• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1//===-- llvm/Support/TargetOpcodes.def - Target Indep Opcodes ---*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the target independent instruction opcodes.
10//
11//===----------------------------------------------------------------------===//
12
13// NOTE: NO INCLUDE GUARD DESIRED!
14
15/// HANDLE_TARGET_OPCODE defines an opcode and its associated enum value.
16///
17#ifndef HANDLE_TARGET_OPCODE
18#define HANDLE_TARGET_OPCODE(OPC, NUM)
19#endif
20
21/// HANDLE_TARGET_OPCODE_MARKER defines an alternative identifier for an opcode.
22///
23#ifndef HANDLE_TARGET_OPCODE_MARKER
24#define HANDLE_TARGET_OPCODE_MARKER(IDENT, OPC)
25#endif
26
27/// Every instruction defined here must also appear in Target.td.
28///
29HANDLE_TARGET_OPCODE(PHI)
30HANDLE_TARGET_OPCODE(INLINEASM)
31HANDLE_TARGET_OPCODE(INLINEASM_BR)
32HANDLE_TARGET_OPCODE(CFI_INSTRUCTION)
33HANDLE_TARGET_OPCODE(EH_LABEL)
34HANDLE_TARGET_OPCODE(GC_LABEL)
35HANDLE_TARGET_OPCODE(ANNOTATION_LABEL)
36
37/// KILL - This instruction is a noop that is used only to adjust the
38/// liveness of registers. This can be useful when dealing with
39/// sub-registers.
40HANDLE_TARGET_OPCODE(KILL)
41
42/// EXTRACT_SUBREG - This instruction takes two operands: a register
43/// that has subregisters, and a subregister index. It returns the
44/// extracted subregister value. This is commonly used to implement
45/// truncation operations on target architectures which support it.
46HANDLE_TARGET_OPCODE(EXTRACT_SUBREG)
47
48/// INSERT_SUBREG - This instruction takes three operands: a register that
49/// has subregisters, a register providing an insert value, and a
50/// subregister index. It returns the value of the first register with the
51/// value of the second register inserted. The first register is often
52/// defined by an IMPLICIT_DEF, because it is commonly used to implement
53/// anyext operations on target architectures which support it.
54HANDLE_TARGET_OPCODE(INSERT_SUBREG)
55
56/// IMPLICIT_DEF - This is the MachineInstr-level equivalent of undef.
57HANDLE_TARGET_OPCODE(IMPLICIT_DEF)
58
59/// SUBREG_TO_REG - Assert the value of bits in a super register.
60/// The result of this instruction is the value of the second operand inserted
61/// into the subregister specified by the third operand. All other bits are
62/// assumed to be equal to the bits in the immediate integer constant in the
63/// first operand. This instruction just communicates information; No code
64/// should be generated.
65/// This is typically used after an instruction where the write to a subregister
66/// implicitly cleared the bits in the super registers.
67HANDLE_TARGET_OPCODE(SUBREG_TO_REG)
68
69/// COPY_TO_REGCLASS - This instruction is a placeholder for a plain
70/// register-to-register copy into a specific register class. This is only
71/// used between instruction selection and MachineInstr creation, before
72/// virtual registers have been created for all the instructions, and it's
73/// only needed in cases where the register classes implied by the
74/// instructions are insufficient. It is emitted as a COPY MachineInstr.
75  HANDLE_TARGET_OPCODE(COPY_TO_REGCLASS)
76
77/// DBG_VALUE - a mapping of the llvm.dbg.value intrinsic
78HANDLE_TARGET_OPCODE(DBG_VALUE)
79
80/// DBG_LABEL - a mapping of the llvm.dbg.label intrinsic
81HANDLE_TARGET_OPCODE(DBG_LABEL)
82
83/// REG_SEQUENCE - This variadic instruction is used to form a register that
84/// represents a consecutive sequence of sub-registers. It's used as a
85/// register coalescing / allocation aid and must be eliminated before code
86/// emission.
