• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 1994, 2021, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.  Oracle designates this
8  * particular file as subject to the "Classpath" exception as provided
9  * by Oracle in the LICENSE file that accompanied this code.
10  *
11  * This code is distributed in the hope that it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14  * version 2 for more details (a copy is included in the LICENSE file that
15  * accompanied this code).
16  *
17  * You should have received a copy of the GNU General Public License version
18  * 2 along with this work; if not, write to the Free Software Foundation,
19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20  *
21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22  * or visit www.oracle.com if you need additional information or have any
23  * questions.
24  */
25 
26 package java.lang;
27 
28 import java.lang.annotation.Native;
29 
30 // BEGIN Android-removed: dynamic constants not supported on Android.
31 /*
32 import java.lang.invoke.MethodHandles;
33 import java.lang.constant.Constable;
34 import java.lang.constant.ConstantDesc;
35 import java.util.Optional;
36 */
37 // END Android-removed: dynamic constants not supported on Android.
38 
39 import java.math.*;
40 import java.util.Objects;
41 
42 // Android-removed: CDS is not used on Android.
43 // import jdk.internal.misc.CDS;
44 
45 import jdk.internal.vm.annotation.IntrinsicCandidate;
46 
47 
48 /**
49  * The {@code Long} class wraps a value of the primitive type {@code
50  * long} in an object. An object of type {@code Long} contains a
51  * single field whose type is {@code long}.
52  *
53  * <p> In addition, this class provides several methods for converting
54  * a {@code long} to a {@code String} and a {@code String} to a {@code
55  * long}, as well as other constants and methods useful when dealing
56  * with a {@code long}.
57  *
58  * <!-- Android-removed: paragraph on ValueBased
59  * <p>This is a <a href="{@docRoot}/java.base/java/lang/doc-files/ValueBased.html">value-based</a>
60  * class; programmers should treat instances that are
61  * {@linkplain #equals(Object) equal} as interchangeable and should not
62  * use instances for synchronization, or unpredictable behavior may
63  * occur. For example, in a future release, synchronization may fail.
64  * -->
65  *
66  * <p>Implementation note: The implementations of the "bit twiddling"
67  * methods (such as {@link #highestOneBit(long) highestOneBit} and
68  * {@link #numberOfTrailingZeros(long) numberOfTrailingZeros}) are
69  * based on material from Henry S. Warren, Jr.'s <i>Hacker's
70  * Delight</i>, (Addison Wesley, 2002).
71  *
72  * @author  Lee Boynton
73  * @author  Arthur van Hoff
74  * @author  Josh Bloch
75  * @author  Joseph D. Darcy
76  * @since   1.0
77  */
78 @jdk.internal.ValueBased
79 public final class Long extends Number
80         implements Comparable<Long>
81 // Android-removed: no Constable support.
82 // , Constable, ConstantDesc
83 {
84     /**
85      * A constant holding the minimum value a {@code long} can
86      * have, -2<sup>63</sup>.
87      */
88     @Native public static final long MIN_VALUE = 0x8000000000000000L;
89 
90     /**
91      * A constant holding the maximum value a {@code long} can
92      * have, 2<sup>63</sup>-1.
93      */
94     @Native public static final long MAX_VALUE = 0x7fffffffffffffffL;
95 
96     /**
97      * The {@code Class} instance representing the primitive type
98      * {@code long}.
99      *
100      * @since   1.1
101      */
102     @SuppressWarnings("unchecked")
103     public static final Class<Long>     TYPE = (Class<Long>) Class.getPrimitiveClass("long");
104 
105     /**
106      * Returns a string representation of the first argument in the
107      * radix specified by the second argument.
108      *
109      * <p>If the radix is smaller than {@code Character.MIN_RADIX}
110      * or larger than {@code Character.MAX_RADIX}, then the radix
111      * {@code 10} is used instead.
112      *
113      * <p>If the first argument is negative, the first element of the
114      * result is the ASCII minus sign {@code '-'}
115      * ({@code '\u005Cu002d'}). If the first argument is not
116      * negative, no sign character appears in the result.
117      *
118      * <p>The remaining characters of the result represent the magnitude
119      * of the first argument. If the magnitude is zero, it is
120      * represented by a single zero character {@code '0'}
121      * ({@code '\u005Cu0030'}); otherwise, the first character of
122      * the representation of the magnitude will not be the zero
123      * character.  The following ASCII characters are used as digits:
124      *
125      * <blockquote>
126      *   {@code 0123456789abcdefghijklmnopqrstuvwxyz}
127      * </blockquote>
128      *
129      * These are {@code '\u005Cu0030'} through
130      * {@code '\u005Cu0039'} and {@code '\u005Cu0061'} through
131      * {@code '\u005Cu007a'}. If {@code radix} is
132      * <var>N</var>, then the first <var>N</var> of these characters
133      * are used as radix-<var>N</var> digits in the order shown. Thus,
134      * the digits for hexadecimal (radix 16) are
135      * {@code 0123456789abcdef}. If uppercase letters are
136      * desired, the {@link java.lang.String#toUpperCase()} method may
137      * be called on the result:
138      *
139      * <blockquote>
140      *  {@code Long.toString(n, 16).toUpperCase()}
141      * </blockquote>
142      *
143      * @param   i       a {@code long} to be converted to a string.
144      * @param   radix   the radix to use in the string representation.
145      * @return  a string representation of the argument in the specified radix.
146      * @see     java.lang.Character#MAX_RADIX
147      * @see     java.lang.Character#MIN_RADIX
148      */
toString(long i, int radix)149     public static String toString(long i, int radix) {
150         if (radix < Character.MIN_RADIX || radix > Character.MAX_RADIX)
151             radix = 10;
152         if (radix == 10)
153             return toString(i);
154 
155         // BEGIN Android-changed: Use single-byte chars.
156         /*
157         if (COMPACT_STRINGS) {
158          */
159             byte[] buf = new byte[65];
160             int charPos = 64;
161             boolean negative = (i < 0);
162 
163             if (!negative) {
164                 i = -i;
165             }
166 
167             while (i <= -radix) {
168                 buf[charPos--] = (byte)Integer.digits[(int)(-(i % radix))];
169                 i = i / radix;
170             }
171             buf[charPos] = (byte)Integer.digits[(int)(-i)];
172 
173             if (negative) {
174                 buf[--charPos] = '-';
175             }
176         /*
177             return StringLatin1.newString(buf, charPos, (65 - charPos));
178         }
179         return toStringUTF16(i, radix);
180          */
181         return new String(buf, charPos, (65 - charPos));
182         // END Android-changed: Use single-byte chars.
183     }
184 
185     // BEGIN Android-removed: UTF16 version of toString(long i, int radix).
186     /*
187     private static String toStringUTF16(long i, int radix) {
188         byte[] buf = new byte[65 * 2];
189         int charPos = 64;
190         boolean negative = (i < 0);
191         if (!negative) {
192             i = -i;
193         }
194         while (i <= -radix) {
195             StringUTF16.putChar(buf, charPos--, Integer.digits[(int)(-(i % radix))]);
196             i = i / radix;
197         }
198         StringUTF16.putChar(buf, charPos, Integer.digits[(int)(-i)]);
199         if (negative) {
200             StringUTF16.putChar(buf, --charPos, '-');
201         }
202         return StringUTF16.newString(buf, charPos, (65 - charPos));
203     }
204      */
205     // END Android-removed: UTF16 version of toString(long i, int radix).
206 
207     /**
208      * Returns a string representation of the first argument as an
209      * unsigned integer value in the radix specified by the second
210      * argument.
211      *
212      * <p>If the radix is smaller than {@code Character.MIN_RADIX}
213      * or larger than {@code Character.MAX_RADIX}, then the radix
214      * {@code 10} is used instead.
215      *
216      * <p>Note that since the first argument is treated as an unsigned
217      * value, no leading sign character is printed.
218      *
219      * <p>If the magnitude is zero, it is represented by a single zero
220      * character {@code '0'} ({@code '\u005Cu0030'}); otherwise,
221      * the first character of the representation of the magnitude will
222      * not be the zero character.
223      *
224      * <p>The behavior of radixes and the characters used as digits
225      * are the same as {@link #toString(long, int) toString}.
226      *
227      * @param   i       an integer to be converted to an unsigned string.
228      * @param   radix   the radix to use in the string representation.
229      * @return  an unsigned string representation of the argument in the specified radix.
230      * @see     #toString(long, int)
231      * @since 1.8
232      */
toUnsignedString(long i, int radix)233     public static String toUnsignedString(long i, int radix) {
234         if (i >= 0)
235             return toString(i, radix);
236         else {
237             return switch (radix) {
238                 case 2  -> toBinaryString(i);
239                 case 4  -> toUnsignedString0(i, 2);
240                 case 8  -> toOctalString(i);
241                 case 10 -> {
242                     /*
243                      * We can get the effect of an unsigned division by 10
244                      * on a long value by first shifting right, yielding a
245                      * positive value, and then dividing by 5.  This
246                      * allows the last digit and preceding digits to be
247                      * isolated more quickly than by an initial conversion
248                      * to BigInteger.
249                      */
250                     long quot = (i >>> 1) / 5;
251                     long rem = i - quot * 10;
252                     yield toString(quot) + rem;
253                 }
254                 case 16 -> toHexString(i);
255                 case 32 -> toUnsignedString0(i, 5);
256                 default -> toUnsignedBigInteger(i).toString(radix);
257             };
258         }
259     }
260 
261     /**
262      * Return a BigInteger equal to the unsigned value of the
263      * argument.
264      */
toUnsignedBigInteger(long i)265     private static BigInteger toUnsignedBigInteger(long i) {
266         if (i >= 0L)
267             return BigInteger.valueOf(i);
268         else {
269             int upper = (int) (i >>> 32);
270             int lower = (int) i;
271 
272             // return (upper << 32) + lower
273             return (BigInteger.valueOf(Integer.toUnsignedLong(upper))).shiftLeft(32).
274                 add(BigInteger.valueOf(Integer.toUnsignedLong(lower)));
275         }
276     }
277 
278     // Android-removed: java.util.HexFormat references in javadoc as not present.
279     /**
280      * Returns a string representation of the {@code long}
281      * argument as an unsigned integer in base&nbsp;16.
