1 /* 2 * Copyright (C) 2014 The Android Open Source Project 3 * Copyright (c) 1994, 2021, Oracle and/or its affiliates. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. Oracle designates this 9 * particular file as subject to the "Classpath" exception as provided 10 * by Oracle in the LICENSE file that accompanied this code. 11 * 12 * This code is distributed in the hope that it will be useful, but WITHOUT 13 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 14 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 15 * version 2 for more details (a copy is included in the LICENSE file that 16 * accompanied this code). 17 * 18 * You should have received a copy of the GNU General Public License version 19 * 2 along with this work; if not, write to the Free Software Foundation, 20 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 21 * 22 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 23 * or visit www.oracle.com if you need additional information or have any 24 * questions. 25 */ 26 27 package java.lang; 28 29 import dalvik.annotation.optimization.CriticalNative; 30 31 import java.math.BigDecimal; 32 import java.util.Random; 33 import jdk.internal.math.FloatConsts; 34 import jdk.internal.math.DoubleConsts; 35 import jdk.internal.vm.annotation.IntrinsicCandidate; 36 37 // Android-note: Document that the results from Math are based on libm's behavior. 38 // For performance, Android implements many of the methods in this class in terms of the underlying 39 // OS's libm functions. libm has well-defined behavior for special cases. Where known these are 40 // marked with the tag above and the documentation has been modified as needed. 41 // Android-changed: Fixed method links in the last paragraph. 42 /** 43 * The class {@code Math} contains methods for performing basic 44 * numeric operations such as the elementary exponential, logarithm, 45 * square root, and trigonometric functions. 46 * 47 * <p>Unlike some of the numeric methods of class 48 * {@link java.lang.StrictMath StrictMath}, all implementations of the equivalent 49 * functions of class {@code Math} are not defined to return the 50 * bit-for-bit same results. This relaxation permits 51 * better-performing implementations where strict reproducibility is 52 * not required. 53 * 54 * <p>By default many of the {@code Math} methods simply call 55 * the equivalent method in {@code StrictMath} for their 56 * implementation. Code generators are encouraged to use 57 * platform-specific native libraries or microprocessor instructions, 58 * where available, to provide higher-performance implementations of 59 * {@code Math} methods. Such higher-performance 60 * implementations still must conform to the specification for 61 * {@code Math}. 62 * 63 * <p>The quality of implementation specifications concern two 64 * properties, accuracy of the returned result and monotonicity of the 65 * method. Accuracy of the floating-point {@code Math} methods is 66 * measured in terms of <i>ulps</i>, units in the last place. For a 67 * given floating-point format, an {@linkplain #ulp(double) ulp} of a 68 * specific real number value is the distance between the two 69 * floating-point values bracketing that numerical value. When 70 * discussing the accuracy of a method as a whole rather than at a 71 * specific argument, the number of ulps cited is for the worst-case 72 * error at any argument. If a method always has an error less than 73 * 0.5 ulps, the method always returns the floating-point number 74 * nearest the exact result; such a method is <i>correctly 75 * rounded</i>. A correctly rounded method is generally the best a 76 * floating-point approximation can be; however, it is impractical for 77 * many floating-point methods to be correctly rounded. Instead, for 78 * the {@code Math} class, a larger error bound of 1 or 2 ulps is 79 * allowed for certain methods. Informally, with a 1 ulp error bound, 80 * when the exact result is a representable number, the exact result 81 * should be returned as the computed result; otherwise, either of the 82 * two floating-point values which bracket the exact result may be 83 * returned. For exact results large in magnitude, one of the 84 * endpoints of the bracket may be infinite. Besides accuracy at 85 * individual arguments, maintaining proper relations between the 86 * method at different arguments is also important. Therefore, most 87 * methods with more than 0.5 ulp errors are required to be 88 * <i>semi-monotonic</i>: whenever the mathematical function is 89 * non-decreasing, so is the floating-point approximation, likewise, 90 * whenever the mathematical function is non-increasing, so is the 91 * floating-point approximation. Not all approximations that have 1 92 * ulp accuracy will automatically meet the monotonicity requirements. 93 * 94 * <p> 95 * The platform uses signed two's complement integer arithmetic with 96 * int and long primitive types. The developer should choose 97 * the primitive type to ensure that arithmetic operations consistently 98 * produce correct results, which in some cases means the operations 99 * will not overflow the range of values of the computation. 100 * The best practice is to choose the primitive type and algorithm to avoid 101 * overflow. In cases where the size is {@code int} or {@code long} and 102 * overflow errors need to be detected, the methods {@code addExact}, 103 * {@code subtractExact}, {@code multiplyExact}, {@code toIntExact}, 104 * {@code incrementExact}, {@code decrementExact} and {@code negateExact} 105 * throw an {@code ArithmeticException} when the results overflow. 106 * For the arithmetic operations divide and absolute value, overflow 107 * occurs only with a specific minimum or maximum value and 108 * should be checked against the minimum or maximum as appropriate. 109 * 110 * <h2><a id=Ieee754RecommendedOps>IEEE 754 Recommended 111 * Operations</a></h2> 112 * 113 * The 2019 revision of the IEEE 754 floating-point standard includes 114 * a section of recommended operations and the semantics of those 115 * operations if they are included in a programming environment. The 116 * recommended operations present in this class include {@link #sin(double) 117 * sin}, {@link #cos(double) cos}, {@link #tan(double) tan}, {@link #asin(double) asin}, {@link 118 * #acos(double) acos}, {@link #atan(double) atan}, {@link #exp(double) exp}, {@link #expm1(double) 119 * expm1}, {@link #log(double) log}, {@link #log10(double) log10}, {@link #log1p(double) log1p}, 120 * {@link #sinh(double) sinh}, {@link #cosh(double) cosh}, {@link #tanh(double) tanh}, {@link 121 * #hypot(double, double) hypot}, and {@link #pow(double, double) pow}. (The {@link #sqrt(double) sqrt} 122 * operation is a required part of IEEE 754 from a different section 123 * of the standard.) The special case behavior of the recommended 124 * operations generally follows the guidance of the IEEE 754 125 * standard. However, the {@code pow} method defines different 126 * behavior for some arguments, as noted in its {@linkplain #pow(double, double) 127 * specification}. The IEEE 754 standard defines its operations to be 128 * correctly rounded, which is a more stringent quality of 129 * implementation condition than required for most of the methods in 130 * question that are also included in this class. 131 * 132 * @author Joseph D. Darcy 133 * @since 1.0 134 */ 135 136 public final class Math { 137 138 // Android-changed: Numerous methods in this class are re-implemented in native for performance. 139 // Those methods are also annotated @CriticalNative. 140 141 /** 142 * Don't let anyone instantiate this class. 143 */ Math()144 private Math() {} 145 146 /** 147 * The {@code double} value that is closer than any other to 148 * <i>e</i>, the base of the natural logarithms. 149 */ 150 public static final double E = 2.7182818284590452354; 151 152 /** 153 * The {@code double} value that is closer than any other to 154 * <i>pi</i>, the ratio of the circumference of a circle to its 155 * diameter. 156 */ 157 public static final double PI = 3.14159265358979323846; 158 159 /** 160 * Constant by which to multiply an angular value in degrees to obtain an 161 * angular value in radians. 162 */ 163 private static final double DEGREES_TO_RADIANS = 0.017453292519943295; 164 165 /** 166 * Constant by which to multiply an angular value in radians to obtain an 167 * angular value in degrees. 168 */ 169 private static final double RADIANS_TO_DEGREES = 57.29577951308232; 170 171 /** 172 * Returns the trigonometric sine of an angle. Special cases: 173 * <ul><li>If the argument is NaN or an infinity, then the 174 * result is NaN. 175 * <li>If the argument is zero, then the result is a zero with the 176 * same sign as the argument.</ul> 177 * 178 * <p>The computed result must be within 1 ulp of the exact result. 179 * Results must be semi-monotonic. 180 * 181 * @param a an angle, in radians. 182 * @return the sine of the argument. 183 */ 184 // BEGIN Android-changed: Reimplement in native 185 /* 186 @IntrinsicCandidate 187 public static double sin(double a) { 188 return StrictMath.sin(a); // default impl. delegates to StrictMath 189 } 190 */ 191 // END Android-changed: Reimplement in native 192 @CriticalNative sin(double a)193 public static native double sin(double a); 194 195 /** 196 * Returns the trigonometric cosine of an angle. Special cases: 197 * <ul><li>If the argument is NaN or an infinity, then the 198 * result is NaN. 199 * <li>If the argument is zero, then the result is {@code 1.0}. 200 *</ul> 201 * 202 * <p>The computed result must be within 1 ulp of the exact result. 203 * Results must be semi-monotonic. 204 * 205 * @param a an angle, in radians. 206 * @return the cosine of the argument. 207 */ 208 // BEGIN Android-changed: Reimplement in native 209 /* 210 @IntrinsicCandidate 211 public static double cos(double a) { 212 return StrictMath.cos(a); // default impl. delegates to StrictMath 213 } 214 */ 215 // END Android-changed: Reimplement in native 216 @CriticalNative cos(double a)217 public static native double cos(double a); 218 219 /** 220 * Returns the trigonometric tangent of an angle. Special cases: 221 * <ul><li>If the argument is NaN or an infinity, then the result 222 * is NaN. 223 * <li>If the argument is zero, then the result is a zero with the 224 * same sign as the argument.</ul> 225 * 226 * <p>The computed result must be within 1 ulp of the exact result. 227 * Results must be semi-monotonic. 228 * 229 * @param a an angle, in radians. 230 * @return the tangent of the argument. 231 */ 232 // BEGIN Android-changed: Reimplement in native 233 /* 234 @IntrinsicCandidate 235 public static double tan(double a) { 236 return StrictMath.tan(a); // default impl. delegates to StrictMath 237 } 238 */ 239 // END Android-changed: Reimplement in native 240 @CriticalNative tan(double a)241 public static native double tan(double a); 242 243 /** 244 * Returns the arc sine of a value; the returned angle is in the 245 * range -<i>pi</i>/2 through <i>pi</i>/2. Special cases: 246 * <ul><li>If the argument is NaN or its absolute value is greater 247 * than 1, then the result is NaN. 248 * <li>If the argument is zero, then the result is a zero with the 249 * same sign as the argument.</ul> 250 * 251 * <p>The computed result must be within 1 ulp of the exact result. 252 * Results must be semi-monotonic. 253 * 254 * @param a the value whose arc sine is to be returned. 255 * @return the arc sine of the argument. 256 */ 257 // BEGIN Android-changed: Reimplement in native 258 /* 259 public static double asin(double a) { 260 return StrictMath.asin(a); // default impl. delegates to StrictMath 261 } 262 */ 263 // END Android-changed: Reimplement in native 264 @CriticalNative asin(double a)265 public static native double asin(double a); 266 267 /** 268 * Returns the arc cosine of a value; the returned angle is in the 269 * range 0.0 through <i>pi</i>. Special case: 270 * <ul><li>If the argument is NaN or its absolute value is greater 271 * than 1, then the result is NaN. 272 * <li>If the argument is {@code 1.0}, the result is positive zero. 273 * </ul> 274 * 275 * <p>The computed result must be within 1 ulp of the exact result. 276 * Results must be semi-monotonic. 277 * 278 * @param a the value whose arc cosine is to be returned. 279 * @return the arc cosine of the argument. 280 */ 281 // BEGIN Android-changed: Reimplement in native 282 /* 283 public static double acos(double a) { 284 return StrictMath.acos(a); // default impl. delegates to StrictMath 285 } 286 */ 287 // END Android-changed: Reimplement in native 288 @CriticalNative acos(double a)289 public static native double acos(double a); 290 291 /** 292 * Returns the arc tangent of a value; the returned angle is in the 293 * range -<i>pi</i>/2 through <i>pi</i>/2. Special cases: 294 * <ul><li>If the argument is NaN, then the result is NaN. 295 * <li>If the argument is zero, then the result is a zero with the 296 * same sign as the argument. 297 * <li>If the argument is {@linkplain Double#isInfinite infinite}, 298 * then the result is the closest value to <i>pi</i>/2 with the 299 * same sign as the input. 300 * </ul> 301 * 302 * <p>The computed result must be within 1 ulp of the exact result. 303 * Results must be semi-monotonic. 304 * 305 * @param a the value whose arc tangent is to be returned. 306 * @return the arc tangent of the argument. 307 */ 308 // BEGIN Android-changed: Reimplement in native 309 /* 310 public static double atan(double a) { 311 return StrictMath.atan(a); // default impl. delegates to StrictMath 312 } 313 */ 314 // END Android-changed: Reimplement in native 315 @CriticalNative atan(double a)316 public static native double atan(double a); 317 318 /** 319 * Converts an angle measured in degrees to an approximately 320 * equivalent angle measured in radians. The conversion from 321 * degrees to radians is generally inexact. 322 * 323 * @param angdeg an angle, in degrees 324 * @return the measurement of the angle {@code angdeg} 325 * in radians. 326 * @since 1.2 327 */ toRadians(double angdeg)328 public static double toRadians(double angdeg) { 329 return angdeg * DEGREES_TO_RADIANS; 330 } 331 332 /** 333 * Converts an angle measured in radians to an approximately 334 * equivalent angle measured in degrees. The conversion from 335 * radians to degrees is generally inexact; users should 336 * <i>not</i> expect {@code cos(toRadians(90.0))} to exactly 337 * equal {@code 0.0}. 