1 /* 2 * Copyright (c) 2008, 2017, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. Oracle designates this 8 * particular file as subject to the "Classpath" exception as provided 9 * by Oracle in the LICENSE file that accompanied this code. 10 * 11 * This code is distributed in the hope that it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 * version 2 for more details (a copy is included in the LICENSE file that 15 * accompanied this code). 16 * 17 * You should have received a copy of the GNU General Public License version 18 * 2 along with this work; if not, write to the Free Software Foundation, 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 20 * 21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 22 * or visit www.oracle.com if you need additional information or have any 23 * questions. 24 */ 25 26 package java.lang.invoke; 27 28 import sun.invoke.util.VerifyAccess; 29 import sun.invoke.util.Wrapper; 30 import sun.reflect.Reflection; 31 32 import java.lang.reflect.*; 33 import java.nio.ByteOrder; 34 import java.util.List; 35 import java.util.Arrays; 36 import java.util.ArrayList; 37 import java.util.Iterator; 38 import java.util.NoSuchElementException; 39 import java.util.Objects; 40 import java.util.stream.Collectors; 41 import java.util.stream.Stream; 42 43 import static java.lang.invoke.MethodHandleStatics.*; 44 import static java.lang.invoke.MethodHandleStatics.newIllegalArgumentException; 45 import static java.lang.invoke.MethodType.methodType; 46 47 /** 48 * This class consists exclusively of static methods that operate on or return 49 * method handles. They fall into several categories: 50 * <ul> 51 * <li>Lookup methods which help create method handles for methods and fields. 52 * <li>Combinator methods, which combine or transform pre-existing method handles into new ones. 53 * <li>Other factory methods to create method handles that emulate other common JVM operations or control flow patterns. 54 * </ul> 55 * <p> 56 * @author John Rose, JSR 292 EG 57 * @since 1.7 58 */ 59 public class MethodHandles { 60 MethodHandles()61 private MethodHandles() { } // do not instantiate 62 63 // Android-changed: We do not use MemberName / MethodHandleImpl. 64 // 65 // private static final MemberName.Factory IMPL_NAMES = MemberName.getFactory(); 66 // static { MethodHandleImpl.initStatics(); } 67 // See IMPL_LOOKUP below. 68 69 //// Method handle creation from ordinary methods. 70 71 /** 72 * Returns a {@link Lookup lookup object} with 73 * full capabilities to emulate all supported bytecode behaviors of the caller. 74 * These capabilities include <a href="MethodHandles.Lookup.html#privacc">private access</a> to the caller. 75 * Factory methods on the lookup object can create 76 * <a href="MethodHandleInfo.html#directmh">direct method handles</a> 77 * for any member that the caller has access to via bytecodes, 78 * including protected and private fields and methods. 79 * This lookup object is a <em>capability</em> which may be delegated to trusted agents. 80 * Do not store it in place where untrusted code can access it. 81 * <p> 82 * This method is caller sensitive, which means that it may return different 83 * values to different callers. 84 * <p> 85 * For any given caller class {@code C}, the lookup object returned by this call 86 * has equivalent capabilities to any lookup object 87 * supplied by the JVM to the bootstrap method of an 88 * <a href="package-summary.html#indyinsn">invokedynamic instruction</a> 89 * executing in the same caller class {@code C}. 90 * @return a lookup object for the caller of this method, with private access 91 */ 92 // Android-changed: Remove caller sensitive. 93 // @CallerSensitive lookup()94 public static Lookup lookup() { 95 return new Lookup(Reflection.getCallerClass()); 96 } 97 98 /** 99 * Returns a {@link Lookup lookup object} which is trusted minimally. 100 * It can only be used to create method handles to 101 * publicly accessible fields and methods. 102 * <p> 103 * As a matter of pure convention, the {@linkplain Lookup#lookupClass lookup class} 104 * of this lookup object will be {@link java.lang.Object}. 105 * 106 * <p style="font-size:smaller;"> 107 * <em>Discussion:</em> 108 * The lookup class can be changed to any other class {@code C} using an expression of the form 109 * {@link Lookup#in publicLookup().in(C.class)}. 110 * Since all classes have equal access to public names, 111 * such a change would confer no new access rights. 112 * A public lookup object is always subject to 113 * <a href="MethodHandles.Lookup.html#secmgr">security manager checks</a>. 114 * Also, it cannot access 115 * <a href="MethodHandles.Lookup.html#callsens">caller sensitive methods</a>. 116 * @return a lookup object which is trusted minimally 117 */ publicLookup()118 public static Lookup publicLookup() { 119 return Lookup.PUBLIC_LOOKUP; 120 } 121 122 // Android-removed: Documentation related to the security manager and module checks 123 /** 124 * Returns a {@link Lookup lookup object} with full capabilities to emulate all 125 * supported bytecode behaviors, including <a href="MethodHandles.Lookup.html#privacc"> 126 * private access</a>, on a target class. 127 * @param targetClass the target class 128 * @param lookup the caller lookup object 129 * @return a lookup object for the target class, with private access 130 * @throws IllegalArgumentException if {@code targetClass} is a primitive type or array class 131 * @throws NullPointerException if {@code targetClass} or {@code caller} is {@code null} 132 * @throws IllegalAccessException is not thrown on Android 133 * @since 9 134 */ privateLookupIn(Class<?> targetClass, Lookup lookup)135 public static Lookup privateLookupIn(Class<?> targetClass, Lookup lookup) throws IllegalAccessException { 136 // Android-removed: SecurityManager calls 137 // SecurityManager sm = System.getSecurityManager(); 138 // if (sm != null) sm.checkPermission(ACCESS_PERMISSION); 139 if (targetClass.isPrimitive()) 140 throw new IllegalArgumentException(targetClass + " is a primitive class"); 141 if (targetClass.isArray()) 142 throw new IllegalArgumentException(targetClass + " is an array class"); 143 // BEGIN Android-removed: There is no module information on Android 144 /** 145 * Module targetModule = targetClass.getModule(); 146 * Module callerModule = lookup.lookupClass().getModule(); 147 * if (!callerModule.canRead(targetModule)) 148 * throw new IllegalAccessException(callerModule + " does not read " + targetModule); 149 * if (targetModule.isNamed()) { 150 * String pn = targetClass.getPackageName(); 151 * assert pn.length() > 0 : "unnamed package cannot be in named module"; 152 * if (!targetModule.isOpen(pn, callerModule)) 153 * throw new IllegalAccessException(targetModule + " does not open " + pn + " to " + callerModule); 154 * } 155 * if ((lookup.lookupModes() & Lookup.MODULE) == 0) 156 * throw new IllegalAccessException("lookup does not have MODULE lookup mode"); 157 * if (!callerModule.isNamed() && targetModule.isNamed()) { 158 * IllegalAccessLogger logger = IllegalAccessLogger.illegalAccessLogger(); 159 * if (logger != null) { 160 * logger.logIfOpenedForIllegalAccess(lookup, targetClass); 161 * } 162 * } 163 */ 164 // END Android-removed: There is no module information on Android 165 return new Lookup(targetClass); 166 } 167 168 169 /** 170 * Performs an unchecked "crack" of a 171 * <a href="MethodHandleInfo.html#directmh">direct method handle</a>. 172 * The result is as if the user had obtained a lookup object capable enough 173 * to crack the target method handle, called 174 * {@link java.lang.invoke.MethodHandles.Lookup#revealDirect Lookup.revealDirect} 175 * on the target to obtain its symbolic reference, and then called 176 * {@link java.lang.invoke.MethodHandleInfo#reflectAs MethodHandleInfo.reflectAs} 177 * to resolve the symbolic reference to a member. 178 * <p> 179 * If there is a security manager, its {@code checkPermission} method 180 * is called with a {@code ReflectPermission("suppressAccessChecks")} permission. 181 * @param <T> the desired type of the result, either {@link Member} or a subtype 182 * @param target a direct method handle to crack into symbolic reference components 183 * @param expected a class object representing the desired result type {@code T} 184 * @return a reference to the method, constructor, or field object 185 * @exception SecurityException if the caller is not privileged to call {@code setAccessible} 186 * @exception NullPointerException if either argument is {@code null} 187 * @exception IllegalArgumentException if the target is not a direct method handle 188 * @exception ClassCastException if the member is not of the expected type 189 * @since 1.8 190 */ 191 public static <T extends Member> T reflectAs(Class<T> expected, MethodHandle target)192 reflectAs(Class<T> expected, MethodHandle target) { 193 MethodHandleImpl directTarget = getMethodHandleImpl(target); 194 // Given that this is specified to be an "unchecked" crack, we can directly allocate 195 // a member from the underlying ArtField / Method and bypass all associated access checks. 196 return expected.cast(directTarget.getMemberInternal()); 197 } 198 199 /** 200 * A <em>lookup object</em> is a factory for creating method handles, 201 * when the creation requires access checking. 202 * Method handles do not perform 203 * access checks when they are called, but rather when they are created. 204 * Therefore, method handle access 205 * restrictions must be enforced when a method handle is created. 206 * The caller class against which those restrictions are enforced 207 * is known as the {@linkplain #lookupClass lookup class}. 