87// In SDNode form, the first operand encodes the register class created by
88// the REG_SEQUENCE, while each subsequent pair names a vreg + subreg index
89// pair.  Once it has been lowered to a MachineInstr, the regclass operand
90// is no longer present.
91/// e.g. v1027 = REG_SEQUENCE v1024, 3, v1025, 4, v1026, 5
92/// After register coalescing references of v1024 should be replace with
93/// v1027:3, v1025 with v1027:4, etc.
94  HANDLE_TARGET_OPCODE(REG_SEQUENCE)
95
96/// COPY - Target-independent register copy. This instruction can also be
97/// used to copy between subregisters of virtual registers.
98  HANDLE_TARGET_OPCODE(COPY)
99
100/// BUNDLE - This instruction represents an instruction bundle. Instructions
101/// which immediately follow a BUNDLE instruction which are marked with
102/// 'InsideBundle' flag are inside the bundle.
103HANDLE_TARGET_OPCODE(BUNDLE)
104
105/// Lifetime markers.
106HANDLE_TARGET_OPCODE(LIFETIME_START)
107HANDLE_TARGET_OPCODE(LIFETIME_END)
108
109/// A Stackmap instruction captures the location of live variables at its
110/// position in the instruction stream. It is followed by a shadow of bytes
111/// that must lie within the function and not contain another stackmap.
112HANDLE_TARGET_OPCODE(STACKMAP)
113
114/// FEntry all - This is a marker instruction which gets translated into a raw fentry call.
115HANDLE_TARGET_OPCODE(FENTRY_CALL)
116
117/// Patchable call instruction - this instruction represents a call to a
118/// constant address, followed by a series of NOPs. It is intended to
119/// support optimizations for dynamic languages (such as javascript) that
120/// rewrite calls to runtimes with more efficient code sequences.
121/// This also implies a stack map.
122HANDLE_TARGET_OPCODE(PATCHPOINT)
123
124/// This pseudo-instruction loads the stack guard value. Targets which need
125/// to prevent the stack guard value or address from being spilled to the
126/// stack should override TargetLowering::emitLoadStackGuardNode and
127/// additionally expand this pseudo after register allocation.
128HANDLE_TARGET_OPCODE(LOAD_STACK_GUARD)
129
130/// Call instruction with associated vm state for deoptimization and list
131/// of live pointers for relocation by the garbage collector.  It is
132/// intended to support garbage collection with fully precise relocating
133/// collectors and deoptimizations in either the callee or caller.
134HANDLE_TARGET_OPCODE(STATEPOINT)
135
136/// Instruction that records the offset of a local stack allocation passed to
137/// llvm.localescape. It has two arguments: the symbol for the label and the
138/// frame index of the local stack allocation.
139HANDLE_TARGET_OPCODE(LOCAL_ESCAPE)
140
141/// Wraps a machine instruction which can fault, bundled with associated
142/// information on how to handle such a fault.
143/// For example loading instruction that may page fault, bundled with associated
144/// information on how to handle such a page fault.  It is intended to support
145/// "zero cost" null checks in managed languages by allowing LLVM to fold
146/// comparisons into existing memory operations.
147HANDLE_TARGET_OPCODE(FAULTING_OP)
148
149/// Wraps a machine instruction to add patchability constraints.  An
150/// instruction wrapped in PATCHABLE_OP has to either have a minimum
151/// size or be preceded with a nop of that size.  The first operand is
152/// an immediate denoting the minimum size of the instruction, the
153/// second operand is an immediate denoting the opcode of the original
154/// instruction.  The rest of the operands are the operands of the
155/// original instruction.
156HANDLE_TARGET_OPCODE(PATCHABLE_OP)
157
158/// This is a marker instruction which gets translated into a nop sled, useful
159/// for inserting instrumentation instructions at runtime.
160HANDLE_TARGET_OPCODE(PATCHABLE_FUNCTION_ENTER)
161
162/// Wraps a return instruction and its operands to enable adding nop sleds
163/// either before or after the return. The nop sleds are useful for inserting
164/// instrumentation instructions at runtime.
165/// The patch here replaces the return instruction.