338 * 339 * @param angrad an angle, in radians 340 * @return the measurement of the angle {@code angrad} 341 * in degrees. 342 * @since 1.2 343 */ toDegrees(double angrad)344 public static double toDegrees(double angrad) { 345 return angrad * RADIANS_TO_DEGREES; 346 } 347 348 /** 349 * Returns Euler's number <i>e</i> raised to the power of a 350 * {@code double} value. Special cases: 351 * <ul><li>If the argument is NaN, the result is NaN. 352 * <li>If the argument is positive infinity, then the result is 353 * positive infinity. 354 * <li>If the argument is negative infinity, then the result is 355 * positive zero. 356 * <li>If the argument is zero, then the result is {@code 1.0}. 357 * </ul> 358 * 359 * <p>The computed result must be within 1 ulp of the exact result. 360 * Results must be semi-monotonic. 361 * 362 * @param a the exponent to raise <i>e</i> to. 363 * @return the value <i>e</i><sup>{@code a}</sup>, 364 * where <i>e</i> is the base of the natural logarithms. 365 */ 366 // BEGIN Android-changed: Reimplement in native 367 /* 368 @IntrinsicCandidate 369 public static double exp(double a) { 370 return StrictMath.exp(a); // default impl. delegates to StrictMath 371 } 372 */ 373 // END Android-changed: Reimplement in native 374 @CriticalNative exp(double a)375 public static native double exp(double a); 376 377 /** 378 * Returns the natural logarithm (base <i>e</i>) of a {@code double} 379 * value. Special cases: 380 * <ul><li>If the argument is NaN or less than zero, then the result 381 * is NaN. 382 * <li>If the argument is positive infinity, then the result is 383 * positive infinity. 384 * <li>If the argument is positive zero or negative zero, then the 385 * result is negative infinity. 386 * <li>If the argument is {@code 1.0}, then the result is positive 387 * zero. 388 * </ul> 389 * 390 * <p>The computed result must be within 1 ulp of the exact result. 391 * Results must be semi-monotonic. 392 * 393 * @param a a value 394 * @return the value ln {@code a}, the natural logarithm of 395 * {@code a}. 396 */ 397 // BEGIN Android-changed: Reimplement in native 398 /* 399 @IntrinsicCandidate 400 public static double log(double a) { 401 return StrictMath.log(a); // default impl. delegates to StrictMath 402 } 403 */ 404 // END Android-changed: Reimplement in native 405 @CriticalNative log(double a)406 public static native double log(double a); 407 408 /** 409 * Returns the base 10 logarithm of a {@code double} value. 410 * Special cases: 411 * 412 * <ul><li>If the argument is NaN or less than zero, then the result 413 * is NaN. 414 * <li>If the argument is positive infinity, then the result is 415 * positive infinity. 416 * <li>If the argument is positive zero or negative zero, then the 417 * result is negative infinity. 418 * <li>If the argument is equal to 10<sup><i>n</i></sup> for 419 * integer <i>n</i>, then the result is <i>n</i>. In particular, 420 * if the argument is {@code 1.0} (10<sup>0</sup>), then the 421 * result is positive zero. 422 * </ul> 423 * 424 * <p>The computed result must be within 1 ulp of the exact result. 425 * Results must be semi-monotonic. 426 * 427 * @param a a value 428 * @return the base 10 logarithm of {@code a}. 429 * @since 1.5 430 */ 431 // BEGIN Android-changed: Reimplement in native 432 /* 433 @IntrinsicCandidate 434 public static double log10(double a) { 435 return StrictMath.log10(a); // default impl. delegates to StrictMath 436 } 437 */ 438 // END Android-changed: Reimplement in native 439 @CriticalNative log10(double a)440 public static native double log10(double a); 441 442 /** 443 * Returns the correctly rounded positive square root of a 444 * {@code double} value. 445 * Special cases: 446 * <ul><li>If the argument is NaN or less than zero, then the result 447 * is NaN. 448 * <li>If the argument is positive infinity, then the result is positive 449 * infinity. 450 * <li>If the argument is positive zero or negative zero, then the 451 * result is the same as the argument.</ul> 452 * Otherwise, the result is the {@code double} value closest to 453 * the true mathematical square root of the argument value. 454 * 455 * @param a a value. 456 * @return the positive square root of {@code a}. 457 * If the argument is NaN or less than zero, the result is NaN. 458 */ 459 // BEGIN Android-changed: Reimplement in native 460 /* 461 @IntrinsicCandidate 462 public static double sqrt(double a) { 463 return StrictMath.sqrt(a); // default impl. delegates to StrictMath 464 // Note that hardware sqrt instructions 465 // frequently can be directly used by JITs 466 // and should be much faster than doing 467 // Math.sqrt in software. 468 } 469 */ 470 // END Android-changed: Reimplement in native 471 @CriticalNative sqrt(double a)472 public static native double sqrt(double a); 473 474 475 /** 476 * Returns the cube root of a {@code double} value. For 477 * positive finite {@code x}, {@code cbrt(-x) == 478 * -cbrt(x)}; that is, the cube root of a negative value is 479 * the negative of the cube root of that value's magnitude. 480 * 481 * Special cases: 482 * 483 * <ul> 484 * 485 * <li>If the argument is NaN, then the result is NaN. 486 * 487 * <li>If the argument is infinite, then the result is an infinity 488 * with the same sign as the argument. 489 * 490 * <li>If the argument is zero, then the result is a zero with the 491 * same sign as the argument. 492 * 493 * </ul> 494 * 495 * <p>The computed result must be within 1 ulp of the exact result. 496 * 497 * @param a a value. 498 * @return the cube root of {@code a}. 499 * @since 1.5 500 */ 501 // BEGIN Android-changed: Reimplement in native 502 /* 503 public static double cbrt(double a) { 504 return StrictMath.cbrt(a); 505 } 506 */ 507 // END Android-changed: Reimplement in native 508 @CriticalNative cbrt(double a)509 public static native double cbrt(double a); 510 511 /** 512 * Computes the remainder operation on two arguments as prescribed 513 * by the IEEE 754 standard. 514 * The remainder value is mathematically equal to 515 * <code>f1 - f2</code> × <i>n</i>, 516 * where <i>n</i> is the mathematical integer closest to the exact 517 * mathematical value of the quotient {@code f1/f2}, and if two 518 * mathematical integers are equally close to {@code f1/f2}, 519 * then <i>n</i> is the integer that is even. If the remainder is 520 * zero, its sign is the same as the sign of the first argument. 521 * Special cases: 522 * <ul><li>If either argument is NaN, or the first argument is infinite, 523 * or the second argument is positive zero or negative zero, then the 524 * result is NaN. 525 * <li>If the first argument is finite and the second argument is 526 * infinite, then the result is the same as the first argument.</ul> 527 * 528 * @param f1 the dividend. 529 * @param f2 the divisor. 530 * @return the remainder when {@code f1} is divided by 531 * {@code f2}. 532 */ 533 // BEGIN Android-changed: Reimplement in native 534 /* 535 public static double IEEEremainder(double f1, double f2) { 536 return StrictMath.IEEEremainder(f1, f2); // delegate to StrictMath 537 } 538 */ 539 // END Android-changed: Reimplement in native 540 @CriticalNative IEEEremainder(double f1, double f2)541 public static native double IEEEremainder(double f1, double f2); 542 543 /** 544 * Returns the smallest (closest to negative infinity) 545 * {@code double} value that is greater than or equal to the 546 * argument and is equal to a mathematical integer. Special cases: 547 * <ul><li>If the argument value is already equal to a 548 * mathematical integer, then the result is the same as the 549 * argument. <li>If the argument is NaN or an infinity or 550 * positive zero or negative zero, then the result is the same as 551 * the argument. <li>If the argument value is less than zero but 552 * greater than -1.0, then the result is negative zero.</ul> Note 553 * that the value of {@code Math.ceil(x)} is exactly the 554 * value of {@code -Math.floor(-x)}. 555 * 556 * 557 * @param a a value. 558 * @return the smallest (closest to negative infinity) 559 * floating-point value that is greater than or equal to 560 * the argument and is equal to a mathematical integer. 561 */ 562 // BEGIN Android-changed: Reimplement in native 563 /* 564 @IntrinsicCandidate 565 public static double ceil(double a) { 566 return StrictMath.ceil(a); // default impl. delegates to StrictMath 567 } 568 */ 569 // END Android-changed: Reimplement in native 570 @CriticalNative ceil(double a)571 public static native double ceil(double a); 572 573 /** 574 * Returns the largest (closest to positive infinity) 575 * {@code double} value that is less than or equal to the 576 * argument and is equal to a mathematical integer. Special cases: 577 * <ul><li>If the argument value is already equal to a 578 * mathematical integer, then the result is the same as the 579 * argument. <li>If the argument is NaN or an infinity or 580 * positive zero or negative zero, then the result is the same as 581 * the argument.</ul> 582 * 583 * @param a a value. 584 * @return the largest (closest to positive infinity) 585 * floating-point value that less than or equal to the argument 586 * and is equal to a mathematical integer. 587 */ 588 // BEGIN Android-changed: Reimplement in native 589 /* 590 @IntrinsicCandidate 591 public static double floor(double a) { 592 return StrictMath.floor(a); // default impl. delegates to StrictMath 593 } 594 */ 595 // END Android-changed: Reimplement in native 596 @CriticalNative floor(double a)597 public static native double floor(double a); 598 599 /** 600 * Returns the {@code double} value that is closest in value 601 * to the argument and is equal to a mathematical integer. If two 602 * {@code double} values that are mathematical integers are 603 * equally close, the result is the integer value that is 604 * even. Special cases: 605 * <ul><li>If the argument value is already equal to a mathematical 606 * integer, then the result is the same as the argument. 607 * <li>If the argument is NaN or an infinity or positive zero or negative 608 * zero, then the result is the same as the argument.</ul> 609 * 610 * @param a a {@code double} value. 611 * @return the closest floating-point value to {@code a} that is 612 * equal to a mathematical integer. 613 */ 614 // BEGIN Android-changed: Reimplement in native 615 /* 616 @IntrinsicCandidate 617 public static double rint(double a) { 618 return StrictMath.rint(a); // default impl. delegates to StrictMath 619 } 620 */ 621 // END Android-changed: Reimplement in native 622 @CriticalNative rint(double a)623 public static native double rint(double a); 624 625 /** 626 * Returns the angle <i>theta</i> from the conversion of rectangular 627 * coordinates ({@code x}, {@code y}) to polar 628 * coordinates (r, <i>theta</i>). 629 * This method computes the phase <i>theta</i> by computing an arc tangent 630 * of {@code y/x} in the range of -<i>pi</i> to <i>pi</i>. Special 631 * cases: 632 * <ul><li>If either argument is NaN, then the result is NaN. 633 * <li>If the first argument is positive zero and the second argument 634 * is positive, or the first argument is positive and finite and the 635 * second argument is positive infinity, then the result is positive 636 * zero. 637 * <li>If the first argument is negative zero and the second argument 638 * is positive, or the first argument is negative and finite and the 639 * second argument is positive infinity, then the result is negative zero. 640 * <li>If the first argument is positive zero and the second argument 641 * is negative, or the first argument is positive and finite and the 642 * second argument is negative infinity, then the result is the 643 * {@code double} value closest to <i>pi</i>. 644 * <li>If the first argument is negative zero and the second argument 645 * is negative, or the first argument is negative and finite and the 646 * second argument is negative infinity, then the result is the 647 * {@code double} value closest to -<i>pi</i>. 648 * <li>If the first argument is positive and the second argument is 649 * positive zero or negative zero, or the first argument is positive 650 * infinity and the second argument is finite, then the result is the 651 * {@code double} value closest to <i>pi</i>/2. 652 * <li>If the first argument is negative and the second argument is 653 * positive zero or negative zero, or the first argument is negative 654 * infinity and the second argument is finite, then the result is the 655 * {@code double} value closest to -<i>pi</i>/2. 656 * <li>If both arguments are positive infinity, then the result is the 657 * {@code double} value closest to <i>pi</i>/4. 658 * <li>If the first argument is positive infinity and the second argument 659 * is negative infinity, then the result is the {@code double} 660 * value closest to 3*<i>pi</i>/4. 661 * <li>If the first argument is negative infinity and the second argument 662 * is positive infinity, then the result is the {@code double} value 663 * closest to -<i>pi</i>/4. 664 * <li>If both arguments are negative infinity, then the result is the 665 * {@code double} value closest to -3*<i>pi</i>/4.</ul> 666 * 667 * <p>The computed result must be within 2 ulps of the exact result. 668 * Results must be semi-monotonic. 669 * 670 * @apiNote 671 * For <i>y</i> with a positive sign and finite nonzero 672 * <i>x</i>, the exact mathematical value of {@code atan2} is 673 * equal to: 674 * <ul> 675 * <li>If <i>x</i> {@literal >} 0, atan(abs(<i>y</i>/<i>x</i>)) 676 * <li>If <i>x</i> {@literal <} 0, π - atan(abs(<i>y</i>/<i>x</i>)) 677 * </ul> 678 * 679 * @param y the ordinate coordinate 680 * @param x the abscissa coordinate 681 * @return the <i>theta</i> component of the point 682 * (<i>r</i>, <i>theta</i>) 683 * in polar coordinates that corresponds to the point 684 * (<i>x</i>, <i>y</i>) in Cartesian coordinates. 685 */ 686 // BEGIN Android-changed: Reimplement in native 687 /* 688 @IntrinsicCandidate 689 public static double atan2(double y, double x) { 690 return StrictMath.atan2(y, x); // default impl. delegates to StrictMath 691 } 692 */ 693 // END Android-changed: Reimplement in native 694 @CriticalNative atan2(double y, double x)695 public static native double atan2(double y, double x); 696 697 // Android-changed: Document that the results from Math are based on libm's behavior. 