.count);
1345 if (!(isDepthExclusivePresent && isDepthSizePresent)) {
1346 // No depth support, nothing more to do.
1347 return OK;
1348 }
1349
1350 auto depthExclusiveEntry = c.find(depthExclTag);
1351 if (depthExclusiveEntry.count > 0) {
1352 if (depthExclusiveEntry.data.u8[0] != ANDROID_DEPTH_DEPTH_IS_EXCLUSIVE_FALSE) {
1353 // Depth support is exclusive, nothing more to do.
1354 return OK;
1355 }
1356 } else {
1357 ALOGE("%s: Advertised depth exclusive tag but value is not present!", __FUNCTION__);
1358 return BAD_VALUE;
1359 }
1360
1361 getSupportedSizes(c, scalerSizesTag, HAL_PIXEL_FORMAT_BLOB,
1362 &supportedBlobSizes);
1363 getSupportedSizes(c, depthSizesTag, HAL_PIXEL_FORMAT_Y16, &supportedDepthSizes);
1364 if (supportedBlobSizes.empty() || supportedDepthSizes.empty()) {
1365 // Nothing to do in this case.
1366 return OK;
1367 }
1368
1369 getSupportedDynamicDepthSizes(supportedBlobSizes, supportedDepthSizes,
1370 &supportedDynamicDepthSizes, &internalDepthSizes);
1371 if (supportedDynamicDepthSizes.empty()) {
1372 // Nothing more to do.
1373 return OK;
1374 }
1375
1376 std::vector<int32_t> dynamicDepthEntries;
1377 for (const auto& it : supportedDynamicDepthSizes) {
1378 int32_t entry[4] = {HAL_PIXEL_FORMAT_BLOB, static_cast<int32_t> (std::get<0>(it)),
1379 static_cast<int32_t> (std::get<1>(it)),
1380 ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS_OUTPUT };
1381 dynamicDepthEntries.insert(dynamicDepthEntries.end(), entry, entry + 4);
1382 }
1383
1384 std::vector<int64_t> depthMinDurations, depthStallDurations;
1385 std::vector<int64_t> blobMinDurations, blobStallDurations;
1386 std::vector<int64_t> dynamicDepthMinDurations, dynamicDepthStallDurations;
1387
1388 getSupportedDurations(c, depthMinFrameDurationsTag, HAL_PIXEL_FORMAT_Y16, internalDepthSizes,
1389 &depthMinDurations);
1390 getSupportedDurations(c, scalerMinFrameDurationsTag, HAL_PIXEL_FORMAT_BLOB,
1391 supportedDynamicDepthSizes, &blobMinDurations);
1392 if (blobMinDurations.empty() || depthMinDurations.empty() ||
1393 (depthMinDurations.size() != blobMinDurations.size())) {
1394 ALOGE("%s: Unexpected number of available depth min durations! %zu vs. %zu",
1395 __FUNCTION__, depthMinDurations.size(), blobMinDurations.size());
1396 return BAD_VALUE;
1397 }
1398
1399 getSupportedDurations(c, depthStallDurationsTag, HAL_PIXEL_FORMAT_Y16, internalDepthSizes,
1400 &depthStallDurations);
1401 getSupportedDurations(c, scalerStallDurationsTag, HAL_PIXEL_FORMAT_BLOB,
1402 supportedDynamicDepthSizes, &blobStallDurations);
1403 if (blobStallDurations.empty() || depthStallDurations.empty() ||
1404 (depthStallDurations.size() != blobStallDurations.size())) {
1405 ALOGE("%s: Unexpected number of available depth stall durations! %zu vs. %zu",
1406 __FUNCTION__, depthStallDurations.size(), blobStallDurations.size());
1407 return BAD_VALUE;
1408 }
1409
1410 getSupportedDynamicDepthDurations(depthMinDurations, blobMinDurations,
1411 &dynamicDepthMinDurations);
1412 getSupportedDynamicDepthDurations(depthStallDurations, blobStallDurations,
1413 &dynamicDepthStallDurations);
1414 if (dynamicDepthMinDurations.empty() || dynamicDepthStallDurations.empty() ||
1415 (dynamicDepthMinDurations.size() != dynamicDepthStallDurations.size())) {
1416 ALOGE("%s: Unexpected number of dynamic depth stall/min durations! %zu vs. %zu",
1417 __FUNCTION__, dynamicDepthMinDurations.size(), dynamicDepthStallDurations.size());
1418 return BAD_VALUE;
1419 }
1420
1421 std::vector<int64_t> dynamicDepthMinDurationEntries;
1422 auto itDuration = dynamicDepthMinDurations.begin();
1423 auto itSize = supportedDynamicDepthSizes.begin();
1424 while (itDuration != dynamicDepthMinDurations.end()) {
1425 int64_t entry[4] = {HAL_PIXEL_FORMAT_BLOB, static_cast<int32_t> (std::get<0>(*itSize)),
1426 static_cast<int32_t> (std::get<1>(*itSize)), *itDuration};
1427 dynamicDepthMinDurationEntries.insert(dynamicDepthMinDurationEntries.end(), entry,
1428 entry + 4);
1429 itDuration++; itSize++;
1430 }
1431
1432 std::vector<int64_t> dynamicDepthStallDurationEntries;
1433 itDuration = dynamicDepthStallDurations.begin();
1434 itSize = supportedDynamicDepthSizes.begin();
1435 while (itDuration != dynamicDepthStallDurations.end()) {
1436 int64_t entry[4] = {HAL_PIXEL_FORMAT_BLOB, static_cast<int32_t> (std::get<0>(*itSize)),
1437 static_cast<int32_t> (std::get<1>(*itSize)), *itDuration};
1438 dynamicDepthStallDurationEntries.insert(dynamicDepthStallDurationEntries.end(), entry,
1439 entry + 4);
1440 itDuration++; itSize++;
1441 }
1442
1443 std::vector<int32_t> supportedChTags;
1444 supportedChTags.reserve(chTags.count + 3);
1445 supportedChTags.insert(supportedChTags.end(), chTags.data.i32,
1446 chTags.data.i32 + chTags.count);
1447 supportedChTags.push_back(dynamicDepthSizesTag);
1448 supportedChTags.push_back(dynamicDepthMinFrameDurationsTag);
1449 supportedChTags.push_back(dynamicDepthStallDurationsTag);
1450 c.update(dynamicDepthSizesTag, dynamicDepthEntries.data(), dynamicDepthEntries.size());
1451 c.update(dynamicDepthMinFrameDurationsTag, dynamicDepthMinDurationEntries.data(),
1452 dynamicDepthMinDurationEntries.size());
1453 c.update(dynamicDepthStallDurationsTag, dynamicDepthStallDurationEntries.data(),
1454 dynamicDepthStallDurationEntries.size());
1455 c.update(ANDROID_REQUEST_AVAILABLE_CHARACTERISTICS_KEYS, supportedChTags.data(),
1456 supportedChTags.size());
1457
1458 return OK;
1459 }
1460
fixupTorchStrengthTags()1461 status_t CameraProviderManager::ProviderInfo::DeviceInfo3::fixupTorchStrengthTags() {
1462 status_t res = OK;
1463 auto& c = mCameraCharacteristics;
1464 auto flashInfoStrengthDefaultLevelEntry = c.find(ANDROID_FLASH_INFO_STRENGTH_DEFAULT_LEVEL);
1465 if (flashInfoStrengthDefaultLevelEntry.count == 0) {
1466 int32_t flashInfoStrengthDefaultLevel = 1;
1467 res = c.update(ANDROID_FLASH_INFO_STRENGTH_DEFAULT_LEVEL,
1468 &flashInfoStrengthDefaultLevel, 1);
1469 if (res != OK) {
1470 ALOGE("%s: Failed to update ANDROID_FLASH_INFO_STRENGTH_DEFAULT_LEVEL: %s (%d)",
1471 __FUNCTION__,strerror(-res), res);
1472 return res;
1473 }
1474 }
1475 auto flashInfoStrengthMaximumLevelEntry = c.find(ANDROID_FLASH_INFO_STRENGTH_MAXIMUM_LEVEL);
1476 if (flashInfoStrengthMaximumLevelEntry.count == 0) {
1477 int32_t flashInfoStrengthMaximumLevel = 1;
1478 res = c.update(ANDROID_FLASH_INFO_STRENGTH_MAXIMUM_LEVEL,
1479 &flashInfoStrengthMaximumLevel, 1);
1480 if (res != OK) {
1481 ALOGE("%s: Failed to update ANDROID_FLASH_INFO_STRENGTH_MAXIMUM_LEVEL: %s (%d)",
1482 __FUNCTION__,strerror(-res), res);
1483 return res;
1484 }
1485 }
1486 return res;
1487 }
1488
fixupMonochromeTags()1489 status_t CameraProviderManager::ProviderInfo::DeviceInfo3::fixupMonochromeTags() {
1490 status_t res = OK;
1491 auto& c = mCameraCharacteristics;
1492 sp<ProviderInfo> parentProvider = mParentProvider.promote();
1493 if (parentProvider == nullptr) {
1494 return DEAD_OBJECT;
1495 }
1496 IPCTransport ipcTransport = parentProvider->getIPCTransport();
1497 // Override static metadata for MONOCHROME camera with older device version
1498 if (ipcTransport == IPCTransport::HIDL &&
1499 (mVersion.get_major() == 3 && mVersion.get_minor() < 5)) {
1500 camera_metadata_entry cap = c.find(ANDROID_REQUEST_AVAILABLE_CAPABILITIES);
1501 for (size_t i = 0; i < cap.count; i++) {
1502 if (cap.data.u8[i] == ANDROID_REQUEST_AVAILABLE_CAPABILITIES_MONOCHROME) {
1503 // ANDROID_SENSOR_INFO_COLOR_FILTER_ARRANGEMENT
1504 uint8_t cfa = ANDROID_SENSOR_INFO_COLOR_FILTER_ARRANGEMENT_MONO;
1505 res = c.update(ANDROID_SENSOR_INFO_COLOR_FILTER_ARRANGEMENT, &cfa, 1);
1506 if (res != OK) {
1507 ALOGE("%s: Failed to update COLOR_FILTER_ARRANGEMENT: %s (%d)",
1508 __FUNCTION__, strerror(-res), res);
1509 return res;