166HANDLE_TARGET_OPCODE(PATCHABLE_RET)
167
168/// This is a marker instruction which gets translated into a nop sled, useful
169/// for inserting instrumentation instructions at runtime.
170/// The patch here prepends the return instruction.
171/// The same thing as in x86_64 is not possible for ARM because it has multiple
172/// return instructions. Furthermore, CPU allows parametrized and even
173/// conditional return instructions. In the current ARM implementation we are
174/// making use of the fact that currently LLVM doesn't seem to generate
175/// conditional return instructions.
176/// On ARM, the same instruction can be used for popping multiple registers
177/// from the stack and returning (it just pops pc register too), and LLVM
178/// generates it sometimes. So we can't insert the sled between this stack
179/// adjustment and the return without splitting the original instruction into 2
180/// instructions. So on ARM, rather than jumping into the exit trampoline, we
181/// call it, it does the tracing, preserves the stack and returns.
182HANDLE_TARGET_OPCODE(PATCHABLE_FUNCTION_EXIT)
183
184/// Wraps a tail call instruction and its operands to enable adding nop sleds
185/// either before or after the tail exit. We use this as a disambiguation from
186/// PATCHABLE_RET which specifically only works for return instructions.
187HANDLE_TARGET_OPCODE(PATCHABLE_TAIL_CALL)
188
189/// Wraps a logging call and its arguments with nop sleds. At runtime, this can
190/// be patched to insert instrumentation instructions.
191HANDLE_TARGET_OPCODE(PATCHABLE_EVENT_CALL)
192
193/// Wraps a typed logging call and its argument with nop sleds. At runtime, this
194/// can be patched to insert instrumentation instructions.
195HANDLE_TARGET_OPCODE(PATCHABLE_TYPED_EVENT_CALL)
196
197HANDLE_TARGET_OPCODE(ICALL_BRANCH_FUNNEL)
198
199/// The following generic opcodes are not supposed to appear after ISel.
200/// This is something we might want to relax, but for now, this is convenient
201/// to produce diagnostics.
202
203/// Generic ADD instruction. This is an integer add.
204HANDLE_TARGET_OPCODE(G_ADD)
205HANDLE_TARGET_OPCODE_MARKER(PRE_ISEL_GENERIC_OPCODE_START, G_ADD)
206
207/// Generic SUB instruction. This is an integer sub.
208HANDLE_TARGET_OPCODE(G_SUB)
209
210// Generic multiply instruction.
211HANDLE_TARGET_OPCODE(G_MUL)
212
213// Generic signed division instruction.
214HANDLE_TARGET_OPCODE(G_SDIV)
215
216// Generic unsigned division instruction.
217HANDLE_TARGET_OPCODE(G_UDIV)
218
219// Generic signed remainder instruction.
220HANDLE_TARGET_OPCODE(G_SREM)
221
222// Generic unsigned remainder instruction.
223HANDLE_TARGET_OPCODE(G_UREM)
224
225/// Generic bitwise and instruction.
226HANDLE_TARGET_OPCODE(G_AND)
227
228/// Generic bitwise or instruction.
229HANDLE_TARGET_OPCODE(G_OR)
230
231/// Generic bitwise exclusive-or instruction.
232HANDLE_TARGET_OPCODE(G_XOR)
233
234
235HANDLE_TARGET_OPCODE(G_IMPLICIT_DEF)
236
237/// Generic PHI instruction with types.
238HANDLE_TARGET_OPCODE(G_PHI)
239
240/// Generic instruction to materialize the address of an alloca or other
241/// stack-based object.
242HANDLE_TARGET_OPCODE(G_FRAME_INDEX)
243
244/// Generic reference to global value.
245HANDLE_TARGET_OPCODE(G_GLOBAL_VALUE)
246
247/// Generic instruction to extract blocks of bits from the register given
248/// (typically a sub-register COPY after instruction selection).
249HANDLE_TARGET_OPCODE(G_EXTRACT)
250
251HANDLE_TARGET_OPCODE(G_UNMERGE_VALUES)
252
253/// Generic instruction to insert blocks of bits from the registers given into
254/// the source.