208 * <p> 209 * A lookup class which needs to create method handles will call 210 * {@link #lookup MethodHandles.lookup} to create a factory for itself. 211 * When the {@code Lookup} factory object is created, the identity of the lookup class is 212 * determined, and securely stored in the {@code Lookup} object. 213 * The lookup class (or its delegates) may then use factory methods 214 * on the {@code Lookup} object to create method handles for access-checked members. 215 * This includes all methods, constructors, and fields which are allowed to the lookup class, 216 * even private ones. 217 * 218 * <h1><a name="lookups"></a>Lookup Factory Methods</h1> 219 * The factory methods on a {@code Lookup} object correspond to all major 220 * use cases for methods, constructors, and fields. 221 * Each method handle created by a factory method is the functional 222 * equivalent of a particular <em>bytecode behavior</em>. 223 * (Bytecode behaviors are described in section 5.4.3.5 of the Java Virtual Machine Specification.) 224 * Here is a summary of the correspondence between these factory methods and 225 * the behavior the resulting method handles: 226 * <table border=1 cellpadding=5 summary="lookup method behaviors"> 227 * <tr> 228 * <th><a name="equiv"></a>lookup expression</th> 229 * <th>member</th> 230 * <th>bytecode behavior</th> 231 * </tr> 232 * <tr> 233 * <td>{@link java.lang.invoke.MethodHandles.Lookup#findGetter lookup.findGetter(C.class,"f",FT.class)}</td> 234 * <td>{@code FT f;}</td><td>{@code (T) this.f;}</td> 235 * </tr> 236 * <tr> 237 * <td>{@link java.lang.invoke.MethodHandles.Lookup#findStaticGetter lookup.findStaticGetter(C.class,"f",FT.class)}</td> 238 * <td>{@code static}<br>{@code FT f;}</td><td>{@code (T) C.f;}</td> 239 * </tr> 240 * <tr> 241 * <td>{@link java.lang.invoke.MethodHandles.Lookup#findSetter lookup.findSetter(C.class,"f",FT.class)}</td> 242 * <td>{@code FT f;}</td><td>{@code this.f = x;}</td> 243 * </tr> 244 * <tr> 245 * <td>{@link java.lang.invoke.MethodHandles.Lookup#findStaticSetter lookup.findStaticSetter(C.class,"f",FT.class)}</td> 246 * <td>{@code static}<br>{@code FT f;}</td><td>{@code C.f = arg;}</td> 247 * </tr> 248 * <tr> 249 * <td>{@link java.lang.invoke.MethodHandles.Lookup#findVirtual lookup.findVirtual(C.class,"m",MT)}</td> 250 * <td>{@code T m(A*);}</td><td>{@code (T) this.m(arg*);}</td> 251 * </tr> 252 * <tr> 253 * <td>{@link java.lang.invoke.MethodHandles.Lookup#findStatic lookup.findStatic(C.class,"m",MT)}</td> 254 * <td>{@code static}<br>{@code T m(A*);}</td><td>{@code (T) C.m(arg*);}</td> 255 * </tr> 256 * <tr> 257 * <td>{@link java.lang.invoke.MethodHandles.Lookup#findSpecial lookup.findSpecial(C.class,"m",MT,this.class)}</td> 258 * <td>{@code T m(A*);}</td><td>{@code (T) super.m(arg*);}</td> 259 * </tr> 260 * <tr> 261 * <td>{@link java.lang.invoke.MethodHandles.Lookup#findConstructor lookup.findConstructor(C.class,MT)}</td> 262 * <td>{@code C(A*);}</td><td>{@code new C(arg*);}</td> 263 * </tr> 264 * <tr> 265 * <td>{@link java.lang.invoke.MethodHandles.Lookup#unreflectGetter lookup.unreflectGetter(aField)}</td> 266 * <td>({@code static})?<br>{@code FT f;}</td><td>{@code (FT) aField.get(thisOrNull);}</td> 267 * </tr> 268 * <tr> 269 * <td>{@link java.lang.invoke.MethodHandles.Lookup#unreflectSetter lookup.unreflectSetter(aField)}</td> 270 * <td>({@code static})?<br>{@code FT f;}</td><td>{@code aField.set(thisOrNull, arg);}</td> 271 * </tr> 272 * <tr> 273 * <td>{@link java.lang.invoke.MethodHandles.Lookup#unreflect lookup.unreflect(aMethod)}</td> 274 * <td>({@code static})?<br>{@code T m(A*);}</td><td>{@code (T) aMethod.invoke(thisOrNull, arg*);}</td> 275 * </tr> 276 * <tr> 277 * <td>{@link java.lang.invoke.MethodHandles.Lookup#unreflectConstructor lookup.unreflectConstructor(aConstructor)}</td> 278 * <td>{@code C(A*);}</td><td>{@code (C) aConstructor.newInstance(arg*);}</td> 279 * </tr> 280 * <tr> 281 * <td>{@link java.lang.invoke.MethodHandles.Lookup#unreflect lookup.unreflect(aMethod)}</td> 282 * <td>({@code static})?<br>{@code T m(A*);}</td><td>{@code (T) aMethod.invoke(thisOrNull, arg*);}</td> 283 * </tr> 284 * </table> 285 * 286 * Here, the type {@code C} is the class or interface being searched for a member, 287 * documented as a parameter named {@code refc} in the lookup methods. 288 * The method type {@code MT} is composed from the return type {@code T} 289 * and the sequence of argument types {@code A*}. 290 * The constructor also has a sequence of argument types {@code A*} and 291 * is deemed to return the newly-created object of type {@code C}. 292 * Both {@code MT} and the field type {@code FT} are documented as a parameter named {@code type}. 293 * The formal parameter {@code this} stands for the self-reference of type {@code C}; 294 * if it is present, it is always the leading argument to the method handle invocation. 295 * (In the case of some {@code protected} members, {@code this} may be 296 * restricted in type to the lookup class; see below.) 297 * The name {@code arg} stands for all the other method handle arguments. 298 * In the code examples for the Core Reflection API, the name {@code thisOrNull} 299 * stands for a null reference if the accessed method or field is static, 300 * and {@code this} otherwise. 301 * The names {@code aMethod}, {@code aField}, and {@code aConstructor} stand 302 * for reflective objects corresponding to the given members. 303 * <p> 304 * In cases where the given member is of variable arity (i.e., a method or constructor) 305 * the returned method handle will also be of {@linkplain MethodHandle#asVarargsCollector variable arity}. 306 * In all other cases, the returned method handle will be of fixed arity. 307 * <p style="font-size:smaller;"> 308 * <em>Discussion:</em> 309 * The equivalence between looked-up method handles and underlying 310 * class members and bytecode behaviors 311 * can break down in a few ways: 312 * <ul style="font-size:smaller;"> 313 * <li>If {@code C} is not symbolically accessible from the lookup class's loader, 314 * the lookup can still succeed, even when there is no equivalent 315 * Java expression or bytecoded constant. 316 * <li>Likewise, if {@code T} or {@code MT} 317 * is not symbolically accessible from the lookup class's loader, 318 * the lookup can still succeed. 319 * For example, lookups for {@code MethodHandle.invokeExact} and 320 * {@code MethodHandle.invoke} will always succeed, regardless of requested type. 321 * <li>If there is a security manager installed, it can forbid the lookup 322 * on various grounds (<a href="MethodHandles.Lookup.html#secmgr">see below</a>). 323 * By contrast, the {@code ldc} instruction on a {@code CONSTANT_MethodHandle} 324 * constant is not subject to security manager checks. 325 * <li>If the looked-up method has a 326 * <a href="MethodHandle.html#maxarity">very large arity</a>, 327 * the method handle creation may fail, due to the method handle 328 * type having too many parameters. 329 * </ul> 330 * 331 * <h1><a name="access"></a>Access checking</h1> 332 * Access checks are applied in the factory methods of {@code Lookup}, 333 * when a method handle is created. 334 * This is a key difference from the Core Reflection API, since 335 * {@link java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke} 336 * performs access checking against every caller, on every call. 337 * <p> 338 * All access checks start from a {@code Lookup} object, which 339 * compares its recorded lookup class against all requests to 340 * create method handles. 341 * A single {@code Lookup} object can be used to create any number 342 * of access-checked method handles, all checked against a single 343 * lookup class. 344 * <p> 345 * A {@code Lookup} object can be shared with other trusted code, 346 * such as a metaobject protocol. 347 * A shared {@code Lookup} object delegates the capability 348 * to create method handles on private members of the lookup class. 349 * Even if privileged code uses the {@code Lookup} object, 350 * the access checking is confined to the privileges of the 351 * original lookup class. 352 * <p> 353 * A lookup can fail, because 354 * the containing class is not accessible to the lookup class, or 355 * because the desired class member is missing, or because the 356 * desired class member is not accessible to the lookup class, or 357 * because the lookup object is not trusted enough to access the member. 358 * In any of these cases, a {@code ReflectiveOperationException} will be 359 * thrown from the attempted lookup. The exact class will be one of 360 * the following: 361 * <ul> 362 * <li>NoSuchMethodException — if a method is requested but does not exist 363 * <li>NoSuchFieldException — if a field is requested but does not exist 364 * <li>IllegalAccessException — if the member exists but an access check fails 365 * </ul> 366 * <p> 367 * In general, the conditions under which a method handle may be 368 * looked up for a method {@code M} are no more restrictive than the conditions 369 * under which the lookup class could have compiled, verified, and resolved a call to {@code M}. 370 * Where the JVM would raise exceptions like {@code NoSuchMethodError}, 371 * a method handle lookup will generally raise a corresponding 372 * checked exception, such as {@code NoSuchMethodException}. 373 * And the effect of invoking the method handle resulting from the lookup 374 * is <a href="MethodHandles.Lookup.html#equiv">exactly equivalent</a> 375 * to executing the compiled, verified, and resolved call to {@code M}. 