1510 }
1511
1512 // ANDROID_REQUEST_AVAILABLE_CHARACTERISTICS_KEYS
1513 const std::vector<uint32_t> sKeys = {
1514 ANDROID_SENSOR_REFERENCE_ILLUMINANT1,
1515 ANDROID_SENSOR_REFERENCE_ILLUMINANT2,
1516 ANDROID_SENSOR_CALIBRATION_TRANSFORM1,
1517 ANDROID_SENSOR_CALIBRATION_TRANSFORM2,
1518 ANDROID_SENSOR_COLOR_TRANSFORM1,
1519 ANDROID_SENSOR_COLOR_TRANSFORM2,
1520 ANDROID_SENSOR_FORWARD_MATRIX1,
1521 ANDROID_SENSOR_FORWARD_MATRIX2,
1522 };
1523 res = removeAvailableKeys(c, sKeys,
1524 ANDROID_REQUEST_AVAILABLE_CHARACTERISTICS_KEYS);
1525 if (res != OK) {
1526 ALOGE("%s: Failed to update REQUEST_AVAILABLE_CHARACTERISTICS_KEYS: %s (%d)",
1527 __FUNCTION__, strerror(-res), res);
1528 return res;
1529 }
1530
1531 // ANDROID_REQUEST_AVAILABLE_REQUEST_KEYS
1532 const std::vector<uint32_t> reqKeys = {
1533 ANDROID_COLOR_CORRECTION_MODE,
1534 ANDROID_COLOR_CORRECTION_TRANSFORM,
1535 ANDROID_COLOR_CORRECTION_GAINS,
1536 };
1537 res = removeAvailableKeys(c, reqKeys, ANDROID_REQUEST_AVAILABLE_REQUEST_KEYS);
1538 if (res != OK) {
1539 ALOGE("%s: Failed to update REQUEST_AVAILABLE_REQUEST_KEYS: %s (%d)",
1540 __FUNCTION__, strerror(-res), res);
1541 return res;
1542 }
1543
1544 // ANDROID_REQUEST_AVAILABLE_RESULT_KEYS
1545 const std::vector<uint32_t> resKeys = {
1546 ANDROID_SENSOR_GREEN_SPLIT,
1547 ANDROID_SENSOR_NEUTRAL_COLOR_POINT,
1548 ANDROID_COLOR_CORRECTION_MODE,
1549 ANDROID_COLOR_CORRECTION_TRANSFORM,
1550 ANDROID_COLOR_CORRECTION_GAINS,
1551 };
1552 res = removeAvailableKeys(c, resKeys, ANDROID_REQUEST_AVAILABLE_RESULT_KEYS);
1553 if (res != OK) {
1554 ALOGE("%s: Failed to update REQUEST_AVAILABLE_RESULT_KEYS: %s (%d)",
1555 __FUNCTION__, strerror(-res), res);
1556 return res;
1557 }
1558
1559 // ANDROID_SENSOR_BLACK_LEVEL_PATTERN
1560 camera_metadata_entry blEntry = c.find(ANDROID_SENSOR_BLACK_LEVEL_PATTERN);
1561 for (size_t j = 1; j < blEntry.count; j++) {
1562 blEntry.data.i32[j] = blEntry.data.i32[0];
1563 }
1564 }
1565 }
1566 }
1567 return res;
1568 }
1569
addRotateCropTags()1570 status_t CameraProviderManager::ProviderInfo::DeviceInfo3::addRotateCropTags() {
1571 status_t res = OK;
1572 auto& c = mCameraCharacteristics;
1573
1574 auto availableRotateCropEntry = c.find(ANDROID_SCALER_AVAILABLE_ROTATE_AND_CROP_MODES);
1575 if (availableRotateCropEntry.count == 0) {
1576 uint8_t defaultAvailableRotateCropEntry = ANDROID_SCALER_ROTATE_AND_CROP_NONE;
1577 res = c.update(ANDROID_SCALER_AVAILABLE_ROTATE_AND_CROP_MODES,
1578 &defaultAvailableRotateCropEntry, 1);
1579 }
1580 return res;
1581 }
1582
addAutoframingTags()1583 status_t CameraProviderManager::ProviderInfo::DeviceInfo3::addAutoframingTags() {
1584 status_t res = OK;
1585 auto& c = mCameraCharacteristics;
1586
1587 auto availableAutoframingEntry = c.find(ANDROID_CONTROL_AUTOFRAMING_AVAILABLE);
1588 if (availableAutoframingEntry.count == 0) {
1589 uint8_t defaultAutoframingEntry = ANDROID_CONTROL_AUTOFRAMING_AVAILABLE_FALSE;
1590 res = c.update(ANDROID_CONTROL_AUTOFRAMING_AVAILABLE,
1591 &defaultAutoframingEntry, 1);
1592 }
1593 return res;
1594 }
1595
addPreCorrectionActiveArraySize()1596 status_t CameraProviderManager::ProviderInfo::DeviceInfo3::addPreCorrectionActiveArraySize() {
1597 status_t res = OK;
1598 auto& c = mCameraCharacteristics;
1599
1600 auto activeArraySize = c.find(ANDROID_SENSOR_INFO_ACTIVE_ARRAY_SIZE);
1601 auto preCorrectionActiveArraySize = c.find(
1602 ANDROID_SENSOR_INFO_PRE_CORRECTION_ACTIVE_ARRAY_SIZE);
1603 if (activeArraySize.count == 4 && preCorrectionActiveArraySize.count == 0) {
1604 std::vector<int32_t> preCorrectionArray(
1605 activeArraySize.data.i32, activeArraySize.data.i32+4);
1606 res = c.update(ANDROID_SENSOR_INFO_PRE_CORRECTION_ACTIVE_ARRAY_SIZE,
1607 preCorrectionArray.data(), 4);
1608 if (res != OK) {
1609 ALOGE("%s: Failed to add ANDROID_SENSOR_INFO_PRE_CORRECTION_ACTIVE_ARRAY_SIZE: %s(%d)",
1610 __FUNCTION__, strerror(-res), res);
1611 return res;
1612 }
1613 } else {
1614 return res;
1615 }
1616
1617 auto charTags = c.find(ANDROID_REQUEST_AVAILABLE_CHARACTERISTICS_KEYS);
1618 bool hasPreCorrectionActiveArraySize = std::find(charTags.data.i32,
1619 charTags.data.i32 + charTags.count,
1620 ANDROID_SENSOR_INFO_PRE_CORRECTION_ACTIVE_ARRAY_SIZE) !=
1621 (charTags.data.i32 + charTags.count);
1622 if (!hasPreCorrectionActiveArraySize) {
1623 std::vector<int32_t> supportedCharTags;
1624 supportedCharTags.reserve(charTags.count + 1);
1625 supportedCharTags.insert(supportedCharTags.end(), charTags.data.i32,
1626 charTags.data.i32 + charTags.count);
1627 supportedCharTags.push_back(ANDROID_SENSOR_INFO_PRE_CORRECTION_ACTIVE_ARRAY_SIZE);
1628
1629 res = c.update(ANDROID_REQUEST_AVAILABLE_CHARACTERISTICS_KEYS, supportedCharTags.data(),
1630 supportedCharTags.size());
1631 if (res != OK) {
1632 ALOGE("%s: Failed to update ANDROID_REQUEST_AVAILABLE_CHARACTERISTICS_KEYS: %s(%d)",
1633 __FUNCTION__, strerror(-res), res);
1634 return res;
1635 }
1636 }
1637
1638 return res;
1639 }
1640
addReadoutTimestampTag(bool readoutTimestampSupported)1641 status_t CameraProviderManager::ProviderInfo::DeviceInfo3::addReadoutTimestampTag(
1642 bool readoutTimestampSupported) {
1643 status_t res = OK;
1644 auto& c = mCameraCharacteristics;
1645
1646 auto entry = c.find(ANDROID_SENSOR_READOUT_TIMESTAMP);
1647 if (entry.count != 0) {
1648 ALOGE("%s: CameraCharacteristics must not contain ANDROID_SENSOR_READOUT_TIMESTAMP!",
1649 __FUNCTION__);
1650 }
1651
1652 uint8_t readoutTimestamp = ANDROID_SENSOR_READOUT_TIMESTAMP_NOT_SUPPORTED;
1653 if (readoutTimestampSupported) {
1654 readoutTimestamp = ANDROID_SENSOR_READOUT_TIMESTAMP_HARDWARE;
1655 }
1656
1657 res = c.update(ANDROID_SENSOR_READOUT_TIMESTAMP, &readoutTimestamp, 1);
1658
1659 return res;
1660 }
1661
removeAvailableKeys(CameraMetadata & c,const std::vector<uint32_t> & keys,uint32_t keyTag)1662 status_t CameraProviderManager::ProviderInfo::DeviceInfo3::removeAvailableKeys(
1663 CameraMetadata& c, const std::vector<uint32_t>& keys, uint32_t keyTag) {
1664 status_t res = OK;
1665
1666 camera_metadata_entry keysEntry = c.find(keyTag);
1667 if (keysEntry.count == 0) {
1668 ALOGE("%s: Failed to find tag %u: %s (%d)", __FUNCTION__, keyTag, strerror(-res), res);
1669 return res;
1670 }
1671 std::vector<int32_t> vKeys;
1672 vKeys.reserve(keysEntry.count);
1673 for (size_t i = 0; i < keysEntry.count; i++) {
1674 if (std::find(keys.begin(), keys.end(), keysEntry.data.i32[i]) == keys.end()) {
1675 vKeys.push_back(keysEntry.data.i32[i]);
1676 }
1677 }
1678 res = c.update(keyTag, vKeys.data(), vKeys.size());
1679 return res;
1680 }
1681
fillHeicStreamCombinations(std::vector<int32_t> * outputs,std::vector<int64_t> * durations,std::vector<int64_t> * stallDurations,const camera_metadata_entry & halStreamConfigs,const camera_metadata_entry & halStreamDurations)1682 status_t CameraProviderManager::ProviderInfo::DeviceInfo3::fillHeicStreamCombinations(
1683 std::vector<int32_t>* outputs,
1684 std::vector<int64_t>* durations,
1685 std::vector<int64_t>* stallDurations,
1686 const camera_metadata_entry& halStreamConfigs,
1687 const camera_metadata_entry& halStreamDurations) {
1688 if (outputs == nullptr || durations == nullptr || stallDurations == nullptr) {
1689 return BAD_VALUE;
1690 }
1691
1692 static bool supportInMemoryTempFile =
1693 camera3::HeicCompositeStream::isInMemoryTempFileSupported();
1694 if (!supportInMemoryTempFile) {
1695 ALOGI("%s: No HEIC support due to absence of in memory temp file support",
1696 __FUNCTION__);
1697 return OK;
1698 }
1699
1700 for (size_t i = 0; i < halStreamConfigs.count; i += 4) {
1701 int32_t format = halStreamConfigs.data.i32[i];
1702 // Only IMPLEMENTATION_DEFINED and YUV_888 can be used to generate HEIC
1703 // image.