255HANDLE_TARGET_OPCODE(G_INSERT)
256
257/// Generic instruction to paste a variable number of components together into a
258/// larger register.
259HANDLE_TARGET_OPCODE(G_MERGE_VALUES)
260
261/// Generic instruction to create a vector value from a number of scalar
262/// components.
263HANDLE_TARGET_OPCODE(G_BUILD_VECTOR)
264
265/// Generic instruction to create a vector value from a number of scalar
266/// components, which have types larger than the result vector elt type.
267HANDLE_TARGET_OPCODE(G_BUILD_VECTOR_TRUNC)
268
269/// Generic instruction to create a vector by concatenating multiple vectors.
270HANDLE_TARGET_OPCODE(G_CONCAT_VECTORS)
271
272/// Generic pointer to int conversion.
273HANDLE_TARGET_OPCODE(G_PTRTOINT)
274
275/// Generic int to pointer conversion.
276HANDLE_TARGET_OPCODE(G_INTTOPTR)
277
278/// Generic bitcast. The source and destination types must be different, or a
279/// COPY is the relevant instruction.
280HANDLE_TARGET_OPCODE(G_BITCAST)
281
282/// INTRINSIC trunc intrinsic.
283HANDLE_TARGET_OPCODE(G_INTRINSIC_TRUNC)
284
285/// INTRINSIC round intrinsic.
286HANDLE_TARGET_OPCODE(G_INTRINSIC_ROUND)
287
288/// INTRINSIC readcyclecounter
289HANDLE_TARGET_OPCODE(G_READCYCLECOUNTER)
290
291/// Generic load (including anyext load)
292HANDLE_TARGET_OPCODE(G_LOAD)
293
294/// Generic signext load
295HANDLE_TARGET_OPCODE(G_SEXTLOAD)
296
297/// Generic zeroext load
298HANDLE_TARGET_OPCODE(G_ZEXTLOAD)
299
300/// Generic indexed load (including anyext load)
301HANDLE_TARGET_OPCODE(G_INDEXED_LOAD)
302
303/// Generic indexed signext load
304HANDLE_TARGET_OPCODE(G_INDEXED_SEXTLOAD)
305
306/// Generic indexed zeroext load
307HANDLE_TARGET_OPCODE(G_INDEXED_ZEXTLOAD)
308
309/// Generic store.
310HANDLE_TARGET_OPCODE(G_STORE)
311
312/// Generic indexed store.
313HANDLE_TARGET_OPCODE(G_INDEXED_STORE)
314
315/// Generic atomic cmpxchg with internal success check.
316HANDLE_TARGET_OPCODE(G_ATOMIC_CMPXCHG_WITH_SUCCESS)
317
318/// Generic atomic cmpxchg.
319HANDLE_TARGET_OPCODE(G_ATOMIC_CMPXCHG)
320
321/// Generic atomicrmw.
322HANDLE_TARGET_OPCODE(G_ATOMICRMW_XCHG)
323HANDLE_TARGET_OPCODE(G_ATOMICRMW_ADD)
324HANDLE_TARGET_OPCODE(G_ATOMICRMW_SUB)
325HANDLE_TARGET_OPCODE(G_ATOMICRMW_AND)
326HANDLE_TARGET_OPCODE(G_ATOMICRMW_NAND)
327HANDLE_TARGET_OPCODE(G_ATOMICRMW_OR)
328HANDLE_TARGET_OPCODE(G_ATOMICRMW_XOR)
329HANDLE_TARGET_OPCODE(G_ATOMICRMW_MAX)
330HANDLE_TARGET_OPCODE(G_ATOMICRMW_MIN)
331HANDLE_TARGET_OPCODE(G_ATOMICRMW_UMAX)
332HANDLE_TARGET_OPCODE(G_ATOMICRMW_UMIN)
333HANDLE_TARGET_OPCODE(G_ATOMICRMW_FADD)
334HANDLE_TARGET_OPCODE(G_ATOMICRMW_FSUB)
335
336// Generic atomic fence
337HANDLE_TARGET_OPCODE(G_FENCE)
338
339/// Generic conditional branch instruction.