698 // The cases known to differ with libm's pow(): 699 // If the first argument is 1.0 then result is always 1.0 (not NaN). 700 // If the first argument is -1.0 and the second argument is infinite, the result is 1.0 (not 701 // NaN). 702 /** 703 * Returns the value of the first argument raised to the power of the 704 * second argument. Special cases: 705 * 706 * <ul><li>If the second argument is positive or negative zero, then the 707 * result is 1.0. 708 * <li>If the second argument is 1.0, then the result is the same as the 709 * first argument. 710 * <li>If the first argument is 1.0, then the result is 1.0. 711 * <li>If the second argument is NaN, then the result is NaN except where the first argument is 712 * 1.0. 713 * <li>If the first argument is NaN and the second argument is nonzero, 714 * then the result is NaN. 715 * 716 * <li>If 717 * <ul> 718 * <li>the absolute value of the first argument is greater than 1 719 * and the second argument is positive infinity, or 720 * <li>the absolute value of the first argument is less than 1 and 721 * the second argument is negative infinity, 722 * </ul> 723 * then the result is positive infinity. 724 * 725 * <li>If 726 * <ul> 727 * <li>the absolute value of the first argument is greater than 1 and 728 * the second argument is negative infinity, or 729 * <li>the absolute value of the 730 * first argument is less than 1 and the second argument is positive 731 * infinity, 732 * </ul> 733 * then the result is positive zero. 734 * 735 * <li>If the absolute value of the first argument equals 1 and the 736 * second argument is infinite, then the result is 1.0. 737 * 738 * <li>If 739 * <ul> 740 * <li>the first argument is positive zero and the second argument 741 * is greater than zero, or 742 * <li>the first argument is positive infinity and the second 743 * argument is less than zero, 744 * </ul> 745 * then the result is positive zero. 746 * 747 * <li>If 748 * <ul> 749 * <li>the first argument is positive zero and the second argument 750 * is less than zero, or 751 * <li>the first argument is positive infinity and the second 752 * argument is greater than zero, 753 * </ul> 754 * then the result is positive infinity. 755 * 756 * <li>If 757 * <ul> 758 * <li>the first argument is negative zero and the second argument 759 * is greater than zero but not a finite odd integer, or 760 * <li>the first argument is negative infinity and the second 761 * argument is less than zero but not a finite odd integer, 762 * </ul> 763 * then the result is positive zero. 764 * 765 * <li>If 766 * <ul> 767 * <li>the first argument is negative zero and the second argument 768 * is a positive finite odd integer, or 769 * <li>the first argument is negative infinity and the second 770 * argument is a negative finite odd integer, 771 * </ul> 772 * then the result is negative zero. 773 * 774 * <li>If 775 * <ul> 776 * <li>the first argument is negative zero and the second argument 777 * is less than zero but not a finite odd integer, or 778 * <li>the first argument is negative infinity and the second 779 * argument is greater than zero but not a finite odd integer, 780 * </ul> 781 * then the result is positive infinity. 782 * 783 * <li>If 784 * <ul> 785 * <li>the first argument is negative zero and the second argument 786 * is a negative finite odd integer, or 787 * <li>the first argument is negative infinity and the second 788 * argument is a positive finite odd integer, 789 * </ul> 790 * then the result is negative infinity. 791 * 792 * <li>If the first argument is finite and less than zero 793 * <ul> 794 * <li> if the second argument is a finite even integer, the 795 * result is equal to the result of raising the absolute value of 796 * the first argument to the power of the second argument 797 * 798 * <li>if the second argument is a finite odd integer, the result 799 * is equal to the negative of the result of raising the absolute 800 * value of the first argument to the power of the second 801 * argument 802 * 803 * <li>if the second argument is finite and not an integer, then 804 * the result is NaN. 805 * </ul> 806 * 807 * <li>If both arguments are integers, then the result is exactly equal 808 * to the mathematical result of raising the first argument to the power 809 * of the second argument if that result can in fact be represented 810 * exactly as a {@code double} value.</ul> 811 * 812 * <p>(In the foregoing descriptions, a floating-point value is 813 * considered to be an integer if and only if it is finite and a 814 * fixed point of the method {@link #ceil ceil} or, 815 * equivalently, a fixed point of the method {@link #floor 816 * floor}. A value is a fixed point of a one-argument 817 * method if and only if the result of applying the method to the 818 * value is equal to the value.) 819 * 820 * <p>The computed result must be within 1 ulp of the exact result. 821 * Results must be semi-monotonic. 822 * 823 * @apiNote 824 * The special cases definitions of this method differ from the 825 * special case definitions of the IEEE 754 recommended {@code 826 * pow} operation for ±{@code 1.0} raised to an infinite 827 * power. This method treats such cases as indeterminate and 828 * specifies a NaN is returned. The IEEE 754 specification treats 829 * the infinite power as a large integer (large-magnitude 830 * floating-point numbers are numerically integers, specifically 831 * even integers) and therefore specifies {@code 1.0} be returned. 832 * 833 * @param a the base. 834 * @param b the exponent. 835 * @return the value {@code a}<sup>{@code b}</sup>. 836 */ 837 // BEGIN Android-changed: Reimplement in native 838 /* 839 @IntrinsicCandidate 840 public static double pow(double a, double b) { 841 return StrictMath.pow(a, b); // default impl. delegates to StrictMath 842 } 843 */ 844 // END Android-changed: Reimplement in native 845 @CriticalNative pow(double a, double b)846 public static native double pow(double a, double b); 847 848 /** 849 * Returns the closest {@code int} to the argument, with ties 850 * rounding to positive infinity. 851 * 852 * <p> 853 * Special cases: 854 * <ul><li>If the argument is NaN, the result is 0. 855 * <li>If the argument is negative infinity or any value less than or 856 * equal to the value of {@code Integer.MIN_VALUE}, the result is 857 * equal to the value of {@code Integer.MIN_VALUE}. 858 * <li>If the argument is positive infinity or any value greater than or 859 * equal to the value of {@code Integer.MAX_VALUE}, the result is 860 * equal to the value of {@code Integer.MAX_VALUE}.</ul> 861 * 862 * @param a a floating-point value to be rounded to an integer. 863 * @return the value of the argument rounded to the nearest 864 * {@code int} value. 865 * @see java.lang.Integer#MAX_VALUE 866 * @see java.lang.Integer#MIN_VALUE 867 */ round(float a)868 public static int round(float a) { 869 int intBits = Float.floatToRawIntBits(a); 870 int biasedExp = (intBits & FloatConsts.EXP_BIT_MASK) 871 >> (FloatConsts.SIGNIFICAND_WIDTH - 1); 872 int shift = (FloatConsts.SIGNIFICAND_WIDTH - 2 873 + FloatConsts.EXP_BIAS) - biasedExp; 874 if ((shift & -32) == 0) { // shift >= 0 && shift < 32 875 // a is a finite number such that pow(2,-32) <= ulp(a) < 1 876 int r = ((intBits & FloatConsts.SIGNIF_BIT_MASK) 877 | (FloatConsts.SIGNIF_BIT_MASK + 1)); 878 if (intBits < 0) { 879 r = -r; 880 } 881 // In the comments below each Java expression evaluates to the value 882 // the corresponding mathematical expression: 883 // (r) evaluates to a / ulp(a) 884 // (r >> shift) evaluates to floor(a * 2) 885 // ((r >> shift) + 1) evaluates to floor((a + 1/2) * 2) 886 // (((r >> shift) + 1) >> 1) evaluates to floor(a + 1/2) 887 return ((r >> shift) + 1) >> 1; 888 } else { 889 // a is either 890 // - a finite number with abs(a) < exp(2,FloatConsts.SIGNIFICAND_WIDTH-32) < 1/2 891 // - a finite number with ulp(a) >= 1 and hence a is a mathematical integer 892 // - an infinity or NaN 893 return (int) a; 894 } 895 } 896 897 /** 898 * Returns the closest {@code long} to the argument, with ties 899 * rounding to positive infinity. 900 * 901 * <p>Special cases: 902 * <ul><li>If the argument is NaN, the result is 0. 903 * <li>If the argument is negative infinity or any value less than or 904 * equal to the value of {@code Long.MIN_VALUE}, the result is 905 * equal to the value of {@code Long.MIN_VALUE}. 906 * <li>If the argument is positive infinity or any value greater than or 907 * equal to the value of {@code Long.MAX_VALUE}, the result is 908 * equal to the value of {@code Long.MAX_VALUE}.</ul> 909 * 910 * @param a a floating-point value to be rounded to a 911 * {@code long}. 912 * @return the value of the argument rounded to the nearest 913 * {@code long} value. 914 * @see java.lang.Long#MAX_VALUE 915 * @see java.lang.Long#MIN_VALUE 916 */ round(double a)917 public static long round(double a) { 918 long longBits = Double.doubleToRawLongBits(a); 919 long biasedExp = (longBits & DoubleConsts.EXP_BIT_MASK) 920 >> (DoubleConsts.SIGNIFICAND_WIDTH - 1); 921 long shift = (DoubleConsts.SIGNIFICAND_WIDTH - 2 922 + DoubleConsts.EXP_BIAS) - biasedExp; 923 if ((shift & -64) == 0) { // shift >= 0 && shift < 64 924 // a is a finite number such that pow(2,-64) <= ulp(a) < 1 925 long r = ((longBits & DoubleConsts.SIGNIF_BIT_MASK) 926 | (DoubleConsts.SIGNIF_BIT_MASK + 1)); 927 if (longBits < 0) { 928 r = -r; 929 } 930 // In the comments below each Java expression evaluates to the value 931 // the corresponding mathematical expression: 932 // (r) evaluates to a / ulp(a) 933 // (r >> shift) evaluates to floor(a * 2) 934 // ((r >> shift) + 1) evaluates to floor((a + 1/2) * 2) 935 // (((r >> shift) + 1) >> 1) evaluates to floor(a + 1/2) 936 return ((r >> shift) + 1) >> 1; 937 } else { 938 // a is either 939 // - a finite number with abs(a) < exp(2,DoubleConsts.SIGNIFICAND_WIDTH-64) < 1/2 940 // - a finite number with ulp(a) >= 1 and hence a is a mathematical integer 941 // - an infinity or NaN 942 return (long) a; 943 } 944 } 945 946 private static final class RandomNumberGeneratorHolder { 947 static final Random randomNumberGenerator = new Random(); 948 } 949 950 /** 951 * Returns a {@code double} value with a positive sign, greater 952 * than or equal to {@code 0.0} and less than {@code 1.0}. 953 * Returned values are chosen pseudorandomly with (approximately) 954 * uniform distribution from that range. 955 * 956 * <p>When this method is first called, it creates a single new 957 * pseudorandom-number generator, exactly as if by the expression 958 * 959 * <blockquote>{@code new java.util.Random()}</blockquote> 960 * 961 * This new pseudorandom-number generator is used thereafter for 962 * all calls to this method and is used nowhere else. 963 * 964 * <p>This method is properly synchronized to allow correct use by 965 * more than one thread. However, if many threads need to generate 966 * pseudorandom numbers at a great rate, it may reduce contention 967 * for each thread to have its own pseudorandom-number generator. 968 * 969 * @apiNote 970 * As the largest {@code double} value less than {@code 1.0} 971 * is {@code Math.nextDown(1.0)}, a value {@code x} in the closed range 972 * {@code [x1,x2]} where {@code x1<=x2} may be defined by the statements 973 * 974 * <blockquote><pre>{@code 975 * double f = Math.random()/Math.nextDown(1.0); 976 * double x = x1*(1.0 - f) + x2*f; 977 * }</pre></blockquote> 978 * 979 * @return a pseudorandom {@code double} greater than or equal 980 * to {@code 0.0} and less than {@code 1.0}. 981 * @see #nextDown(double) 982 * @see Random#nextDouble() 983 */ random()984 public static double random() { 985 return RandomNumberGeneratorHolder.randomNumberGenerator.nextDouble(); 986 } 987 988 // Android-added: setRandomSeedInternal(long), called after zygote forks. 989 // This allows different processes to have different random seeds. 990 /** 991 * Set the seed for the pseudo random generator used by {@link #random()} 992 * and {@link #randomIntInternal()}. 993 * 994 * @hide for internal use only. 995 */ setRandomSeedInternal(long seed)996 public static void setRandomSeedInternal(long seed) { 997 RandomNumberGeneratorHolder.randomNumberGenerator.setSeed(seed); 998 } 999 1000 // Android-added: randomIntInternal() method: like random() but for int. 1001 /** 1002 * @hide for internal use only. 1003 */ randomIntInternal()1004 public static int randomIntInternal() { 1005 return RandomNumberGeneratorHolder.randomNumberGenerator.nextInt(); 1006 } 1007 1008 // Android-added: randomLongInternal() method: like random() but for long. 1009 /** 1010 * @hide for internal use only. 1011 */ randomLongInternal()1012 public static long randomLongInternal() { 1013 return RandomNumberGeneratorHolder.randomNumberGenerator.nextLong(); 1014 } 1015 1016 /** 1017 * Returns the sum of its arguments, 1018 * throwing an exception if the result overflows an {@code int}. 1019 * 1020 * @param x the first value 1021 * @param y the second value 1022 * @return the result 1023 * @throws ArithmeticException if the result overflows an int 1024 * @since 1.8 1025 */ 1026 @IntrinsicCandidate addExact(int x, int y)1027 public static int addExact(int x, int y) { 1028 int r = x + y; 1029 // HD 2-12 Overflow iff both arguments have the opposite sign of the result 1030 if (((x ^ r) & (y ^ r)) < 0) { 1031 throw new ArithmeticException("integer overflow"); 1032 } 1033 return r; 1034 } 1035 1036 /** 1037 * Returns the sum of its arguments, 1038 * throwing an exception if the result overflows a {@code long}. 1039 * 1040 * @param x the first value 1041 * @param y the second value 1042 * @return the result 1043 * @throws ArithmeticException if the result overflows a long 1044 * @since 1.8 1045 */ 1046 @IntrinsicCandidate addExact(long x, long y)1047 public static long addExact(long x, long y) { 1048 long r = x + y; 1049 // HD 2-12 Overflow iff both arguments have the opposite sign of the result 1050 if (((x ^ r) & (y ^ r)) < 0) { 1051 throw new ArithmeticException("long overflow"); 1052 } 1053 return r; 1054 } 1055 1056 /** 1057 * Returns the difference of the arguments, 1058 * throwing an exception if the result overflows an {@code int}. 