282      *
283      * <p>The unsigned {@code long} value is the argument plus
284      * 2<sup>64</sup> if the argument is negative; otherwise, it is
285      * equal to the argument.  This value is converted to a string of
286      * ASCII digits in hexadecimal (base&nbsp;16) with no extra
287      * leading {@code 0}s.
288      *
289      * <p>The value of the argument can be recovered from the returned
290      * string {@code s} by calling {@link
291      * Long#parseUnsignedLong(String, int) Long.parseUnsignedLong(s,
292      * 16)}.
293      *
294      * <p>If the unsigned magnitude is zero, it is represented by a
295      * single zero character {@code '0'} ({@code '\u005Cu0030'});
296      * otherwise, the first character of the representation of the
297      * unsigned magnitude will not be the zero character. The
298      * following characters are used as hexadecimal digits:
299      *
300      * <blockquote>
301      *  {@code 0123456789abcdef}
302      * </blockquote>
303      *
304      * These are the characters {@code '\u005Cu0030'} through
305      * {@code '\u005Cu0039'} and  {@code '\u005Cu0061'} through
306      * {@code '\u005Cu0066'}.  If uppercase letters are desired,
307      * the {@link java.lang.String#toUpperCase()} method may be called
308      * on the result:
309      *
310      * <blockquote>
311      *  {@code Long.toHexString(n).toUpperCase()}
312      * </blockquote>
313      *
314      * @param   i   a {@code long} to be converted to a string.
315      * @return  the string representation of the unsigned {@code long}
316      *          value represented by the argument in hexadecimal
317      *          (base&nbsp;16).
318      * @see #parseUnsignedLong(String, int)
319      * @see #toUnsignedString(long, int)
320      * @since   1.0.2
321      */
toHexString(long i)322     public static String toHexString(long i) {
323         return toUnsignedString0(i, 4);
324     }
325 
326     /**
327      * Returns a string representation of the {@code long}
328      * argument as an unsigned integer in base&nbsp;8.
329      *
330      * <p>The unsigned {@code long} value is the argument plus
331      * 2<sup>64</sup> if the argument is negative; otherwise, it is
332      * equal to the argument.  This value is converted to a string of
333      * ASCII digits in octal (base&nbsp;8) with no extra leading
334      * {@code 0}s.
335      *
336      * <p>The value of the argument can be recovered from the returned
337      * string {@code s} by calling {@link
338      * Long#parseUnsignedLong(String, int) Long.parseUnsignedLong(s,
339      * 8)}.
340      *
341      * <p>If the unsigned magnitude is zero, it is represented by a
342      * single zero character {@code '0'} ({@code '\u005Cu0030'});
343      * otherwise, the first character of the representation of the
344      * unsigned magnitude will not be the zero character. The
345      * following characters are used as octal digits:
346      *
347      * <blockquote>
348      *  {@code 01234567}
349      * </blockquote>
350      *
351      * These are the characters {@code '\u005Cu0030'} through
352      * {@code '\u005Cu0037'}.
353      *
354      * @param   i   a {@code long} to be converted to a string.
355      * @return  the string representation of the unsigned {@code long}
356      *          value represented by the argument in octal (base&nbsp;8).
357      * @see #parseUnsignedLong(String, int)
358      * @see #toUnsignedString(long, int)
359      * @since   1.0.2
360      */
toOctalString(long i)361     public static String toOctalString(long i) {
362         return toUnsignedString0(i, 3);
363     }
364 
365     /**
366      * Returns a string representation of the {@code long}
367      * argument as an unsigned integer in base&nbsp;2.
368      *
369      * <p>The unsigned {@code long} value is the argument plus
370      * 2<sup>64</sup> if the argument is negative; otherwise, it is
371      * equal to the argument.  This value is converted to a string of
372      * ASCII digits in binary (base&nbsp;2) with no extra leading
373      * {@code 0}s.
374      *
375      * <p>The value of the argument can be recovered from the returned
376      * string {@code s} by calling {@link
377      * Long#parseUnsignedLong(String, int) Long.parseUnsignedLong(s,
378      * 2)}.
379      *
380      * <p>If the unsigned magnitude is zero, it is represented by a
381      * single zero character {@code '0'} ({@code '\u005Cu0030'});
382      * otherwise, the first character of the representation of the
383      * unsigned magnitude will not be the zero character. The
384      * characters {@code '0'} ({@code '\u005Cu0030'}) and {@code
385      * '1'} ({@code '\u005Cu0031'}) are used as binary digits.
386      *
387      * @param   i   a {@code long} to be converted to a string.
388      * @return  the string representation of the unsigned {@code long}
389      *          value represented by the argument in binary (base&nbsp;2).
390      * @see #parseUnsignedLong(String, int)
391      * @see #toUnsignedString(long, int)
392      * @since   1.0.2
393      */
toBinaryString(long i)394     public static String toBinaryString(long i) {
395         return toUnsignedString0(i, 1);
396     }
397 
398     /**
399      * Format a long (treated as unsigned) into a String.
400      * @param val the value to format
401      * @param shift the log2 of the base to format in (4 for hex, 3 for octal, 1 for binary)
402      */
toUnsignedString0(long val, int shift)403     static String toUnsignedString0(long val, int shift) {
404         // assert shift > 0 && shift <=5 : "Illegal shift value";
405         int mag = Long.SIZE - Long.numberOfLeadingZeros(val);
406         int chars = Math.max(((mag + (shift - 1)) / shift), 1);
407 
408         // BEGIN Android-changed: Use single-byte chars.
409         /*
410         if (COMPACT_STRINGS) {
411          */
412             byte[] buf = new byte[chars];
413             formatUnsignedLong0(val, shift, buf, 0, chars);
414         /*
415             return new String(buf, LATIN1);
416         } else {
417             byte[] buf = new byte[chars * 2];
418             formatUnsignedLong0UTF16(val, shift, buf, 0, chars);
419             return new String(buf, UTF16);
420         }
421         */
422         return new String(buf);
423         // END Android-changed: Use single-byte chars.
424     }
425 
426     /**
427      * Format a long (treated as unsigned) into a byte buffer (LATIN1 version). If
428      * {@code len} exceeds the formatted ASCII representation of {@code val},
429      * {@code buf} will be padded with leading zeroes.
430      *
431      * @param val the unsigned long to format
432      * @param shift the log2 of the base to format in (4 for hex, 3 for octal, 1 for binary)
433      * @param buf the byte buffer to write to
434      * @param offset the offset in the destination buffer to start at
435      * @param len the number of characters to write
436      */
437     // Android-changed: dropped private modifier
formatUnsignedLong0(long val, int shift, byte[] buf, int offset, int len)438     static void formatUnsignedLong0(long val, int shift, byte[] buf, int offset, int len) {
439         int charPos = offset + len;
440         int radix = 1 << shift;
441         int mask = radix - 1;
442         do {
443             buf[--charPos] = (byte)Integer.digits[((int) val) & mask];
444             val >>>= shift;
445         } while (charPos > offset);
446     }
447 
448     // BEGIN Android-removed: UTF16 version of formatUnsignedLong0().
449     /*
450     /** byte[]/UTF16 version    *
451     private static void formatUnsignedLong0UTF16(long val, int shift, byte[] buf, int offset, int len) {
452         int charPos = offset + len;
453         int radix = 1 << shift;
454         int mask = radix - 1;
455         do {
456             StringUTF16.putChar(buf, --charPos, Integer.digits[((int) val) & mask]);
457             val >>>= shift;
458         } while (charPos > offset);
459     }
460      */
461     // END Android-removed: UTF16 version of formatUnsignedLong0().
462 
463     /**
464      * Returns a {@code String} object representing the specified
465      * {@code long}.  The argument is converted to signed decimal
466      * representation and returned as a string, exactly as if the
467      * argument and the radix 10 were given as arguments to the {@link
468      * #toString(long, int)} method.
469      *
470      * @param   i   a {@code long} to be converted.
471      * @return  a string representation of the argument in base&nbsp;10.
472      */
toString(long i)473     public static String toString(long i) {
474         int size = stringSize(i);
475         // BEGIN Android-changed: Always use single-byte buffer.
476         /*
477         if (COMPACT_STRINGS) {
478          */
479             byte[] buf = new byte[size];
480             getChars(i, size, buf);
481         /*
482             return new String(buf, LATIN1);
483         } else {
484             byte[] buf = new byte[size * 2];
485             StringUTF16.getChars(i, size, buf);
486             return new String(buf, UTF16);
487         }
488          */
489         return new String(buf);
490         // END Android-changed: Always use single-byte buffer.
491     }
492 
493     /**
494      * Returns a string representation of the argument as an unsigned
495      * decimal value.
496      *
497      * The argument is converted to unsigned decimal representation
498      * and returned as a string exactly as if the argument and radix
499      * 10 were given as arguments to the {@link #toUnsignedString(long,
500      * int)} method.
501      *
502      * @param   i  an integer to be converted to an unsigned string.
503      * @return  an unsigned string representation of the argument.
504      * @see     #toUnsignedString(long, int)
505      * @since 1.8
506      */
toUnsignedString(long i)507     public static String toUnsignedString(long i) {
508         return toUnsignedString(i, 10);
509     }
510 
511     /**
512      * Places characters representing the long i into the
513      * character array buf. The characters are placed into
514      * the buffer backwards starting with the least significant
515      * digit at the specified index (exclusive), and working
516      * backwards from there.
517      *
518      * @implNote This method converts positive inputs into negative
519      * values, to cover the Long.MIN_VALUE case. Converting otherwise
520      * (negative to positive) will expose -Long.MIN_VALUE that overflows
521      * long.
522      *
523      * @param i     value to convert
524      * @param index next index, after the least significant digit
525      * @param buf   target buffer, Latin1-encoded
526      * @return index of the most significant digit or minus sign, if present
527      */
getChars(long i, int index, byte[] buf)528     static int getChars(long i, int index, byte[] buf) {
529         long q;
530         int r;
531         int charPos = index;
532 
533         boolean negative = (i < 0);
534         if (!negative) {
535             i = -i;
536         }
537 
538         // Get 2 digits/iteration using longs until quotient fits into an int
539         while (i <= Integer.MIN_VALUE) {
540             q = i / 100;
541             r = (int)((q * 100) - i);
542             i = q;
543             buf[--charPos] = Integer.DigitOnes[r];
544             buf[--charPos] = Integer.DigitTens[r];
545         }
546 
547         // Get 2 digits/iteration using ints
548         int q2;
549         int i2 = (int)i;
550         while (i2 <= -100) {
551             q2 = i2 / 100;
552             r  = (q2 * 100) - i2;
553             i2 = q2;
554             buf[--charPos] = Integer.DigitOnes[r];
555             buf[--charPos] = Integer.DigitTens[r];
556         }
557 
558         // We know there are at most two digits left at this point.