340HANDLE_TARGET_OPCODE(G_BRCOND)
341
342/// Generic indirect branch instruction.
343HANDLE_TARGET_OPCODE(G_BRINDIRECT)
344
345/// Generic intrinsic use (without side effects).
346HANDLE_TARGET_OPCODE(G_INTRINSIC)
347
348/// Generic intrinsic use (with side effects).
349HANDLE_TARGET_OPCODE(G_INTRINSIC_W_SIDE_EFFECTS)
350
351/// Generic extension allowing rubbish in high bits.
352HANDLE_TARGET_OPCODE(G_ANYEXT)
353
354/// Generic instruction to discard the high bits of a register. This differs
355/// from (G_EXTRACT val, 0) on its action on vectors: G_TRUNC will truncate
356/// each element individually, G_EXTRACT will typically discard the high
357/// elements of the vector.
358HANDLE_TARGET_OPCODE(G_TRUNC)
359
360/// Generic integer constant.
361HANDLE_TARGET_OPCODE(G_CONSTANT)
362
363/// Generic floating constant.
364HANDLE_TARGET_OPCODE(G_FCONSTANT)
365
366/// Generic va_start instruction. Stores to its one pointer operand.
367HANDLE_TARGET_OPCODE(G_VASTART)
368
369/// Generic va_start instruction. Stores to its one pointer operand.
370HANDLE_TARGET_OPCODE(G_VAARG)
371
372// Generic sign extend
373HANDLE_TARGET_OPCODE(G_SEXT)
374HANDLE_TARGET_OPCODE(G_SEXT_INREG)
375
376// Generic zero extend
377HANDLE_TARGET_OPCODE(G_ZEXT)
378
379// Generic left-shift
380HANDLE_TARGET_OPCODE(G_SHL)
381
382// Generic logical right-shift
383HANDLE_TARGET_OPCODE(G_LSHR)
384
385// Generic arithmetic right-shift
386HANDLE_TARGET_OPCODE(G_ASHR)
387
388/// Generic integer-base comparison, also applicable to vectors of integers.
389HANDLE_TARGET_OPCODE(G_ICMP)
390
391/// Generic floating-point comparison, also applicable to vectors.
392HANDLE_TARGET_OPCODE(G_FCMP)
393
394/// Generic select.
395HANDLE_TARGET_OPCODE(G_SELECT)
396
397/// Generic unsigned add instruction, consuming the normal operands and
398/// producing the result and a carry flag.
399HANDLE_TARGET_OPCODE(G_UADDO)
400
401/// Generic unsigned add instruction, consuming the normal operands plus a carry
402/// flag, and similarly producing the result and a carry flag.
403HANDLE_TARGET_OPCODE(G_UADDE)
404
405/// Generic unsigned sub instruction, consuming the normal operands and
406/// producing the result and a carry flag.
407HANDLE_TARGET_OPCODE(G_USUBO)
408
409/// Generic unsigned subtract instruction, consuming the normal operands plus a
410/// carry flag, and similarly producing the result and a carry flag.
411HANDLE_TARGET_OPCODE(G_USUBE)
412
413/// Generic signed add instruction, producing the result and a signed overflow
414/// flag.
415HANDLE_TARGET_OPCODE(G_SADDO)
416
417/// Generic signed add instruction, consuming the normal operands plus a carry
418/// flag, and similarly producing the result and a carry flag.
419HANDLE_TARGET_OPCODE(G_SADDE)
420
421/// Generic signed subtract instruction, producing the result and a signed
422/// overflow flag.
423HANDLE_TARGET_OPCODE(G_SSUBO)
424
425/// Generic signed sub instruction, consuming the normal operands plus a carry
426/// flag, and similarly producing the result and a carry flag.
427HANDLE_TARGET_OPCODE(G_SSUBE)
428
429/// Generic unsigned multiply instruction, producing the result and a signed
430/// overflow flag.
431HANDLE_TARGET_OPCODE(G_UMULO)
432
433/// Generic signed multiply instruction, producing the result and a signed
434/// overflow flag.