376 * The same point is true of fields and constructors. 377 * <p style="font-size:smaller;"> 378 * <em>Discussion:</em> 379 * Access checks only apply to named and reflected methods, 380 * constructors, and fields. 381 * Other method handle creation methods, such as 382 * {@link MethodHandle#asType MethodHandle.asType}, 383 * do not require any access checks, and are used 384 * independently of any {@code Lookup} object. 385 * <p> 386 * If the desired member is {@code protected}, the usual JVM rules apply, 387 * including the requirement that the lookup class must be either be in the 388 * same package as the desired member, or must inherit that member. 389 * (See the Java Virtual Machine Specification, sections 4.9.2, 5.4.3.5, and 6.4.) 390 * In addition, if the desired member is a non-static field or method 391 * in a different package, the resulting method handle may only be applied 392 * to objects of the lookup class or one of its subclasses. 393 * This requirement is enforced by narrowing the type of the leading 394 * {@code this} parameter from {@code C} 395 * (which will necessarily be a superclass of the lookup class) 396 * to the lookup class itself. 397 * <p> 398 * The JVM imposes a similar requirement on {@code invokespecial} instruction, 399 * that the receiver argument must match both the resolved method <em>and</em> 400 * the current class. Again, this requirement is enforced by narrowing the 401 * type of the leading parameter to the resulting method handle. 402 * (See the Java Virtual Machine Specification, section 4.10.1.9.) 403 * <p> 404 * The JVM represents constructors and static initializer blocks as internal methods 405 * with special names ({@code "<init>"} and {@code "<clinit>"}). 406 * The internal syntax of invocation instructions allows them to refer to such internal 407 * methods as if they were normal methods, but the JVM bytecode verifier rejects them. 408 * A lookup of such an internal method will produce a {@code NoSuchMethodException}. 409 * <p> 410 * In some cases, access between nested classes is obtained by the Java compiler by creating 411 * an wrapper method to access a private method of another class 412 * in the same top-level declaration. 413 * For example, a nested class {@code C.D} 414 * can access private members within other related classes such as 415 * {@code C}, {@code C.D.E}, or {@code C.B}, 416 * but the Java compiler may need to generate wrapper methods in 417 * those related classes. In such cases, a {@code Lookup} object on 418 * {@code C.E} would be unable to those private members. 419 * A workaround for this limitation is the {@link Lookup#in Lookup.in} method, 420 * which can transform a lookup on {@code C.E} into one on any of those other 421 * classes, without special elevation of privilege. 422 * <p> 423 * The accesses permitted to a given lookup object may be limited, 424 * according to its set of {@link #lookupModes lookupModes}, 425 * to a subset of members normally accessible to the lookup class. 426 * For example, the {@link #publicLookup publicLookup} 427 * method produces a lookup object which is only allowed to access 428 * public members in public classes. 429 * The caller sensitive method {@link #lookup lookup} 430 * produces a lookup object with full capabilities relative to 431 * its caller class, to emulate all supported bytecode behaviors. 432 * Also, the {@link Lookup#in Lookup.in} method may produce a lookup object 433 * with fewer access modes than the original lookup object. 434 * 435 * <p style="font-size:smaller;"> 436 * <a name="privacc"></a> 437 * <em>Discussion of private access:</em> 438 * We say that a lookup has <em>private access</em> 439 * if its {@linkplain #lookupModes lookup modes} 440 * include the possibility of accessing {@code private} members. 441 * As documented in the relevant methods elsewhere, 442 * only lookups with private access possess the following capabilities: 443 * <ul style="font-size:smaller;"> 444 * <li>access private fields, methods, and constructors of the lookup class 445 * <li>create method handles which invoke <a href="MethodHandles.Lookup.html#callsens">caller sensitive</a> methods, 446 * such as {@code Class.forName} 447 * <li>create method handles which {@link Lookup#findSpecial emulate invokespecial} instructions 448 * <li>avoid <a href="MethodHandles.Lookup.html#secmgr">package access checks</a> 449 * for classes accessible to the lookup class 450 * <li>create {@link Lookup#in delegated lookup objects} which have private access to other classes 451 * within the same package member 452 * </ul> 453 * <p style="font-size:smaller;"> 454 * Each of these permissions is a consequence of the fact that a lookup object 455 * with private access can be securely traced back to an originating class, 456 * whose <a href="MethodHandles.Lookup.html#equiv">bytecode behaviors</a> and Java language access permissions 457 * can be reliably determined and emulated by method handles. 458 * 459 * <h1><a name="secmgr"></a>Security manager interactions</h1> 460 * Although bytecode instructions can only refer to classes in 461 * a related class loader, this API can search for methods in any 462 * class, as long as a reference to its {@code Class} object is 463 * available. Such cross-loader references are also possible with the 464 * Core Reflection API, and are impossible to bytecode instructions 465 * such as {@code invokestatic} or {@code getfield}. 466 * There is a {@linkplain java.lang.SecurityManager security manager API} 467 * to allow applications to check such cross-loader references. 468 * These checks apply to both the {@code MethodHandles.Lookup} API 469 * and the Core Reflection API 470 * (as found on {@link java.lang.Class Class}). 471 * <p> 472 * If a security manager is present, member lookups are subject to 473 * additional checks. 474 * From one to three calls are made to the security manager. 475 * Any of these calls can refuse access by throwing a 476 * {@link java.lang.SecurityException SecurityException}. 477 * Define {@code smgr} as the security manager, 478 * {@code lookc} as the lookup class of the current lookup object, 479 * {@code refc} as the containing class in which the member 480 * is being sought, and {@code defc} as the class in which the 481 * member is actually defined. 482 * The value {@code lookc} is defined as <em>not present</em> 483 * if the current lookup object does not have 484 * <a href="MethodHandles.Lookup.html#privacc">private access</a>. 485 * The calls are made according to the following rules: 486 * <ul> 487 * <li><b>Step 1:</b> 488 * If {@code lookc} is not present, or if its class loader is not 489 * the same as or an ancestor of the class loader of {@code refc}, 490 * then {@link SecurityManager#checkPackageAccess 491 * smgr.checkPackageAccess(refcPkg)} is called, 492 * where {@code refcPkg} is the package of {@code refc}. 493 * <li><b>Step 2:</b> 494 * If the retrieved member is not public and 495 * {@code lookc} is not present, then 496 * {@link SecurityManager#checkPermission smgr.checkPermission} 497 * with {@code RuntimePermission("accessDeclaredMembers")} is called. 498 * <li><b>Step 3:</b> 499 * If the retrieved member is not public, 500 * and if {@code lookc} is not present, 501 * and if {@code defc} and {@code refc} are different, 502 * then {@link SecurityManager#checkPackageAccess 503 * smgr.checkPackageAccess(defcPkg)} is called, 504 * where {@code defcPkg} is the package of {@code defc}. 505 * </ul> 506 * Security checks are performed after other access checks have passed. 507 * Therefore, the above rules presuppose a member that is public, 508 * or else that is being accessed from a lookup class that has 509 * rights to access the member. 510 * 511 * <h1><a name="callsens"></a>Caller sensitive methods</h1> 512 * A small number of Java methods have a special property called caller sensitivity. 513 * A <em>caller-sensitive</em> method can behave differently depending on the 514 * identity of its immediate caller. 515 * <p> 516 * If a method handle for a caller-sensitive method is requested, 517 * the general rules for <a href="MethodHandles.Lookup.html#equiv">bytecode behaviors</a> apply, 518 * but they take account of the lookup class in a special way. 519 * The resulting method handle behaves as if it were called 520 * from an instruction contained in the lookup class, 521 * so that the caller-sensitive method detects the lookup class. 522 * (By contrast, the invoker of the method handle is disregarded.) 523 * Thus, in the case of caller-sensitive methods, 524 * different lookup classes may give rise to 525 * differently behaving method handles. 526 * <p> 527 * In cases where the lookup object is 528 * {@link #publicLookup publicLookup()}, 529 * or some other lookup object without 530 * <a href="MethodHandles.Lookup.html#privacc">private access</a>, 531 * the lookup class is disregarded. 532 * In such cases, no caller-sensitive method handle can be created, 533 * access is forbidden, and the lookup fails with an 534 * {@code IllegalAccessException}. 535 * <p style="font-size:smaller;"> 536 * <em>Discussion:</em> 537 * For example, the caller-sensitive method 538 * {@link java.lang.Class#forName(String) Class.forName(x)} 539 * can return varying classes or throw varying exceptions, 540 * depending on the class loader of the class that calls it. 541 * A public lookup of {@code Class.forName} will fail, because 542 * there is no reasonable way to determine its bytecode behavior. 