559         q2 = i2 / 10;
560         r  = (q2 * 10) - i2;
561         buf[--charPos] = (byte)('0' + r);
562 
563         // Whatever left is the remaining digit.
564         if (q2 < 0) {
565             buf[--charPos] = (byte)('0' - q2);
566         }
567 
568         if (negative) {
569             buf[--charPos] = (byte)'-';
570         }
571         return charPos;
572     }
573 
574     // BEGIN Android-added: char version of getChars(long i, int index, byte[] buf).
575     // for java.lang.AbstractStringBuilder#append(int).
getChars(long i, int index, char[] buf)576     static int getChars(long i, int index, char[] buf) {
577         long q;
578         int r;
579         int charPos = index;
580 
581         boolean negative = (i < 0);
582         if (!negative) {
583             i = -i;
584         }
585 
586         // Get 2 digits/iteration using longs until quotient fits into an int
587         while (i <= Integer.MIN_VALUE) {
588             q = i / 100;
589             r = (int)((q * 100) - i);
590             i = q;
591             buf[--charPos] = (char)Integer.DigitOnes[r];
592             buf[--charPos] = (char)Integer.DigitTens[r];
593         }
594 
595         // Get 2 digits/iteration using ints
596         int q2;
597         int i2 = (int)i;
598         while (i2 <= -100) {
599             q2 = i2 / 100;
600             r  = (q2 * 100) - i2;
601             i2 = q2;
602             buf[--charPos] = (char)Integer.DigitOnes[r];
603             buf[--charPos] = (char)Integer.DigitTens[r];
604         }
605 
606         // We know there are at most two digits left at this point.
607         q2 = i2 / 10;
608         r  = (q2 * 10) - i2;
609         buf[--charPos] = (char)('0' + r);
610 
611         // Whatever left is the remaining digit.
612         if (q2 < 0) {
613             buf[--charPos] = (char)('0' - q2);
614         }
615 
616         if (negative) {
617             buf[--charPos] = (byte)'-';
618         }
619         return charPos;
620     }
621     // END Android-added: char version of getChars(long i, int index, byte[] buf).
622 
623     /**
624      * Returns the string representation size for a given long value.
625      *
626      * @param x long value
627      * @return string size
628      *
629      * @implNote There are other ways to compute this: e.g. binary search,
630      * but values are biased heavily towards zero, and therefore linear search
631      * wins. The iteration results are also routinely inlined in the generated
632      * code after loop unrolling.
633      */
stringSize(long x)634     static int stringSize(long x) {
635         int d = 1;
636         if (x >= 0) {
637             d = 0;
638             x = -x;
639         }
640         long p = -10;
641         for (int i = 1; i < 19; i++) {
642             if (x > p)
643                 return i + d;
644             p = 10 * p;
645         }
646         return 19 + d;
647     }
648 
649     /**
650      * Parses the string argument as a signed {@code long} in the
651      * radix specified by the second argument. The characters in the
652      * string must all be digits of the specified radix (as determined
653      * by whether {@link java.lang.Character#digit(char, int)} returns
654      * a nonnegative value), except that the first character may be an
655      * ASCII minus sign {@code '-'} ({@code '\u005Cu002D'}) to
656      * indicate a negative value or an ASCII plus sign {@code '+'}
657      * ({@code '\u005Cu002B'}) to indicate a positive value. The
658      * resulting {@code long} value is returned.
659      *
660      * <p>Note that neither the character {@code L}
661      * ({@code '\u005Cu004C'}) nor {@code l}
662      * ({@code '\u005Cu006C'}) is permitted to appear at the end
663      * of the string as a type indicator, as would be permitted in
664      * Java programming language source code - except that either
665      * {@code L} or {@code l} may appear as a digit for a
666      * radix greater than or equal to 22.
667      *
668      * <p>An exception of type {@code NumberFormatException} is
669      * thrown if any of the following situations occurs:
670      * <ul>
671      *
672      * <li>The first argument is {@code null} or is a string of
673      * length zero.
674      *
675      * <li>The {@code radix} is either smaller than {@link
676      * java.lang.Character#MIN_RADIX} or larger than {@link
677      * java.lang.Character#MAX_RADIX}.
678      *
679      * <li>Any character of the string is not a digit of the specified
680      * radix, except that the first character may be a minus sign
681      * {@code '-'} ({@code '\u005Cu002d'}) or plus sign {@code
682      * '+'} ({@code '\u005Cu002B'}) provided that the string is
683      * longer than length 1.
684      *
685      * <li>The value represented by the string is not a value of type
686      *      {@code long}.
687      * </ul>
688      *
689      * <p>Examples:
690      * <blockquote><pre>
691      * parseLong("0", 10) returns 0L
692      * parseLong("473", 10) returns 473L
693      * parseLong("+42", 10) returns 42L
694      * parseLong("-0", 10) returns 0L
695      * parseLong("-FF", 16) returns -255L
696      * parseLong("1100110", 2) returns 102L
697      * parseLong("99", 8) throws a NumberFormatException
698      * parseLong("Hazelnut", 10) throws a NumberFormatException
699      * parseLong("Hazelnut", 36) returns 1356099454469L
700      * </pre></blockquote>
701      *
702      * @param      s       the {@code String} containing the
703      *                     {@code long} representation to be parsed.
704      * @param      radix   the radix to be used while parsing {@code s}.
705      * @return     the {@code long} represented by the string argument in
706      *             the specified radix.
707      * @throws     NumberFormatException  if the string does not contain a
708      *             parsable {@code long}.
709      */
parseLong(String s, int radix)710     public static long parseLong(String s, int radix)
711               throws NumberFormatException
712     {
713         if (s == null) {
714             throw new NumberFormatException("Cannot parse null string");
715         }
716 
717         if (radix < Character.MIN_RADIX) {
718             throw new NumberFormatException("radix " + radix +
719                                             " less than Character.MIN_RADIX");
720         }
721         if (radix > Character.MAX_RADIX) {
722             throw new NumberFormatException("radix " + radix +
723                                             " greater than Character.MAX_RADIX");
724         }
725 
726         boolean negative = false;
727         int i = 0, len = s.length();
728         long limit = -Long.MAX_VALUE;
729 
730         if (len > 0) {
731             char firstChar = s.charAt(0);
732             if (firstChar < '0') { // Possible leading "+" or "-"
733                 if (firstChar == '-') {
734                     negative = true;
735                     limit = Long.MIN_VALUE;
736                 } else if (firstChar != '+') {
737                     throw NumberFormatException.forInputString(s, radix);
738                 }
739 
740                 if (len == 1) { // Cannot have lone "+" or "-"
741                     throw NumberFormatException.forInputString(s, radix);
742                 }
743                 i++;
744             }
745             long multmin = limit / radix;
746             long result = 0;
747             while (i < len) {
748                 // Accumulating negatively avoids surprises near MAX_VALUE
749                 int digit = Character.digit(s.charAt(i++),radix);
750                 if (digit < 0 || result < multmin) {
751                     throw NumberFormatException.forInputString(s, radix);
752                 }
753                 result *= radix;
754                 if (result < limit + digit) {
755                     throw NumberFormatException.forInputString(s, radix);
756                 }
757                 result -= digit;
758             }
759             return negative ? result : -result;
760         } else {
761             throw NumberFormatException.forInputString(s, radix);
762         }
763     }
764 
765     /**
766      * Parses the {@link CharSequence} argument as a signed {@code long} in
767      * the specified {@code radix}, beginning at the specified
768      * {@code beginIndex} and extending to {@code endIndex - 1}.
769      *
770      * <p>The method does not take steps to guard against the
771      * {@code CharSequence} being mutated while parsing.
772      *
773      * @param      s   the {@code CharSequence} containing the {@code long}
774      *                  representation to be parsed
775      * @param      beginIndex   the beginning index, inclusive.
776      * @param      endIndex     the ending index, exclusive.
777      * @param      radix   the radix to be used while parsing {@code s}.
778      * @return     the signed {@code long} represented by the subsequence in
779      *             the specified radix.
780      * @throws     NullPointerException  if {@code s} is null.
781      * @throws     IndexOutOfBoundsException  if {@code beginIndex} is
782      *             negative, or if {@code beginIndex} is greater than
783      *             {@code endIndex} or if {@code endIndex} is greater than
784      *             {@code s.length()}.
785      * @throws     NumberFormatException  if the {@code CharSequence} does not
786      *             contain a parsable {@code long} in the specified
787      *             {@code radix}, or if {@code radix} is either smaller than
788      *             {@link java.lang.Character#MIN_RADIX} or larger than
789      *             {@link java.lang.Character#MAX_RADIX}.