1059 * 1060 * @param x the first value 1061 * @param y the second value to subtract from the first 1062 * @return the result 1063 * @throws ArithmeticException if the result overflows an int 1064 * @since 1.8 1065 */ 1066 @IntrinsicCandidate subtractExact(int x, int y)1067 public static int subtractExact(int x, int y) { 1068 int r = x - y; 1069 // HD 2-12 Overflow iff the arguments have different signs and 1070 // the sign of the result is different from the sign of x 1071 if (((x ^ y) & (x ^ r)) < 0) { 1072 throw new ArithmeticException("integer overflow"); 1073 } 1074 return r; 1075 } 1076 1077 /** 1078 * Returns the difference of the arguments, 1079 * throwing an exception if the result overflows a {@code long}. 1080 * 1081 * @param x the first value 1082 * @param y the second value to subtract from the first 1083 * @return the result 1084 * @throws ArithmeticException if the result overflows a long 1085 * @since 1.8 1086 */ 1087 @IntrinsicCandidate subtractExact(long x, long y)1088 public static long subtractExact(long x, long y) { 1089 long r = x - y; 1090 // HD 2-12 Overflow iff the arguments have different signs and 1091 // the sign of the result is different from the sign of x 1092 if (((x ^ y) & (x ^ r)) < 0) { 1093 throw new ArithmeticException("long overflow"); 1094 } 1095 return r; 1096 } 1097 1098 /** 1099 * Returns the product of the arguments, 1100 * throwing an exception if the result overflows an {@code int}. 1101 * 1102 * @param x the first value 1103 * @param y the second value 1104 * @return the result 1105 * @throws ArithmeticException if the result overflows an int 1106 * @since 1.8 1107 */ 1108 @IntrinsicCandidate multiplyExact(int x, int y)1109 public static int multiplyExact(int x, int y) { 1110 long r = (long)x * (long)y; 1111 if ((int)r != r) { 1112 throw new ArithmeticException("integer overflow"); 1113 } 1114 return (int)r; 1115 } 1116 1117 /** 1118 * Returns the product of the arguments, throwing an exception if the result 1119 * overflows a {@code long}. 1120 * 1121 * @param x the first value 1122 * @param y the second value 1123 * @return the result 1124 * @throws ArithmeticException if the result overflows a long 1125 * @since 9 1126 */ multiplyExact(long x, int y)1127 public static long multiplyExact(long x, int y) { 1128 return multiplyExact(x, (long)y); 1129 } 1130 1131 /** 1132 * Returns the product of the arguments, 1133 * throwing an exception if the result overflows a {@code long}. 1134 * 1135 * @param x the first value 1136 * @param y the second value 1137 * @return the result 1138 * @throws ArithmeticException if the result overflows a long 1139 * @since 1.8 1140 */ 1141 @IntrinsicCandidate multiplyExact(long x, long y)1142 public static long multiplyExact(long x, long y) { 1143 long r = x * y; 1144 long ax = Math.abs(x); 1145 long ay = Math.abs(y); 1146 if (((ax | ay) >>> 31 != 0)) { 1147 // Some bits greater than 2^31 that might cause overflow 1148 // Check the result using the divide operator 1149 // and check for the special case of Long.MIN_VALUE * -1 1150 if (((y != 0) && (r / y != x)) || 1151 (x == Long.MIN_VALUE && y == -1)) { 1152 throw new ArithmeticException("long overflow"); 1153 } 1154 } 1155 return r; 1156 } 1157 1158 /** 1159 * Returns the argument incremented by one, throwing an exception if the 1160 * result overflows an {@code int}. 1161 * The overflow only occurs for {@linkplain Integer#MAX_VALUE the maximum value}. 1162 * 1163 * @param a the value to increment 1164 * @return the result 1165 * @throws ArithmeticException if the result overflows an int 1166 * @since 1.8 1167 */ 1168 @IntrinsicCandidate incrementExact(int a)1169 public static int incrementExact(int a) { 1170 if (a == Integer.MAX_VALUE) { 1171 throw new ArithmeticException("integer overflow"); 1172 } 1173 1174 return a + 1; 1175 } 1176 1177 /** 1178 * Returns the argument incremented by one, throwing an exception if the 1179 * result overflows a {@code long}. 1180 * The overflow only occurs for {@linkplain Long#MAX_VALUE the maximum value}. 1181 * 1182 * @param a the value to increment 1183 * @return the result 1184 * @throws ArithmeticException if the result overflows a long 1185 * @since 1.8 1186 */ 1187 @IntrinsicCandidate incrementExact(long a)1188 public static long incrementExact(long a) { 1189 if (a == Long.MAX_VALUE) { 1190 throw new ArithmeticException("long overflow"); 1191 } 1192 1193 return a + 1L; 1194 } 1195 1196 /** 1197 * Returns the argument decremented by one, throwing an exception if the 1198 * result overflows an {@code int}. 1199 * The overflow only occurs for {@linkplain Integer#MIN_VALUE the minimum value}. 1200 * 1201 * @param a the value to decrement 1202 * @return the result 1203 * @throws ArithmeticException if the result overflows an int 1204 * @since 1.8 1205 */ 1206 @IntrinsicCandidate decrementExact(int a)1207 public static int decrementExact(int a) { 1208 if (a == Integer.MIN_VALUE) { 1209 throw new ArithmeticException("integer overflow"); 1210 } 1211 1212 return a - 1; 1213 } 1214 1215 /** 1216 * Returns the argument decremented by one, throwing an exception if the 1217 * result overflows a {@code long}. 1218 * The overflow only occurs for {@linkplain Long#MIN_VALUE the minimum value}. 1219 * 1220 * @param a the value to decrement 1221 * @return the result 1222 * @throws ArithmeticException if the result overflows a long 1223 * @since 1.8 1224 */ 1225 @IntrinsicCandidate decrementExact(long a)1226 public static long decrementExact(long a) { 1227 if (a == Long.MIN_VALUE) { 1228 throw new ArithmeticException("long overflow"); 1229 } 1230 1231 return a - 1L; 1232 } 1233 1234 /** 1235 * Returns the negation of the argument, throwing an exception if the 1236 * result overflows an {@code int}. 1237 * The overflow only occurs for {@linkplain Integer#MIN_VALUE the minimum value}. 1238 * 1239 * @param a the value to negate 1240 * @return the result 1241 * @throws ArithmeticException if the result overflows an int 1242 * @since 1.8 1243 */ 1244 @IntrinsicCandidate negateExact(int a)1245 public static int negateExact(int a) { 1246 if (a == Integer.MIN_VALUE) { 1247 throw new ArithmeticException("integer overflow"); 1248 } 1249 1250 return -a; 1251 } 1252 1253 /** 1254 * Returns the negation of the argument, throwing an exception if the 1255 * result overflows a {@code long}. 1256 * The overflow only occurs for {@linkplain Long#MIN_VALUE the minimum value}. 1257 * 1258 * @param a the value to negate 1259 * @return the result 1260 * @throws ArithmeticException if the result overflows a long 1261 * @since 1.8 1262 */ 1263 @IntrinsicCandidate negateExact(long a)1264 public static long negateExact(long a) { 1265 if (a == Long.MIN_VALUE) { 1266 throw new ArithmeticException("long overflow"); 1267 } 1268 1269 return -a; 1270 } 1271 1272 /** 1273 * Returns the value of the {@code long} argument, 1274 * throwing an exception if the value overflows an {@code int}. 1275 * 1276 * @param value the long value 1277 * @return the argument as an int 1278 * @throws ArithmeticException if the {@code argument} overflows an int 1279 * @since 1.8 1280 */ toIntExact(long value)1281 public static int toIntExact(long value) { 1282 if ((int)value != value) { 1283 throw new ArithmeticException("integer overflow"); 1284 } 1285 return (int)value; 1286 } 1287 1288 /** 1289 * Returns the exact mathematical product of the arguments. 1290 * 1291 * @param x the first value 1292 * @param y the second value 1293 * @return the result 1294 * @since 9 1295 */ multiplyFull(int x, int y)1296 public static long multiplyFull(int x, int y) { 1297 return (long)x * (long)y; 1298 } 1299 1300 /** 1301 * Returns as a {@code long} the most significant 64 bits of the 128-bit 1302 * product of two 64-bit factors. 1303 * 1304 * @param x the first value 1305 * @param y the second value 1306 * @return the result 1307 * @since 9 1308 */ 1309 @IntrinsicCandidate multiplyHigh(long x, long y)1310 public static long multiplyHigh(long x, long y) { 1311 if (x < 0 || y < 0) { 1312 // Use technique from section 8-2 of Henry S. Warren, Jr., 1313 // Hacker's Delight (2nd ed.) (Addison Wesley, 2013), 173-174. 1314 long x1 = x >> 32; 1315 long x2 = x & 0xFFFFFFFFL; 1316 long y1 = y >> 32; 1317 long y2 = y & 0xFFFFFFFFL; 1318 long z2 = x2 * y2; 1319 long t = x1 * y2 + (z2 >>> 32); 1320 long z1 = t & 0xFFFFFFFFL; 1321 long z0 = t >> 32; 1322 z1 += x2 * y1; 1323 return x1 * y1 + z0 + (z1 >> 32); 1324 } else { 1325 // Use Karatsuba technique with two base 2^32 digits. 1326 long x1 = x >>> 32; 1327 long y1 = y >>> 32; 1328 long x2 = x & 0xFFFFFFFFL; 1329 long y2 = y & 0xFFFFFFFFL; 1330 long A = x1 * y1; 1331 long B = x2 * y2; 1332 long C = (x1 + x2) * (y1 + y2); 1333 long K = C - A - B; 1334 return (((B >>> 32) + K) >>> 32) + A; 1335 } 1336 } 1337 1338 /** 1339 * Returns the largest (closest to positive infinity) 1340 * {@code int} value that is less than or equal to the algebraic quotient. 1341 * There is one special case, if the dividend is the 1342 * {@linkplain Integer#MIN_VALUE Integer.MIN_VALUE} and the divisor is {@code -1}, 1343 * then integer overflow occurs and 1344 * the result is equal to {@code Integer.MIN_VALUE}. 1345 * <p> 1346 * Normal integer division operates under the round to zero rounding mode 1347 * (truncation). This operation instead acts under the round toward 1348 * negative infinity (floor) rounding mode. 1349 * The floor rounding mode gives different results from truncation 1350 * when the exact result is negative. 1351 * <ul> 1352 * <li>If the signs of the arguments are the same, the results of 1353 * {@code floorDiv} and the {@code /} operator are the same. <br> 1354 * For example, {@code floorDiv(4, 3) == 1} and {@code (4 / 3) == 1}.</li> 1355 * <li>If the signs of the arguments are different, the quotient is negative and 1356 * {@code floorDiv} returns the integer less than or equal to the quotient 1357 * and the {@code /} operator returns the integer closest to zero.<br> 1358 * For example, {@code floorDiv(-4, 3) == -2}, 1359 * whereas {@code (-4 / 3) == -1}. 1360 * </li> 1361 * </ul> 1362 * 1363 * @param x the dividend 1364 * @param y the divisor 1365 * @return the largest (closest to positive infinity) 1366 * {@code int} value that is less than or equal to the algebraic quotient. 1367 * @throws ArithmeticException if the divisor {@code y} is zero 1368 * @see #floorMod(int, int) 1369 * @see #floor(double) 1370 * @since 1.8 1371 */ floorDiv(int x, int y)1372 public static int floorDiv(int x, int y) { 1373 int r = x / y; 1374 // if the signs are different and modulo not zero, round down 1375 if ((x ^ y) < 0 && (r * y != x)) { 1376 r--; 1377 } 1378 return r; 1379 } 1380 1381 /** 1382 * Returns the largest (closest to positive infinity) 1383 * {@code long} value that is less than or equal to the algebraic quotient. 1384 * There is one special case, if the dividend is the 1385 * {@linkplain Long#MIN_VALUE Long.MIN_VALUE} and the divisor is {@code -1}, 1386 * then integer overflow occurs and 1387 * the result is equal to {@code Long.MIN_VALUE}. 1388 * <p> 1389 * Normal integer division operates under the round to zero rounding mode 1390 * (truncation). This operation instead acts under the round toward 1391 * negative infinity (floor) rounding mode. 1392 * The floor rounding mode gives different results from truncation 1393 * when the exact result is negative. 1394 * <p> 1395 * For examples, see {@link #floorDiv(int, int)}. 1396 * 1397 * @param x the dividend 1398 * @param y the divisor 1399 * @return the largest (closest to positive infinity) 1400 * {@code int} value that is less than or equal to the algebraic quotient. 1401 * @throws ArithmeticException if the divisor {@code y} is zero 1402 * @see #floorMod(long, int) 1403 * @see #floor(double) 1404 * @since 9 1405 */ floorDiv(long x, int y)1406 public static long floorDiv(long x, int y) { 1407 return floorDiv(x, (long)y); 1408 } 1409 1410 /** 1411 * Returns the largest (closest to positive infinity) 1412 * {@code long} value that is less than or equal to the algebraic quotient. 1413 * There is one special case, if the dividend is the 1414 * {@linkplain Long#MIN_VALUE Long.MIN_VALUE} and the divisor is {@code -1}, 1415 * then integer overflow occurs and 1416 * the result is equal to {@code Long.MIN_VALUE}. 1417 * <p> 1418 * Normal integer division operates under the round to zero rounding mode 1419 * (truncation). This operation instead acts under the round toward 1420 * negative infinity (floor) rounding mode. 1421 * The floor rounding mode gives different results from truncation 1422 * when the exact result is negative. 1423 * <p> 1424 * For examples, see {@link #floorDiv(int, int)}. 1425 * 1426 * @param x the dividend 1427 * @param y the divisor 1428 * @return the largest (closest to positive infinity) 1429 * {@code long} value that is less than or equal to the algebraic quotient. 1430 * @throws ArithmeticException if the divisor {@code y} is zero 1431 * @see #floorMod(long, long) 1432 * @see #floor(double) 1433 * @since 1.8 1434 */ floorDiv(long x, long y)1435 public static long floorDiv(long x, long y) { 1436 long r = x / y; 1437 // if the signs are different and modulo not zero, round down 1438 if ((x ^ y) < 0 && (r * y != x)) { 1439 r--; 1440 } 1441 return r; 1442 } 1443 1444 /** 1445 * Returns the floor modulus of the {@code int} arguments. 1446 * <p> 1447 * The floor modulus is {@code x - (floorDiv(x, y) * y)}, 1448 * has the same sign as the divisor {@code y}, and 1449 * is in the range of {@code -abs(y) < r < +abs(y)}. 1450 * 1451 * <p> 1452 * The relationship between {@code floorDiv} and {@code floorMod} is such that: 1453 * <ul> 1454 * <li>{@code floorDiv(x, y) * y + floorMod(x, y) == x} 1455 * </ul> 1456 * <p> 1457 * The difference in values between {@code floorMod} and 1458 * the {@code %} operator is due to the difference between 1459 * {@code floorDiv} that returns the integer less than or equal to the quotient 1460 * and the {@code /} operator that returns the integer closest to zero. 1461 * <p> 1462 * Examples: 1463 * <ul> 1464 * <li>If the signs of the arguments are the same, the results 1465 * of {@code floorMod} and the {@code %} operator are the same.<br> 1466 * <ul> 1467 * <li>{@code floorMod(+4, +3) == +1}; and {@code (+4 % +3) == +1}</li> 1468 * <li>{@code floorMod(-4, -3) == -1}; and {@code (-4 % -3) == -1}</li> 1469 * </ul> 1470 * <li>If the signs of the arguments are different, the results 1471 * differ from the {@code %} operator.