1704 if (format != HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED &&
1705 format != HAL_PIXEL_FORMAT_YCBCR_420_888) {
1706 continue;
1707 }
1708
1709 bool sizeAvail = false;
1710 for (size_t j = 0; j < outputs->size(); j+= 4) {
1711 if ((*outputs)[j+1] == halStreamConfigs.data.i32[i+1] &&
1712 (*outputs)[j+2] == halStreamConfigs.data.i32[i+2]) {
1713 sizeAvail = true;
1714 break;
1715 }
1716 }
1717 if (sizeAvail) continue;
1718
1719 int64_t stall = 0;
1720 bool useHeic = false;
1721 bool useGrid = false;
1722 if (camera3::HeicCompositeStream::isSizeSupportedByHeifEncoder(
1723 halStreamConfigs.data.i32[i+1], halStreamConfigs.data.i32[i+2],
1724 &useHeic, &useGrid, &stall)) {
1725 if (useGrid != (format == HAL_PIXEL_FORMAT_YCBCR_420_888)) {
1726 continue;
1727 }
1728
1729 // HEIC configuration
1730 int32_t config[] = {HAL_PIXEL_FORMAT_BLOB, halStreamConfigs.data.i32[i+1],
1731 halStreamConfigs.data.i32[i+2], 0 /*isInput*/};
1732 outputs->insert(outputs->end(), config, config + 4);
1733
1734 // HEIC minFrameDuration
1735 for (size_t j = 0; j < halStreamDurations.count; j += 4) {
1736 if (halStreamDurations.data.i64[j] == format &&
1737 halStreamDurations.data.i64[j+1] == halStreamConfigs.data.i32[i+1] &&
1738 halStreamDurations.data.i64[j+2] == halStreamConfigs.data.i32[i+2]) {
1739 int64_t duration[] = {HAL_PIXEL_FORMAT_BLOB, halStreamConfigs.data.i32[i+1],
1740 halStreamConfigs.data.i32[i+2], halStreamDurations.data.i64[j+3]};
1741 durations->insert(durations->end(), duration, duration+4);
1742 break;
1743 }
1744 }
1745
1746 // HEIC stallDuration
1747 int64_t stallDuration[] = {HAL_PIXEL_FORMAT_BLOB, halStreamConfigs.data.i32[i+1],
1748 halStreamConfigs.data.i32[i+2], stall};
1749 stallDurations->insert(stallDurations->end(), stallDuration, stallDuration+4);
1750 }
1751 }
1752 return OK;
1753 }
1754
deriveHeicTags(bool maxResolution)1755 status_t CameraProviderManager::ProviderInfo::DeviceInfo3::deriveHeicTags(bool maxResolution) {
1756 int32_t scalerStreamSizesTag =
1757 SessionConfigurationUtils::getAppropriateModeTag(
1758 ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS, maxResolution);
1759 int32_t scalerMinFrameDurationsTag =
1760 SessionConfigurationUtils::getAppropriateModeTag(
1761 ANDROID_SCALER_AVAILABLE_MIN_FRAME_DURATIONS, maxResolution);
1762
1763 int32_t heicStreamSizesTag =
1764 SessionConfigurationUtils::getAppropriateModeTag(
1765 ANDROID_HEIC_AVAILABLE_HEIC_STREAM_CONFIGURATIONS, maxResolution);
1766 int32_t heicMinFrameDurationsTag =
1767 SessionConfigurationUtils::getAppropriateModeTag(
1768 ANDROID_HEIC_AVAILABLE_HEIC_MIN_FRAME_DURATIONS, maxResolution);
1769 int32_t heicStallDurationsTag =
1770 SessionConfigurationUtils::getAppropriateModeTag(
1771 ANDROID_HEIC_AVAILABLE_HEIC_STALL_DURATIONS, maxResolution);
1772
1773 auto& c = mCameraCharacteristics;
1774
1775 camera_metadata_entry halHeicSupport = c.find(ANDROID_HEIC_INFO_SUPPORTED);
1776 if (halHeicSupport.count > 1) {
1777 ALOGE("%s: Invalid entry count %zu for ANDROID_HEIC_INFO_SUPPORTED",
1778 __FUNCTION__, halHeicSupport.count);
1779 return BAD_VALUE;
1780 } else if (halHeicSupport.count == 0 ||
1781 halHeicSupport.data.u8[0] == ANDROID_HEIC_INFO_SUPPORTED_FALSE) {
1782 // Camera HAL doesn't support mandatory stream combinations for HEIC.
1783 return OK;
1784 }
1785
1786 camera_metadata_entry maxJpegAppsSegments =
1787 c.find(ANDROID_HEIC_INFO_MAX_JPEG_APP_SEGMENTS_COUNT);
1788 if (maxJpegAppsSegments.count != 1 || maxJpegAppsSegments.data.u8[0] == 0 ||
1789 maxJpegAppsSegments.data.u8[0] > 16) {
1790 ALOGE("%s: ANDROID_HEIC_INFO_MAX_JPEG_APP_SEGMENTS_COUNT must be within [1, 16]",
1791 __FUNCTION__);
1792 return BAD_VALUE;
1793 }
1794
1795 // Populate HEIC output configurations and its related min frame duration
1796 // and stall duration.
1797 std::vector<int32_t> heicOutputs;
1798 std::vector<int64_t> heicDurations;
1799 std::vector<int64_t> heicStallDurations;
1800
1801 camera_metadata_entry halStreamConfigs = c.find(scalerStreamSizesTag);
1802 camera_metadata_entry minFrameDurations = c.find(scalerMinFrameDurationsTag);
1803
1804 status_t res = fillHeicStreamCombinations(&heicOutputs, &heicDurations, &heicStallDurations,
1805 halStreamConfigs, minFrameDurations);
1806 if (res != OK) {
1807 ALOGE("%s: Failed to fill HEIC stream combinations: %s (%d)", __FUNCTION__,
1808 strerror(-res), res);
1809 return res;
1810 }
1811
1812 c.update(heicStreamSizesTag, heicOutputs.data(), heicOutputs.size());
1813 c.update(heicMinFrameDurationsTag, heicDurations.data(), heicDurations.size());
1814 c.update(heicStallDurationsTag, heicStallDurations.data(), heicStallDurations.size());
1815
1816 return OK;
1817 }
1818
isLogicalCameraLocked(const std::string & id,std::vector<std::string> * physicalCameraIds)1819 bool CameraProviderManager::isLogicalCameraLocked(const std::string& id,
1820 std::vector<std::string>* physicalCameraIds) {
1821 auto deviceInfo = findDeviceInfoLocked(id);
1822 if (deviceInfo == nullptr) return false;
1823
1824 if (deviceInfo->mIsLogicalCamera && physicalCameraIds != nullptr) {
1825 *physicalCameraIds = deviceInfo->mPhysicalIds;
1826 }
1827 return deviceInfo->mIsLogicalCamera;
1828 }
1829
isLogicalCamera(const std::string & id,std::vector<std::string> * physicalCameraIds)1830 bool CameraProviderManager::isLogicalCamera(const std::string& id,
1831 std::vector<std::string>* physicalCameraIds) {
1832 std::lock_guard<std::mutex> lock(mInterfaceMutex);
1833 return isLogicalCameraLocked(id, physicalCameraIds);
1834 }
1835
getSystemCameraKind(const std::string & id,SystemCameraKind * kind) const1836 status_t CameraProviderManager::getSystemCameraKind(const std::string& id,
1837 SystemCameraKind *kind) const {
1838 std::lock_guard<std::mutex> lock(mInterfaceMutex);
1839 return getSystemCameraKindLocked(id, kind);
1840 }
1841
getSystemCameraKindLocked(const std::string & id,SystemCameraKind * kind) const1842 status_t CameraProviderManager::getSystemCameraKindLocked(const std::string& id,
1843 SystemCameraKind *kind) const {
1844 auto deviceInfo = findDeviceInfoLocked(id);
1845 if (deviceInfo != nullptr) {
1846 *kind = deviceInfo->mSystemCameraKind;
1847 return OK;
1848 }
1849 // If this is a hidden physical camera, we should return what kind of
1850 // camera the enclosing logical camera is.
1851 auto isHiddenAndParent = isHiddenPhysicalCameraInternal(id);
1852 if (isHiddenAndParent.first) {
1853 LOG_ALWAYS_FATAL_IF(id == isHiddenAndParent.second->mId,
1854 "%s: hidden physical camera id %s and enclosing logical camera id %s are the same",
1855 __FUNCTION__, id.c_str(), isHiddenAndParent.second->mId.c_str());
1856 return getSystemCameraKindLocked(isHiddenAndParent.second->mId, kind);
1857 }
1858 // Neither a hidden physical camera nor a logical camera
1859 return NAME_NOT_FOUND;
1860 }
1861
isHiddenPhysicalCamera(const std::string & cameraId) const1862 bool CameraProviderManager::isHiddenPhysicalCamera(const std::string& cameraId) const {
1863 std::lock_guard<std::mutex> lock(mInterfaceMutex);
1864 return isHiddenPhysicalCameraInternal(cameraId).first;
1865 }
1866
filterSmallJpegSizes(const std::string & cameraId)1867 status_t CameraProviderManager::filterSmallJpegSizes(const std::string& cameraId) {
1868 std::lock_guard<std::mutex> lock(mInterfaceMutex);
1869 for (auto& provider : mProviders) {
1870 for (auto& deviceInfo : provider->mDevices) {
1871 if (deviceInfo->mId == cameraId) {
1872 return deviceInfo->filterSmallJpegSizes();
1873 }
1874 }
1875 }
1876 return NAME_NOT_FOUND;
1877 }
1878
1879 std::pair<bool, CameraProviderManager::ProviderInfo::DeviceInfo *>
isHiddenPhysicalCameraInternal(const std::string & cameraId) const1880 CameraProviderManager::isHiddenPhysicalCameraInternal(const std::string& cameraId) const {
1881 auto falseRet = std::make_pair(false, nullptr);
1882 for (auto& provider : mProviders) {
1883 for (auto& deviceInfo : provider->mDevices) {
1884 if (deviceInfo->mId == cameraId) {
1885 // cameraId is found in public camera IDs advertised by the
1886 // provider.
1887 return falseRet;
1888 }
1889 }
1890 }
1891
1892 for (auto& provider : mProviders) {
1893 IPCTransport transport = provider->getIPCTransport();
1894 for (auto& deviceInfo : provider->mDevices) {
1895 std::vector<std::string> physicalIds;
1896 if (deviceInfo->mIsLogicalCamera) {
1897 if (std::find(deviceInfo->mPhysicalIds.begin(), deviceInfo->mPhysicalIds.end(),
1898 cameraId) != deviceInfo->mPhysicalIds.end()) {
1899 int deviceVersion = HARDWARE_DEVICE_API_VERSION(
1900 deviceInfo->mVersion.get_major(), deviceInfo->mVersion.get_minor());
1901 if (transport == IPCTransport::HIDL &&
1902 deviceVersion < CAMERA_DEVICE_API_VERSION_3_5) {
1903 ALOGE("%s: Wrong deviceVersion %x for hiddenPhysicalCameraId %s",
1904 __FUNCTION__, deviceVersion, cameraId.c_str());
1905 return falseRet;
1906 } else {
1907 return std::make_pair(true, deviceInfo.get());
1908 }
1909 }
1910 }
1911 }
1912 }
1913
1914 return falseRet;
1915 }
1916
tryToInitializeAidlProviderLocked(const std::string & providerName,const sp<ProviderInfo> & providerInfo)1917 status_t CameraProviderManager::tryToInitializeAidlProviderLocked(
1918 const std::string& providerName, const sp<ProviderInfo>& providerInfo) {
1919 using aidl::android::hardware::camera::provider::ICameraProvider;
1920 std::shared_ptr<ICameraProvider> interface =
1921 ICameraProvider::fromBinder(ndk::SpAIBinder(
1922 AServiceManager_getService(providerName.c_str())));
1923
1924 if (interface == nullptr) {
1925 ALOGW("%s: AIDL Camera provider HAL '%s' is not actually available", __FUNCTION__,
1926 providerName.c_str());
1927 return BAD_VALUE;
1928 }
1929
1930 AidlProviderInfo *aidlProviderInfo = static_cast<AidlProviderInfo *>(providerInfo.get());
1931 return aidlProviderInfo->initializeAidlProvider(interface, mDeviceState);
1932 }
1933
tryToInitializeHidlProviderLocked(const std::string & providerName,const sp<ProviderInfo> & providerInfo)1934 status_t CameraProviderManager::tryToInitializeHidlProviderLocked(
1935 const std::string& providerName, const sp<ProviderInfo>& providerInfo) {
1936 sp<provider::V2_4::ICameraProvider> interface;
1937 interface = mHidlServiceProxy->tryGetService(providerName);
1938
1939 if (interface == nullptr) {
1940 // The interface may not be started yet. In that case, this is not a
1941 // fatal error.