790      * @since  9
791      */
parseLong(CharSequence s, int beginIndex, int endIndex, int radix)792     public static long parseLong(CharSequence s, int beginIndex, int endIndex, int radix)
793                 throws NumberFormatException {
794         Objects.requireNonNull(s);
795 
796         if (beginIndex < 0 || beginIndex > endIndex || endIndex > s.length()) {
797             throw new IndexOutOfBoundsException();
798         }
799         if (radix < Character.MIN_RADIX) {
800             throw new NumberFormatException("radix " + radix +
801                     " less than Character.MIN_RADIX");
802         }
803         if (radix > Character.MAX_RADIX) {
804             throw new NumberFormatException("radix " + radix +
805                     " greater than Character.MAX_RADIX");
806         }
807 
808         boolean negative = false;
809         int i = beginIndex;
810         long limit = -Long.MAX_VALUE;
811 
812         if (i < endIndex) {
813             char firstChar = s.charAt(i);
814             if (firstChar < '0') { // Possible leading "+" or "-"
815                 if (firstChar == '-') {
816                     negative = true;
817                     limit = Long.MIN_VALUE;
818                 } else if (firstChar != '+') {
819                     throw NumberFormatException.forCharSequence(s, beginIndex,
820                             endIndex, i);
821                 }
822                 i++;
823             }
824             if (i >= endIndex) { // Cannot have lone "+", "-" or ""
825                 throw NumberFormatException.forCharSequence(s, beginIndex,
826                         endIndex, i);
827             }
828             long multmin = limit / radix;
829             long result = 0;
830             while (i < endIndex) {
831                 // Accumulating negatively avoids surprises near MAX_VALUE
832                 int digit = Character.digit(s.charAt(i), radix);
833                 if (digit < 0 || result < multmin) {
834                     throw NumberFormatException.forCharSequence(s, beginIndex,
835                             endIndex, i);
836                 }
837                 result *= radix;
838                 if (result < limit + digit) {
839                     throw NumberFormatException.forCharSequence(s, beginIndex,
840                             endIndex, i);
841                 }
842                 i++;
843                 result -= digit;
844             }
845             return negative ? result : -result;
846         } else {
847             throw new NumberFormatException("");
848         }
849     }
850 
851     /**
852      * Parses the string argument as a signed decimal {@code long}.
853      * The characters in the string must all be decimal digits, except
854      * that the first character may be an ASCII minus sign {@code '-'}
855      * ({@code \u005Cu002D'}) to indicate a negative value or an
856      * ASCII plus sign {@code '+'} ({@code '\u005Cu002B'}) to
857      * indicate a positive value. The resulting {@code long} value is
858      * returned, exactly as if the argument and the radix {@code 10}
859      * were given as arguments to the {@link
860      * #parseLong(java.lang.String, int)} method.
861      *
862      * <p>Note that neither the character {@code L}
863      * ({@code '\u005Cu004C'}) nor {@code l}
864      * ({@code '\u005Cu006C'}) is permitted to appear at the end
865      * of the string as a type indicator, as would be permitted in
866      * Java programming language source code.
867      *
868      * @param      s   a {@code String} containing the {@code long}
869      *             representation to be parsed
870      * @return     the {@code long} represented by the argument in
871      *             decimal.
872      * @throws     NumberFormatException  if the string does not contain a
873      *             parsable {@code long}.
874      */
parseLong(String s)875     public static long parseLong(String s) throws NumberFormatException {
876         return parseLong(s, 10);
877     }
878 
879     /**
880      * Parses the string argument as an unsigned {@code long} in the
881      * radix specified by the second argument.  An unsigned integer
882      * maps the values usually associated with negative numbers to
883      * positive numbers larger than {@code MAX_VALUE}.
884      *
885      * The characters in the string must all be digits of the
886      * specified radix (as determined by whether {@link
887      * java.lang.Character#digit(char, int)} returns a nonnegative
888      * value), except that the first character may be an ASCII plus
889      * sign {@code '+'} ({@code '\u005Cu002B'}). The resulting
890      * integer value is returned.
891      *
892      * <p>An exception of type {@code NumberFormatException} is
893      * thrown if any of the following situations occurs:
894      * <ul>
895      * <li>The first argument is {@code null} or is a string of
896      * length zero.
897      *
898      * <li>The radix is either smaller than
899      * {@link java.lang.Character#MIN_RADIX} or
900      * larger than {@link java.lang.Character#MAX_RADIX}.
901      *
902      * <li>Any character of the string is not a digit of the specified
903      * radix, except that the first character may be a plus sign
904      * {@code '+'} ({@code '\u005Cu002B'}) provided that the
905      * string is longer than length 1.
906      *
907      * <li>The value represented by the string is larger than the
908      * largest unsigned {@code long}, 2<sup>64</sup>-1.
909      *
910      * </ul>
911      *
912      *
913      * @param      s   the {@code String} containing the unsigned integer
914      *                  representation to be parsed
915      * @param      radix   the radix to be used while parsing {@code s}.
916      * @return     the unsigned {@code long} represented by the string
917      *             argument in the specified radix.
918      * @throws     NumberFormatException if the {@code String}
919      *             does not contain a parsable {@code long}.
920      * @since 1.8
921      */
parseUnsignedLong(String s, int radix)922     public static long parseUnsignedLong(String s, int radix)
923                 throws NumberFormatException {
924         if (s == null)  {
925             throw new NumberFormatException("Cannot parse null string");
926         }
927 
928         int len = s.length();
929         if (len > 0) {
930             char firstChar = s.charAt(0);
931             if (firstChar == '-') {
932                 throw new
933                     NumberFormatException(String.format("Illegal leading minus sign " +
934                                                        "on unsigned string %s.", s));
935             } else {
936                 if (len <= 12 || // Long.MAX_VALUE in Character.MAX_RADIX is 13 digits
937                     (radix == 10 && len <= 18) ) { // Long.MAX_VALUE in base 10 is 19 digits
938                     return parseLong(s, radix);
939                 }
940 
941                 // No need for range checks on len due to testing above.
942                 long first = parseLong(s, 0, len - 1, radix);
943                 int second = Character.digit(s.charAt(len - 1), radix);
944                 if (second < 0) {
945                     throw new NumberFormatException("Bad digit at end of " + s);
946                 }
947                 long result = first * radix + second;
948 
949                 /*
950                  * Test leftmost bits of multiprecision extension of first*radix
951                  * for overflow. The number of bits needed is defined by
952                  * GUARD_BIT = ceil(log2(Character.MAX_RADIX)) + 1 = 7. Then
953                  * int guard = radix*(int)(first >>> (64 - GUARD_BIT)) and
954                  * overflow is tested by splitting guard in the ranges
955                  * guard < 92, 92 <= guard < 128, and 128 <= guard, where
956                  * 92 = 128 - Character.MAX_RADIX. Note that guard cannot take
957                  * on a value which does not include a prime factor in the legal
958                  * radix range.
959                  */
960                 int guard = radix * (int) (first >>> 57);
961                 if (guard >= 128 ||
962                     (result >= 0 && guard >= 128 - Character.MAX_RADIX)) {
963                     /*
964                      * For purposes of exposition, the programmatic statements
965                      * below should be taken to be multi-precision, i.e., not
966                      * subject to overflow.
967                      *
968                      * A) Condition guard >= 128:
969                      * If guard >= 128 then first*radix >= 2^7 * 2^57 = 2^64
970                      * hence always overflow.
971                      *
972                      * B) Condition guard < 92:
973                      * Define left7 = first >>> 57.
974                      * Given first = (left7 * 2^57) + (first & (2^57 - 1)) then
975                      * result <= (radix*left7)*2^57 + radix*(2^57 - 1) + second.
976                      * Thus if radix*left7 < 92, radix <= 36, and second < 36,
977                      * then result < 92*2^57 + 36*(2^57 - 1) + 36 = 2^64 hence
978                      * never overflow.
979                      *
980                      * C) Condition 92 <= guard < 128:
981                      * first*radix + second >= radix*left7*2^57 + second
982                      * so that first*radix + second >= 92*2^57 + 0 > 2^63
983                      *
984                      * D) Condition guard < 128:
985                      * radix*first <= (radix*left7) * 2^57 + radix*(2^57 - 1)
986                      * so
987                      * radix*first + second <= (radix*left7) * 2^57 + radix*(2^57 - 1) + 36
988                      * thus
989                      * radix*first + second < 128 * 2^57 + 36*2^57 - radix + 36
990                      * whence
991                      * radix*first + second < 2^64 + 2^6*2^57 = 2^64 + 2^63
992                      *
993                      * E) Conditions C, D, and result >= 0:
994                      * C and D combined imply the mathematical result
995                      * 2^63 < first*radix + second < 2^64 + 2^63. The lower
996                      * bound is therefore negative as a signed long, but the
997                      * upper bound is too small to overflow again after the
998                      * signed long overflows to positive above 2^64 - 1. Hence
999                      * result >= 0 implies overflow given C and D.
1000                      */
1001                     throw new NumberFormatException(String.format("String value %s exceeds " +
1002                                                                   "range of unsigned long.", s));
1003                 }
1004                 return result;
1005             }
1006         } else {
1007             throw NumberFormatException.forInputString(s, radix);
1008         }
1009     }
1010 
1011     /**
1012      * Parses the {@link CharSequence} argument as an unsigned {@code long} in
1013      * the specified {@code radix}, beginning at the specified
1014      * {@code beginIndex} and extending to {@code endIndex - 1}.
1015      *
1016      * <p>The method does not take steps to guard against the
1017      * {@code CharSequence} being mutated while parsing.
1018      *
1019      * @param      s   the {@code CharSequence} containing the unsigned
1020      *                 {@code long} representation to be parsed
1021      * @param      beginIndex   the beginning index, inclusive.
1022      * @param      endIndex     the ending index, exclusive.
1023      * @param      radix   the radix to be used while parsing {@code s}.
1024      * @return     the unsigned {@code long} represented by the subsequence in
1025      *             the specified radix.
1026      * @throws     NullPointerException  if {@code s} is null.
1027      * @throws     IndexOutOfBoundsException  if {@code beginIndex} is
1028      *             negative, or if {@code beginIndex} is greater than
1029      *             {@code endIndex} or if {@code endIndex} is greater than
1030      *             {@code s.length()}.
1031      * @throws     NumberFormatException  if the {@code CharSequence} does not
1032      *             contain a parsable unsigned {@code long} in the specified
1033      *             {@code radix}, or if {@code radix} is either smaller than
1034      *             {@link java.lang.Character#MIN_RADIX} or larger than
1035      *             {@link java.lang.Character#MAX_RADIX}.
1036      * @since  9
1037      */
parseUnsignedLong(CharSequence s, int beginIndex, int endIndex, int radix)1038     public static long parseUnsignedLong(CharSequence s, int beginIndex, int endIndex, int radix)
1039                 throws NumberFormatException {
1040         Objects.requireNonNull(s);
1041 
1042         if (beginIndex < 0 || beginIndex > endIndex || endIndex > s.length()) {
1043             throw new IndexOutOfBoundsException();
1044         }
1045         int start = beginIndex, len = endIndex - beginIndex;
1046 
1047         if (len > 0) {
1048             char firstChar = s.charAt(start);
1049             if (firstChar == '-') {
1050                 throw new NumberFormatException(String.format("Illegal leading minus sign " +
1051                         "on unsigned string %s.", s.subSequence(start, start + len)));
1052             } else {
1053                 if (len <= 12 || // Long.MAX_VALUE in Character.MAX_RADIX is 13 digits
1054                     (radix == 10 && len <= 18) ) { // Long.MAX_VALUE in base 10 is 19 digits
1055                     return parseLong(s, start, start + len, radix);
1056                 }
1057 
1058                 // No need for range checks on end due to testing above.