<br> 1472 * <ul> 1473 * <li>{@code floorMod(+4, -3) == -2}; and {@code (+4 % -3) == +1}</li> 1474 * <li>{@code floorMod(-4, +3) == +2}; and {@code (-4 % +3) == -1}</li> 1475 * </ul> 1476 * </li> 1477 * </ul> 1478 * <p> 1479 * If the signs of arguments are unknown and a positive modulus 1480 * is needed it can be computed as {@code (floorMod(x, y) + abs(y)) % abs(y)}. 1481 * 1482 * @param x the dividend 1483 * @param y the divisor 1484 * @return the floor modulus {@code x - (floorDiv(x, y) * y)} 1485 * @throws ArithmeticException if the divisor {@code y} is zero 1486 * @see #floorDiv(int, int) 1487 * @since 1.8 1488 */ floorMod(int x, int y)1489 public static int floorMod(int x, int y) { 1490 int mod = x % y; 1491 // if the signs are different and modulo not zero, adjust result 1492 if ((mod ^ y) < 0 && mod != 0) { 1493 mod += y; 1494 } 1495 return mod; 1496 } 1497 1498 /** 1499 * Returns the floor modulus of the {@code long} and {@code int} arguments. 1500 * <p> 1501 * The floor modulus is {@code x - (floorDiv(x, y) * y)}, 1502 * has the same sign as the divisor {@code y}, and 1503 * is in the range of {@code -abs(y) < r < +abs(y)}. 1504 * 1505 * <p> 1506 * The relationship between {@code floorDiv} and {@code floorMod} is such that: 1507 * <ul> 1508 * <li>{@code floorDiv(x, y) * y + floorMod(x, y) == x} 1509 * </ul> 1510 * <p> 1511 * For examples, see {@link #floorMod(int, int)}. 1512 * 1513 * @param x the dividend 1514 * @param y the divisor 1515 * @return the floor modulus {@code x - (floorDiv(x, y) * y)} 1516 * @throws ArithmeticException if the divisor {@code y} is zero 1517 * @see #floorDiv(long, int) 1518 * @since 9 1519 */ floorMod(long x, int y)1520 public static int floorMod(long x, int y) { 1521 // Result cannot overflow the range of int. 1522 return (int)floorMod(x, (long)y); 1523 } 1524 1525 /** 1526 * Returns the floor modulus of the {@code long} arguments. 1527 * <p> 1528 * The floor modulus is {@code x - (floorDiv(x, y) * y)}, 1529 * has the same sign as the divisor {@code y}, and 1530 * is in the range of {@code -abs(y) < r < +abs(y)}. 1531 * 1532 * <p> 1533 * The relationship between {@code floorDiv} and {@code floorMod} is such that: 1534 * <ul> 1535 * <li>{@code floorDiv(x, y) * y + floorMod(x, y) == x} 1536 * </ul> 1537 * <p> 1538 * For examples, see {@link #floorMod(int, int)}. 1539 * 1540 * @param x the dividend 1541 * @param y the divisor 1542 * @return the floor modulus {@code x - (floorDiv(x, y) * y)} 1543 * @throws ArithmeticException if the divisor {@code y} is zero 1544 * @see #floorDiv(long, long) 1545 * @since 1.8 1546 */ floorMod(long x, long y)1547 public static long floorMod(long x, long y) { 1548 long mod = x % y; 1549 // if the signs are different and modulo not zero, adjust result 1550 if ((x ^ y) < 0 && mod != 0) { 1551 mod += y; 1552 } 1553 return mod; 1554 } 1555 1556 /** 1557 * Returns the absolute value of an {@code int} value. 1558 * If the argument is not negative, the argument is returned. 1559 * If the argument is negative, the negation of the argument is returned. 1560 * 1561 * <p>Note that if the argument is equal to the value of {@link 1562 * Integer#MIN_VALUE}, the most negative representable {@code int} 1563 * value, the result is that same value, which is negative. In 1564 * contrast, the {@link Math#absExact(int)} method throws an 1565 * {@code ArithmeticException} for this value. 1566 * 1567 * @param a the argument whose absolute value is to be determined 1568 * @return the absolute value of the argument. 1569 * @see Math#absExact(int) 1570 */ 1571 @IntrinsicCandidate abs(int a)1572 public static int abs(int a) { 1573 return (a < 0) ? -a : a; 1574 } 1575 1576 /** 1577 * Returns the mathematical absolute value of an {@code int} value 1578 * if it is exactly representable as an {@code int}, throwing 1579 * {@code ArithmeticException} if the result overflows the 1580 * positive {@code int} range. 1581 * 1582 * <p>Since the range of two's complement integers is asymmetric 1583 * with one additional negative value (JLS {@jls 4.2.1}), the 1584 * mathematical absolute value of {@link Integer#MIN_VALUE} 1585 * overflows the positive {@code int} range, so an exception is 1586 * thrown for that argument. 1587 * 1588 * @param a the argument whose absolute value is to be determined 1589 * @return the absolute value of the argument, unless overflow occurs 1590 * @throws ArithmeticException if the argument is {@link Integer#MIN_VALUE} 1591 * @see Math#abs(int) 1592 * @since 15 1593 */ absExact(int a)1594 public static int absExact(int a) { 1595 if (a == Integer.MIN_VALUE) 1596 throw new ArithmeticException( 1597 "Overflow to represent absolute value of Integer.MIN_VALUE"); 1598 else 1599 return abs(a); 1600 } 1601 1602 /** 1603 * Returns the absolute value of a {@code long} value. 1604 * If the argument is not negative, the argument is returned. 1605 * If the argument is negative, the negation of the argument is returned. 1606 * 1607 * <p>Note that if the argument is equal to the value of {@link 1608 * Long#MIN_VALUE}, the most negative representable {@code long} 1609 * value, the result is that same value, which is negative. In 1610 * contrast, the {@link Math#absExact(long)} method throws an 1611 * {@code ArithmeticException} for this value. 1612 * 1613 * @param a the argument whose absolute value is to be determined 1614 * @return the absolute value of the argument. 1615 * @see Math#absExact(long) 1616 */ 1617 @IntrinsicCandidate abs(long a)1618 public static long abs(long a) { 1619 return (a < 0) ? -a : a; 1620 } 1621 1622 /** 1623 * Returns the mathematical absolute value of an {@code long} value 1624 * if it is exactly representable as an {@code long}, throwing 1625 * {@code ArithmeticException} if the result overflows the 1626 * positive {@code long} range. 1627 * 1628 * <p>Since the range of two's complement integers is asymmetric 1629 * with one additional negative value (JLS {@jls 4.2.1}), the 1630 * mathematical absolute value of {@link Long#MIN_VALUE} overflows 1631 * the positive {@code long} range, so an exception is thrown for 1632 * that argument. 1633 * 1634 * @param a the argument whose absolute value is to be determined 1635 * @return the absolute value of the argument, unless overflow occurs 1636 * @throws ArithmeticException if the argument is {@link Long#MIN_VALUE} 1637 * @see Math#abs(long) 1638 * @since 15 1639 */ absExact(long a)1640 public static long absExact(long a) { 1641 if (a == Long.MIN_VALUE) 1642 throw new ArithmeticException( 1643 "Overflow to represent absolute value of Long.MIN_VALUE"); 1644 else 1645 return abs(a); 1646 } 1647 1648 /** 1649 * Returns the absolute value of a {@code float} value. 1650 * If the argument is not negative, the argument is returned. 1651 * If the argument is negative, the negation of the argument is returned. 1652 * Special cases: 1653 * <ul><li>If the argument is positive zero or negative zero, the 1654 * result is positive zero. 1655 * <li>If the argument is infinite, the result is positive infinity. 1656 * <li>If the argument is NaN, the result is NaN.</ul> 1657 * 1658 * @apiNote As implied by the above, one valid implementation of 1659 * this method is given by the expression below which computes a 1660 * {@code float} with the same exponent and significand as the 1661 * argument but with a guaranteed zero sign bit indicating a 1662 * positive value:<br> 1663 * {@code Float.intBitsToFloat(0x7fffffff & Float.floatToRawIntBits(a))} 1664 * 1665 * @param a the argument whose absolute value is to be determined 1666 * @return the absolute value of the argument. 1667 */ 1668 @IntrinsicCandidate abs(float a)1669 public static float abs(float a) { 1670 // Android-changed: Implementation modified to exactly match ART intrinsics behavior. 1671 // Note, as a "quality of implementation", rather than pure "spec compliance", 1672 // we require that Math.abs() clears the sign bit (but changes nothing else) 1673 // for all numbers, including NaN (signaling NaN may become quiet though). 1674 // http://b/30758343 1675 // return (a <= 0.0F) ? 0.0F - a : a; 1676 return Float.intBitsToFloat(0x7fffffff & Float.floatToRawIntBits(a)); 1677 } 1678 1679 /** 1680 * Returns the absolute value of a {@code double} value. 1681 * If the argument is not negative, the argument is returned. 1682 * If the argument is negative, the negation of the argument is returned. 1683 * Special cases: 1684 * <ul><li>If the argument is positive zero or negative zero, the result 1685 * is positive zero. 1686 * <li>If the argument is infinite, the result is positive infinity. 1687 * <li>If the argument is NaN, the result is NaN.</ul> 1688 * 1689 * @apiNote As implied by the above, one valid implementation of 1690 * this method is given by the expression below which computes a 1691 * {@code double} with the same exponent and significand as the 1692 * argument but with a guaranteed zero sign bit indicating a 1693 * positive value:<br> 1694 * {@code Double.longBitsToDouble((Double.doubleToRawLongBits(a)<<1)>>>1)} 1695 * 1696 * @param a the argument whose absolute value is to be determined 1697 * @return the absolute value of the argument. 1698 */ 1699 @IntrinsicCandidate abs(double a)1700 public static double abs(double a) { 1701 // Android-changed: Implementation modified to exactly match ART intrinsics behavior. 1702 // Note, as a "quality of implementation", rather than pure "spec compliance", 1703 // we require that Math.abs() clears the sign bit (but changes nothing else) 1704 // for all numbers, including NaN (signaling NaN may become quiet though). 1705 // http://b/30758343 1706 // return (a <= 0.0D) ? 0.0D - a : a; 1707 return Double.longBitsToDouble(0x7fffffffffffffffL & Double.doubleToRawLongBits(a)); 1708 } 1709 1710 /** 1711 * Returns the greater of two {@code int} values. That is, the 1712 * result is the argument closer to the value of 1713 * {@link Integer#MAX_VALUE}. If the arguments have the same value, 1714 * the result is that same value. 1715 * 1716 * @param a an argument. 1717 * @param b another argument. 1718 * @return the larger of {@code a} and {@code b}. 1719 */ 1720 @IntrinsicCandidate max(int a, int b)1721 public static int max(int a, int b) { 1722 return (a >= b) ? a : b; 1723 } 1724 1725 /** 1726 * Returns the greater of two {@code long} values. That is, the 1727 * result is the argument closer to the value of 1728 * {@link Long#MAX_VALUE}. If the arguments have the same value, 1729 * the result is that same value. 1730 * 1731 * @param a an argument. 1732 * @param b another argument. 1733 * @return the larger of {@code a} and {@code b}. 1734 */ max(long a, long b)1735 public static long max(long a, long b) { 1736 return (a >= b) ? a : b; 1737 } 1738 1739 // Use raw bit-wise conversions on guaranteed non-NaN arguments. 1740 private static final long negativeZeroFloatBits = Float.floatToRawIntBits(-0.0f); 1741 private static final long negativeZeroDoubleBits = Double.doubleToRawLongBits(-0.0d); 1742 1743 /** 1744 * Returns the greater of two {@code float} values. That is, 1745 * the result is the argument closer to positive infinity. If the 1746 * arguments have the same value, the result is that same 1747 * value. If either value is NaN, then the result is NaN. Unlike 1748 * the numerical comparison operators, this method considers 1749 * negative zero to be strictly smaller than positive zero. If one 1750 * argument is positive zero and the other negative zero, the 1751 * result is positive zero. 1752 * 1753 * @param a an argument. 1754 * @param b another argument. 1755 * @return the larger of {@code a} and {@code b}. 1756 */ 1757 @IntrinsicCandidate max(float a, float b)1758 public static float max(float a, float b) { 1759 if (a != a) 1760 return a; // a is NaN 1761 if ((a == 0.0f) && 1762 (b == 0.0f) && 1763 (Float.floatToRawIntBits(a) == negativeZeroFloatBits)) { 1764 // Raw conversion ok since NaN can't map to -0.0. 1765 return b; 1766 } 1767 return (a >= b) ? a : b; 1768 } 1769 1770 /** 1771 * Returns the greater of two {@code double} values. That 1772 * is, the result is the argument closer to positive infinity. If 1773 * the arguments have the same value, the result is that same 1774 * value. If either value is NaN, then the result is NaN. Unlike 1775 * the numerical comparison operators, this method considers 1776 * negative zero to be strictly smaller than positive zero. If one 1777 * argument is positive zero and the other negative zero, the 1778 * result is positive zero. 1779 * 1780 * @param a an argument. 1781 * @param b another argument. 1782 * @return the larger of {@code a} and {@code b}. 1783 */ 1784 @IntrinsicCandidate max(double a, double b)1785 public static double max(double a, double b) { 1786 if (a != a) 1787 return a; // a is NaN 1788 if ((a == 0.0d) && 1789 (b == 0.0d) && 1790 (Double.doubleToRawLongBits(a) == negativeZeroDoubleBits)) { 1791 // Raw conversion ok since NaN can't map to -0.0. 1792 return b; 1793 } 1794 return (a >= b) ? a : b; 1795 } 1796 1797 /** 1798 * Returns the smaller of two {@code int} values. That is, 1799 * the result the argument closer to the value of 1800 * {@link Integer#MIN_VALUE}. If the arguments have the same 1801 * value, the result is that same value. 1802 * 1803 * @param a an argument. 1804 * @param b another argument. 1805 * @return the smaller of {@code a} and {@code b}. 1806 */ 1807 @IntrinsicCandidate min(int a, int b)1808 public static int min(int a, int b) { 1809 return (a <= b) ? a : b; 1810 } 1811 1812 /** 1813 * Returns the smaller of two {@code long} values. That is, 1814 * the result is the argument closer to the value of 1815 * {@link Long#MIN_VALUE}. If the arguments have the same 1816 * value, the result is that same value. 1817 * 1818 * @param a an argument. 1819 * @param b another argument. 1820 * @return the smaller of {@code a} and {@code b}. 1821 */ min(long a, long b)1822 public static long min(long a, long b) { 1823 return (a <= b) ? a : b; 1824 } 1825 1826 /** 1827 * Returns the smaller of two {@code float} values. That is, 1828 * the result is the value closer to negative infinity. If the 1829 * arguments have the same value, the result is that same 1830 * value. If either value is NaN, then the result is NaN. Unlike 1831 * the numerical comparison operators, this method considers 1832 * negative zero to be strictly smaller than positive zero. If 1833 * one argument is positive zero and the other is negative zero, 1834 * the result is negative zero. 1835 * 1836 * @param a an argument. 