543 * <p style="font-size:smaller;"> 544 * If an application caches method handles for broad sharing, 545 * it should use {@code publicLookup()} to create them. 546 * If there is a lookup of {@code Class.forName}, it will fail, 547 * and the application must take appropriate action in that case. 548 * It may be that a later lookup, perhaps during the invocation of a 549 * bootstrap method, can incorporate the specific identity 550 * of the caller, making the method accessible. 551 * <p style="font-size:smaller;"> 552 * The function {@code MethodHandles.lookup} is caller sensitive 553 * so that there can be a secure foundation for lookups. 554 * Nearly all other methods in the JSR 292 API rely on lookup 555 * objects to check access requests. 556 */ 557 // Android-changed: Change link targets from MethodHandles#[public]Lookup to 558 // #[public]Lookup to work around complaints from javadoc. 559 public static final 560 class Lookup { 561 /** The class on behalf of whom the lookup is being performed. */ 562 /* @NonNull */ private final Class<?> lookupClass; 563 564 /** The allowed sorts of members which may be looked up (PUBLIC, etc.). */ 565 private final int allowedModes; 566 567 /** A single-bit mask representing {@code public} access, 568 * which may contribute to the result of {@link #lookupModes lookupModes}. 569 * The value, {@code 0x01}, happens to be the same as the value of the 570 * {@code public} {@linkplain java.lang.reflect.Modifier#PUBLIC modifier bit}. 571 */ 572 public static final int PUBLIC = Modifier.PUBLIC; 573 574 /** A single-bit mask representing {@code private} access, 575 * which may contribute to the result of {@link #lookupModes lookupModes}. 576 * The value, {@code 0x02}, happens to be the same as the value of the 577 * {@code private} {@linkplain java.lang.reflect.Modifier#PRIVATE modifier bit}. 578 */ 579 public static final int PRIVATE = Modifier.PRIVATE; 580 581 /** A single-bit mask representing {@code protected} access, 582 * which may contribute to the result of {@link #lookupModes lookupModes}. 583 * The value, {@code 0x04}, happens to be the same as the value of the 584 * {@code protected} {@linkplain java.lang.reflect.Modifier#PROTECTED modifier bit}. 585 */ 586 public static final int PROTECTED = Modifier.PROTECTED; 587 588 /** A single-bit mask representing {@code package} access (default access), 589 * which may contribute to the result of {@link #lookupModes lookupModes}. 590 * The value is {@code 0x08}, which does not correspond meaningfully to 591 * any particular {@linkplain java.lang.reflect.Modifier modifier bit}. 592 */ 593 public static final int PACKAGE = Modifier.STATIC; 594 595 private static final int ALL_MODES = (PUBLIC | PRIVATE | PROTECTED | PACKAGE); 596 597 // Android-note: Android has no notion of a trusted lookup. If required, such lookups 598 // are performed by the runtime. As a result, we always use lookupClass, which will always 599 // be non-null in our implementation. 600 // 601 // private static final int TRUSTED = -1; 602 fixmods(int mods)603 private static int fixmods(int mods) { 604 mods &= (ALL_MODES - PACKAGE); 605 return (mods != 0) ? mods : PACKAGE; 606 } 607 608 /** Tells which class is performing the lookup. It is this class against 609 * which checks are performed for visibility and access permissions. 610 * <p> 611 * The class implies a maximum level of access permission, 612 * but the permissions may be additionally limited by the bitmask 613 * {@link #lookupModes lookupModes}, which controls whether non-public members 614 * can be accessed. 615 * @return the lookup class, on behalf of which this lookup object finds members 616 */ lookupClass()617 public Class<?> lookupClass() { 618 return lookupClass; 619 } 620 621 /** Tells which access-protection classes of members this lookup object can produce. 622 * The result is a bit-mask of the bits 623 * {@linkplain #PUBLIC PUBLIC (0x01)}, 624 * {@linkplain #PRIVATE PRIVATE (0x02)}, 625 * {@linkplain #PROTECTED PROTECTED (0x04)}, 626 * and {@linkplain #PACKAGE PACKAGE (0x08)}. 627 * <p> 628 * A freshly-created lookup object 629 * on the {@linkplain java.lang.invoke.MethodHandles#lookup() caller's class} 630 * has all possible bits set, since the caller class can access all its own members. 631 * A lookup object on a new lookup class 632 * {@linkplain java.lang.invoke.MethodHandles.Lookup#in created from a previous lookup object} 633 * may have some mode bits set to zero. 634 * The purpose of this is to restrict access via the new lookup object, 635 * so that it can access only names which can be reached by the original 636 * lookup object, and also by the new lookup class. 637 * @return the lookup modes, which limit the kinds of access performed by this lookup object 638 */ lookupModes()639 public int lookupModes() { 640 return allowedModes & ALL_MODES; 641 } 642 643 /** Embody the current class (the lookupClass) as a lookup class 644 * for method handle creation. 645 * Must be called by from a method in this package, 646 * which in turn is called by a method not in this package. 647 */ Lookup(Class<?> lookupClass)648 Lookup(Class<?> lookupClass) { 649 this(lookupClass, ALL_MODES); 650 // make sure we haven't accidentally picked up a privileged class: 651 checkUnprivilegedlookupClass(lookupClass, ALL_MODES); 652 } 653 Lookup(Class<?> lookupClass, int allowedModes)654 private Lookup(Class<?> lookupClass, int allowedModes) { 655 this.lookupClass = lookupClass; 656 this.allowedModes = allowedModes; 657 } 658 659 /** 660 * Creates a lookup on the specified new lookup class. 661 * The resulting object will report the specified 662 * class as its own {@link #lookupClass lookupClass}. 663 * <p> 664 * However, the resulting {@code Lookup} object is guaranteed 665 * to have no more access capabilities than the original. 666 * In particular, access capabilities can be lost as follows:<ul> 667 * <li>If the new lookup class differs from the old one, 668 * protected members will not be accessible by virtue of inheritance. 669 * (Protected members may continue to be accessible because of package sharing.) 670 * <li>If the new lookup class is in a different package 671 * than the old one, protected and default (package) members will not be accessible. 672 * <li>If the new lookup class is not within the same package member 673 * as the old one, private members will not be accessible. 674 * <li>If the new lookup class is not accessible to the old lookup class, 675 * then no members, not even public members, will be accessible. 676 * (In all other cases, public members will continue to be accessible.) 677 * </ul> 678 * 679 * @param requestedLookupClass the desired lookup class for the new lookup object 680 * @return a lookup object which reports the desired lookup class 681 * @throws NullPointerException if the argument is null 682 */ in(Class<?> requestedLookupClass)683 public Lookup in(Class<?> requestedLookupClass) { 684 requestedLookupClass.getClass(); // null check 685 // Android-changed: There's no notion of a trusted lookup. 686 // if (allowedModes == TRUSTED) // IMPL_LOOKUP can make any lookup at all 687 // return new Lookup(requestedLookupClass, ALL_MODES); 688 689 if (requestedLookupClass == this.lookupClass) 690 return this; // keep same capabilities 691 int newModes = (allowedModes & (ALL_MODES & ~PROTECTED)); 692 if ((newModes & PACKAGE) != 0 693 && !VerifyAccess.isSamePackage(this.lookupClass, requestedLookupClass)) { 694 newModes &= ~(PACKAGE|PRIVATE); 695 } 696 // Allow nestmate lookups to be created without special privilege: 697 if ((newModes & PRIVATE) != 0 698 && !VerifyAccess.isSamePackageMember(this.lookupClass, requestedLookupClass)) { 699 newModes &= ~PRIVATE; 700 } 701 if ((newModes & PUBLIC) != 0 702 && !VerifyAccess.isClassAccessible(requestedLookupClass, this.lookupClass, allowedModes)) { 703 // The requested class it not accessible from the lookup class. 704 // No permissions. 705 newModes = 0; 706 } 707 checkUnprivilegedlookupClass(requestedLookupClass, newModes); 708 return new Lookup(requestedLookupClass, newModes); 709 } 710 711 // Make sure outer class is initialized first. 712 // 713 // Android-changed: Removed unnecessary reference to IMPL_NAMES. 714 // static { IMPL_NAMES.getClass(); } 715 716 /** Version of lookup which is trusted minimally. 717 * It can only be used to create method handles to 718 * publicly accessible members. 719 */ 720 static final Lookup PUBLIC_LOOKUP = new Lookup(Object.class, PUBLIC); 721 722 /** Package-private version of lookup which is trusted. */ 723 static final Lookup IMPL_LOOKUP = new Lookup(Object.class, ALL_MODES); 724 checkUnprivilegedlookupClass(Class<?> lookupClass, int allowedModes)725 private static void checkUnprivilegedlookupClass(Class<?> lookupClass, int allowedModes) { 726 String name = lookupClass.getName(); 727 if (name.startsWith("java.lang.invoke.")) 728 throw newIllegalArgumentException("illegal lookupClass: "+lookupClass); 729 730 // For caller-sensitive MethodHandles.lookup() 731 // disallow lookup more restricted packages 732 // 733 // Android-changed: The bootstrap classloader isn't null. 734 if (allowedModes == ALL_MODES && 735 lookupClass.getClassLoader() == Object.class.getClassLoader()) { 736 if ((name.startsWith("java.") 737 && !name.startsWith("java.io.ObjectStreamClass") 738 && !name.startsWith("java.util.concurrent.") 739 && !name.equals("java.lang.Daemons$FinalizerWatchdogDaemon") 740 && !name.equals("java.lang.runtime.ObjectMethods") 741 && !name.equals("java.lang.Thread")) || 742 (name.startsWith("sun.") 743 && !name.startsWith("sun.invoke.") 