1059                 long first = parseLong(s, start, start + len - 1, radix);
1060                 int second = Character.digit(s.charAt(start + len - 1), radix);
1061                 if (second < 0) {
1062                     throw new NumberFormatException("Bad digit at end of " +
1063                             s.subSequence(start, start + len));
1064                 }
1065                 long result = first * radix + second;
1066 
1067                 /*
1068                  * Test leftmost bits of multiprecision extension of first*radix
1069                  * for overflow. The number of bits needed is defined by
1070                  * GUARD_BIT = ceil(log2(Character.MAX_RADIX)) + 1 = 7. Then
1071                  * int guard = radix*(int)(first >>> (64 - GUARD_BIT)) and
1072                  * overflow is tested by splitting guard in the ranges
1073                  * guard < 92, 92 <= guard < 128, and 128 <= guard, where
1074                  * 92 = 128 - Character.MAX_RADIX. Note that guard cannot take
1075                  * on a value which does not include a prime factor in the legal
1076                  * radix range.
1077                  */
1078                 int guard = radix * (int) (first >>> 57);
1079                 if (guard >= 128 ||
1080                         (result >= 0 && guard >= 128 - Character.MAX_RADIX)) {
1081                     /*
1082                      * For purposes of exposition, the programmatic statements
1083                      * below should be taken to be multi-precision, i.e., not
1084                      * subject to overflow.
1085                      *
1086                      * A) Condition guard >= 128:
1087                      * If guard >= 128 then first*radix >= 2^7 * 2^57 = 2^64
1088                      * hence always overflow.
1089                      *
1090                      * B) Condition guard < 92:
1091                      * Define left7 = first >>> 57.
1092                      * Given first = (left7 * 2^57) + (first & (2^57 - 1)) then
1093                      * result <= (radix*left7)*2^57 + radix*(2^57 - 1) + second.
1094                      * Thus if radix*left7 < 92, radix <= 36, and second < 36,
1095                      * then result < 92*2^57 + 36*(2^57 - 1) + 36 = 2^64 hence
1096                      * never overflow.
1097                      *
1098                      * C) Condition 92 <= guard < 128:
1099                      * first*radix + second >= radix*left7*2^57 + second
1100                      * so that first*radix + second >= 92*2^57 + 0 > 2^63
1101                      *
1102                      * D) Condition guard < 128:
1103                      * radix*first <= (radix*left7) * 2^57 + radix*(2^57 - 1)
1104                      * so
1105                      * radix*first + second <= (radix*left7) * 2^57 + radix*(2^57 - 1) + 36
1106                      * thus
1107                      * radix*first + second < 128 * 2^57 + 36*2^57 - radix + 36
1108                      * whence
1109                      * radix*first + second < 2^64 + 2^6*2^57 = 2^64 + 2^63
1110                      *
1111                      * E) Conditions C, D, and result >= 0:
1112                      * C and D combined imply the mathematical result
1113                      * 2^63 < first*radix + second < 2^64 + 2^63. The lower
1114                      * bound is therefore negative as a signed long, but the
1115                      * upper bound is too small to overflow again after the
1116                      * signed long overflows to positive above 2^64 - 1. Hence
1117                      * result >= 0 implies overflow given C and D.
1118                      */
1119                     throw new NumberFormatException(String.format("String value %s exceeds " +
1120                             "range of unsigned long.", s.subSequence(start, start + len)));
1121                 }
1122                 return result;
1123             }
1124         } else {
1125             throw NumberFormatException.forInputString("", radix);
1126         }
1127     }
1128 
1129     /**
1130      * Parses the string argument as an unsigned decimal {@code long}. The
1131      * characters in the string must all be decimal digits, except
1132      * that the first character may be an ASCII plus sign {@code
1133      * '+'} ({@code '\u005Cu002B'}). The resulting integer value
1134      * is returned, exactly as if the argument and the radix 10 were
1135      * given as arguments to the {@link
1136      * #parseUnsignedLong(java.lang.String, int)} method.
1137      *
1138      * @param s   a {@code String} containing the unsigned {@code long}
1139      *            representation to be parsed
1140      * @return    the unsigned {@code long} value represented by the decimal string argument
1141      * @throws    NumberFormatException  if the string does not contain a
1142      *            parsable unsigned integer.
1143      * @since 1.8
1144      */
parseUnsignedLong(String s)1145     public static long parseUnsignedLong(String s) throws NumberFormatException {
1146         return parseUnsignedLong(s, 10);
1147     }
1148 
1149     /**
1150      * Returns a {@code Long} object holding the value
1151      * extracted from the specified {@code String} when parsed
1152      * with the radix given by the second argument.  The first
1153      * argument is interpreted as representing a signed
1154      * {@code long} in the radix specified by the second
1155      * argument, exactly as if the arguments were given to the {@link
1156      * #parseLong(java.lang.String, int)} method. The result is a
1157      * {@code Long} object that represents the {@code long}
1158      * value specified by the string.
1159      *
1160      * <p>In other words, this method returns a {@code Long} object equal
1161      * to the value of:
1162      *
1163      * <blockquote>
1164      *  {@code new Long(Long.parseLong(s, radix))}
1165      * </blockquote>
1166      *
1167      * @param      s       the string to be parsed
1168      * @param      radix   the radix to be used in interpreting {@code s}
1169      * @return     a {@code Long} object holding the value
1170      *             represented by the string argument in the specified
1171      *             radix.
1172      * @throws     NumberFormatException  If the {@code String} does not
1173      *             contain a parsable {@code long}.
1174      */
valueOf(String s, int radix)1175     public static Long valueOf(String s, int radix) throws NumberFormatException {
1176         return Long.valueOf(parseLong(s, radix));
1177     }
1178 
1179     /**
1180      * Returns a {@code Long} object holding the value
1181      * of the specified {@code String}. The argument is
1182      * interpreted as representing a signed decimal {@code long},
1183      * exactly as if the argument were given to the {@link
1184      * #parseLong(java.lang.String)} method. The result is a
1185      * {@code Long} object that represents the integer value
1186      * specified by the string.
1187      *
1188      * <p>In other words, this method returns a {@code Long} object
1189      * equal to the value of:
1190      *
1191      * <blockquote>
1192      *  {@code new Long(Long.parseLong(s))}
1193      * </blockquote>
1194      *
1195      * @param      s   the string to be parsed.
1196      * @return     a {@code Long} object holding the value
1197      *             represented by the string argument.
1198      * @throws     NumberFormatException  If the string cannot be parsed
1199      *             as a {@code long}.
1200      */
valueOf(String s)1201     public static Long valueOf(String s) throws NumberFormatException
1202     {
1203         return Long.valueOf(parseLong(s, 10));
1204     }
1205 
1206     private static class LongCache {
LongCache()1207         private LongCache() {}
1208 
1209         static final Long[] cache;
1210         static Long[] archivedCache;
1211 
1212         static {
1213             int size = -(-128) + 127 + 1;
1214 
1215             // Load and use the archived cache if it exists
1216             // Android-removed: CDS is not used on Android.
1217             // CDS.initializeFromArchive(LongCache.class);
1218             if (archivedCache == null || archivedCache.length != size) {
1219                 Long[] c = new Long[size];
1220                 long value = -128;
1221                 for(int i = 0; i < size; i++) {
1222                     c[i] = new Long(value++);
1223                 }
1224                 archivedCache = c;
1225             }
1226             cache = archivedCache;
1227         }
1228     }
1229 
1230     /**
1231      * Returns a {@code Long} instance representing the specified
1232      * {@code long} value.
1233      * If a new {@code Long} instance is not required, this method
1234      * should generally be used in preference to the constructor
1235      * {@link #Long(long)}, as this method is likely to yield
1236      * significantly better space and time performance by caching
1237      * frequently requested values.
1238      *
1239      * This method will always cache values in the range -128 to 127,
1240      * inclusive, and may cache other values outside of this range.
1241      *
1242      * @param  l a long value.
1243      * @return a {@code Long} instance representing {@code l}.
1244      * @since  1.5
1245      */
1246     @IntrinsicCandidate
valueOf(long l)1247     public static Long valueOf(long l) {
1248         final int offset = 128;
1249         if (l >= -128 && l <= 127) { // will cache
1250             return LongCache.cache[(int)l + offset];
1251         }
1252         return new Long(l);
1253     }
1254 
1255     /**
1256      * Decodes a {@code String} into a {@code Long}.
1257      * Accepts decimal, hexadecimal, and octal numbers given by the
1258      * following grammar:
1259      *
1260      * <blockquote>
1261      * <dl>
1262      * <dt><i>DecodableString:</i>
1263      * <dd><i>Sign<sub>opt</sub> DecimalNumeral</i>
1264      * <dd><i>Sign<sub>opt</sub></i> {@code 0x} <i>HexDigits</i>
1265      * <dd><i>Sign<sub>opt</sub></i> {@code 0X} <i>HexDigits</i>
1266      * <dd><i>Sign<sub>opt</sub></i> {@code #} <i>HexDigits</i>
1267      * <dd><i>Sign<sub>opt</sub></i> {@code 0} <i>OctalDigits</i>
1268      *
1269      * <dt><i>Sign:</i>
1270      * <dd>{@code -}
1271      * <dd>{@code +}
1272      * </dl>
1273      * </blockquote>
1274      *
1275      * <i>DecimalNumeral</i>, <i>HexDigits</i>, and <i>OctalDigits</i>
1276      * are as defined in section {@jls 3.10.1} of
1277      * <cite>The Java Language Specification</cite>,
1278      * except that underscores are not accepted between digits.
1279      *
1280      * <p>The sequence of characters following an optional
1281      * sign and/or radix specifier ("{@code 0x}", "{@code 0X}",
1282      * "{@code #}", or leading zero) is parsed as by the {@code
1283      * Long.parseLong} method with the indicated radix (10, 16, or 8).