1837 * @param b another argument. 1838 * @return the smaller of {@code a} and {@code b}. 1839 */ 1840 @IntrinsicCandidate min(float a, float b)1841 public static float min(float a, float b) { 1842 if (a != a) 1843 return a; // a is NaN 1844 if ((a == 0.0f) && 1845 (b == 0.0f) && 1846 (Float.floatToRawIntBits(b) == negativeZeroFloatBits)) { 1847 // Raw conversion ok since NaN can't map to -0.0. 1848 return b; 1849 } 1850 return (a <= b) ? a : b; 1851 } 1852 1853 /** 1854 * Returns the smaller of two {@code double} values. That 1855 * is, the result is the value closer to negative infinity. If the 1856 * arguments have the same value, the result is that same 1857 * value. If either value is NaN, then the result is NaN. Unlike 1858 * the numerical comparison operators, this method considers 1859 * negative zero to be strictly smaller than positive zero. If one 1860 * argument is positive zero and the other is negative zero, the 1861 * result is negative zero. 1862 * 1863 * @param a an argument. 1864 * @param b another argument. 1865 * @return the smaller of {@code a} and {@code b}. 1866 */ 1867 @IntrinsicCandidate min(double a, double b)1868 public static double min(double a, double b) { 1869 if (a != a) 1870 return a; // a is NaN 1871 if ((a == 0.0d) && 1872 (b == 0.0d) && 1873 (Double.doubleToRawLongBits(b) == negativeZeroDoubleBits)) { 1874 // Raw conversion ok since NaN can't map to -0.0. 1875 return b; 1876 } 1877 return (a <= b) ? a : b; 1878 } 1879 1880 /** 1881 * Returns the fused multiply add of the three arguments; that is, 1882 * returns the exact product of the first two arguments summed 1883 * with the third argument and then rounded once to the nearest 1884 * {@code double}. 1885 * 1886 * The rounding is done using the {@linkplain 1887 * java.math.RoundingMode#HALF_EVEN round to nearest even 1888 * rounding mode}. 1889 * 1890 * In contrast, if {@code a * b + c} is evaluated as a regular 1891 * floating-point expression, two rounding errors are involved, 1892 * the first for the multiply operation, the second for the 1893 * addition operation. 1894 * 1895 * <p>Special cases: 1896 * <ul> 1897 * <li> If any argument is NaN, the result is NaN. 1898 * 1899 * <li> If one of the first two arguments is infinite and the 1900 * other is zero, the result is NaN. 1901 * 1902 * <li> If the exact product of the first two arguments is infinite 1903 * (in other words, at least one of the arguments is infinite and 1904 * the other is neither zero nor NaN) and the third argument is an 1905 * infinity of the opposite sign, the result is NaN. 1906 * 1907 * </ul> 1908 * 1909 * <p>Note that {@code fma(a, 1.0, c)} returns the same 1910 * result as ({@code a + c}). However, 1911 * {@code fma(a, b, +0.0)} does <em>not</em> always return the 1912 * same result as ({@code a * b}) since 1913 * {@code fma(-0.0, +0.0, +0.0)} is {@code +0.0} while 1914 * ({@code -0.0 * +0.0}) is {@code -0.0}; {@code fma(a, b, -0.0)} is 1915 * equivalent to ({@code a * b}) however. 1916 * 1917 * @apiNote This method corresponds to the fusedMultiplyAdd 1918 * operation defined in IEEE 754-2008. 1919 * 1920 * @param a a value 1921 * @param b a value 1922 * @param c a value 1923 * 1924 * @return (<i>a</i> × <i>b</i> + <i>c</i>) 1925 * computed, as if with unlimited range and precision, and rounded 1926 * once to the nearest {@code double} value 1927 * 1928 * @since 9 1929 */ 1930 @IntrinsicCandidate fma(double a, double b, double c)1931 public static double fma(double a, double b, double c) { 1932 /* 1933 * Infinity and NaN arithmetic is not quite the same with two 1934 * roundings as opposed to just one so the simple expression 1935 * "a * b + c" cannot always be used to compute the correct 1936 * result. With two roundings, the product can overflow and 1937 * if the addend is infinite, a spurious NaN can be produced 1938 * if the infinity from the overflow and the infinite addend 1939 * have opposite signs. 1940 */ 1941 1942 // First, screen for and handle non-finite input values whose 1943 // arithmetic is not supported by BigDecimal. 1944 if (Double.isNaN(a) || Double.isNaN(b) || Double.isNaN(c)) { 1945 return Double.NaN; 1946 } else { // All inputs non-NaN 1947 boolean infiniteA = Double.isInfinite(a); 1948 boolean infiniteB = Double.isInfinite(b); 1949 boolean infiniteC = Double.isInfinite(c); 1950 double result; 1951 1952 if (infiniteA || infiniteB || infiniteC) { 1953 if (infiniteA && b == 0.0 || 1954 infiniteB && a == 0.0 ) { 1955 return Double.NaN; 1956 } 1957 // Store product in a double field to cause an 1958 // overflow even if non-strictfp evaluation is being 1959 // used. 1960 double product = a * b; 1961 if (Double.isInfinite(product) && !infiniteA && !infiniteB) { 1962 // Intermediate overflow; might cause a 1963 // spurious NaN if added to infinite c. 1964 assert Double.isInfinite(c); 1965 return c; 1966 } else { 1967 result = product + c; 1968 assert !Double.isFinite(result); 1969 return result; 1970 } 1971 } else { // All inputs finite 1972 BigDecimal product = (new BigDecimal(a)).multiply(new BigDecimal(b)); 1973 if (c == 0.0) { // Positive or negative zero 1974 // If the product is an exact zero, use a 1975 // floating-point expression to compute the sign 1976 // of the zero final result. The product is an 1977 // exact zero if and only if at least one of a and 1978 // b is zero. 1979 if (a == 0.0 || b == 0.0) { 1980 return a * b + c; 1981 } else { 1982 // The sign of a zero addend doesn't matter if 1983 // the product is nonzero. The sign of a zero 1984 // addend is not factored in the result if the 1985 // exact product is nonzero but underflows to 1986 // zero; see IEEE-754 2008 section 6.3 "The 1987 // sign bit". 1988 return product.doubleValue(); 1989 } 1990 } else { 1991 return product.add(new BigDecimal(c)).doubleValue(); 1992 } 1993 } 1994 } 1995 } 1996 1997 /** 1998 * Returns the fused multiply add of the three arguments; that is, 1999 * returns the exact product of the first two arguments summed 2000 * with the third argument and then rounded once to the nearest 2001 * {@code float}. 2002 * 2003 * The rounding is done using the {@linkplain 2004 * java.math.RoundingMode#HALF_EVEN round to nearest even 2005 * rounding mode}. 2006 * 2007 * In contrast, if {@code a * b + c} is evaluated as a regular 2008 * floating-point expression, two rounding errors are involved, 2009 * the first for the multiply operation, the second for the 2010 * addition operation. 2011 * 2012 * <p>Special cases: 2013 * <ul> 2014 * <li> If any argument is NaN, the result is NaN. 2015 * 2016 * <li> If one of the first two arguments is infinite and the 2017 * other is zero, the result is NaN. 2018 * 2019 * <li> If the exact product of the first two arguments is infinite 2020 * (in other words, at least one of the arguments is infinite and 2021 * the other is neither zero nor NaN) and the third argument is an 2022 * infinity of the opposite sign, the result is NaN. 2023 * 2024 * </ul> 2025 * 2026 * <p>Note that {@code fma(a, 1.0f, c)} returns the same 2027 * result as ({@code a + c}). However, 2028 * {@code fma(a, b, +0.0f)} does <em>not</em> always return the 2029 * same result as ({@code a * b}) since 2030 * {@code fma(-0.0f, +0.0f, +0.0f)} is {@code +0.0f} while 2031 * ({@code -0.0f * +0.0f}) is {@code -0.0f}; {@code fma(a, b, -0.0f)} is 2032 * equivalent to ({@code a * b}) however. 2033 * 2034 * @apiNote This method corresponds to the fusedMultiplyAdd 2035 * operation defined in IEEE 754-2008. 2036 * 2037 * @param a a value 2038 * @param b a value 2039 * @param c a value 2040 * 2041 * @return (<i>a</i> × <i>b</i> + <i>c</i>) 2042 * computed, as if with unlimited range and precision, and rounded 2043 * once to the nearest {@code float} value 2044 * 2045 * @since 9 2046 */ 2047 @IntrinsicCandidate fma(float a, float b, float c)2048 public static float fma(float a, float b, float c) { 2049 if (Float.isFinite(a) && Float.isFinite(b) && Float.isFinite(c)) { 2050 if (a == 0.0 || b == 0.0) { 2051 return a * b + c; // Handled signed zero cases 2052 } else { 2053 return (new BigDecimal((double)a * (double)b) // Exact multiply 2054 .add(new BigDecimal((double)c))) // Exact sum 2055 .floatValue(); // One rounding 2056 // to a float value 2057 } 2058 } else { 2059 // At least one of a,b, and c is non-finite. The result 2060 // will be non-finite as well and will be the same 2061 // non-finite value under double as float arithmetic. 2062 return (float)fma((double)a, (double)b, (double)c); 2063 } 2064 } 2065 2066 /** 2067 * Returns the size of an ulp of the argument. An ulp, unit in 2068 * the last place, of a {@code double} value is the positive 2069 * distance between this floating-point value and the {@code 2070 * double} value next larger in magnitude. Note that for non-NaN 2071 * <i>x</i>, <code>ulp(-<i>x</i>) == ulp(<i>x</i>)</code>. 2072 * 2073 * <p>Special Cases: 2074 * <ul> 2075 * <li> If the argument is NaN, then the result is NaN. 2076 * <li> If the argument is positive or negative infinity, then the 2077 * result is positive infinity. 2078 * <li> If the argument is positive or negative zero, then the result is 2079 * {@code Double.MIN_VALUE}. 2080 * <li> If the argument is ±{@code Double.MAX_VALUE}, then 2081 * the result is equal to 2<sup>971</sup>. 2082 * </ul> 2083 * 2084 * @param d the floating-point value whose ulp is to be returned 2085 * @return the size of an ulp of the argument 2086 * @author Joseph D. Darcy 2087 * @since 1.5 2088 */ ulp(double d)2089 public static double ulp(double d) { 2090 int exp = getExponent(d); 2091 2092 return switch(exp) { 2093 case Double.MAX_EXPONENT + 1 -> Math.abs(d); // NaN or infinity 2094 case Double.MIN_EXPONENT - 1 -> Double.MIN_VALUE; // zero or subnormal 2095 default -> { 2096 assert exp <= Double.MAX_EXPONENT && exp >= Double.MIN_EXPONENT; 2097 2098 // ulp(x) is usually 2^(SIGNIFICAND_WIDTH-1)*(2^ilogb(x)) 2099 exp = exp - (DoubleConsts.SIGNIFICAND_WIDTH - 1); 2100 if (exp >= Double.MIN_EXPONENT) { 2101 yield powerOfTwoD(exp); 2102 } else { 2103 // return a subnormal result; left shift integer 2104 // representation of Double.MIN_VALUE appropriate 2105 // number of positions 2106 yield Double.longBitsToDouble(1L << 2107 (exp - (Double.MIN_EXPONENT - (DoubleConsts.SIGNIFICAND_WIDTH - 1)))); 2108 } 2109 } 2110 }; 2111 } 2112 2113 /** 2114 * Returns the size of an ulp of the argument. An ulp, unit in 2115 * the last place, of a {@code float} value is the positive 2116 * distance between this floating-point value and the {@code 2117 * float} value next larger in magnitude. Note that for non-NaN 2118 * <i>x</i>, <code>ulp(-<i>x</i>) == ulp(<i>x</i>)</code>. 2119 * 2120 * <p>Special Cases: 2121 * <ul> 2122 * <li> If the argument is NaN, then the result is NaN. 2123 * <li> If the argument is positive or negative infinity, then the 2124 * result is positive infinity. 2125 * <li> If the argument is positive or negative zero, then the result is 2126 * {@code Float.MIN_VALUE}. 2127 * <li> If the argument is ±{@code Float.MAX_VALUE}, then 2128 * the result is equal to 2<sup>104</sup>. 2129 * </ul> 2130 * 2131 * @param f the floating-point value whose ulp is to be returned 2132 * @return the size of an ulp of the argument 2133 * @author Joseph D. Darcy 2134 * @since 1.5 2135 */ ulp(float f)2136 public static float ulp(float f) { 2137 int exp = getExponent(f); 2138 2139 return switch(exp) { 2140 case Float.MAX_EXPONENT + 1 -> Math.abs(f); // NaN or infinity 2141 case Float.MIN_EXPONENT - 1 -> Float.MIN_VALUE; // zero or subnormal 2142 default -> { 2143 assert exp <= Float.MAX_EXPONENT && exp >= Float.MIN_EXPONENT; 2144 2145 // ulp(x) is usually 2^(SIGNIFICAND_WIDTH-1)*(2^ilogb(x)) 2146 exp = exp - (FloatConsts.SIGNIFICAND_WIDTH - 1); 2147 if (exp >= Float.MIN_EXPONENT) { 2148 yield powerOfTwoF(exp); 2149 } else { 2150 // return a subnormal result; left shift integer 2151 // representation of FloatConsts.MIN_VALUE appropriate 2152 // number of positions 2153 yield Float.intBitsToFloat(1 << 2154 (exp - (Float.MIN_EXPONENT - (FloatConsts.SIGNIFICAND_WIDTH - 1)))); 2155 } 2156 } 2157 }; 2158 } 2159 2160 /** 2161 * Returns the signum function of the argument; zero if the argument 2162 * is zero, 1.0 if the argument is greater than zero, -1.0 if the 2163 * argument is less than zero. 2164 * 2165 * <p>Special Cases: 2166 * <ul> 2167 * <li> If the argument is NaN, then the result is NaN. 2168 * <li> If the argument is positive zero or negative zero, then the 2169 * result is the same as the argument. 2170 * </ul> 2171 * 2172 * @param d the floating-point value whose signum is to be returned 2173 * @return the signum function of the argument 2174 * @author Joseph D. Darcy 2175 * @since 1.5 2176 */ 2177 @IntrinsicCandidate 2178 public static double signum(double d) { 2179 return (d == 0.0 || Double.isNaN(d))?d:copySign(1.0, d); 2180 } 2181 2182 /** 2183 * Returns the signum function of the argument; zero if the argument 2184 * is zero, 1.0f if the argument is greater than zero, -1.0f if the 2185 * argument is less than zero. 2186 * 2187 * <p>Special Cases: 2188 * <ul> 2189 * <li> If the argument is NaN, then the result is NaN. 2190 * <li> If the argument is positive zero or negative zero, then the 2191 * result is the same as the argument. 2192 * </ul> 2193 * 2194 * @param f the floating-point value whose signum is to be returned 2195 * @return the signum function of the argument 2196 * @author Joseph D. Darcy 2197 * @since 1.5 2198 */ 2199 @IntrinsicCandidate 2200 public static float signum(float f) { 2201 return (f == 0.0f || Float.isNaN(f))?f:copySign(1.0f, f); 2202 } 2203 2204 /** 2205 * Returns the hyperbolic sine of a {@code double} value. 2206 * The hyperbolic sine of <i>x</i> is defined to be 2207 * (<i>e<sup>x</sup> - e<sup>-x</sup></i>)/2 2208 * where <i>e</i> is {@linkplain Math#E Euler's number}. 2209 * 2210 * <p>Special cases: 2211 * <ul> 2212 * 2213 * <li>If the argument is NaN, then the result is NaN. 2214 * 2215 * <li>If the argument is infinite, then the result is an infinity 2216 * with the same sign as the argument. 2217 * 2218 * <li>If the argument is zero, then the result is a zero with the 2219 * same sign as the argument. 2220 * 2221 * </ul> 2222 * 2223 * <p>The computed result must be within 2.5 ulps of the exact result. 