744 && !name.equals("sun.reflect.ReflectionFactory"))) { 745 throw newIllegalArgumentException("illegal lookupClass: " + lookupClass); 746 } 747 } 748 } 749 750 /** 751 * Displays the name of the class from which lookups are to be made. 752 * (The name is the one reported by {@link java.lang.Class#getName() Class.getName}.) 753 * If there are restrictions on the access permitted to this lookup, 754 * this is indicated by adding a suffix to the class name, consisting 755 * of a slash and a keyword. The keyword represents the strongest 756 * allowed access, and is chosen as follows: 757 * <ul> 758 * <li>If no access is allowed, the suffix is "/noaccess". 759 * <li>If only public access is allowed, the suffix is "/public". 760 * <li>If only public and package access are allowed, the suffix is "/package". 761 * <li>If only public, package, and private access are allowed, the suffix is "/private". 762 * </ul> 763 * If none of the above cases apply, it is the case that full 764 * access (public, package, private, and protected) is allowed. 765 * In this case, no suffix is added. 766 * This is true only of an object obtained originally from 767 * {@link java.lang.invoke.MethodHandles#lookup MethodHandles.lookup}. 768 * Objects created by {@link java.lang.invoke.MethodHandles.Lookup#in Lookup.in} 769 * always have restricted access, and will display a suffix. 770 * <p> 771 * (It may seem strange that protected access should be 772 * stronger than private access. Viewed independently from 773 * package access, protected access is the first to be lost, 774 * because it requires a direct subclass relationship between 775 * caller and callee.) 776 * @see #in 777 */ 778 @Override toString()779 public String toString() { 780 String cname = lookupClass.getName(); 781 switch (allowedModes) { 782 case 0: // no privileges 783 return cname + "/noaccess"; 784 case PUBLIC: 785 return cname + "/public"; 786 case PUBLIC|PACKAGE: 787 return cname + "/package"; 788 case ALL_MODES & ~PROTECTED: 789 return cname + "/private"; 790 case ALL_MODES: 791 return cname; 792 // Android-changed: No support for TRUSTED callers. 793 // case TRUSTED: 794 // return "/trusted"; // internal only; not exported 795 default: // Should not happen, but it's a bitfield... 796 cname = cname + "/" + Integer.toHexString(allowedModes); 797 assert(false) : cname; 798 return cname; 799 } 800 } 801 802 /** 803 * Produces a method handle for a static method. 804 * The type of the method handle will be that of the method. 805 * (Since static methods do not take receivers, there is no 806 * additional receiver argument inserted into the method handle type, 807 * as there would be with {@link #findVirtual findVirtual} or {@link #findSpecial findSpecial}.) 808 * The method and all its argument types must be accessible to the lookup object. 809 * <p> 810 * The returned method handle will have 811 * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if 812 * the method's variable arity modifier bit ({@code 0x0080}) is set. 813 * <p> 814 * If the returned method handle is invoked, the method's class will 815 * be initialized, if it has not already been initialized. 816 * <p><b>Example:</b> 817 * <blockquote><pre>{@code 818 import static java.lang.invoke.MethodHandles.*; 819 import static java.lang.invoke.MethodType.*; 820 ... 821 MethodHandle MH_asList = publicLookup().findStatic(Arrays.class, 822 "asList", methodType(List.class, Object[].class)); 823 assertEquals("[x, y]", MH_asList.invoke("x", "y").toString()); 824 * }</pre></blockquote> 825 * @param refc the class from which the method is accessed 826 * @param name the name of the method 827 * @param type the type of the method 828 * @return the desired method handle 829 * @throws NoSuchMethodException if the method does not exist 830 * @throws IllegalAccessException if access checking fails, 831 * or if the method is not {@code static}, 832 * or if the method's variable arity modifier bit 833 * is set and {@code asVarargsCollector} fails 834 * @exception SecurityException if a security manager is present and it 835 * <a href="MethodHandles.Lookup.html#secmgr">refuses access</a> 836 * @throws NullPointerException if any argument is null 837 */ 838 public findStatic(Class<?> refc, String name, MethodType type)839 MethodHandle findStatic(Class<?> refc, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException { 840 Method method = refc.getDeclaredMethod(name, type.ptypes()); 841 final int modifiers = method.getModifiers(); 842 if (!Modifier.isStatic(modifiers)) { 843 throw new IllegalAccessException("Method" + method + " is not static"); 844 } 845 checkReturnType(method, type); 846 checkAccess(refc, method.getDeclaringClass(), modifiers, method.getName()); 847 return createMethodHandle(method, MethodHandle.INVOKE_STATIC, type); 848 } 849 findVirtualForMH(String name, MethodType type)850 private MethodHandle findVirtualForMH(String name, MethodType type) { 851 // these names require special lookups because of the implicit MethodType argument 852 if ("invoke".equals(name)) 853 return invoker(type); 854 if ("invokeExact".equals(name)) 855 return exactInvoker(type); 856 return null; 857 } 858 findVirtualForVH(String name, MethodType type)859 private MethodHandle findVirtualForVH(String name, MethodType type) { 860 VarHandle.AccessMode accessMode; 861 try { 862 accessMode = VarHandle.AccessMode.valueFromMethodName(name); 863 } catch (IllegalArgumentException e) { 864 return null; 865 } 866 return varHandleInvoker(accessMode, type); 867 } 868 createMethodHandle(Method method, int handleKind, MethodType methodType)869 private static MethodHandle createMethodHandle(Method method, int handleKind, 870 MethodType methodType) { 871 MethodHandle mh = new MethodHandleImpl(method.getArtMethod(), handleKind, methodType); 872 if (method.isVarArgs()) { 873 return new Transformers.VarargsCollector(mh); 874 } else { 875 return mh; 876 } 877 } 878 879 /** 880 * Produces a method handle for a virtual method. 881 * The type of the method handle will be that of the method, 882 * with the receiver type (usually {@code refc}) prepended. 883 * The method and all its argument types must be accessible to the lookup object. 884 * <p> 885 * When called, the handle will treat the first argument as a receiver 886 * and dispatch on the receiver's type to determine which method 887 * implementation to enter. 888 * (The dispatching action is identical with that performed by an 889 * {@code invokevirtual} or {@code invokeinterface} instruction.) 890 * <p> 891 * The first argument will be of type {@code refc} if the lookup 892 * class has full privileges to access the member. Otherwise 893 * the member must be {@code protected} and the first argument 894 * will be restricted in type to the lookup class. 895 * <p> 896 * The returned method handle will have 897 * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if 898 * the method's variable arity modifier bit ({@code 0x0080}) is set. 899 * <p> 900 * Because of the general <a href="MethodHandles.Lookup.html#equiv">equivalence</a> between {@code invokevirtual} 901 * instructions and method handles produced by {@code findVirtual}, 902 * if the class is {@code MethodHandle} and the name string is 903 * {@code invokeExact} or {@code invoke}, the resulting 904 * method handle is equivalent to one produced by 905 * {@link java.lang.invoke.MethodHandles#exactInvoker MethodHandles.exactInvoker} or 906 * {@link java.lang.invoke.MethodHandles#invoker MethodHandles.invoker} 907 * with the same {@code type} argument. 908 * 909 * <b>Example:</b> 910 * <blockquote><pre>{@code 911 import static java.lang.invoke.MethodHandles.*; 912 import static java.lang.invoke.MethodType.*; 913 ... 914 MethodHandle MH_concat = publicLookup().findVirtual(String.class, 915 "concat", methodType(String.class, String.class)); 916 MethodHandle MH_hashCode = publicLookup().findVirtual(Object.class, 917 "hashCode", methodType(int.class)); 918 MethodHandle MH_hashCode_String = publicLookup().findVirtual(String.class, 919 "hashCode", methodType(int.class)); 920 assertEquals("xy", (String) MH_concat.invokeExact("x", "y")); 921 assertEquals("xy".hashCode(), (int) MH_hashCode.invokeExact((Object)"xy")); 922 assertEquals("xy".hashCode(), (int) MH_hashCode_String.invokeExact("xy")); 923 // interface method: 924 MethodHandle MH_subSequence = publicLookup().findVirtual(CharSequence.class, 925 "subSequence", methodType(CharSequence.class, int.class, int.class)); 926 assertEquals("def", MH_subSequence.invoke("abcdefghi", 3, 6).toString()); 927 // constructor "internal method" must be accessed differently: 928 MethodType MT_newString = methodType(void.class); //()V for new String() 929 try { assertEquals("impossible", lookup() 930 .findVirtual(String.class, "<init>", MT_newString)); 931 } catch (NoSuchMethodException ex) { } // OK 932 MethodHandle MH_newString = publicLookup() 933 .findConstructor(String.class, MT_newString); 934 assertEquals("", (String) MH_newString.invokeExact()); 935 * }</pre></blockquote> 936 * 937 * @param refc the class or interface from which the method is accessed 938 * @param name the name of the method 939 * @param type the type of the method, with the receiver argument omitted 940 * @return the desired method handle 941 * @throws NoSuchMethodException if the method does not exist 942 * @throws IllegalAccessException if access checking fails, 943 * or if the method is {@code static} 944 * or if the method's variable arity modifier bit 945 * is set and {@code asVarargsCollector} fails 946 * @exception SecurityException if a security manager is present and it 947 * <a href="MethodHandles.Lookup.html#secmgr">refuses access</a> 948 * @throws NullPointerException if any argument is null 949 */ findVirtual(Class<?