1284      * This sequence of characters must represent a positive value or
1285      * a {@link NumberFormatException} will be thrown.  The result is
1286      * negated if first character of the specified {@code String} is
1287      * the minus sign.  No whitespace characters are permitted in the
1288      * {@code String}.
1289      *
1290      * @param     nm the {@code String} to decode.
1291      * @return    a {@code Long} object holding the {@code long}
1292      *            value represented by {@code nm}
1293      * @throws    NumberFormatException  if the {@code String} does not
1294      *            contain a parsable {@code long}.
1295      * @see java.lang.Long#parseLong(String, int)
1296      * @since 1.2
1297      */
decode(String nm)1298     public static Long decode(String nm) throws NumberFormatException {
1299         int radix = 10;
1300         int index = 0;
1301         boolean negative = false;
1302         Long result;
1303 
1304         if (nm.isEmpty())
1305             throw new NumberFormatException("Zero length string");
1306         char firstChar = nm.charAt(0);
1307         // Handle sign, if present
1308         if (firstChar == '-') {
1309             negative = true;
1310             index++;
1311         } else if (firstChar == '+')
1312             index++;
1313 
1314         // Handle radix specifier, if present
1315         if (nm.startsWith("0x", index) || nm.startsWith("0X", index)) {
1316             index += 2;
1317             radix = 16;
1318         }
1319         else if (nm.startsWith("#", index)) {
1320             index ++;
1321             radix = 16;
1322         }
1323         else if (nm.startsWith("0", index) && nm.length() > 1 + index) {
1324             index ++;
1325             radix = 8;
1326         }
1327 
1328         if (nm.startsWith("-", index) || nm.startsWith("+", index))
1329             throw new NumberFormatException("Sign character in wrong position");
1330 
1331         try {
1332             result = Long.valueOf(nm.substring(index), radix);
1333             result = negative ? Long.valueOf(-result.longValue()) : result;
1334         } catch (NumberFormatException e) {
1335             // If number is Long.MIN_VALUE, we'll end up here. The next line
1336             // handles this case, and causes any genuine format error to be
1337             // rethrown.
1338             String constant = negative ? ("-" + nm.substring(index))
1339                                        : nm.substring(index);
1340             result = Long.valueOf(constant, radix);
1341         }
1342         return result;
1343     }
1344 
1345     /**
1346      * The value of the {@code Long}.
1347      *
1348      * @serial
1349      */
1350     private final long value;
1351 
1352     /**
1353      * Constructs a newly allocated {@code Long} object that
1354      * represents the specified {@code long} argument.
1355      *
1356      * @param   value   the value to be represented by the
1357      *          {@code Long} object.
1358      *
1359      * @deprecated
1360      * It is rarely appropriate to use this constructor. The static factory
1361      * {@link #valueOf(long)} is generally a better choice, as it is
1362      * likely to yield significantly better space and time performance.
1363      */
1364     // Android-changed: not yet forRemoval on Android.
1365     @Deprecated(since="9"/*, forRemoval = true*/)
Long(long value)1366     public Long(long value) {
1367         this.value = value;
1368     }
1369 
1370     /**
1371      * Constructs a newly allocated {@code Long} object that
1372      * represents the {@code long} value indicated by the
1373      * {@code String} parameter. The string is converted to a
1374      * {@code long} value in exactly the manner used by the
1375      * {@code parseLong} method for radix 10.
1376      *
1377      * @param      s   the {@code String} to be converted to a
1378      *             {@code Long}.
1379      * @throws     NumberFormatException  if the {@code String} does not
1380      *             contain a parsable {@code long}.
1381      *
1382      * @deprecated
1383      * It is rarely appropriate to use this constructor.
1384      * Use {@link #parseLong(String)} to convert a string to a
1385      * {@code long} primitive, or use {@link #valueOf(String)}
1386      * to convert a string to a {@code Long} object.
1387      */
1388     @Deprecated(since="9"/*, forRemoval = true*/)
Long(String s)1389     public Long(String s) throws NumberFormatException {
1390         this.value = parseLong(s, 10);
1391     }
1392 
1393     /**
1394      * Returns the value of this {@code Long} as a {@code byte} after
1395      * a narrowing primitive conversion.
1396      * @jls 5.1.3 Narrowing Primitive Conversion
1397      */
byteValue()1398     public byte byteValue() {
1399         return (byte)value;
1400     }
1401 
1402     /**
1403      * Returns the value of this {@code Long} as a {@code short} after
1404      * a narrowing primitive conversion.
1405      * @jls 5.1.3 Narrowing Primitive Conversion
1406      */
shortValue()1407     public short shortValue() {
1408         return (short)value;
1409     }
1410 
1411     /**
1412      * Returns the value of this {@code Long} as an {@code int} after
1413      * a narrowing primitive conversion.
1414      * @jls 5.1.3 Narrowing Primitive Conversion
1415      */
intValue()1416     public int intValue() {
1417         return (int)value;
1418     }
1419 
1420     /**
1421      * Returns the value of this {@code Long} as a
1422      * {@code long} value.
1423      */
1424     @IntrinsicCandidate
longValue()1425     public long longValue() {
1426         return value;
1427     }
1428 
1429     /**
1430      * Returns the value of this {@code Long} as a {@code float} after
1431      * a widening primitive conversion.
1432      * @jls 5.1.2 Widening Primitive Conversion
1433      */
floatValue()1434     public float floatValue() {
1435         return (float)value;
1436     }
1437 
1438     /**
1439      * Returns the value of this {@code Long} as a {@code double}
1440      * after a widening primitive conversion.
1441      * @jls 5.1.2 Widening Primitive Conversion
1442      */
doubleValue()1443     public double doubleValue() {
1444         return (double)value;
1445     }
1446 
1447     /**
1448      * Returns a {@code String} object representing this
1449      * {@code Long}'s value.  The value is converted to signed
1450      * decimal representation and returned as a string, exactly as if
1451      * the {@code long} value were given as an argument to the
1452      * {@link java.lang.Long#toString(long)} method.
1453      *
1454      * @return  a string representation of the value of this object in
1455      *          base&nbsp;10.
1456      */
toString()1457     public String toString() {
1458         return toString(value);
1459     }
1460 
1461     /**
1462      * Returns a hash code for this {@code Long}. The result is
1463      * the exclusive OR of the two halves of the primitive
1464      * {@code long} value held by this {@code Long}
1465      * object. That is, the hashcode is the value of the expression:
1466      *
1467      * <blockquote>
1468      *  {@code (int)(this.longValue()^(this.longValue()>>>32))}
1469      * </blockquote>
1470      *
1471      * @return  a hash code value for this object.
1472      */
1473     @Override
hashCode()1474     public int hashCode() {
1475         return Long.hashCode(value);
1476     }
1477 
1478     /**
1479      * Returns a hash code for a {@code long} value; compatible with
1480      * {@code Long.hashCode()}.
1481      *
1482      * @param value the value to hash
1483      * @return a hash code value for a {@code long} value.
1484      * @since 1.8
1485      */
hashCode(long value)1486     public static int hashCode(long value) {
1487         return (int)(value ^ (value >>> 32));
1488     }
1489 
1490     /**
1491      * Compares this object to the specified object.  The result is
1492      * {@code true} if and only if the argument is not
1493      * {@code null} and is a {@code Long} object that
1494      * contains the same {@code long} value as this object.
1495      *
1496      * @param   obj   the object to compare with.
1497      * @return  {@code true} if the objects are the same;
1498      *          {@code false} otherwise.
1499      */
equals(Object obj)1500     public boolean equals(Object obj) {
1501         if (obj instanceof Long) {
1502             return value == ((Long)obj).longValue();
1503         }
1504         return false;
1505     }
1506 
1507     /**
1508      * Determines the {@code long} value of the system property
1509      * with the specified name.
1510      *
1511      * <p>The first argument is treated as the name of a system
1512      * property.  System properties are accessible through the {@link
1513      * java.lang.System#getProperty(java.lang.String)} method. The
1514      * string value of this property is then interpreted as a {@code
1515      * long} value using the grammar supported by {@link Long#decode decode}
1516      * and a {@code Long} object representing this value is returned.
1517      *
1518      * <p>If there is no property with the specified name, if the
1519      * specified name is empty or {@code null}, or if the property
1520      * does not have the correct numeric format, then {@code null} is
1521      * returned.
1522      *
1523      * <p>In other words, this method returns a {@code Long} object
1524      * equal to the value of:
1525      *
1526      * <blockquote>
1527      *  {@code getLong(nm, null)}
1528      * </blockquote>
1529      *
1530      * @param   nm   property name.
1531      * @return  the {@code Long} value of the property.
1532      * @throws  SecurityException for the same reasons as
1533      *          {@link System#getProperty(String) System.getProperty}
1534      * @see     java.lang.System#getProperty(java.lang.String)
1535      * @see     java.lang.System#getProperty(java.lang.String, java.lang.String)
1536      */
getLong(String nm)1537     public static Long getLong(String nm) {
1538         return getLong(nm, null);
1539     }
1540 
1541     /**
1542      * Determines the {@code long} value of the system property
1543      * with the specified name.
1544      *
1545      * <p>The first argument is treated as the name of a system
1546      * property.  System properties are accessible through the {@link
1547      * java.lang.System#getProperty(java.lang.String)} method. The
1548      * string value of this property is then interpreted as a {@code
1549      * long} value using the grammar supported by {@link Long#decode decode}
1550      * and a {@code Long} object representing this value is returned.
1551      *
1552      * <p>The second argument is the default value. A {@code Long} object
1553      * that represents the value of the second argument is returned if there
1554      * is no property of the specified name, if the property does not have
1555      * the correct numeric format, or if the specified name is empty or null.
1556      *
1557      * <p>In other words, this method returns a {@code Long} object equal
1558      * to the value of:
1559      *
1560      * <blockquote>
1561      *  {@code getLong(nm, new Long(val))}
1562      * </blockquote>
1563      *
1564      * but in practice it may be implemented in a manner such as:
1565      *
1566      * <blockquote><pre>
1567      * Long result = getLong(nm, null);
1568      * return (result == null) ? new Long(val) : result;
1569      * </pre></blockquote>
1570      *
1571      * to avoid the unnecessary allocation of a {@code Long} object when
1572      * the default value is not needed.