1942 ALOGW("%s: HIDL Camera provider HAL '%s' is not actually available", __FUNCTION__,
1943 providerName.c_str());
1944 return BAD_VALUE;
1945 }
1946
1947 HidlProviderInfo *hidlProviderInfo = static_cast<HidlProviderInfo *>(providerInfo.get());
1948 return hidlProviderInfo->initializeHidlProvider(interface, mDeviceState);
1949 }
1950
addAidlProviderLocked(const std::string & newProvider)1951 status_t CameraProviderManager::addAidlProviderLocked(const std::string& newProvider) {
1952 // Several camera provider instances can be temporarily present.
1953 // Defer initialization of a new instance until the older instance is properly removed.
1954 auto providerInstance = newProvider + "-" + std::to_string(mProviderInstanceId);
1955 bool providerPresent = false;
1956 bool preexisting =
1957 (mAidlProviderWithBinders.find(newProvider) != mAidlProviderWithBinders.end());
1958
1959 // We need to use the extracted provider name here since 'newProvider' has
1960 // the fully qualified name of the provider service in case of AIDL. We want
1961 // just instance name.
1962 using aidl::android::hardware::camera::provider::ICameraProvider;
1963 std::string extractedProviderName =
1964 newProvider.substr(std::string(ICameraProvider::descriptor).size() + 1);
1965 for (const auto& providerInfo : mProviders) {
1966 if (providerInfo->mProviderName == extractedProviderName) {
1967 ALOGW("%s: Camera provider HAL with name '%s' already registered",
1968 __FUNCTION__, newProvider.c_str());
1969 // Do not add new instances for lazy HAL external provider or aidl
1970 // binders previously seen.
1971 if (preexisting || providerInfo->isExternalLazyHAL()) {
1972 return ALREADY_EXISTS;
1973 } else {
1974 ALOGW("%s: The new provider instance will get initialized immediately after the"
1975 " currently present instance is removed!", __FUNCTION__);
1976 providerPresent = true;
1977 break;
1978 }
1979 }
1980 }
1981
1982 sp<AidlProviderInfo> providerInfo =
1983 new AidlProviderInfo(extractedProviderName, providerInstance, this);
1984
1985 if (!providerPresent) {
1986 status_t res = tryToInitializeAidlProviderLocked(newProvider, providerInfo);
1987 if (res != OK) {
1988 return res;
1989 }
1990 mAidlProviderWithBinders.emplace(newProvider);
1991 }
1992
1993 mProviders.push_back(providerInfo);
1994 mProviderInstanceId++;
1995
1996 return OK;
1997 }
1998
addHidlProviderLocked(const std::string & newProvider,bool preexisting)1999 status_t CameraProviderManager::addHidlProviderLocked(const std::string& newProvider,
2000 bool preexisting) {
2001 // Several camera provider instances can be temporarily present.
2002 // Defer initialization of a new instance until the older instance is properly removed.
2003 auto providerInstance = newProvider + "-" + std::to_string(mProviderInstanceId);
2004 bool providerPresent = false;
2005 for (const auto& providerInfo : mProviders) {
2006 if (providerInfo->mProviderName == newProvider) {
2007 ALOGW("%s: Camera provider HAL with name '%s' already registered",
2008 __FUNCTION__, newProvider.c_str());
2009 // Do not add new instances for lazy HAL external provider
2010 if (preexisting || providerInfo->isExternalLazyHAL()) {
2011 return ALREADY_EXISTS;
2012 } else {
2013 ALOGW("%s: The new provider instance will get initialized immediately after the"
2014 " currently present instance is removed!", __FUNCTION__);
2015 providerPresent = true;
2016 break;
2017 }
2018 }
2019 }
2020
2021 sp<HidlProviderInfo> providerInfo = new HidlProviderInfo(newProvider, providerInstance, this);
2022 if (!providerPresent) {
2023 status_t res = tryToInitializeHidlProviderLocked(newProvider, providerInfo);
2024 if (res != OK) {
2025 return res;
2026 }
2027 }
2028
2029 mProviders.push_back(providerInfo);
2030 mProviderInstanceId++;
2031
2032 return OK;
2033 }
2034
removeProvider(const std::string & provider)2035 status_t CameraProviderManager::removeProvider(const std::string& provider) {
2036 std::lock_guard<std::mutex> providerLock(mProviderLifecycleLock);
2037 std::unique_lock<std::mutex> lock(mInterfaceMutex);
2038 std::vector<String8> removedDeviceIds;
2039 status_t res = NAME_NOT_FOUND;
2040 std::string removedProviderName;
2041 for (auto it = mProviders.begin(); it != mProviders.end(); it++) {
2042 if ((*it)->mProviderInstance == provider) {
2043 removedDeviceIds.reserve((*it)->mDevices.size());
2044 for (auto& deviceInfo : (*it)->mDevices) {
2045 removedDeviceIds.push_back(String8(deviceInfo->mId.c_str()));
2046 }
2047 removedProviderName = (*it)->mProviderName;
2048 mProviders.erase(it);
2049 res = OK;
2050 break;
2051 }
2052 }
2053 if (res != OK) {
2054 ALOGW("%s: Camera provider HAL with name '%s' is not registered", __FUNCTION__,
2055 provider.c_str());
2056 } else {
2057 // Check if there are any newer camera instances from the same provider and try to
2058 // initialize.
2059 for (const auto& providerInfo : mProviders) {
2060 if (providerInfo->mProviderName == removedProviderName) {
2061 IPCTransport providerTransport = providerInfo->getIPCTransport();
2062 std::string removedAidlProviderName = getFullAidlProviderName(removedProviderName);
2063 switch(providerTransport) {
2064 case IPCTransport::HIDL:
2065 return tryToInitializeHidlProviderLocked(removedProviderName, providerInfo);
2066 case IPCTransport::AIDL:
2067 return tryToInitializeAidlProviderLocked(removedAidlProviderName,
2068 providerInfo);
2069 default:
2070 ALOGE("%s Unsupported Transport %d", __FUNCTION__, providerTransport);
2071 }
2072 }
2073 }
2074
2075 // Inform camera service of loss of presence for all the devices from this provider,
2076 // without lock held for reentrancy
2077 sp<StatusListener> listener = getStatusListener();
2078 if (listener != nullptr) {
2079 lock.unlock();
2080 for (auto& id : removedDeviceIds) {
2081 listener->onDeviceStatusChanged(id, CameraDeviceStatus::NOT_PRESENT);
2082 }
2083 lock.lock();
2084 }
2085
2086 }
2087 return res;
2088 }
2089
getStatusListener() const2090 sp<CameraProviderManager::StatusListener> CameraProviderManager::getStatusListener() const {
2091 return mListener.promote();
2092 }
2093 /**** Methods for ProviderInfo ****/
2094
2095
ProviderInfo(const std::string & providerName,const std::string & providerInstance,CameraProviderManager * manager)2096 CameraProviderManager::ProviderInfo::ProviderInfo(
2097 const std::string &providerName,
2098 const std::string &providerInstance,
2099 [[maybe_unused]] CameraProviderManager *manager) :
2100 mProviderName(providerName),
2101 mProviderInstance(providerInstance),
2102 mProviderTagid(generateVendorTagId(providerName)),
2103 mUniqueDeviceCount(0),
2104 mManager(manager) {
2105 }
2106
getType() const2107 const std::string& CameraProviderManager::ProviderInfo::getType() const {
2108 return mType;
2109 }
2110
addDevice(const std::string & name,CameraDeviceStatus initialStatus,std::string * parsedId)2111 status_t CameraProviderManager::ProviderInfo::addDevice(
2112 const std::string& name, CameraDeviceStatus initialStatus,
2113 /*out*/ std::string* parsedId) {
2114
2115 ALOGI("Enumerating new camera device: %s", name.c_str());
2116
2117 uint16_t major, minor;
2118 std::string type, id;
2119 IPCTransport transport = getIPCTransport();
2120
2121 status_t res = parseDeviceName(name, &major, &minor, &type, &id);
2122 if (res != OK) {
2123 return res;
2124 }
2125
2126 if (type != mType) {
2127 ALOGE("%s: Device type %s does not match provider type %s", __FUNCTION__,
2128 type.c_str(), mType.c_str());
2129 return BAD_VALUE;
2130 }
2131 if (mManager->isValidDeviceLocked(id, major, transport)) {
2132 ALOGE("%s: Device %s: ID %s is already in use for device major version %d", __FUNCTION__,
2133 name.c_str(), id.c_str(), major);
2134 return BAD_VALUE;
2135 }
2136
2137 std::unique_ptr<DeviceInfo> deviceInfo;
2138 switch (transport) {
2139 case IPCTransport::HIDL:
2140 switch (major) {
2141 case 3:
2142 break;
2143 default:
2144 ALOGE("%s: Device %s: Unsupported HIDL device HAL major version %d:",
2145 __FUNCTION__, name.c_str(), major);
2146 return BAD_VALUE;
2147 }
2148 break;
2149 case IPCTransport::AIDL:
2150 if (major != 1) {
2151 ALOGE("%s: Device %s: Unsupported AIDL device HAL major version %d:", __FUNCTION__,
2152 name.c_str(), major);
2153 return BAD_VALUE;
2154 }
2155 break;
2156 default:
2157 ALOGE("%s Invalid transport %d", __FUNCTION__, transport);
2158 return BAD_VALUE;
2159 }
2160
2161 deviceInfo = initializeDeviceInfo(name, mProviderTagid, id, minor);
2162 if (deviceInfo == nullptr) return BAD_VALUE;
2163 deviceInfo->notifyDeviceStateChange(getDeviceState());
2164 deviceInfo->mStatus = initialStatus;
2165 bool isAPI1Compatible = deviceInfo->isAPI1Compatible();
2166
2167 mDevices.push_back(std::move(deviceInfo));
2168
2169 mUniqueCameraIds.insert(id);
2170 if (isAPI1Compatible) {
2171 // addDevice can be called more than once for the same camera id if HAL
2172 // supports openLegacy.