> refc, String name, MethodType type)950 public MethodHandle findVirtual(Class<?> refc, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException { 951 // Special case : when we're looking up a virtual method on the MethodHandles class 952 // itself, we can return one of our specialized invokers. 953 if (refc == MethodHandle.class) { 954 MethodHandle mh = findVirtualForMH(name, type); 955 if (mh != null) { 956 return mh; 957 } 958 } else if (refc == VarHandle.class) { 959 // Returns an non-exact invoker. 960 MethodHandle mh = findVirtualForVH(name, type); 961 if (mh != null) { 962 return mh; 963 } 964 } 965 966 Method method = refc.getInstanceMethod(name, type.ptypes()); 967 if (method == null) { 968 // This is pretty ugly and a consequence of the MethodHandles API. We have to throw 969 // an IAE and not an NSME if the method exists but is static (even though the RI's 970 // IAE has a message that says "no such method"). We confine the ugliness and 971 // slowness to the failure case, and allow getInstanceMethod to remain fairly 972 // general. 973 try { 974 Method m = refc.getDeclaredMethod(name, type.ptypes()); 975 if (Modifier.isStatic(m.getModifiers())) { 976 throw new IllegalAccessException("Method" + m + " is static"); 977 } 978 } catch (NoSuchMethodException ignored) { 979 } 980 981 throw new NoSuchMethodException(name + " " + Arrays.toString(type.ptypes())); 982 } 983 checkReturnType(method, type); 984 985 // We have a valid method, perform access checks. 986 checkAccess(refc, method.getDeclaringClass(), method.getModifiers(), method.getName()); 987 988 // Insert the leading reference parameter. 989 MethodType handleType = type.insertParameterTypes(0, refc); 990 return createMethodHandle(method, MethodHandle.INVOKE_VIRTUAL, handleType); 991 } 992 993 /** 994 * Produces a method handle which creates an object and initializes it, using 995 * the constructor of the specified type. 996 * The parameter types of the method handle will be those of the constructor, 997 * while the return type will be a reference to the constructor's class. 998 * The constructor and all its argument types must be accessible to the lookup object. 999 * <p> 1000 * The requested type must have a return type of {@code void}. 1001 * (This is consistent with the JVM's treatment of constructor type descriptors.) 1002 * <p> 1003 * The returned method handle will have 1004 * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if 1005 * the constructor's variable arity modifier bit ({@code 0x0080}) is set. 1006 * <p> 1007 * If the returned method handle is invoked, the constructor's class will 1008 * be initialized, if it has not already been initialized. 1009 * <p><b>Example:</b> 1010 * <blockquote><pre>{@code 1011 import static java.lang.invoke.MethodHandles.*; 1012 import static java.lang.invoke.MethodType.*; 1013 ... 1014 MethodHandle MH_newArrayList = publicLookup().findConstructor( 1015 ArrayList.class, methodType(void.class, Collection.class)); 1016 Collection orig = Arrays.asList("x", "y"); 1017 Collection copy = (ArrayList) MH_newArrayList.invokeExact(orig); 1018 assert(orig != copy); 1019 assertEquals(orig, copy); 1020 // a variable-arity constructor: 1021 MethodHandle MH_newProcessBuilder = publicLookup().findConstructor( 1022 ProcessBuilder.class, methodType(void.class, String[].class)); 1023 ProcessBuilder pb = (ProcessBuilder) 1024 MH_newProcessBuilder.invoke("x", "y", "z"); 1025 assertEquals("[x, y, z]", pb.command().toString()); 1026 * }</pre></blockquote> 1027 * @param refc the class or interface from which the method is accessed 1028 * @param type the type of the method, with the receiver argument omitted, and a void return type 1029 * @return the desired method handle 1030 * @throws NoSuchMethodException if the constructor does not exist 1031 * @throws IllegalAccessException if access checking fails 1032 * or if the method's variable arity modifier bit 1033 * is set and {@code asVarargsCollector} fails 1034 * @exception SecurityException if a security manager is present and it 1035 * <a href="MethodHandles.Lookup.html#secmgr">refuses access</a> 1036 * @throws NullPointerException if any argument is null 1037 */ findConstructor(Class<?> refc, MethodType type)1038 public MethodHandle findConstructor(Class<?> refc, MethodType type) throws NoSuchMethodException, IllegalAccessException { 1039 if (refc.isArray()) { 1040 throw new NoSuchMethodException("no constructor for array class: " + refc.getName()); 1041 } 1042 // The queried |type| is (PT1,PT2,..)V 1043 Constructor constructor = refc.getDeclaredConstructor(type.ptypes()); 1044 if (constructor == null) { 1045 throw new NoSuchMethodException( 1046 "No constructor for " + constructor.getDeclaringClass() + " matching " + type); 1047 } 1048 checkAccess(refc, constructor.getDeclaringClass(), constructor.getModifiers(), 1049 constructor.getName()); 1050 1051 return createMethodHandleForConstructor(constructor); 1052 } 1053 1054 // BEGIN Android-added: Add findClass(String) from OpenJDK 17. http://b/270028670 1055 // TODO: Unhide this method. 1056 /** 1057 * Looks up a class by name from the lookup context defined by this {@code Lookup} object, 1058 * <a href="MethodHandles.Lookup.html#equiv">as if resolved</a> by an {@code ldc} instruction. 1059 * Such a resolution, as specified in JVMS 5.4.3.1 section, attempts to locate and load the class, 1060 * and then determines whether the class is accessible to this lookup object. 1061 * <p> 1062 * The lookup context here is determined by the {@linkplain #lookupClass() lookup class}, 1063 * its class loader, and the {@linkplain #lookupModes() lookup modes}. 1064 * 1065 * @param targetName the fully qualified name of the class to be looked up. 1066 * @return the requested class. 1067 * @throws SecurityException if a security manager is present and it 1068 * <a href="MethodHandles.Lookup.html#secmgr">refuses access</a> 1069 * @throws LinkageError if the linkage fails 1070 * @throws ClassNotFoundException if the class cannot be loaded by the lookup class' loader. 1071 * @throws IllegalAccessException if the class is not accessible, using the allowed access 1072 * modes. 1073 * @throws NullPointerException if {@code targetName} is null 1074 * @since 9 1075 * @jvms 5.4.3.1 Class and Interface Resolution 1076 * @hide 1077 */ findClass(String targetName)1078 public Class<?> findClass(String targetName) throws ClassNotFoundException, IllegalAccessException { 1079 Class<?> targetClass = Class.forName(targetName, false, lookupClass.getClassLoader()); 1080 return accessClass(targetClass); 1081 } 1082 // END Android-added: Add findClass(String) from OpenJDK 17. http://b/270028670 1083 createMethodHandleForConstructor(Constructor constructor)1084 private MethodHandle createMethodHandleForConstructor(Constructor constructor) { 1085 Class<?> refc = constructor.getDeclaringClass(); 1086 MethodType constructorType = 1087 MethodType.methodType(refc, constructor.getParameterTypes()); 1088 MethodHandle mh; 1089 if (refc == String.class) { 1090 // String constructors have optimized StringFactory methods 1091 // that matches returned type. These factory methods combine the 1092 // memory allocation and initialization calls for String objects. 1093 mh = new MethodHandleImpl(constructor.getArtMethod(), MethodHandle.INVOKE_DIRECT, 1094 constructorType); 1095 } else { 1096 // Constructors for all other classes use a Construct transformer to perform 1097 // their memory allocation and call to <init>. 1098 MethodType initType = initMethodType(constructorType); 1099 MethodHandle initHandle = new MethodHandleImpl( 1100 constructor.getArtMethod(), MethodHandle.INVOKE_DIRECT, initType); 1101 mh = new Transformers.Construct(initHandle, constructorType); 1102 } 1103 1104 if (constructor.isVarArgs()) { 1105 mh = new Transformers.VarargsCollector(mh); 1106 } 1107 return mh; 1108 } 1109 initMethodType(MethodType constructorType)1110 private static MethodType initMethodType(MethodType constructorType) { 1111 // Returns a MethodType appropriate for class <init> 1112 // methods. Constructor MethodTypes have the form 1113 // (PT1,PT2,...)C and class <init> MethodTypes have the 1114 // form (C,PT1,PT2,...)V. 1115 assert constructorType.rtype() != void.class; 1116 1117 // Insert constructorType C as the first parameter type in 1118 // the MethodType for <init>. 1119 Class<?> [] initPtypes = new Class<?> [constructorType.ptypes().length + 1]; 1120 initPtypes[0] = constructorType.rtype(); 1121 System.arraycopy(constructorType.ptypes(), 0, initPtypes, 1, 1122 constructorType.ptypes().length); 1123 1124 // Set the return type for the <init> MethodType to be void. 1125 return MethodType.methodType(void.class, initPtypes); 1126 } 1127 1128 // BEGIN Android-added: Add accessClass(Class) from OpenJDK 17. http://b/270028670 1129 /* 1130 * Returns IllegalAccessException due to access violation to the given targetClass. 1131 * 1132 * This method is called by {@link Lookup#accessClass} and {@link Lookup#ensureInitialized} 1133 * which verifies access to a class rather a member. 1134 */ makeAccessException(Class<?> targetClass)1135 private IllegalAccessException makeAccessException(Class<?> targetClass) { 1136 String message = "access violation: "+ targetClass; 1137 if (this == MethodHandles.publicLookup()) { 1138 message += ", from public Lookup"; 1139 } else { 1140 // Android-changed: Remove unsupported module name. 1141 // Module m = lookupClass().getModule(); 1142 // message += ", from " + lookupClass() + " (" + m + ")"; 1143 message += ", from " + lookupClass(); 1144 // Android-removed: Remove prevLookupClass until supported by Lookup in OpenJDK 17. 