1573      *
1574      * @param   nm    property name.
1575      * @param   val   default value.
1576      * @return  the {@code Long} value of the property.
1577      * @throws  SecurityException for the same reasons as
1578      *          {@link System#getProperty(String) System.getProperty}
1579      * @see     java.lang.System#getProperty(java.lang.String)
1580      * @see     java.lang.System#getProperty(java.lang.String, java.lang.String)
1581      */
getLong(String nm, long val)1582     public static Long getLong(String nm, long val) {
1583         Long result = Long.getLong(nm, null);
1584         return (result == null) ? Long.valueOf(val) : result;
1585     }
1586 
1587     /**
1588      * Returns the {@code long} value of the system property with
1589      * the specified name.  The first argument is treated as the name
1590      * of a system property.  System properties are accessible through
1591      * the {@link java.lang.System#getProperty(java.lang.String)}
1592      * method. The string value of this property is then interpreted
1593      * as a {@code long} value, as per the
1594      * {@link Long#decode decode} method, and a {@code Long} object
1595      * representing this value is returned; in summary:
1596      *
1597      * <ul>
1598      * <li>If the property value begins with the two ASCII characters
1599      * {@code 0x} or the ASCII character {@code #}, not followed by
1600      * a minus sign, then the rest of it is parsed as a hexadecimal integer
1601      * exactly as for the method {@link #valueOf(java.lang.String, int)}
1602      * with radix 16.
1603      * <li>If the property value begins with the ASCII character
1604      * {@code 0} followed by another character, it is parsed as
1605      * an octal integer exactly as by the method {@link
1606      * #valueOf(java.lang.String, int)} with radix 8.
1607      * <li>Otherwise the property value is parsed as a decimal
1608      * integer exactly as by the method
1609      * {@link #valueOf(java.lang.String, int)} with radix 10.
1610      * </ul>
1611      *
1612      * <p>Note that, in every case, neither {@code L}
1613      * ({@code '\u005Cu004C'}) nor {@code l}
1614      * ({@code '\u005Cu006C'}) is permitted to appear at the end
1615      * of the property value as a type indicator, as would be
1616      * permitted in Java programming language source code.
1617      *
1618      * <p>The second argument is the default value. The default value is
1619      * returned if there is no property of the specified name, if the
1620      * property does not have the correct numeric format, or if the
1621      * specified name is empty or {@code null}.
1622      *
1623      * @param   nm   property name.
1624      * @param   val   default value.
1625      * @return  the {@code Long} value of the property.
1626      * @throws  SecurityException for the same reasons as
1627      *          {@link System#getProperty(String) System.getProperty}
1628      * @see     System#getProperty(java.lang.String)
1629      * @see     System#getProperty(java.lang.String, java.lang.String)
1630      */
getLong(String nm, Long val)1631     public static Long getLong(String nm, Long val) {
1632         String v = null;
1633         try {
1634             v = System.getProperty(nm);
1635         } catch (IllegalArgumentException | NullPointerException e) {
1636         }
1637         if (v != null) {
1638             try {
1639                 return Long.decode(v);
1640             } catch (NumberFormatException e) {
1641             }
1642         }
1643         return val;
1644     }
1645 
1646     /**
1647      * Compares two {@code Long} objects numerically.
1648      *
1649      * @param   anotherLong   the {@code Long} to be compared.
1650      * @return  the value {@code 0} if this {@code Long} is
1651      *          equal to the argument {@code Long}; a value less than
1652      *          {@code 0} if this {@code Long} is numerically less
1653      *          than the argument {@code Long}; and a value greater
1654      *          than {@code 0} if this {@code Long} is numerically
1655      *           greater than the argument {@code Long} (signed
1656      *           comparison).
1657      * @since   1.2
1658      */
compareTo(Long anotherLong)1659     public int compareTo(Long anotherLong) {
1660         return compare(this.value, anotherLong.value);
1661     }
1662 
1663     /**
1664      * Compares two {@code long} values numerically.
1665      * The value returned is identical to what would be returned by:
1666      * <pre>
1667      *    Long.valueOf(x).compareTo(Long.valueOf(y))
1668      * </pre>
1669      *
1670      * @param  x the first {@code long} to compare
1671      * @param  y the second {@code long} to compare
1672      * @return the value {@code 0} if {@code x == y};
1673      *         a value less than {@code 0} if {@code x < y}; and
1674      *         a value greater than {@code 0} if {@code x > y}
1675      * @since 1.7
1676      */
compare(long x, long y)1677     public static int compare(long x, long y) {
1678         return (x < y) ? -1 : ((x == y) ? 0 : 1);
1679     }
1680 
1681     /**
1682      * Compares two {@code long} values numerically treating the values
1683      * as unsigned.
1684      *
1685      * @param  x the first {@code long} to compare
1686      * @param  y the second {@code long} to compare
1687      * @return the value {@code 0} if {@code x == y}; a value less
1688      *         than {@code 0} if {@code x < y} as unsigned values; and
1689      *         a value greater than {@code 0} if {@code x > y} as
1690      *         unsigned values
1691      * @since 1.8
1692      */
compareUnsigned(long x, long y)1693     public static int compareUnsigned(long x, long y) {
1694         return compare(x + MIN_VALUE, y + MIN_VALUE);
1695     }
1696 
1697 
1698     /**
1699      * Returns the unsigned quotient of dividing the first argument by
1700      * the second where each argument and the result is interpreted as
1701      * an unsigned value.
1702      *
1703      * <p>Note that in two's complement arithmetic, the three other
1704      * basic arithmetic operations of add, subtract, and multiply are
1705      * bit-wise identical if the two operands are regarded as both
1706      * being signed or both being unsigned.  Therefore separate {@code
1707      * addUnsigned}, etc. methods are not provided.
1708      *
1709      * @param dividend the value to be divided
1710      * @param divisor the value doing the dividing
1711      * @return the unsigned quotient of the first argument divided by
1712      * the second argument
1713      * @see #remainderUnsigned
1714      * @since 1.8
1715      */
divideUnsigned(long dividend, long divisor)1716     public static long divideUnsigned(long dividend, long divisor) {
1717         /* See Hacker's Delight (2nd ed), section 9.3 */
1718         if (divisor >= 0) {
1719             final long q = (dividend >>> 1) / divisor << 1;
1720             final long r = dividend - q * divisor;
1721             return q + ((r | ~(r - divisor)) >>> (Long.SIZE - 1));
1722         }
1723         return (dividend & ~(dividend - divisor)) >>> (Long.SIZE - 1);
1724     }
1725 
1726     /**
1727      * Returns the unsigned remainder from dividing the first argument
1728      * by the second where each argument and the result is interpreted
1729      * as an unsigned value.
1730      *
1731      * @param dividend the value to be divided
1732      * @param divisor the value doing the dividing
1733      * @return the unsigned remainder of the first argument divided by
1734      * the second argument
1735      * @see #divideUnsigned
1736      * @since 1.8
1737      */
remainderUnsigned(long dividend, long divisor)1738     public static long remainderUnsigned(long dividend, long divisor) {
1739         /* See Hacker's Delight (2nd ed), section 9.3 */
1740         if (divisor >= 0) {
1741             final long q = (dividend >>> 1) / divisor << 1;
1742             final long r = dividend - q * divisor;
1743             /*
1744              * Here, 0 <= r < 2 * divisor
1745              * (1) When 0 <= r < divisor, the remainder is simply r.
1746              * (2) Otherwise the remainder is r - divisor.
1747              *
1748              * In case (1), r - divisor < 0. Applying ~ produces a long with
1749              * sign bit 0, so >> produces 0. The returned value is thus r.
1750              *
1751              * In case (2), a similar reasoning shows that >> produces -1,
1752              * so the returned value is r - divisor.
1753              */
1754             return r - ((~(r - divisor) >> (Long.SIZE - 1)) & divisor);
1755         }
1756         /*
1757          * (1) When dividend >= 0, the remainder is dividend.
1758          * (2) Otherwise
1759          *      (2.1) When dividend < divisor, the remainder is dividend.
1760          *      (2.2) Otherwise the remainder is dividend - divisor
1761          *
1762          * A reasoning similar to the above shows that the returned value
1763          * is as expected.
1764          */
1765         return dividend - (((dividend & ~(dividend - divisor)) >> (Long.SIZE - 1)) & divisor);
1766     }
1767 
1768     // Bit Twiddling
1769 
1770     /**
1771      * The number of bits used to represent a {@code long} value in two's
1772      * complement binary form.
1773      *
1774      * @since 1.5
1775      */
1776     @Native public static final int SIZE = 64;
1777 
1778     /**
1779      * The number of bytes used to represent a {@code long} value in two's
1780      * complement binary form.
1781      *
1782      * @since 1.8
1783      */
1784     public static final int BYTES = SIZE / Byte.SIZE;
1785 
1786     /**
1787      * Returns a {@code long} value with at most a single one-bit, in the
1788      * position of the highest-order ("leftmost") one-bit in the specified
1789      * {@code long} value.  Returns zero if the specified value has no
1790      * one-bits in its two's complement binary representation, that is, if it
1791      * is equal to zero.
1792      *
1793      * @param i the value whose highest one bit is to be computed
1794      * @return a {@code long} value with a single one-bit, in the position
1795      *     of the highest-order one-bit in the specified value, or zero if
1796      *     the specified value is itself equal to zero.
1797      * @since 1.5
1798      */
highestOneBit(long i)1799     public static long highestOneBit(long i) {
1800         return i & (MIN_VALUE >>> numberOfLeadingZeros(i));
1801     }
1802 
1803     /**
1804      * Returns a {@code long} value with at most a single one-bit, in the
1805      * position of the lowest-order ("rightmost") one-bit in the specified
1806      * {@code long} value.  Returns zero if the specified value has no
1807      * one-bits in its two's complement binary representation, that is, if it
1808      * is equal to zero.
1809      *
1810      * @param i the value whose lowest one bit is to be computed
1811      * @return a {@code long} value with a single one-bit, in the position
1812      *     of the lowest-order one-bit in the specified value, or zero if
1813      *     the specified value is itself equal to zero.