2224 * 2225 * @param x The number whose hyperbolic sine is to be returned. 2226 * @return The hyperbolic sine of {@code x}. 2227 * @since 1.5 2228 */ 2229 // BEGIN Android-changed: Reimplement in native 2230 /* 2231 public static double sinh(double x) { 2232 return StrictMath.sinh(x); 2233 } 2234 */ 2235 // END Android-changed: Reimplement in native 2236 @CriticalNative 2237 public static native double sinh(double x); 2238 2239 /** 2240 * Returns the hyperbolic cosine of a {@code double} value. 2241 * The hyperbolic cosine of <i>x</i> is defined to be 2242 * (<i>e<sup>x</sup> + e<sup>-x</sup></i>)/2 2243 * where <i>e</i> is {@linkplain Math#E Euler's number}. 2244 * 2245 * <p>Special cases: 2246 * <ul> 2247 * 2248 * <li>If the argument is NaN, then the result is NaN. 2249 * 2250 * <li>If the argument is infinite, then the result is positive 2251 * infinity. 2252 * 2253 * <li>If the argument is zero, then the result is {@code 1.0}. 2254 * 2255 * </ul> 2256 * 2257 * <p>The computed result must be within 2.5 ulps of the exact result. 2258 * 2259 * @param x The number whose hyperbolic cosine is to be returned. 2260 * @return The hyperbolic cosine of {@code x}. 2261 * @since 1.5 2262 */ 2263 // BEGIN Android-changed: Reimplement in native 2264 /* 2265 public static double cosh(double x) { 2266 return StrictMath.cosh(x); 2267 } 2268 */ 2269 // END Android-changed: Reimplement in native 2270 @CriticalNative 2271 public static native double cosh(double x); 2272 2273 /** 2274 * Returns the hyperbolic tangent of a {@code double} value. 2275 * The hyperbolic tangent of <i>x</i> is defined to be 2276 * (<i>e<sup>x</sup> - e<sup>-x</sup></i>)/(<i>e<sup>x</sup> + e<sup>-x</sup></i>), 2277 * in other words, {@linkplain Math#sinh 2278 * sinh(<i>x</i>)}/{@linkplain Math#cosh cosh(<i>x</i>)}. Note 2279 * that the absolute value of the exact tanh is always less than 2280 * 1. 2281 * 2282 * <p>Special cases: 2283 * <ul> 2284 * 2285 * <li>If the argument is NaN, then the result is NaN. 2286 * 2287 * <li>If the argument is zero, then the result is a zero with the 2288 * same sign as the argument. 2289 * 2290 * <li>If the argument is positive infinity, then the result is 2291 * {@code +1.0}. 2292 * 2293 * <li>If the argument is negative infinity, then the result is 2294 * {@code -1.0}. 2295 * 2296 * </ul> 2297 * 2298 * <p>The computed result must be within 2.5 ulps of the exact result. 2299 * The result of {@code tanh} for any finite input must have 2300 * an absolute value less than or equal to 1. Note that once the 2301 * exact result of tanh is within 1/2 of an ulp of the limit value 2302 * of ±1, correctly signed ±{@code 1.0} should 2303 * be returned. 2304 * 2305 * @param x The number whose hyperbolic tangent is to be returned. 2306 * @return The hyperbolic tangent of {@code x}. 2307 * @since 1.5 2308 */ 2309 // BEGIN Android-changed: Reimplement in native 2310 /* 2311 public static double tanh(double x) { 2312 return StrictMath.tanh(x); 2313 } 2314 */ 2315 // END Android-changed: Reimplement in native 2316 @CriticalNative 2317 public static native double tanh(double x); 2318 2319 /** 2320 * Returns sqrt(<i>x</i><sup>2</sup> +<i>y</i><sup>2</sup>) 2321 * without intermediate overflow or underflow. 2322 * 2323 * <p>Special cases: 2324 * <ul> 2325 * 2326 * <li> If either argument is infinite, then the result 2327 * is positive infinity. 2328 * 2329 * <li> If either argument is NaN and neither argument is infinite, 2330 * then the result is NaN. 2331 * 2332 * <li> If both arguments are zero, the result is positive zero. 2333 * </ul> 2334 * 2335 * <p>The computed result must be within 1 ulp of the exact 2336 * result. If one parameter is held constant, the results must be 2337 * semi-monotonic in the other parameter. 2338 * 2339 * @param x a value 2340 * @param y a value 2341 * @return sqrt(<i>x</i><sup>2</sup> +<i>y</i><sup>2</sup>) 2342 * without intermediate overflow or underflow 2343 * @since 1.5 2344 */ 2345 // BEGIN Android-changed: Reimplement in native 2346 /* 2347 public static double hypot(double x, double y) { 2348 return StrictMath.hypot(x, y); 2349 } 2350 */ 2351 // END Android-changed: Reimplement in native 2352 @CriticalNative 2353 public static native double hypot(double x, double y); 2354 2355 /** 2356 * Returns <i>e</i><sup>x</sup> -1. Note that for values of 2357 * <i>x</i> near 0, the exact sum of 2358 * {@code expm1(x)} + 1 is much closer to the true 2359 * result of <i>e</i><sup>x</sup> than {@code exp(x)}. 2360 * 2361 * <p>Special cases: 2362 * <ul> 2363 * <li>If the argument is NaN, the result is NaN. 2364 * 2365 * <li>If the argument is positive infinity, then the result is 2366 * positive infinity. 2367 * 2368 * <li>If the argument is negative infinity, then the result is 2369 * -1.0. 2370 * 2371 * <li>If the argument is zero, then the result is a zero with the 2372 * same sign as the argument. 2373 * 2374 * </ul> 2375 * 2376 * <p>The computed result must be within 1 ulp of the exact result. 2377 * Results must be semi-monotonic. The result of 2378 * {@code expm1} for any finite input must be greater than or 2379 * equal to {@code -1.0}. Note that once the exact result of 2380 * <i>e</i><sup>{@code x}</sup> - 1 is within 1/2 2381 * ulp of the limit value -1, {@code -1.0} should be 2382 * returned. 2383 * 2384 * @param x the exponent to raise <i>e</i> to in the computation of 2385 * <i>e</i><sup>{@code x}</sup> -1. 2386 * @return the value <i>e</i><sup>{@code x}</sup> - 1. 2387 * @since 1.5 2388 */ 2389 // BEGIN Android-changed: Reimplement in native 2390 /* 2391 public static double expm1(double x) { 2392 return StrictMath.expm1(x); 2393 } 2394 */ 2395 // END Android-changed: Reimplement in native 2396 @CriticalNative 2397 public static native double expm1(double x); 2398 2399 /** 2400 * Returns the natural logarithm of the sum of the argument and 1. 2401 * Note that for small values {@code x}, the result of 2402 * {@code log1p(x)} is much closer to the true result of ln(1 2403 * + {@code x}) than the floating-point evaluation of 2404 * {@code log(1.0+x)}. 2405 * 2406 * <p>Special cases: 2407 * 2408 * <ul> 2409 * 2410 * <li>If the argument is NaN or less than -1, then the result is 2411 * NaN. 2412 * 2413 * <li>If the argument is positive infinity, then the result is 2414 * positive infinity. 2415 * 2416 * <li>If the argument is negative one, then the result is 2417 * negative infinity. 2418 * 2419 * <li>If the argument is zero, then the result is a zero with the 2420 * same sign as the argument. 2421 * 2422 * </ul> 2423 * 2424 * <p>The computed result must be within 1 ulp of the exact result. 2425 * Results must be semi-monotonic. 2426 * 2427 * @param x a value 2428 * @return the value ln({@code x} + 1), the natural 2429 * log of {@code x} + 1 2430 * @since 1.5 2431 */ 2432 // BEGIN Android-changed: Reimplement in native 2433 /* 2434 public static double log1p(double x) { 2435 return StrictMath.log1p(x); 2436 } 2437 */ 2438 // END Android-changed: Reimplement in native 2439 @CriticalNative 2440 public static native double log1p(double x); 2441 2442 /** 2443 * Returns the first floating-point argument with the sign of the 2444 * second floating-point argument. Note that unlike the {@link 2445 * StrictMath#copySign(double, double) StrictMath.copySign} 2446 * method, this method does not require NaN {@code sign} 2447 * arguments to be treated as positive values; implementations are 2448 * permitted to treat some NaN arguments as positive and other NaN 2449 * arguments as negative to allow greater performance. 2450 * 2451 * @param magnitude the parameter providing the magnitude of the result 2452 * @param sign the parameter providing the sign of the result 2453 * @return a value with the magnitude of {@code magnitude} 2454 * and the sign of {@code sign}. 2455 * @since 1.6 2456 */ 2457 @IntrinsicCandidate 2458 public static double copySign(double magnitude, double sign) { 2459 return Double.longBitsToDouble((Double.doubleToRawLongBits(sign) & 2460 (DoubleConsts.SIGN_BIT_MASK)) | 2461 (Double.doubleToRawLongBits(magnitude) & 2462 (DoubleConsts.EXP_BIT_MASK | 2463 DoubleConsts.SIGNIF_BIT_MASK))); 2464 } 2465 2466 /** 2467 * Returns the first floating-point argument with the sign of the 2468 * second floating-point argument. Note that unlike the {@link 2469 * StrictMath#copySign(float, float) StrictMath.copySign} 2470 * method, this method does not require NaN {@code sign} 2471 * arguments to be treated as positive values; implementations are 2472 * permitted to treat some NaN arguments as positive and other NaN 2473 * arguments as negative to allow greater performance. 2474 * 2475 * @param magnitude the parameter providing the magnitude of the result 2476 * @param sign the parameter providing the sign of the result 2477 * @return a value with the magnitude of {@code magnitude} 2478 * and the sign of {@code sign}. 2479 * @since 1.6 2480 */ 2481 @IntrinsicCandidate 2482 public static float copySign(float magnitude, float sign) { 2483 return Float.intBitsToFloat((Float.floatToRawIntBits(sign) & 2484 (FloatConsts.SIGN_BIT_MASK)) | 2485 (Float.floatToRawIntBits(magnitude) & 2486 (FloatConsts.EXP_BIT_MASK | 2487 FloatConsts.SIGNIF_BIT_MASK))); 2488 } 2489 2490 /** 2491 * Returns the unbiased exponent used in the representation of a 2492 * {@code float}. Special cases: 2493 * 2494 * <ul> 2495 * <li>If the argument is NaN or infinite, then the result is 2496 * {@link Float#MAX_EXPONENT} + 1. 2497 * <li>If the argument is zero or subnormal, then the result is 2498 * {@link Float#MIN_EXPONENT} -1. 2499 * </ul> 2500 * @param f a {@code float} value 2501 * @return the unbiased exponent of the argument 2502 * @since 1.6 2503 */ 2504 public static int getExponent(float f) { 2505 /* 2506 * Bitwise convert f to integer, mask out exponent bits, shift 2507 * to the right and then subtract out float's bias adjust to 2508 * get true exponent value 2509 */ 2510 return ((Float.floatToRawIntBits(f) & FloatConsts.EXP_BIT_MASK) >> 2511 (FloatConsts.SIGNIFICAND_WIDTH - 1)) - FloatConsts.EXP_BIAS; 2512 } 2513 2514 /** 2515 * Returns the unbiased exponent used in the representation of a 2516 * {@code double}. Special cases: 2517 * 2518 * <ul> 2519 * <li>If the argument is NaN or infinite, then the result is 2520 * {@link Double#MAX_EXPONENT} + 1. 2521 * <li>If the argument is zero or subnormal, then the result is 2522 * {@link Double#MIN_EXPONENT} -1. 2523 * </ul> 2524 * @param d a {@code double} value 2525 * @return the unbiased exponent of the argument 2526 * @since 1.6 2527 */ 2528 public static int getExponent(double d) { 2529 /* 2530 * Bitwise convert d to long, mask out exponent bits, shift 2531 * to the right and then subtract out double's bias adjust to 2532 * get true exponent value. 2533 */ 2534 return (int)(((Double.doubleToRawLongBits(d) & DoubleConsts.EXP_BIT_MASK) >> 2535 (DoubleConsts.SIGNIFICAND_WIDTH - 1)) - DoubleConsts.EXP_BIAS); 2536 } 2537 2538 /** 2539 * Returns the floating-point number adjacent to the first 2540 * argument in the direction of the second argument. If both 2541 * arguments compare as equal the second argument is returned. 2542 * 2543 * <p> 2544 * Special cases: 2545 * <ul> 2546 * <li> If either argument is a NaN, then NaN is returned. 2547 * 2548 * <li> If both arguments are signed zeros, {@code direction} 2549 * is returned unchanged (as implied by the requirement of 2550 * returning the second argument if the arguments compare as 2551 * equal). 2552 * 2553 * <li> If {@code start} is 2554 * ±{@link Double#MIN_VALUE} and {@code direction} 2555 * has a value such that the result should have a smaller 2556 * magnitude, then a zero with the same sign as {@code start} 2557 * is returned. 2558 * 2559 * <li> If {@code start} is infinite and 2560 * {@code direction} has a value such that the result should 2561 * have a smaller magnitude, {@link Double#MAX_VALUE} with the 2562 * same sign as {@code start} is returned. 2563 * 2564 * <li> If {@code start} is equal to ± 2565 * {@link Double#MAX_VALUE} and {@code direction} has a 2566 * value such that the result should have a larger magnitude, an 2567 * infinity with same sign as {@code start} is returned. 2568 * </ul> 2569 * 2570 * @param start starting floating-point value 2571 * @param direction value indicating which of 2572 * {@code start}'s neighbors or {@code start} should 2573 * be returned 2574 * @return The floating-point number adjacent to {@code start} in the 2575 * direction of {@code direction}. 2576 * @since 1.6 2577 */ 2578 public static double nextAfter(double start, double direction) { 2579 /* 2580 * The cases: 2581 * 2582 * nextAfter(+infinity, 0) == MAX_VALUE 2583 * nextAfter(+infinity, +infinity) == +infinity 2584 * nextAfter(-infinity, 0) == -MAX_VALUE 2585 * nextAfter(-infinity, -infinity) == -infinity 2586 * 2587 * are naturally handled without any additional testing 2588 */ 2589 2590 /* 2591 * IEEE 754 floating-point numbers are lexicographically 2592 * ordered if treated as signed-magnitude integers. 2593 * Since Java's integers are two's complement, 2594 * incrementing the two's complement representation of a 2595 * logically negative floating-point value *decrements* 2596 * the signed-magnitude representation. Therefore, when 2597 * the integer representation of a floating-point value 2598 * is negative, the adjustment to the representation is in 2599 * the opposite direction from what would initially be expected. 2600 */ 2601 2602 // Branch to descending case first as it is more costly than ascending 2603 // case due to start != 0.0d conditional. 2604 if (start > direction) { // descending 2605 if (start != 0.0d) { 2606 final long transducer = Double.doubleToRawLongBits(start); 2607 return Double.longBitsToDouble(transducer + ((transducer > 0L) ? -1L : 1L)); 2608 } else { // start == 0.0d && direction < 0.0d 2609 return -Double.MIN_VALUE; 2610 } 2611 } else if (start < direction) { // ascending 2612 // Add +0.0 to get rid of a -0.0 (+0.0 + -0.0 => +0.0) 2613 // then bitwise convert start to integer. 2614 final long transducer = Double.doubleToRawLongBits(start + 0.0d); 2615 return Double.longBitsToDouble(transducer + ((transducer >= 0L) ? 