1145 // if (prevLookupClass != null) { 1146 // message += ", previous lookup " + 1147 // prevLookupClass.getName() + " (" + prevLookupClass.getModule() + ")"; 1148 // } 1149 } 1150 return new IllegalAccessException(message); 1151 } 1152 1153 // TODO: Unhide this method. 1154 /** 1155 * Determines if a class can be accessed from the lookup context defined by 1156 * this {@code Lookup} object. The static initializer of the class is not run. 1157 * If {@code targetClass} is an array class, {@code targetClass} is accessible 1158 * if the element type of the array class is accessible. Otherwise, 1159 * {@code targetClass} is determined as accessible as follows. 1160 * 1161 * <p> 1162 * If {@code targetClass} is in the same module as the lookup class, 1163 * the lookup class is {@code LC} in module {@code M1} and 1164 * the previous lookup class is in module {@code M0} or 1165 * {@code null} if not present, 1166 * {@code targetClass} is accessible if and only if one of the following is true: 1167 * <ul> 1168 * <li>If this lookup has {@link #PRIVATE} access, {@code targetClass} is 1169 * {@code LC} or other class in the same nest of {@code LC}.</li> 1170 * <li>If this lookup has {@link #PACKAGE} access, {@code targetClass} is 1171 * in the same runtime package of {@code LC}.</li> 1172 * <li>If this lookup has {@link #MODULE} access, {@code targetClass} is 1173 * a public type in {@code M1}.</li> 1174 * <li>If this lookup has {@link #PUBLIC} access, {@code targetClass} is 1175 * a public type in a package exported by {@code M1} to at least {@code M0} 1176 * if the previous lookup class is present; otherwise, {@code targetClass} 1177 * is a public type in a package exported by {@code M1} unconditionally.</li> 1178 * </ul> 1179 * 1180 * <p> 1181 * Otherwise, if this lookup has {@link #UNCONDITIONAL} access, this lookup 1182 * can access public types in all modules when the type is in a package 1183 * that is exported unconditionally. 1184 * <p> 1185 * Otherwise, {@code targetClass} is in a different module from {@code lookupClass}, 1186 * and if this lookup does not have {@code PUBLIC} access, {@code lookupClass} 1187 * is inaccessible. 1188 * <p> 1189 * Otherwise, if this lookup has no {@linkplain #previousLookupClass() previous lookup class}, 1190 * {@code M1} is the module containing {@code lookupClass} and 1191 * {@code M2} is the module containing {@code targetClass}, 1192 * then {@code targetClass} is accessible if and only if 1193 * <ul> 1194 * <li>{@code M1} reads {@code M2}, and 1195 * <li>{@code targetClass} is public and in a package exported by 1196 * {@code M2} at least to {@code M1}. 1197 * </ul> 1198 * <p> 1199 * Otherwise, if this lookup has a {@linkplain #previousLookupClass() previous lookup class}, 1200 * {@code M1} and {@code M2} are as before, and {@code M0} is the module 1201 * containing the previous lookup class, then {@code targetClass} is accessible 1202 * if and only if one of the following is true: 1203 * <ul> 1204 * <li>{@code targetClass} is in {@code M0} and {@code M1} 1205 * {@linkplain Module#reads reads} {@code M0} and the type is 1206 * in a package that is exported to at least {@code M1}. 1207 * <li>{@code targetClass} is in {@code M1} and {@code M0} 1208 * {@linkplain Module#reads reads} {@code M1} and the type is 1209 * in a package that is exported to at least {@code M0}. 1210 * <li>{@code targetClass} is in a third module {@code M2} and both {@code M0} 1211 * and {@code M1} reads {@code M2} and the type is in a package 1212 * that is exported to at least both {@code M0} and {@code M2}. 1213 * </ul> 1214 * <p> 1215 * Otherwise, {@code targetClass} is not accessible. 1216 * 1217 * @param targetClass the class to be access-checked 1218 * @return the class that has been access-checked 1219 * @throws IllegalAccessException if the class is not accessible from the lookup class 1220 * and previous lookup class, if present, using the allowed access modes. 1221 * @throws SecurityException if a security manager is present and it 1222 * <a href="MethodHandles.Lookup.html#secmgr">refuses access</a> 1223 * @throws NullPointerException if {@code targetClass} is {@code null} 1224 * @since 9 1225 * @see <a href="#cross-module-lookup">Cross-module lookups</a> 1226 * @hide 1227 */ accessClass(Class<?> targetClass)1228 public Class<?> accessClass(Class<?> targetClass) throws IllegalAccessException { 1229 if (!isClassAccessible(targetClass)) { 1230 throw makeAccessException(targetClass); 1231 } 1232 // Android-removed: SecurityManager is unnecessary on Android. 1233 // checkSecurityManager(targetClass); 1234 return targetClass; 1235 } 1236 isClassAccessible(Class<?> refc)1237 boolean isClassAccessible(Class<?> refc) { 1238 Objects.requireNonNull(refc); 1239 Class<?> caller = lookupClassOrNull(); 1240 Class<?> type = refc; 1241 while (type.isArray()) { 1242 type = type.getComponentType(); 1243 } 1244 // Android-removed: Remove prevLookupClass until supported by Lookup in OpenJDK 17. 1245 // return caller == null || VerifyAccess.isClassAccessible(type, caller, prevLookupClass, allowedModes); 1246 return caller == null || VerifyAccess.isClassAccessible(type, caller, allowedModes); 1247 } 1248 1249 // This is just for calling out to MethodHandleImpl. lookupClassOrNull()1250 private Class<?> lookupClassOrNull() { 1251 // Android-changed: Android always returns lookupClass and has no concept of TRUSTED. 1252 // return (allowedModes == TRUSTED) ? null : lookupClass; 1253 return lookupClass; 1254 } 1255 // END Android-added: Add accessClass(Class) from OpenJDK 17. http://b/270028670 1256 1257 /** 1258 * Produces an early-bound method handle for a virtual method. 1259 * It will bypass checks for overriding methods on the receiver, 1260 * <a href="MethodHandles.Lookup.html#equiv">as if called</a> from an {@code invokespecial} 1261 * instruction from within the explicitly specified {@code specialCaller}. 1262 * The type of the method handle will be that of the method, 1263 * with a suitably restricted receiver type prepended. 1264 * (The receiver type will be {@code specialCaller} or a subtype.) 1265 * The method and all its argument types must be accessible 1266 * to the lookup object. 1267 * <p> 1268 * Before method resolution, 1269 * if the explicitly specified caller class is not identical with the 1270 * lookup class, or if this lookup object does not have 1271 * <a href="MethodHandles.Lookup.html#privacc">private access</a> 1272 * privileges, the access fails. 1273 * <p> 1274 * The returned method handle will have 1275 * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if 1276 * the method's variable arity modifier bit ({@code 0x0080}) is set. 1277 * <p style="font-size:smaller;"> 1278 * <em>(Note: JVM internal methods named {@code "<init>"} are not visible to this API, 1279 * even though the {@code invokespecial} instruction can refer to them 1280 * in special circumstances. Use {@link #findConstructor findConstructor} 1281 * to access instance initialization methods in a safe manner.)</em> 1282 * <p><b>Example:</b> 1283 * <blockquote><pre>{@code 1284 import static java.lang.invoke.MethodHandles.*; 1285 import static java.lang.invoke.MethodType.*; 1286 ... 1287 static class Listie extends ArrayList { 1288 public String toString() { return "[wee Listie]"; } 1289 static Lookup lookup() { return MethodHandles.lookup(); } 1290 } 1291 ... 1292 // no access to constructor via invokeSpecial: 1293 MethodHandle MH_newListie = Listie.lookup() 1294 .findConstructor(Listie.class, methodType(void.class)); 1295 Listie l = (Listie) MH_newListie.invokeExact(); 1296 try { assertEquals("impossible", Listie.lookup().findSpecial( 1297 Listie.class, "<init>", methodType(void.class), Listie.class)); 1298 } catch (NoSuchMethodException ex) { } // OK 1299 // access to super and self methods via invokeSpecial: 1300 MethodHandle MH_super = Listie.lookup().findSpecial( 1301 ArrayList.class, "toString" , methodType(String.class), Listie.class); 1302 MethodHandle MH_this = Listie.lookup().findSpecial( 1303 Listie.class, "toString" , methodType(String.class), Listie.class); 1304 MethodHandle MH_duper = Listie.lookup().findSpecial( 1305 Object.class, "toString" , methodType(String.class), Listie.class); 1306 assertEquals("[]", (String) MH_super.invokeExact(l)); 1307 assertEquals(""+l, (String) MH_this.invokeExact(l)); 1308 assertEquals("[]", (String) MH_duper.invokeExact(l)); // ArrayList method 1309 try { assertEquals("inaccessible", Listie.lookup().findSpecial( 1310 String.class, "toString", methodType(String.class), Listie.class)); 1311 } catch (IllegalAccessException ex) { } // OK 1312 Listie subl = new Listie() { public String toString() { return "[subclass]"; } }; 1313 assertEquals(""+l, (String) MH_this.invokeExact(subl)); // Listie method 1314 * }</pre></blockquote> 1315 * 1316 * @param refc the class or interface from which the method is accessed 1317 * @param name the name of the method (which must not be "<init>") 1318 * @param type the type of the method, with the receiver argument omitted 1319 * @param specialCaller the proposed calling class to perform the {@code invokespecial} 1320 * @return the desired method handle 1321 * @throws NoSuchMethodException if the method does not exist 1322 * @throws IllegalAccessException if access checking fails 1323 * or if the method's variable arity modifier bit 1324 * is set and {@code asVarargsCollector} fails 1325 * @exception SecurityException if a security manager is present and it 1326 * <a href="MethodHandles.Lookup.html#secmgr">refuses access</a> 1327 * @throws NullPointerException if any argument is null 1328 */ findSpecial(Class<?