2173 if (std::find(mUniqueAPI1CompatibleCameraIds.begin(), mUniqueAPI1CompatibleCameraIds.end(),
2174 id) == mUniqueAPI1CompatibleCameraIds.end()) {
2175 mUniqueAPI1CompatibleCameraIds.push_back(id);
2176 }
2177 }
2178
2179 if (parsedId != nullptr) {
2180 *parsedId = id;
2181 }
2182 return OK;
2183 }
2184
removeDevice(std::string id)2185 void CameraProviderManager::ProviderInfo::removeDevice(std::string id) {
2186 for (auto it = mDevices.begin(); it != mDevices.end(); it++) {
2187 if ((*it)->mId == id) {
2188 mUniqueCameraIds.erase(id);
2189 mUnavailablePhysicalCameras.erase(id);
2190 if ((*it)->isAPI1Compatible()) {
2191 mUniqueAPI1CompatibleCameraIds.erase(std::remove(
2192 mUniqueAPI1CompatibleCameraIds.begin(),
2193 mUniqueAPI1CompatibleCameraIds.end(), id));
2194 }
2195
2196 // Remove reference to camera provider to avoid pointer leak when
2197 // unplugging external camera while in use with lazy HALs
2198 mManager->removeRef(DeviceMode::CAMERA, id);
2199 mManager->removeRef(DeviceMode::TORCH, id);
2200
2201 mDevices.erase(it);
2202 break;
2203 }
2204 }
2205 }
2206
removeAllDevices()2207 void CameraProviderManager::ProviderInfo::removeAllDevices() {
2208 std::lock_guard<std::mutex> lock(mLock);
2209
2210 auto itDevices = mDevices.begin();
2211 while (itDevices != mDevices.end()) {
2212 std::string id = (*itDevices)->mId;
2213 std::string deviceName = (*itDevices)->mName;
2214 removeDevice(id);
2215 // device was removed, reset iterator
2216 itDevices = mDevices.begin();
2217
2218 //notify CameraService of status change
2219 sp<StatusListener> listener = mManager->getStatusListener();
2220 if (listener != nullptr) {
2221 mLock.unlock();
2222 ALOGV("%s: notify device not_present: %s",
2223 __FUNCTION__,
2224 deviceName.c_str());
2225 listener->onDeviceStatusChanged(String8(id.c_str()),
2226 CameraDeviceStatus::NOT_PRESENT);
2227 mLock.lock();
2228 }
2229 }
2230 }
2231
isExternalLazyHAL() const2232 bool CameraProviderManager::ProviderInfo::isExternalLazyHAL() const {
2233 return kEnableLazyHal && (mProviderName == kExternalProviderName);
2234 }
2235
dump(int fd,const Vector<String16> &) const2236 status_t CameraProviderManager::ProviderInfo::dump(int fd, const Vector<String16>&) const {
2237 dprintf(fd, "== Camera Provider HAL %s (v2.%d, %s) static info: %zu devices: ==\n",
2238 mProviderInstance.c_str(),
2239 mMinorVersion,
2240 mIsRemote ? "remote" : "passthrough",
2241 mDevices.size());
2242
2243 for (auto& device : mDevices) {
2244 dprintf(fd, "== Camera HAL device %s (v%d.%d) static information: ==\n", device->mName.c_str(),
2245 device->mVersion.get_major(), device->mVersion.get_minor());
2246 dprintf(fd, " Resource cost: %d\n", device->mResourceCost.resourceCost);
2247 if (device->mResourceCost.conflictingDevices.size() == 0) {
2248 dprintf(fd, " Conflicting devices: None\n");
2249 } else {
2250 dprintf(fd, " Conflicting devices:\n");
2251 for (size_t i = 0; i < device->mResourceCost.conflictingDevices.size(); i++) {
2252 dprintf(fd, " %s\n",
2253 device->mResourceCost.conflictingDevices[i].c_str());
2254 }
2255 }
2256 dprintf(fd, " API1 info:\n");
2257 dprintf(fd, " Has a flash unit: %s\n",
2258 device->hasFlashUnit() ? "true" : "false");
2259 hardware::CameraInfo info;
2260 int portraitRotation;
2261 status_t res = device->getCameraInfo(/*overrideToPortrait*/false, &portraitRotation,
2262 &info);
2263 if (res != OK) {
2264 dprintf(fd, " <Error reading camera info: %s (%d)>\n",
2265 strerror(-res), res);
2266 } else {
2267 dprintf(fd, " Facing: %s\n",
2268 info.facing == hardware::CAMERA_FACING_BACK ? "Back" : "Front");
2269 dprintf(fd, " Orientation: %d\n", info.orientation);
2270 }
2271 CameraMetadata info2;
2272 res = device->getCameraCharacteristics(true /*overrideForPerfClass*/, &info2,
2273 /*overrideToPortrait*/false);
2274 if (res == INVALID_OPERATION) {
2275 dprintf(fd, " API2 not directly supported\n");
2276 } else if (res != OK) {
2277 dprintf(fd, " <Error reading camera characteristics: %s (%d)>\n",
2278 strerror(-res), res);
2279 } else {
2280 dprintf(fd, " API2 camera characteristics:\n");
2281 info2.dump(fd, /*verbosity*/ 2, /*indentation*/ 4);
2282 }
2283
2284 // Dump characteristics of non-standalone physical camera
2285 if (device->mIsLogicalCamera) {
2286 for (auto& id : device->mPhysicalIds) {
2287 // Skip if physical id is an independent camera
2288 if (std::find(mProviderPublicCameraIds.begin(), mProviderPublicCameraIds.end(), id)
2289 != mProviderPublicCameraIds.end()) {
2290 continue;
2291 }
2292
2293 CameraMetadata physicalInfo;
2294 status_t status = device->getPhysicalCameraCharacteristics(id, &physicalInfo);
2295 if (status == OK) {
2296 dprintf(fd, " Physical camera %s characteristics:\n", id.c_str());
2297 physicalInfo.dump(fd, /*verbosity*/ 2, /*indentation*/ 4);
2298 }
2299 }
2300 }
2301
2302 dprintf(fd, "== Camera HAL device %s (v%d.%d) dumpState: ==\n", device->mName.c_str(),
2303 device->mVersion.get_major(), device->mVersion.get_minor());
2304 res = device->dumpState(fd);
2305 if (res != OK) {
2306 dprintf(fd, " <Error dumping device %s state: %s (%d)>\n",
2307 device->mName.c_str(), strerror(-res), res);
2308 }
2309 }
2310 return OK;
2311 }
2312
2313 std::vector<std::unordered_set<std::string>>
getConcurrentCameraIdCombinations()2314 CameraProviderManager::ProviderInfo::getConcurrentCameraIdCombinations() {
2315 std::lock_guard<std::mutex> lock(mLock);
2316 return mConcurrentCameraIdCombinations;
2317 }
2318
cameraDeviceStatusChangeInternal(const std::string & cameraDeviceName,CameraDeviceStatus newStatus)2319 void CameraProviderManager::ProviderInfo::cameraDeviceStatusChangeInternal(
2320 const std::string& cameraDeviceName, CameraDeviceStatus newStatus) {
2321 sp<StatusListener> listener;
2322 std::string id;
2323 std::lock_guard<std::mutex> lock(mInitLock);
2324 CameraDeviceStatus internalNewStatus = newStatus;
2325 if (!mInitialized) {
2326 mCachedStatus.emplace_back(false /*isPhysicalCameraStatus*/,
2327 cameraDeviceName.c_str(), std::string().c_str(),
2328 internalNewStatus);
2329 return;
2330 }
2331
2332 {
2333 std::lock_guard<std::mutex> lock(mLock);
2334 if (OK != cameraDeviceStatusChangeLocked(&id, cameraDeviceName, newStatus)) {
2335 return;
2336 }
2337 listener = mManager->getStatusListener();
2338 }
2339
2340 // Call without lock held to allow reentrancy into provider manager
2341 if (listener != nullptr) {
2342 listener->onDeviceStatusChanged(String8(id.c_str()), internalNewStatus);
2343 }
2344 }
2345
cameraDeviceStatusChangeLocked(std::string * id,const std::string & cameraDeviceName,CameraDeviceStatus newStatus)2346 status_t CameraProviderManager::ProviderInfo::cameraDeviceStatusChangeLocked(
2347 std::string* id, const std::string& cameraDeviceName,
2348 CameraDeviceStatus newStatus) {
2349 bool known = false;
2350 std::string cameraId;
2351 for (auto& deviceInfo : mDevices) {
2352 if (deviceInfo->mName == cameraDeviceName) {
2353 Mutex::Autolock l(deviceInfo->mDeviceAvailableLock);
2354 ALOGI("Camera device %s status is now %s, was %s", cameraDeviceName.c_str(),
2355 FrameworkDeviceStatusToString(newStatus),
2356 FrameworkDeviceStatusToString(deviceInfo->mStatus));
2357 deviceInfo->mStatus = newStatus;
2358 // TODO: Handle device removal (NOT_PRESENT)
2359 cameraId = deviceInfo->mId;
2360 known = true;
2361 deviceInfo->mIsDeviceAvailable =
2362 (newStatus == CameraDeviceStatus::PRESENT);
2363 deviceInfo->mDeviceAvailableSignal.signal();
2364 break;
2365 }
2366 }
2367 // Previously unseen device; status must not be NOT_PRESENT
2368 if (!known) {
2369 if (newStatus == CameraDeviceStatus::NOT_PRESENT) {
2370 ALOGW("Camera provider %s says an unknown camera device %s is not present. Curious.",
2371 mProviderName.c_str(), cameraDeviceName.c_str());
2372 return BAD_VALUE;
2373 }
2374 addDevice(cameraDeviceName, newStatus, &cameraId);
2375 } else if (newStatus == CameraDeviceStatus::NOT_PRESENT) {
2376 removeDevice(cameraId);
2377 } else if (isExternalLazyHAL()) {
2378 // Do not notify CameraService for PRESENT->PRESENT (lazy HAL restart)
2379 // because NOT_AVAILABLE is set on CameraService::connect and a PRESENT
2380 // notif. would overwrite it
2381 return BAD_VALUE;
2382 }
2383
2384 if (reCacheConcurrentStreamingCameraIdsLocked() != OK) {
2385 ALOGE("%s: CameraProvider %s could not re-cache concurrent streaming camera id list ",
2386 __FUNCTION__, mProviderName.c_str());
2387 }
2388 *id = cameraId;
2389 return OK;
2390 }
2391
physicalCameraDeviceStatusChangeInternal(const std::string & cameraDeviceName,const std::string & physicalCameraDeviceName,CameraDeviceStatus newStatus)2392 void CameraProviderManager::ProviderInfo::physicalCameraDeviceStatusChangeInternal(