435HANDLE_TARGET_OPCODE(G_SMULO)
436
437// Multiply two numbers at twice the incoming bit width (unsigned) and return
438// the high half of the result.
439HANDLE_TARGET_OPCODE(G_UMULH)
440
441// Multiply two numbers at twice the incoming bit width (signed) and return
442// the high half of the result.
443HANDLE_TARGET_OPCODE(G_SMULH)
444
445/// Generic FP addition.
446HANDLE_TARGET_OPCODE(G_FADD)
447
448/// Generic FP subtraction.
449HANDLE_TARGET_OPCODE(G_FSUB)
450
451/// Generic FP multiplication.
452HANDLE_TARGET_OPCODE(G_FMUL)
453
454/// Generic FMA multiplication. Behaves like llvm fma intrinsic
455HANDLE_TARGET_OPCODE(G_FMA)
456
457/// Generic FP multiply and add. Behaves as separate fmul and fadd.
458HANDLE_TARGET_OPCODE(G_FMAD)
459
460/// Generic FP division.
461HANDLE_TARGET_OPCODE(G_FDIV)
462
463/// Generic FP remainder.
464HANDLE_TARGET_OPCODE(G_FREM)
465
466/// Generic FP exponentiation.
467HANDLE_TARGET_OPCODE(G_FPOW)
468
469/// Generic base-e exponential of a value.
470HANDLE_TARGET_OPCODE(G_FEXP)
471
472/// Generic base-2 exponential of a value.
473HANDLE_TARGET_OPCODE(G_FEXP2)
474
475/// Floating point base-e logarithm of a value.
476HANDLE_TARGET_OPCODE(G_FLOG)
477
478/// Floating point base-2 logarithm of a value.
479HANDLE_TARGET_OPCODE(G_FLOG2)
480
481/// Floating point base-10 logarithm of a value.
482HANDLE_TARGET_OPCODE(G_FLOG10)
483
484/// Generic FP negation.
485HANDLE_TARGET_OPCODE(G_FNEG)
486
487/// Generic FP extension.
488HANDLE_TARGET_OPCODE(G_FPEXT)
489
490/// Generic float to signed-int conversion
491HANDLE_TARGET_OPCODE(G_FPTRUNC)
492
493/// Generic float to signed-int conversion
494HANDLE_TARGET_OPCODE(G_FPTOSI)
495
496/// Generic float to unsigned-int conversion
497HANDLE_TARGET_OPCODE(G_FPTOUI)
498
499/// Generic signed-int to float conversion
500HANDLE_TARGET_OPCODE(G_SITOFP)
501
502/// Generic unsigned-int to float conversion
503HANDLE_TARGET_OPCODE(G_UITOFP)
504
505/// Generic FP absolute value.
506HANDLE_TARGET_OPCODE(G_FABS)
507
508/// FCOPYSIGN(X, Y) - Return the value of X with the sign of Y.  NOTE: This does
509/// not require that X and Y have the same type, just that they are both
510/// floating point. X and the result must have the same type.  FCOPYSIGN(f32,
511/// f64) is allowed.
512HANDLE_TARGET_OPCODE(G_FCOPYSIGN)
513
514/// Generic FP canonicalize value.
515HANDLE_TARGET_OPCODE(G_FCANONICALIZE)
516
517/// FP min/max matching libm's fmin/fmax
518HANDLE_TARGET_OPCODE(G_FMINNUM)
519HANDLE_TARGET_OPCODE(G_FMAXNUM)
520
521/// FP min/max matching IEEE-754 2008's minnum/maxnum semantics.
522HANDLE_TARGET_OPCODE(G_FMINNUM_IEEE)
523HANDLE_TARGET_OPCODE(G_FMAXNUM_IEEE)
524
525/// FP min/max matching IEEE-754 2018 draft semantics.
526HANDLE_TARGET_OPCODE(G_FMINIMUM)
527HANDLE_TARGET_OPCODE(G_FMAXIMUM)
528
529/// Generic pointer offset
530HANDLE_TARGET_OPCODE(G_PTR_ADD)
531
532/// Clear the specified number of low bits in a pointer. This rounds the value
533/// *down* to the given alignment.