1814      * @since 1.5
1815      */
lowestOneBit(long i)1816     public static long lowestOneBit(long i) {
1817         // HD, Section 2-1
1818         return i & -i;
1819     }
1820 
1821     /**
1822      * Returns the number of zero bits preceding the highest-order
1823      * ("leftmost") one-bit in the two's complement binary representation
1824      * of the specified {@code long} value.  Returns 64 if the
1825      * specified value has no one-bits in its two's complement representation,
1826      * in other words if it is equal to zero.
1827      *
1828      * <p>Note that this method is closely related to the logarithm base 2.
1829      * For all positive {@code long} values x:
1830      * <ul>
1831      * <li>floor(log<sub>2</sub>(x)) = {@code 63 - numberOfLeadingZeros(x)}
1832      * <li>ceil(log<sub>2</sub>(x)) = {@code 64 - numberOfLeadingZeros(x - 1)}
1833      * </ul>
1834      *
1835      * @param i the value whose number of leading zeros is to be computed
1836      * @return the number of zero bits preceding the highest-order
1837      *     ("leftmost") one-bit in the two's complement binary representation
1838      *     of the specified {@code long} value, or 64 if the value
1839      *     is equal to zero.
1840      * @since 1.5
1841      */
1842     @IntrinsicCandidate
numberOfLeadingZeros(long i)1843     public static int numberOfLeadingZeros(long i) {
1844         int x = (int)(i >>> 32);
1845         return x == 0 ? 32 + Integer.numberOfLeadingZeros((int)i)
1846                 : Integer.numberOfLeadingZeros(x);
1847     }
1848 
1849     /**
1850      * Returns the number of zero bits following the lowest-order ("rightmost")
1851      * one-bit in the two's complement binary representation of the specified
1852      * {@code long} value.  Returns 64 if the specified value has no
1853      * one-bits in its two's complement representation, in other words if it is
1854      * equal to zero.
1855      *
1856      * @param i the value whose number of trailing zeros is to be computed
1857      * @return the number of zero bits following the lowest-order ("rightmost")
1858      *     one-bit in the two's complement binary representation of the
1859      *     specified {@code long} value, or 64 if the value is equal
1860      *     to zero.
1861      * @since 1.5
1862      */
1863     @IntrinsicCandidate
numberOfTrailingZeros(long i)1864     public static int numberOfTrailingZeros(long i) {
1865         int x = (int)i;
1866         return x == 0 ? 32 + Integer.numberOfTrailingZeros((int)(i >>> 32))
1867                 : Integer.numberOfTrailingZeros(x);
1868     }
1869 
1870     /**
1871      * Returns the number of one-bits in the two's complement binary
1872      * representation of the specified {@code long} value.  This function is
1873      * sometimes referred to as the <i>population count</i>.
1874      *
1875      * @param i the value whose bits are to be counted
1876      * @return the number of one-bits in the two's complement binary
1877      *     representation of the specified {@code long} value.
1878      * @since 1.5
1879      */
1880      @IntrinsicCandidate
bitCount(long i)1881      public static int bitCount(long i) {
1882         // HD, Figure 5-2
1883         i = i - ((i >>> 1) & 0x5555555555555555L);
1884         i = (i & 0x3333333333333333L) + ((i >>> 2) & 0x3333333333333333L);
1885         i = (i + (i >>> 4)) & 0x0f0f0f0f0f0f0f0fL;
1886         i = i + (i >>> 8);
1887         i = i + (i >>> 16);
1888         i = i + (i >>> 32);
1889         return (int)i & 0x7f;
1890      }
1891 
1892     /**
1893      * Returns the value obtained by rotating the two's complement binary
1894      * representation of the specified {@code long} value left by the
1895      * specified number of bits.  (Bits shifted out of the left hand, or
1896      * high-order, side reenter on the right, or low-order.)
1897      *
1898      * <p>Note that left rotation with a negative distance is equivalent to
1899      * right rotation: {@code rotateLeft(val, -distance) == rotateRight(val,
1900      * distance)}.  Note also that rotation by any multiple of 64 is a
1901      * no-op, so all but the last six bits of the rotation distance can be
1902      * ignored, even if the distance is negative: {@code rotateLeft(val,
1903      * distance) == rotateLeft(val, distance & 0x3F)}.
1904      *
1905      * @param i the value whose bits are to be rotated left
1906      * @param distance the number of bit positions to rotate left
1907      * @return the value obtained by rotating the two's complement binary
1908      *     representation of the specified {@code long} value left by the
1909      *     specified number of bits.
1910      * @since 1.5
1911      */
rotateLeft(long i, int distance)1912     public static long rotateLeft(long i, int distance) {
1913         return (i << distance) | (i >>> -distance);
1914     }
1915 
1916     /**
1917      * Returns the value obtained by rotating the two's complement binary
1918      * representation of the specified {@code long} value right by the
1919      * specified number of bits.  (Bits shifted out of the right hand, or
1920      * low-order, side reenter on the left, or high-order.)
1921      *
1922      * <p>Note that right rotation with a negative distance is equivalent to
1923      * left rotation: {@code rotateRight(val, -distance) == rotateLeft(val,
1924      * distance)}.  Note also that rotation by any multiple of 64 is a
1925      * no-op, so all but the last six bits of the rotation distance can be
1926      * ignored, even if the distance is negative: {@code rotateRight(val,
1927      * distance) == rotateRight(val, distance & 0x3F)}.
1928      *
1929      * @param i the value whose bits are to be rotated right
1930      * @param distance the number of bit positions to rotate right
1931      * @return the value obtained by rotating the two's complement binary
1932      *     representation of the specified {@code long} value right by the
1933      *     specified number of bits.
1934      * @since 1.5
1935      */
rotateRight(long i, int distance)1936     public static long rotateRight(long i, int distance) {
1937         return (i >>> distance) | (i << -distance);
1938     }
1939 
1940     /**
1941      * Returns the value obtained by reversing the order of the bits in the
1942      * two's complement binary representation of the specified {@code long}
1943      * value.
1944      *
1945      * @param i the value to be reversed
1946      * @return the value obtained by reversing order of the bits in the
1947      *     specified {@code long} value.
1948      * @since 1.5
1949      */
reverse(long i)1950     public static long reverse(long i) {
1951         // HD, Figure 7-1
1952         i = (i & 0x5555555555555555L) << 1 | (i >>> 1) & 0x5555555555555555L;
1953         i = (i & 0x3333333333333333L) << 2 | (i >>> 2) & 0x3333333333333333L;
1954         i = (i & 0x0f0f0f0f0f0f0f0fL) << 4 | (i >>> 4) & 0x0f0f0f0f0f0f0f0fL;
1955 
1956         return reverseBytes(i);
1957     }
1958 
1959     /**
1960      * Returns the signum function of the specified {@code long} value.  (The
1961      * return value is -1 if the specified value is negative; 0 if the
1962      * specified value is zero; and 1 if the specified value is positive.)
1963      *
1964      * @param i the value whose signum is to be computed
1965      * @return the signum function of the specified {@code long} value.
1966      * @since 1.5
1967      */
signum(long i)1968     public static int signum(long i) {
1969         // HD, Section 2-7
1970         return (int) ((i >> 63) | (-i >>> 63));
1971     }
1972 
1973     /**
1974      * Returns the value obtained by reversing the order of the bytes in the
1975      * two's complement representation of the specified {@code long} value.
1976      *
1977      * @param i the value whose bytes are to be reversed
1978      * @return the value obtained by reversing the bytes in the specified
1979      *     {@code long} value.
1980      * @since 1.5
1981      */
1982     @IntrinsicCandidate
reverseBytes(long i)1983     public static long reverseBytes(long i) {
1984         i = (i & 0x00ff00ff00ff00ffL) << 8 | (i >>> 8) & 0x00ff00ff00ff00ffL;
1985         return (i << 48) | ((i & 0xffff0000L) << 16) |
1986             ((i >>> 16) & 0xffff0000L) | (i >>> 48);
1987     }
1988 
1989     /**
1990      * Adds two {@code long} values together as per the + operator.
1991      *
1992      * @param a the first operand
1993      * @param b the second operand
1994      * @return the sum of {@code a} and {@code b}
1995      * @see java.util.function.BinaryOperator
1996      * @since 1.8
1997      */
sum(long a, long b)1998     public static long sum(long a, long b) {
1999         return a + b;
2000     }
2001 
2002     /**
2003      * Returns the greater of two {@code long} values
2004      * as if by calling {@link Math#max(long, long) Math.max}.
2005      *
2006      * @param a the first operand
2007      * @param b the second operand
2008      * @return the greater of {@code a} and {@code b}
2009      * @see java.util.function.BinaryOperator
2010      * @since 1.8
2011      */
max(long a, long b)2012     public static long max(long a, long b) {
2013         return Math.max(a, b);
2014     }
2015 
2016     /**
2017      * Returns the smaller of two {@code long} values
2018      * as if by calling {@link Math#min(long, long) Math.min}.
2019      *
2020      * @param a the first operand
2021      * @param b the second operand
2022      * @return the smaller of {@code a} and {@code b}
2023      * @see java.util.function.BinaryOperator
2024      * @since 1.8
2025      */
min(long a, long b)2026     public static long min(long a, long b) {
2027         return Math.min(a, b);
2028     }
2029 
2030     // BEGIN Android-removed: dynamic constants not supported on Android.
2031     /**
2032      * Returns an {@link Optional} containing the nominal descriptor for this
2033      * instance, which is the instance itself.
2034      *
2035      * @return an {@link Optional} describing the {@linkplain Long} instance
2036      * @since 12
2037      *
2038     @Override
2039     public Optional<Long> describeConstable() {
2040         return Optional.of(this);
2041     }
2042 
2043     /**
2044      * Resolves this instance as a {@link ConstantDesc}, the result of which is
2045      * the instance itself.
2046      *
2047      * @param lookup ignored
2048      * @return the {@linkplain Long} instance
2049      * @since 12
2050      *
2051     @Override
2052     public Long resolveConstantDesc(MethodHandles.Lookup lookup) {
2053         return this;
2054     }
2055     */
2056     // END Android-removed: dynamic constants not supported on Android.
2057 
2058     /** use serialVersionUID from JDK 1.0.2 for interoperability */
2059     @java.io.Serial
2060     @Native private static final long serialVersionUID = 4290774380558885855L;
2061 }
2062