2393 const std::string& cameraDeviceName,
2394 const std::string& physicalCameraDeviceName,
2395 CameraDeviceStatus newStatus) {
2396 sp<StatusListener> listener;
2397 std::string id;
2398 std::string physicalId;
2399 std::lock_guard<std::mutex> lock(mInitLock);
2400 if (!mInitialized) {
2401 mCachedStatus.emplace_back(true /*isPhysicalCameraStatus*/, cameraDeviceName,
2402 physicalCameraDeviceName, newStatus);
2403 return;
2404 }
2405
2406 {
2407 std::lock_guard<std::mutex> lock(mLock);
2408
2409 if (OK != physicalCameraDeviceStatusChangeLocked(&id, &physicalId, cameraDeviceName,
2410 physicalCameraDeviceName, newStatus)) {
2411 return;
2412 }
2413
2414 listener = mManager->getStatusListener();
2415 }
2416 // Call without lock held to allow reentrancy into provider manager
2417 if (listener != nullptr) {
2418 listener->onDeviceStatusChanged(String8(id.c_str()),
2419 String8(physicalId.c_str()), newStatus);
2420 }
2421 return;
2422 }
2423
physicalCameraDeviceStatusChangeLocked(std::string * id,std::string * physicalId,const std::string & cameraDeviceName,const std::string & physicalCameraDeviceName,CameraDeviceStatus newStatus)2424 status_t CameraProviderManager::ProviderInfo::physicalCameraDeviceStatusChangeLocked(
2425 std::string* id, std::string* physicalId,
2426 const std::string& cameraDeviceName,
2427 const std::string& physicalCameraDeviceName,
2428 CameraDeviceStatus newStatus) {
2429 bool known = false;
2430 std::string cameraId;
2431 for (auto& deviceInfo : mDevices) {
2432 if (deviceInfo->mName == cameraDeviceName) {
2433 cameraId = deviceInfo->mId;
2434 if (!deviceInfo->mIsLogicalCamera) {
2435 ALOGE("%s: Invalid combination of camera id %s, physical id %s",
2436 __FUNCTION__, cameraId.c_str(), physicalCameraDeviceName.c_str());
2437 return BAD_VALUE;
2438 }
2439 if (std::find(deviceInfo->mPhysicalIds.begin(), deviceInfo->mPhysicalIds.end(),
2440 physicalCameraDeviceName) == deviceInfo->mPhysicalIds.end()) {
2441 ALOGE("%s: Invalid combination of camera id %s, physical id %s",
2442 __FUNCTION__, cameraId.c_str(), physicalCameraDeviceName.c_str());
2443 return BAD_VALUE;
2444 }
2445 ALOGI("Camera device %s physical device %s status is now %s",
2446 cameraDeviceName.c_str(), physicalCameraDeviceName.c_str(),
2447 FrameworkDeviceStatusToString(newStatus));
2448 known = true;
2449 break;
2450 }
2451 }
2452 // Previously unseen device; status must not be NOT_PRESENT
2453 if (!known) {
2454 ALOGW("Camera provider %s says an unknown camera device %s-%s is not present. Curious.",
2455 mProviderName.c_str(), cameraDeviceName.c_str(),
2456 physicalCameraDeviceName.c_str());
2457 return BAD_VALUE;
2458 }
2459
2460 if (mUnavailablePhysicalCameras.count(cameraId) == 0) {
2461 mUnavailablePhysicalCameras.emplace(cameraId, std::set<std::string>{});
2462 }
2463 if (newStatus != CameraDeviceStatus::PRESENT) {
2464 mUnavailablePhysicalCameras[cameraId].insert(physicalCameraDeviceName);
2465 } else {
2466 mUnavailablePhysicalCameras[cameraId].erase(physicalCameraDeviceName);
2467 }
2468
2469 *id = cameraId;
2470 *physicalId = physicalCameraDeviceName.c_str();
2471 return OK;
2472 }
2473
torchModeStatusChangeInternal(const std::string & cameraDeviceName,TorchModeStatus newStatus)2474 void CameraProviderManager::ProviderInfo::torchModeStatusChangeInternal(
2475 const std::string& cameraDeviceName,
2476 TorchModeStatus newStatus) {
2477 sp<StatusListener> listener;
2478 SystemCameraKind systemCameraKind = SystemCameraKind::PUBLIC;
2479 std::string id;
2480 bool known = false;
2481 {
2482 // Hold mLock for accessing mDevices
2483 std::lock_guard<std::mutex> lock(mLock);
2484 for (auto& deviceInfo : mDevices) {
2485 if (deviceInfo->mName == cameraDeviceName) {
2486 ALOGI("Camera device %s torch status is now %s", cameraDeviceName.c_str(),
2487 FrameworkTorchStatusToString(newStatus));
2488 id = deviceInfo->mId;
2489 known = true;
2490 systemCameraKind = deviceInfo->mSystemCameraKind;
2491 if (TorchModeStatus::AVAILABLE_ON != newStatus) {
2492 mManager->removeRef(CameraProviderManager::DeviceMode::TORCH, id);
2493 }
2494 break;
2495 }
2496 }
2497 if (!known) {
2498 ALOGW("Camera provider %s says an unknown camera %s now has torch status %d. Curious.",
2499 mProviderName.c_str(), cameraDeviceName.c_str(), newStatus);
2500 return;
2501 }
2502 // no lock needed since listener is set up only once during
2503 // CameraProviderManager initialization and then never changed till it is
2504 // destructed.
2505 listener = mManager->getStatusListener();
2506 }
2507 // Call without lock held to allow reentrancy into provider manager
2508 // The problem with holding mLock here is that we
2509 // might be limiting re-entrancy : CameraService::onTorchStatusChanged calls
2510 // back into CameraProviderManager which might try to hold mLock again (eg:
2511 // findDeviceInfo, which should be holding mLock while iterating through
2512 // each provider's devices).
2513 if (listener != nullptr) {
2514 listener->onTorchStatusChanged(String8(id.c_str()), newStatus, systemCameraKind);
2515 }
2516 return;
2517 }
2518
notifyDeviceInfoStateChangeLocked(int64_t newDeviceState)2519 void CameraProviderManager::ProviderInfo::notifyDeviceInfoStateChangeLocked(
2520 int64_t newDeviceState) {
2521 std::lock_guard<std::mutex> lock(mLock);
2522 for (auto it = mDevices.begin(); it != mDevices.end(); it++) {
2523 (*it)->notifyDeviceStateChange(newDeviceState);
2524 }
2525 }
2526
DeviceInfo3(const std::string & name,const metadata_vendor_id_t tagId,const std::string & id,uint16_t minorVersion,const CameraResourceCost & resourceCost,sp<ProviderInfo> parentProvider,const std::vector<std::string> & publicCameraIds)2527 CameraProviderManager::ProviderInfo::DeviceInfo3::DeviceInfo3(const std::string& name,
2528 const metadata_vendor_id_t tagId, const std::string &id,
2529 uint16_t minorVersion,
2530 const CameraResourceCost& resourceCost,
2531 sp<ProviderInfo> parentProvider,
2532 const std::vector<std::string>& publicCameraIds) :
2533 DeviceInfo(name, tagId, id, hardware::hidl_version{3, minorVersion},
2534 publicCameraIds, resourceCost, parentProvider) { }
2535
notifyDeviceStateChange(int64_t newState)2536 void CameraProviderManager::ProviderInfo::DeviceInfo3::notifyDeviceStateChange(int64_t newState) {
2537 if (!mDeviceStateOrientationMap.empty() &&
2538 (mDeviceStateOrientationMap.find(newState) != mDeviceStateOrientationMap.end())) {
2539 mCameraCharacteristics.update(ANDROID_SENSOR_ORIENTATION,
2540 &mDeviceStateOrientationMap[newState], 1);
2541 if (mCameraCharNoPCOverride.get() != nullptr) {
2542 mCameraCharNoPCOverride->update(ANDROID_SENSOR_ORIENTATION,
2543 &mDeviceStateOrientationMap[newState], 1);
2544 }
2545 }
2546 }
2547
getCameraInfo(bool overrideToPortrait,int * portraitRotation,hardware::CameraInfo * info) const2548 status_t CameraProviderManager::ProviderInfo::DeviceInfo3::getCameraInfo(
2549 bool overrideToPortrait, int *portraitRotation,
2550 hardware::CameraInfo *info) const {
2551 if (info == nullptr) return BAD_VALUE;
2552
2553 camera_metadata_ro_entry facing =
2554 mCameraCharacteristics.find(ANDROID_LENS_FACING);
2555 if (facing.count == 1) {
2556 switch (facing.data.u8[0]) {
2557 case ANDROID_LENS_FACING_BACK:
2558 info->facing = hardware::CAMERA_FACING_BACK;
2559 break;
2560 case ANDROID_LENS_FACING_EXTERNAL:
2561 // Map external to front for legacy API
2562 case ANDROID_LENS_FACING_FRONT:
2563 info->facing = hardware::CAMERA_FACING_FRONT;
2564 break;
2565 }
2566 } else {
2567 ALOGE("%s: Unable to find android.lens.facing static metadata", __FUNCTION__);
2568 return NAME_NOT_FOUND;
2569 }
2570
2571 camera_metadata_ro_entry orientation =
2572 mCameraCharacteristics.find(ANDROID_SENSOR_ORIENTATION);
2573 if (orientation.count == 1) {
2574 info->orientation = orientation.data.i32[0];
2575 } else {
2576 ALOGE("%s: Unable to find android.sensor.orientation static metadata", __FUNCTION__);
2577 return NAME_NOT_FOUND;
2578 }
2579
2580 if (overrideToPortrait && (info->orientation == 0 || info->orientation == 180)) {
2581 *portraitRotation = 90;
2582 if (info->facing == hardware::CAMERA_FACING_FRONT) {
2583 info->orientation = (360 + info->orientation - 90) % 360;
2584 } else {
2585 info->orientation = (360 + info->orientation + 90) % 360;
2586 }
2587 } else {
2588 *portraitRotation = 0;
2589 }
2590
2591 return OK;
2592 }
isAPI1Compatible() const2593 bool CameraProviderManager::ProviderInfo::DeviceInfo3::isAPI1Compatible() const {
2594 // Do not advertise NIR cameras to API1 camera app.