1L : -1L)); 2616 } else if (start == direction) { 2617 return direction; 2618 } else { // isNaN(start) || isNaN(direction) 2619 return start + direction; 2620 } 2621 } 2622 2623 /** 2624 * Returns the floating-point number adjacent to the first 2625 * argument in the direction of the second argument. If both 2626 * arguments compare as equal a value equivalent to the second argument 2627 * is returned. 2628 * 2629 * <p> 2630 * Special cases: 2631 * <ul> 2632 * <li> If either argument is a NaN, then NaN is returned. 2633 * 2634 * <li> If both arguments are signed zeros, a value equivalent 2635 * to {@code direction} is returned. 2636 * 2637 * <li> If {@code start} is 2638 * ±{@link Float#MIN_VALUE} and {@code direction} 2639 * has a value such that the result should have a smaller 2640 * magnitude, then a zero with the same sign as {@code start} 2641 * is returned. 2642 * 2643 * <li> If {@code start} is infinite and 2644 * {@code direction} has a value such that the result should 2645 * have a smaller magnitude, {@link Float#MAX_VALUE} with the 2646 * same sign as {@code start} is returned. 2647 * 2648 * <li> If {@code start} is equal to ± 2649 * {@link Float#MAX_VALUE} and {@code direction} has a 2650 * value such that the result should have a larger magnitude, an 2651 * infinity with same sign as {@code start} is returned. 2652 * </ul> 2653 * 2654 * @param start starting floating-point value 2655 * @param direction value indicating which of 2656 * {@code start}'s neighbors or {@code start} should 2657 * be returned 2658 * @return The floating-point number adjacent to {@code start} in the 2659 * direction of {@code direction}. 2660 * @since 1.6 2661 */ 2662 public static float nextAfter(float start, double direction) { 2663 /* 2664 * The cases: 2665 * 2666 * nextAfter(+infinity, 0) == MAX_VALUE 2667 * nextAfter(+infinity, +infinity) == +infinity 2668 * nextAfter(-infinity, 0) == -MAX_VALUE 2669 * nextAfter(-infinity, -infinity) == -infinity 2670 * 2671 * are naturally handled without any additional testing 2672 */ 2673 2674 /* 2675 * IEEE 754 floating-point numbers are lexicographically 2676 * ordered if treated as signed-magnitude integers. 2677 * Since Java's integers are two's complement, 2678 * incrementing the two's complement representation of a 2679 * logically negative floating-point value *decrements* 2680 * the signed-magnitude representation. Therefore, when 2681 * the integer representation of a floating-point value 2682 * is negative, the adjustment to the representation is in 2683 * the opposite direction from what would initially be expected. 2684 */ 2685 2686 // Branch to descending case first as it is more costly than ascending 2687 // case due to start != 0.0f conditional. 2688 if (start > direction) { // descending 2689 if (start != 0.0f) { 2690 final int transducer = Float.floatToRawIntBits(start); 2691 return Float.intBitsToFloat(transducer + ((transducer > 0) ? -1 : 1)); 2692 } else { // start == 0.0f && direction < 0.0f 2693 return -Float.MIN_VALUE; 2694 } 2695 } else if (start < direction) { // ascending 2696 // Add +0.0 to get rid of a -0.0 (+0.0 + -0.0 => +0.0) 2697 // then bitwise convert start to integer. 2698 final int transducer = Float.floatToRawIntBits(start + 0.0f); 2699 return Float.intBitsToFloat(transducer + ((transducer >= 0) ? 1 : -1)); 2700 } else if (start == direction) { 2701 return (float)direction; 2702 } else { // isNaN(start) || isNaN(direction) 2703 return start + (float)direction; 2704 } 2705 } 2706 2707 /** 2708 * Returns the floating-point value adjacent to {@code d} in 2709 * the direction of positive infinity. This method is 2710 * semantically equivalent to {@code nextAfter(d, 2711 * Double.POSITIVE_INFINITY)}; however, a {@code nextUp} 2712 * implementation may run faster than its equivalent 2713 * {@code nextAfter} call. 2714 * 2715 * <p>Special Cases: 2716 * <ul> 2717 * <li> If the argument is NaN, the result is NaN. 2718 * 2719 * <li> If the argument is positive infinity, the result is 2720 * positive infinity. 2721 * 2722 * <li> If the argument is zero, the result is 2723 * {@link Double#MIN_VALUE} 2724 * 2725 * </ul> 2726 * 2727 * @param d starting floating-point value 2728 * @return The adjacent floating-point value closer to positive 2729 * infinity. 2730 * @since 1.6 2731 */ 2732 public static double nextUp(double d) { 2733 // Use a single conditional and handle the likely cases first. 2734 if (d < Double.POSITIVE_INFINITY) { 2735 // Add +0.0 to get rid of a -0.0 (+0.0 + -0.0 => +0.0). 2736 final long transducer = Double.doubleToRawLongBits(d + 0.0D); 2737 return Double.longBitsToDouble(transducer + ((transducer >= 0L) ? 1L : -1L)); 2738 } else { // d is NaN or +Infinity 2739 return d; 2740 } 2741 } 2742 2743 /** 2744 * Returns the floating-point value adjacent to {@code f} in 2745 * the direction of positive infinity. This method is 2746 * semantically equivalent to {@code nextAfter(f, 2747 * Float.POSITIVE_INFINITY)}; however, a {@code nextUp} 2748 * implementation may run faster than its equivalent 2749 * {@code nextAfter} call. 2750 * 2751 * <p>Special Cases: 2752 * <ul> 2753 * <li> If the argument is NaN, the result is NaN. 2754 * 2755 * <li> If the argument is positive infinity, the result is 2756 * positive infinity. 2757 * 2758 * <li> If the argument is zero, the result is 2759 * {@link Float#MIN_VALUE} 2760 * 2761 * </ul> 2762 * 2763 * @param f starting floating-point value 2764 * @return The adjacent floating-point value closer to positive 2765 * infinity. 2766 * @since 1.6 2767 */ 2768 public static float nextUp(float f) { 2769 // Use a single conditional and handle the likely cases first. 2770 if (f < Float.POSITIVE_INFINITY) { 2771 // Add +0.0 to get rid of a -0.0 (+0.0 + -0.0 => +0.0). 2772 final int transducer = Float.floatToRawIntBits(f + 0.0F); 2773 return Float.intBitsToFloat(transducer + ((transducer >= 0) ? 1 : -1)); 2774 } else { // f is NaN or +Infinity 2775 return f; 2776 } 2777 } 2778 2779 /** 2780 * Returns the floating-point value adjacent to {@code d} in 2781 * the direction of negative infinity. This method is 2782 * semantically equivalent to {@code nextAfter(d, 2783 * Double.NEGATIVE_INFINITY)}; however, a 2784 * {@code nextDown} implementation may run faster than its 2785 * equivalent {@code nextAfter} call. 2786 * 2787 * <p>Special Cases: 2788 * <ul> 2789 * <li> If the argument is NaN, the result is NaN. 2790 * 2791 * <li> If the argument is negative infinity, the result is 2792 * negative infinity. 2793 * 2794 * <li> If the argument is zero, the result is 2795 * {@code -Double.MIN_VALUE} 2796 * 2797 * </ul> 2798 * 2799 * @param d starting floating-point value 2800 * @return The adjacent floating-point value closer to negative 2801 * infinity. 2802 * @since 1.8 2803 */ 2804 public static double nextDown(double d) { 2805 if (Double.isNaN(d) || d == Double.NEGATIVE_INFINITY) 2806 return d; 2807 else { 2808 if (d == 0.0) 2809 return -Double.MIN_VALUE; 2810 else 2811 return Double.longBitsToDouble(Double.doubleToRawLongBits(d) + 2812 ((d > 0.0d)?-1L:+1L)); 2813 } 2814 } 2815 2816 /** 2817 * Returns the floating-point value adjacent to {@code f} in 2818 * the direction of negative infinity. This method is 2819 * semantically equivalent to {@code nextAfter(f, 2820 * Float.NEGATIVE_INFINITY)}; however, a 2821 * {@code nextDown} implementation may run faster than its 2822 * equivalent {@code nextAfter} call. 2823 * 2824 * <p>Special Cases: 2825 * <ul> 2826 * <li> If the argument is NaN, the result is NaN. 2827 * 2828 * <li> If the argument is negative infinity, the result is 2829 * negative infinity. 2830 * 2831 * <li> If the argument is zero, the result is 2832 * {@code -Float.MIN_VALUE} 2833 * 2834 * </ul> 2835 * 2836 * @param f starting floating-point value 2837 * @return The adjacent floating-point value closer to negative 2838 * infinity. 2839 * @since 1.8 2840 */ 2841 public static float nextDown(float f) { 2842 if (Float.isNaN(f) || f == Float.NEGATIVE_INFINITY) 2843 return f; 2844 else { 2845 if (f == 0.0f) 2846 return -Float.MIN_VALUE; 2847 else 2848 return Float.intBitsToFloat(Float.floatToRawIntBits(f) + 2849 ((f > 0.0f)?-1:+1)); 2850 } 2851 } 2852 2853 /** 2854 * Returns {@code d} × 2<sup>{@code scaleFactor}</sup> 2855 * rounded as if performed by a single correctly rounded 2856 * floating-point multiply. If the exponent of the result is 2857 * between {@link Double#MIN_EXPONENT} and {@link 2858 * Double#MAX_EXPONENT}, the answer is calculated exactly. If the 2859 * exponent of the result would be larger than {@code 2860 * Double.MAX_EXPONENT}, an infinity is returned. Note that if 2861 * the result is subnormal, precision may be lost; that is, when 2862 * {@code scalb(x, n)} is subnormal, {@code scalb(scalb(x, n), 2863 * -n)} may not equal <i>x</i>. When the result is non-NaN, the 2864 * result has the same sign as {@code d}. 2865 * 2866 * <p>Special cases: 2867 * <ul> 2868 * <li> If the first argument is NaN, NaN is returned. 2869 * <li> If the first argument is infinite, then an infinity of the 2870 * same sign is returned. 2871 * <li> If the first argument is zero, then a zero of the same 2872 * sign is returned. 2873 * </ul> 2874 * 2875 * @param d number to be scaled by a power of two. 2876 * @param scaleFactor power of 2 used to scale {@code d} 2877 * @return {@code d} × 2<sup>{@code scaleFactor}</sup> 2878 * @since 1.6 2879 */ 2880 public static double scalb(double d, int scaleFactor) { 2881 /* 2882 * When scaling up, it does not matter what order the 2883 * multiply-store operations are done; the result will be 2884 * finite or overflow regardless of the operation ordering. 2885 * However, to get the correct result when scaling down, a 2886 * particular ordering must be used. 2887 * 2888 * When scaling down, the multiply-store operations are 2889 * sequenced so that it is not possible for two consecutive 2890 * multiply-stores to return subnormal results. If one 2891 * multiply-store result is subnormal, the next multiply will 2892 * round it away to zero. This is done by first multiplying 2893 * by 2 ^ (scaleFactor % n) and then multiplying several 2894 * times by 2^n as needed where n is the exponent of number 2895 * that is a convenient power of two. In this way, at most one 2896 * real rounding error occurs. 2897 */ 2898 2899 // magnitude of a power of two so large that scaling a finite 2900 // nonzero value by it would be guaranteed to over or 2901 // underflow; due to rounding, scaling down takes an 2902 // additional power of two which is reflected here 2903 final int MAX_SCALE = Double.MAX_EXPONENT + -Double.MIN_EXPONENT + 2904 DoubleConsts.SIGNIFICAND_WIDTH + 1; 2905 int exp_adjust = 0; 2906 int scale_increment = 0; 2907 double exp_delta = Double.NaN; 2908 2909 // Make sure scaling factor is in a reasonable range 2910 2911 if(scaleFactor < 0) { 2912 scaleFactor = Math.max(scaleFactor, -MAX_SCALE); 2913 scale_increment = -512; 2914 exp_delta = twoToTheDoubleScaleDown; 2915 } 2916 else { 2917 scaleFactor = Math.min(scaleFactor, MAX_SCALE); 2918 scale_increment = 512; 2919 exp_delta = twoToTheDoubleScaleUp; 2920 } 2921 2922 // Calculate (scaleFactor % +/-512), 512 = 2^9, using 2923 // technique from "Hacker's Delight" section 10-2. 2924 int t = (scaleFactor >> 9-1) >>> 32 - 9; 2925 exp_adjust = ((scaleFactor + t) & (512 -1)) - t; 2926 2927 d *= powerOfTwoD(exp_adjust); 2928 scaleFactor -= exp_adjust; 2929 2930 while(scaleFactor != 0) { 2931 d *= exp_delta; 2932 scaleFactor -= scale_increment; 2933 } 2934 return d; 2935 } 2936 2937 /** 2938 * Returns {@code f} × 2<sup>{@code scaleFactor}</sup> 2939 * rounded as if performed by a single correctly rounded 2940 * floating-point multiply. If the exponent of the result is 2941 * between {@link Float#MIN_EXPONENT} and {@link 2942 * Float#MAX_EXPONENT}, the answer is calculated exactly. If the 2943 * exponent of the result would be larger than {@code 2944 * Float.MAX_EXPONENT}, an infinity is returned. Note that if the 2945 * result is subnormal, precision may be lost; that is, when 2946 * {@code scalb(x, n)} is subnormal, {@code scalb(scalb(x, n), 2947 * -n)} may not equal <i>x</i>. When the result is non-NaN, the 2948 * result has the same sign as {@code f}. 2949 * 2950 * <p>Special cases: 2951 * <ul> 2952 * <li> If the first argument is NaN, NaN is returned. 2953 * <li> If the first argument is infinite, then an infinity of the 2954 * same sign is returned. 2955 * <li> If the first argument is zero, then a zero of the same 2956 * sign is returned. 2957 * </ul> 2958 * 2959 * @param f number to be scaled by a power of two. 2960 * @param scaleFactor power of 2 used to scale {@code f} 2961 * @return {@code f} × 2<sup>{@code scaleFactor}</sup> 2962 * @since 1.6 2963 */ 2964 public static float scalb(float f, int scaleFactor) { 2965 // magnitude of a power of two so large that scaling a finite 2966 // nonzero value by it would be guaranteed to over or 2967 // underflow; due to rounding, scaling down takes an 2968 // additional power of two which is reflected here 2969 final int MAX_SCALE = Float.MAX_EXPONENT + -Float.MIN_EXPONENT + 2970 FloatConsts.SIGNIFICAND_WIDTH + 1; 2971 2972 // Make sure scaling factor is in a reasonable range 2973 scaleFactor = Math.max(Math.min(scaleFactor, MAX_SCALE), -MAX_SCALE); 2974 2975 /* 2976 * Since + MAX_SCALE for float fits well within the double 2977 * exponent range and + float -> double conversion is exact 2978 * the multiplication below will be exact. Therefore, the 2979 * rounding that occurs when the double product is cast to 2980 * float will be the correctly rounded float result. 2981 */ 2982 return (float)((double)f*powerOfTwoD(scaleFactor)); 2983 } 2984 2985 // Constants used in scalb 2986 static double twoToTheDoubleScaleUp = powerOfTwoD(512); 2987 static double twoToTheDoubleScaleDown = powerOfTwoD(-512); 2988 2989 /** 2990 * Returns a floating-point power of two in the normal range. 2991 */ 2992 static double powerOfTwoD(int n) { 2993 assert(n >= Double.MIN_EXPONENT && n <= Double.MAX_EXPONENT); 2994 return Double.longBitsToDouble((((long)n + (long)DoubleConsts.EXP_BIAS) << 2995 (DoubleConsts.SIGNIFICAND_WIDTH-1)) 2996 & DoubleConsts.EXP_BIT_MASK); 2997 } 2998 2999 /** 3000 * Returns a floating-point power of two in the normal range. 3001 */ 3002 static float powerOfTwoF(int n) { 3003 assert(n >= Float.MIN_EXPONENT && n <= Float.MAX_EXPONENT); 3004 return Float.intBitsToFloat(((n + FloatConsts.EXP_BIAS) << 3005 (FloatConsts.SIGNIFICAND_WIDTH-1)) 3006 & FloatConsts.EXP_BIT_MASK); 3007 } 3008 } 3009