534HANDLE_TARGET_OPCODE(G_PTR_MASK)
535
536/// Generic signed integer minimum.
537HANDLE_TARGET_OPCODE(G_SMIN)
538
539/// Generic signed integer maximum.
540HANDLE_TARGET_OPCODE(G_SMAX)
541
542/// Generic unsigned integer maximum.
543HANDLE_TARGET_OPCODE(G_UMIN)
544
545/// Generic unsigned integer maximum.
546HANDLE_TARGET_OPCODE(G_UMAX)
547
548/// Generic BRANCH instruction. This is an unconditional branch.
549HANDLE_TARGET_OPCODE(G_BR)
550
551/// Generic branch to jump table entry.
552HANDLE_TARGET_OPCODE(G_BRJT)
553
554/// Generic insertelement.
555HANDLE_TARGET_OPCODE(G_INSERT_VECTOR_ELT)
556
557/// Generic extractelement.
558HANDLE_TARGET_OPCODE(G_EXTRACT_VECTOR_ELT)
559
560/// Generic shufflevector.
561HANDLE_TARGET_OPCODE(G_SHUFFLE_VECTOR)
562
563/// Generic count trailing zeroes.
564HANDLE_TARGET_OPCODE(G_CTTZ)
565
566/// Same as above, undefined for zero inputs.
567HANDLE_TARGET_OPCODE(G_CTTZ_ZERO_UNDEF)
568
569/// Generic count leading zeroes.
570HANDLE_TARGET_OPCODE(G_CTLZ)
571
572/// Same as above, undefined for zero inputs.
573HANDLE_TARGET_OPCODE(G_CTLZ_ZERO_UNDEF)
574
575/// Generic count bits.
576HANDLE_TARGET_OPCODE(G_CTPOP)
577
578/// Generic byte swap.
579HANDLE_TARGET_OPCODE(G_BSWAP)
580
581/// Generic bit reverse.
582HANDLE_TARGET_OPCODE(G_BITREVERSE)
583
584/// Floating point ceil.
585HANDLE_TARGET_OPCODE(G_FCEIL)
586
587/// Floating point cosine.
588HANDLE_TARGET_OPCODE(G_FCOS)
589
590/// Floating point sine.
591HANDLE_TARGET_OPCODE(G_FSIN)
592
593/// Floating point square root.
594HANDLE_TARGET_OPCODE(G_FSQRT)
595
596/// Floating point floor.
597HANDLE_TARGET_OPCODE(G_FFLOOR)
598
599/// Floating point round to next integer.
600HANDLE_TARGET_OPCODE(G_FRINT)
601
602/// Floating point round to nearest integer.
603HANDLE_TARGET_OPCODE(G_FNEARBYINT)
604
605/// Generic AddressSpaceCast.
606HANDLE_TARGET_OPCODE(G_ADDRSPACE_CAST)
607
608/// Generic block address
609HANDLE_TARGET_OPCODE(G_BLOCK_ADDR)
610
611/// Generic jump table address
612HANDLE_TARGET_OPCODE(G_JUMP_TABLE)
613
614/// Generic dynamic stack allocation.
615HANDLE_TARGET_OPCODE(G_DYN_STACKALLOC)
616
617/// read_register intrinsic
618HANDLE_TARGET_OPCODE(G_READ_REGISTER)
619
620/// write_register intrinsic
621HANDLE_TARGET_OPCODE(G_WRITE_REGISTER)
622
623/// Marker for the end of the generic opcode.
624/// This is used to check if an opcode is in the range of the
625/// generic opcodes.
626HANDLE_TARGET_OPCODE_MARKER(PRE_ISEL_GENERIC_OPCODE_END, G_WRITE_REGISTER)
627
628/// BUILTIN_OP_END - This must be the last enum value in this list.
629/// The target-specific post-isel opcode values start here.
630HANDLE_TARGET_OPCODE_MARKER(GENERIC_OP_END, PRE_ISEL_GENERIC_OPCODE_END)
631