2595 camera_metadata_ro_entry cfa = mCameraCharacteristics.find(
2596 ANDROID_SENSOR_INFO_COLOR_FILTER_ARRANGEMENT);
2597 if (cfa.count == 1 && cfa.data.u8[0] == ANDROID_SENSOR_INFO_COLOR_FILTER_ARRANGEMENT_NIR) {
2598 return false;
2599 }
2600
2601 bool isBackwardCompatible = false;
2602 camera_metadata_ro_entry_t caps = mCameraCharacteristics.find(
2603 ANDROID_REQUEST_AVAILABLE_CAPABILITIES);
2604 for (size_t i = 0; i < caps.count; i++) {
2605 if (caps.data.u8[i] ==
2606 ANDROID_REQUEST_AVAILABLE_CAPABILITIES_BACKWARD_COMPATIBLE) {
2607 isBackwardCompatible = true;
2608 break;
2609 }
2610 }
2611
2612 return isBackwardCompatible;
2613 }
2614
getCameraCharacteristics(bool overrideForPerfClass,CameraMetadata * characteristics,bool overrideToPortrait)2615 status_t CameraProviderManager::ProviderInfo::DeviceInfo3::getCameraCharacteristics(
2616 bool overrideForPerfClass, CameraMetadata *characteristics, bool overrideToPortrait) {
2617 if (characteristics == nullptr) return BAD_VALUE;
2618
2619 if (!overrideForPerfClass && mCameraCharNoPCOverride != nullptr) {
2620 *characteristics = *mCameraCharNoPCOverride;
2621 } else {
2622 *characteristics = mCameraCharacteristics;
2623 }
2624
2625 if (overrideToPortrait) {
2626 const auto &lensFacingEntry = characteristics->find(ANDROID_LENS_FACING);
2627 const auto &sensorOrientationEntry = characteristics->find(ANDROID_SENSOR_ORIENTATION);
2628 uint8_t lensFacing = lensFacingEntry.data.u8[0];
2629 if (lensFacingEntry.count > 0 && sensorOrientationEntry.count > 0) {
2630 int32_t sensorOrientation = sensorOrientationEntry.data.i32[0];
2631 int32_t newSensorOrientation = sensorOrientation;
2632
2633 if (sensorOrientation == 0 || sensorOrientation == 180) {
2634 if (lensFacing == ANDROID_LENS_FACING_FRONT) {
2635 newSensorOrientation = (360 + sensorOrientation - 90) % 360;
2636 } else if (lensFacing == ANDROID_LENS_FACING_BACK) {
2637 newSensorOrientation = (360 + sensorOrientation + 90) % 360;
2638 }
2639 }
2640
2641 if (newSensorOrientation != sensorOrientation) {
2642 ALOGV("%s: Update ANDROID_SENSOR_ORIENTATION for lens facing %d "
2643 "from %d to %d", __FUNCTION__, lensFacing, sensorOrientation,
2644 newSensorOrientation);
2645 characteristics->update(ANDROID_SENSOR_ORIENTATION, &newSensorOrientation, 1);
2646 }
2647 }
2648
2649 if (characteristics->exists(ANDROID_INFO_DEVICE_STATE_ORIENTATIONS)) {
2650 ALOGV("%s: Erasing ANDROID_INFO_DEVICE_STATE_ORIENTATIONS for lens facing %d",
2651 __FUNCTION__, lensFacing);
2652 characteristics->erase(ANDROID_INFO_DEVICE_STATE_ORIENTATIONS);
2653 }
2654 }
2655
2656 return OK;
2657 }
2658
getPhysicalCameraCharacteristics(const std::string & physicalCameraId,CameraMetadata * characteristics) const2659 status_t CameraProviderManager::ProviderInfo::DeviceInfo3::getPhysicalCameraCharacteristics(
2660 const std::string& physicalCameraId, CameraMetadata *characteristics) const {
2661 if (characteristics == nullptr) return BAD_VALUE;
2662 if (mPhysicalCameraCharacteristics.find(physicalCameraId) ==
2663 mPhysicalCameraCharacteristics.end()) {
2664 return NAME_NOT_FOUND;
2665 }
2666
2667 *characteristics = mPhysicalCameraCharacteristics.at(physicalCameraId);
2668 return OK;
2669 }
2670
filterSmallJpegSizes()2671 status_t CameraProviderManager::ProviderInfo::DeviceInfo3::filterSmallJpegSizes() {
2672 int32_t thresholdW = SessionConfigurationUtils::PERF_CLASS_JPEG_THRESH_W;
2673 int32_t thresholdH = SessionConfigurationUtils::PERF_CLASS_JPEG_THRESH_H;
2674
2675 if (mCameraCharNoPCOverride != nullptr) return OK;
2676
2677 mCameraCharNoPCOverride = std::make_unique<CameraMetadata>(mCameraCharacteristics);
2678
2679 // Remove small JPEG sizes from available stream configurations
2680 size_t largeJpegCount = 0;
2681 std::vector<int32_t> newStreamConfigs;
2682 camera_metadata_entry streamConfigs =
2683 mCameraCharacteristics.find(ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS);
2684 for (size_t i = 0; i < streamConfigs.count; i += 4) {
2685 if ((streamConfigs.data.i32[i] == HAL_PIXEL_FORMAT_BLOB) && (streamConfigs.data.i32[i+3] ==
2686 ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS_OUTPUT)) {
2687 if (streamConfigs.data.i32[i+1] * streamConfigs.data.i32[i+2] <
2688 thresholdW * thresholdH) {
2689 continue;
2690 } else {
2691 largeJpegCount ++;
2692 }
2693 }
2694 newStreamConfigs.insert(newStreamConfigs.end(), streamConfigs.data.i32 + i,
2695 streamConfigs.data.i32 + i + 4);
2696 }
2697 if (newStreamConfigs.size() == 0 || largeJpegCount == 0) {
2698 return BAD_VALUE;
2699 }
2700
2701 // Remove small JPEG sizes from available min frame durations
2702 largeJpegCount = 0;
2703 std::vector<int64_t> newMinDurations;
2704 camera_metadata_entry minDurations =
2705 mCameraCharacteristics.find(ANDROID_SCALER_AVAILABLE_MIN_FRAME_DURATIONS);
2706 for (size_t i = 0; i < minDurations.count; i += 4) {
2707 if (minDurations.data.i64[i] == HAL_PIXEL_FORMAT_BLOB) {
2708 if ((int32_t)minDurations.data.i64[i+1] * (int32_t)minDurations.data.i64[i+2] <
2709 thresholdW * thresholdH) {
2710 continue;
2711 } else {
2712 largeJpegCount++;
2713 }
2714 }
2715 newMinDurations.insert(newMinDurations.end(), minDurations.data.i64 + i,
2716 minDurations.data.i64 + i + 4);
2717 }
2718 if (newMinDurations.size() == 0 || largeJpegCount == 0) {
2719 return BAD_VALUE;
2720 }
2721
2722 // Remove small JPEG sizes from available stall durations
2723 largeJpegCount = 0;
2724 std::vector<int64_t> newStallDurations;
2725 camera_metadata_entry stallDurations =
2726 mCameraCharacteristics.find(ANDROID_SCALER_AVAILABLE_STALL_DURATIONS);
2727 for (size_t i = 0; i < stallDurations.count; i += 4) {
2728 if (stallDurations.data.i64[i] == HAL_PIXEL_FORMAT_BLOB) {
2729 if ((int32_t)stallDurations.data.i64[i+1] * (int32_t)stallDurations.data.i64[i+2] <
2730 thresholdW * thresholdH) {
2731 continue;
2732 } else {
2733 largeJpegCount++;
2734 }
2735 }
2736 newStallDurations.insert(newStallDurations.end(), stallDurations.data.i64 + i,
2737 stallDurations.data.i64 + i + 4);
2738 }
2739 if (newStallDurations.size() == 0 || largeJpegCount == 0) {
2740 return BAD_VALUE;
2741 }
2742
2743 mCameraCharacteristics.update(ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS,
2744 newStreamConfigs.data(), newStreamConfigs.size());
2745 mCameraCharacteristics.update(ANDROID_SCALER_AVAILABLE_MIN_FRAME_DURATIONS,
2746 newMinDurations.data(), newMinDurations.size());
2747 mCameraCharacteristics.update(ANDROID_SCALER_AVAILABLE_STALL_DURATIONS,
2748 newStallDurations.data(), newStallDurations.size());
2749
2750 // Re-generate metadata tags that have dependencies on BLOB sizes
2751 auto res = addDynamicDepthTags();
2752 if (OK != res) {
2753 ALOGE("%s: Failed to append dynamic depth tags: %s (%d)", __FUNCTION__,
2754 strerror(-res), res);
2755 // Allow filtering of small JPEG sizes to succeed even if dynamic depth
2756 // tags fail to generate.
2757 }
2758
2759 return OK;
2760 }
2761
parseProviderName(const std::string & name,std::string * type,uint32_t * id)2762 status_t CameraProviderManager::ProviderInfo::parseProviderName(const std::string& name,
2763 std::string *type, uint32_t *id) {
2764 // Format must be "<type>/<id>"
2765 #define ERROR_MSG_PREFIX "%s: Invalid provider name '%s'. " \
2766 "Should match '<type>/<id>' - "
2767
2768 if (!type || !id) return INVALID_OPERATION;
2769
2770 std::string::size_type slashIdx = name.find('/');
2771 if (slashIdx == std::string::npos || slashIdx == name.size() - 1) {
2772 ALOGE(ERROR_MSG_PREFIX
2773 "does not have / separator between type and id",
2774 __FUNCTION__, name.c_str());
2775 return BAD_VALUE;
2776 }
2777
2778 std::string typeVal = name.substr(0, slashIdx);
2779
2780 char *endPtr;
2781 errno = 0;
2782 long idVal = strtol(name.c_str() + slashIdx + 1, &endPtr, 10);
2783 if (errno != 0) {
2784 ALOGE(ERROR_MSG_PREFIX
2785 "cannot parse provider id as an integer: %s (%d)",
2786 __FUNCTION__, name.c_str(), strerror(errno), errno);
2787 return BAD_VALUE;
2788 }
2789 if (endPtr != name.c_str() + name.size()) {
2790 ALOGE(ERROR_MSG_PREFIX
2791 "provider id has unexpected length",
2792 __FUNCTION__, name.c_str());
2793 return BAD_VALUE;
2794 }
2795 if (idVal < 0) {
2796 ALOGE(ERROR_MSG_PREFIX
2797 "id is negative: %ld",
2798 __FUNCTION__, name.c_str(), idVal);
2799 return BAD_VALUE;
2800 }
2801
2802 #undef ERROR_MSG_PREFIX
2803
2804 *type = typeVal;
2805 *id = static_cast<uint32_t>(idVal);
2806
2807 return OK;
2808 }
2809
generateVendorTagId(const std::string & name)2810 metadata_vendor_id_t CameraProviderManager::ProviderInfo::generateVendorTagId(
2811 const std::string &name) {
2812 metadata_vendor_id_t ret = std::hash<std::string> {} (name);
2813 // CAMERA_METADATA_INVALID_VENDOR_ID is not a valid hash value
2814 if (CAMERA_METADATA_INVALID_VENDOR_ID == ret) {
2815 ret = 0;
2816 }
2817
2818 return ret;
2819 }
2820
parseDeviceName(const std::string & name,uint16_t * major,uint16_t * minor,std::string * type,std::string * id)2821 status_t CameraProviderManager::ProviderInfo::parseDeviceName(const std::string& name,
2822 uint16_t *major, uint16_t *minor, std::string *type, std::string *id) {
2823
2824 // Format must be "device@<major>.<minor>/<type>/<id>"
2825
2826 #define ERROR_MSG_PREFIX "%s: Invalid device name '%s'. " \
2827 "Should match 'device@<major>.<minor>/<type>/<id>' - "
2828
2829 if (!major || !minor || !type || !id) return INVALID_OPERATION;
2830
2831 // Verify starting prefix
2832 const char expectedPrefix[] = "device@";
2833
2834 if (name.find(expectedPrefix) != 0) {
2835 ALOGE(ERROR_MSG_PREFIX
2836 "does not start with '%s'",
2837 __FUNCTION__, name.c_str(), expectedPrefix);
2838 return BAD_VALUE;
2839 }
2840
2841 // Extract major/minor versions
2842 constexpr std::string::size_type atIdx = sizeof(expectedPrefix) - 2;
2843 std::string::size_type dotIdx = name.find('.', atIdx);
2844 if (dotIdx == std::string::npos) {
2845 ALOGE(ERROR_MSG_PREFIX
2846 "does not have @<major>. version section",
2847 __FUNCTION__, name.c_str());
2848 return BAD_VALUE;
2849 }
2850 std::string::size_type typeSlashIdx = name.find('/', dotIdx);
2851 if (typeSlashIdx == std::string::npos) {
2852 ALOGE(ERROR_MSG_PREFIX
2853 "does not have .<minor>/ version section",
2854 __FUNCTION__, name.c_str());
2855 return BAD_VALUE;
2856 }
2857
2858 char *endPtr;
2859 errno = 0;
2860 long majorVal = strtol(name.c_str() + atIdx + 1, &endPtr, 10);
2861 if (errno != 0) {
2862 ALOGE(ERROR_MSG_PREFIX
2863 "cannot parse major version: %s (%d)",
2864 __FUNCTION__, name.c_str(), strerror(errno), errno);
2865 return BAD_VALUE;
2866 }
2867 if (endPtr != name.c_str() + dotIdx) {
2868 ALOGE(ERROR_MSG_PREFIX
2869 "major version has unexpected length",
2870 __FUNCTION__, name.c_str());
2871 return BAD_VALUE;
2872 }
2873 long minorVal = strtol(name.c_str() + dotIdx + 1, &endPtr, 10);
2874 if (errno != 0) {
2875 ALOGE(ERROR_MSG_PREFIX
2876 "cannot parse minor version: %s (%d)",
2877 __FUNCTION__, name.c_str(), strerror(errno), errno);
2878 return BAD_VALUE;
2879 }
2880 if (endPtr != name.c_str() + typeSlashIdx) {
2881 ALOGE(ERROR_MSG_PREFIX
2882 "minor version has unexpected length",
2883 __FUNCTION__, name.c_str());
2884 return BAD_VALUE;
2885 }
2886 if (majorVal < 0 || majorVal > UINT16_MAX || minorVal < 0 || minorVal > UINT16_MAX) {
2887 ALOGE(ERROR_MSG_PREFIX
2888 "major/minor version is out of range of uint16_t: %ld.%ld",
2889 __FUNCTION__, name.c_str(), majorVal, minorVal);
2890 return BAD_VALUE;
2891 }
2892
2893 // Extract type and id
2894
2895 std::string::size_type instanceSlashIdx = name.find('/', typeSlashIdx + 1);
2896 if (instanceSlashIdx == std::string::npos) {
2897 ALOGE(ERROR_MSG_PREFIX
2898 "does not have /<type>/ component",
2899 __FUNCTION__, name.c_str());
2900 return BAD_VALUE;
2901 }
2902 std::string typeVal = name.substr(typeSlashIdx + 1, instanceSlashIdx - typeSlashIdx - 1);
2903
2904 if (instanceSlashIdx == name.size() - 1) {
2905 ALOGE(ERROR_MSG_PREFIX
2906 "does not have an /<id> component",
2907 __FUNCTION__, name.c_str());
2908 return BAD_VALUE;
2909 }
2910 std::string idVal = name.substr(instanceSlashIdx + 1);
2911
2912 #undef ERROR_MSG_PREFIX
2913
2914 *major = static_cast<uint16_t>(majorVal);
2915 *minor = static_cast<uint16_t>(minorVal);
2916 *type = typeVal;
2917 *id = idVal;
2918
2919 return OK;
2920 }
2921
~ProviderInfo()2922 CameraProviderManager::ProviderInfo::~ProviderInfo() {
2923 // Destruction of ProviderInfo is only supposed to happen when the respective
2924 // CameraProvider interface dies, so do not unregister callbacks.
2925 }
2926
2927 // Expects to have mInterfaceMutex locked
2928 std::vector<std::unordered_set<std::string>>
getConcurrentCameraIds() const2929 CameraProviderManager::getConcurrentCameraIds() const {
2930 std::vector<std::unordered_set<std::string>> deviceIdCombinations;
2931 std::lock_guard<std::mutex> lock(mInterfaceMutex);
2932 for (auto &provider : mProviders) {
2933 for (auto &combinations : provider->getConcurrentCameraIdCombinations()) {
2934 deviceIdCombinations.push_back(combinations);
2935 }
2936 }
2937 return deviceIdCombinations;
2938 }
2939
2940 // Checks if the containing vector of sets has any set that contains all of the
2941 // camera ids in cameraIdsAndSessionConfigs.
checkIfSetContainsAll(const std::vector<CameraIdAndSessionConfiguration> & cameraIdsAndSessionConfigs,const std::vector<std::unordered_set<std::string>> & containingSets)2942 static bool checkIfSetContainsAll(
2943 const std::vector<CameraIdAndSessionConfiguration> &cameraIdsAndSessionConfigs,
2944 const std::vector<std::unordered_set<std::string>> &containingSets) {
2945 for (auto &containingSet : containingSets) {
2946 bool didHaveAll = true;
2947 for (auto &cameraIdAndSessionConfig : cameraIdsAndSessionConfigs) {
2948 if (containingSet.find(cameraIdAndSessionConfig.mCameraId) == containingSet.end()) {
2949 // a camera id doesn't belong to this set, keep looking in other
2950 // sets
2951 didHaveAll = false;
2952 break;
2953 }
2954 }
2955 if (didHaveAll) {
2956 // found a set that has all camera ids, lets return;
2957 return true;
2958 }
2959 }
2960 return false;
2961 }
2962
isConcurrentSessionConfigurationSupported(const std::vector<CameraIdAndSessionConfiguration> & cameraIdsAndSessionConfigs,const std::set<std::string> & perfClassPrimaryCameraIds,int targetSdkVersion,bool * isSupported)2963 status_t CameraProviderManager::isConcurrentSessionConfigurationSupported(
2964 const std::vector<CameraIdAndSessionConfiguration> &cameraIdsAndSessionConfigs,
2965 const std::set<std::string>& perfClassPrimaryCameraIds,
2966 int targetSdkVersion, bool *isSupported) {
2967 std::lock_guard<std::mutex> lock(mInterfaceMutex);
2968 // Check if all the devices are a subset of devices advertised by the
2969 // same provider through getConcurrentStreamingCameraIds()
2970 // TODO: we should also do a findDeviceInfoLocked here ?
2971 for (auto &provider : mProviders) {
2972 if (checkIfSetContainsAll(cameraIdsAndSessionConfigs,
2973 provider->getConcurrentCameraIdCombinations())) {
2974 return provider->isConcurrentSessionConfigurationSupported(
2975 cameraIdsAndSessionConfigs, perfClassPrimaryCameraIds, targetSdkVersion,
2976 isSupported);
2977 }
2978 }
2979 *isSupported = false;
2980 //The set of camera devices were not found
2981 return INVALID_OPERATION;
2982 }
2983
getCameraCharacteristicsLocked(const std::string & id,bool overrideForPerfClass,CameraMetadata * characteristics,bool overrideToPortrait) const2984 status_t CameraProviderManager::getCameraCharacteristicsLocked(const std::string &id,
2985 bool overrideForPerfClass, CameraMetadata* characteristics,
2986 bool overrideToPortrait) const {
2987 auto deviceInfo = findDeviceInfoLocked(id);
2988 if (deviceInfo != nullptr) {
2989 return deviceInfo->getCameraCharacteristics(overrideForPerfClass, characteristics,
2990 overrideToPortrait);
2991 }
2992
2993 // Find hidden physical camera characteristics
2994 for (auto& provider : mProviders) {
2995 for (auto& deviceInfo : provider->mDevices) {
2996 status_t res = deviceInfo->getPhysicalCameraCharacteristics(id, characteristics);
2997 if (res != NAME_NOT_FOUND) return res;
2998 }
2999 }
3000
3001 return NAME_NOT_FOUND;
3002 }
3003
filterLogicalCameraIdsLocked(std::vector<std::string> & deviceIds) const3004 void CameraProviderManager::filterLogicalCameraIdsLocked(
3005 std::vector<std::string>& deviceIds) const
3006 {
3007 // Map between camera facing and camera IDs related to logical camera.
3008 std::map<int, std::unordered_set<std::string>> idCombos;
3009
3010 // Collect all logical and its underlying physical camera IDs for each
3011 // facing.
3012 for (auto& deviceId : deviceIds) {
3013 auto deviceInfo = findDeviceInfoLocked(deviceId);
3014 if (deviceInfo == nullptr) continue;
3015
3016 if (!deviceInfo->mIsLogicalCamera) {
3017 continue;
3018 }
3019
3020 // combo contains the ids of a logical camera and its physical cameras
3021 std::vector<std::string> combo = deviceInfo->mPhysicalIds;
3022 combo.push_back(deviceId);
3023
3024 hardware::CameraInfo info;
3025 int portraitRotation;
3026 status_t res = deviceInfo->getCameraInfo(/*overrideToPortrait*/false, &portraitRotation,
3027 &info);
3028 if (res != OK) {
3029 ALOGE("%s: Error reading camera info: %s (%d)", __FUNCTION__, strerror(-res), res);
3030 continue;
3031 }
3032 idCombos[info.facing].insert(combo.begin(), combo.end());
3033 }
3034
3035 // Only expose one camera ID per facing for all logical and underlying
3036 // physical camera IDs.
3037 for (auto& r : idCombos) {
3038 auto& removedIds = r.second;
3039 for (auto& id : deviceIds) {
3040 auto foundId = std::find(removedIds.begin(), removedIds.end(), id);
3041 if (foundId == removedIds.end()) {
3042 continue;
3043 }
3044
3045 removedIds.erase(foundId);
3046 break;
3047 }
3048 deviceIds.erase(std::remove_if(deviceIds.begin(), deviceIds.end(),
3049 [&removedIds](const std::string& s) {
3050 return removedIds.find(s) != removedIds.end();}),
3051 deviceIds.end());
3052 }
3053 }
3054
3055 } // namespace android
3056