> refc, String name, MethodType type, Class<?> specialCaller)1329 public MethodHandle findSpecial(Class<?> refc, String name, MethodType type, 1330 Class<?> specialCaller) throws NoSuchMethodException, IllegalAccessException { 1331 if (specialCaller == null) { 1332 throw new NullPointerException("specialCaller == null"); 1333 } 1334 1335 if (type == null) { 1336 throw new NullPointerException("type == null"); 1337 } 1338 1339 if (name == null) { 1340 throw new NullPointerException("name == null"); 1341 } 1342 1343 if (refc == null) { 1344 throw new NullPointerException("ref == null"); 1345 } 1346 1347 // Make sure that the special caller is identical to the lookup class or that we have 1348 // private access. 1349 // Android-changed: Also allow access to any interface methods. 1350 checkSpecialCaller(specialCaller, refc); 1351 1352 // Even though constructors are invoked using a "special" invoke, handles to them can't 1353 // be created using findSpecial. Callers must use findConstructor instead. Similarly, 1354 // there is no path for calling static class initializers. 1355 if (name.startsWith("<")) { 1356 throw new NoSuchMethodException(name + " is not a valid method name."); 1357 } 1358 1359 Method method = refc.getDeclaredMethod(name, type.ptypes()); 1360 checkReturnType(method, type); 1361 return findSpecial(method, type, refc, specialCaller); 1362 } 1363 findSpecial(Method method, MethodType type, Class<?> refc, Class<?> specialCaller)1364 private MethodHandle findSpecial(Method method, MethodType type, 1365 Class<?> refc, Class<?> specialCaller) 1366 throws IllegalAccessException { 1367 if (Modifier.isStatic(method.getModifiers())) { 1368 throw new IllegalAccessException("expected a non-static method:" + method); 1369 } 1370 1371 if (Modifier.isPrivate(method.getModifiers())) { 1372 // Since this is a private method, we'll need to also make sure that the 1373 // lookup class is the same as the refering class. We've already checked that 1374 // the specialCaller is the same as the special lookup class, both of these must 1375 // be the same as the declaring class(*) in order to access the private method. 1376 // 1377 // (*) Well, this isn't true for nested classes but OpenJDK doesn't support those 1378 // either. 1379 if (refc != lookupClass()) { 1380 throw new IllegalAccessException("no private access for invokespecial : " 1381 + refc + ", from" + this); 1382 } 1383 1384 // This is a private method, so there's nothing special to do. 1385 MethodType handleType = type.insertParameterTypes(0, refc); 1386 return createMethodHandle(method, MethodHandle.INVOKE_DIRECT, handleType); 1387 } 1388 1389 // This is a public, protected or package-private method, which means we're expecting 1390 // invoke-super semantics. We'll have to restrict the receiver type appropriately on the 1391 // handle once we check that there really is a "super" relationship between them. 1392 if (!method.getDeclaringClass().isAssignableFrom(specialCaller)) { 1393 throw new IllegalAccessException(refc + "is not assignable from " + specialCaller); 1394 } 1395 1396 // Note that we restrict the receiver to "specialCaller" instances. 1397 MethodType handleType = type.insertParameterTypes(0, specialCaller); 1398 return createMethodHandle(method, MethodHandle.INVOKE_SUPER, handleType); 1399 } 1400 1401 /** 1402 * Produces a method handle giving read access to a non-static field. 1403 * The type of the method handle will have a return type of the field's 1404 * value type. 1405 * The method handle's single argument will be the instance containing 1406 * the field. 1407 * Access checking is performed immediately on behalf of the lookup class. 1408 * @param refc the class or interface from which the method is accessed 1409 * @param name the field's name 1410 * @param type the field's type 1411 * @return a method handle which can load values from the field 1412 * @throws NoSuchFieldException if the field does not exist 1413 * @throws IllegalAccessException if access checking fails, or if the field is {@code static} 1414 * @exception SecurityException if a security manager is present and it 1415 * <a href="MethodHandles.Lookup.html#secmgr">refuses access</a> 1416 * @throws NullPointerException if any argument is null 1417 */ findGetter(Class<?> refc, String name, Class<?> type)1418 public MethodHandle findGetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException { 1419 return findAccessor(refc, name, type, MethodHandle.IGET); 1420 } 1421 findAccessor(Class<?> refc, String name, Class<?> type, int kind)1422 private MethodHandle findAccessor(Class<?> refc, String name, Class<?> type, int kind) 1423 throws NoSuchFieldException, IllegalAccessException { 1424 final Field field = findFieldOfType(refc, name, type); 1425 return findAccessor(field, refc, type, kind, true /* performAccessChecks */); 1426 } 1427 findAccessor(Field field, Class<?> refc, Class<?> type, int kind, boolean performAccessChecks)1428 private MethodHandle findAccessor(Field field, Class<?> refc, Class<?> type, int kind, 1429 boolean performAccessChecks) 1430 throws IllegalAccessException { 1431 final boolean isSetterKind = kind == MethodHandle.IPUT || kind == MethodHandle.SPUT; 1432 final boolean isStaticKind = kind == MethodHandle.SGET || kind == MethodHandle.SPUT; 1433 commonFieldChecks(field, refc, type, isStaticKind, performAccessChecks); 1434 if (performAccessChecks) { 1435 final int modifiers = field.getModifiers(); 1436 if (isSetterKind && Modifier.isFinal(modifiers)) { 1437 throw new IllegalAccessException("Field " + field + " is final"); 1438 } 1439 } 1440 1441 final MethodType methodType; 1442 switch (kind) { 1443 case MethodHandle.SGET: 1444 methodType = MethodType.methodType(type); 1445 break; 1446 case MethodHandle.SPUT: 1447 methodType = MethodType.methodType(void.class, type); 1448 break; 1449 case MethodHandle.IGET: 1450 methodType = MethodType.methodType(type, refc); 1451 break; 1452 case MethodHandle.IPUT: 1453 methodType = MethodType.methodType(void.class, refc, type); 1454 break; 1455 default: 1456 throw new IllegalArgumentException("Invalid kind " + kind); 1457 } 1458 return new MethodHandleImpl(field.getArtField(), kind, methodType); 1459 } 1460 1461 /** 1462 * Produces a method handle giving write access to a non-static field. 1463 * The type of the method handle will have a void return type. 1464 * The method handle will take two arguments, the instance containing 1465 * the field, and the value to be stored. 1466 * The second argument will be of the field's value type. 1467 * Access checking is performed immediately on behalf of the lookup class. 1468 * @param refc the class or interface from which the method is accessed 1469 * @param name the field's name 1470 * @param type the field's type 1471 * @return a method handle which can store values into the field 1472 * @throws NoSuchFieldException if the field does not exist 1473 * @throws IllegalAccessException if access checking fails, or if the field is {@code static} 1474 * @exception SecurityException if a security manager is present and it 1475 * <a href="MethodHandles.Lookup.html#secmgr">refuses access</a> 1476 * @throws NullPointerException if any argument is null 1477 */ findSetter(Class<?> refc, String name, Class<?> type)1478 public MethodHandle findSetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException { 1479 return findAccessor(refc, name, type, MethodHandle.IPUT); 1480 } 1481 1482 // BEGIN Android-changed: OpenJDK 9+181 VarHandle API factory method. 1483 /** 1484 * Produces a VarHandle giving access to a non-static field {@code name} 1485 * of type {@code type} declared in a class of type {@code recv}. 1486 * The VarHandle's variable type is {@code type} and it has one 1487 * coordinate type, {@code recv}. 1488 * <p> 1489 * Access checking is performed immediately on behalf of the lookup 1490 * class. 1491 * <p> 1492 * Certain access modes of the returned VarHandle are unsupported under 1493 * the following conditions: 1494 * <ul> 1495 * <li>if the field is declared {@code final}, then the write, atomic 1496 * update, numeric atomic update, and bitwise atomic update access 1497 * modes are unsupported. 1498 * <li>if the field type is anything other than {@code byte}, 1499 * {@code short}, {@code char}, {@code int}, {@code long}, 1500 * {@code float}, or {@code double} then numeric atomic update 1501 * access modes are unsupported. 1502 * <li>if the field type is anything other than {@code boolean}, 1503 * {@code byte}, {@code short}, {@code char}, {@code int} or 1504 * {@code long} then bitwise atomic update access modes are 1505 * unsupported. 1506 * </ul> 1507 * <p> 1508 * If the field is declared {@code volatile} then the returned VarHandle 1509 * will override access to the field (effectively ignore the 1510 * {@code volatile} declaration) in accordance to its specified 1511 * access modes. 1512 * <p> 1513 * If the field type is {@code float} or {@code double} then numeric 1514 * and atomic update access modes compare values using their bitwise 1515 * representation (see {@link Float#floatToRawIntBits} and 1516 * {@link Double#doubleToRawLongBits}, respectively). 1517 * @apiNote 1518 * Bitwise comparison of {@code float} values or {@code double} values, 1519 * as performed by the numeric and atomic update access modes, differ 1520 * from the primitive {@code ==} operator and the {@link Float#equals} 1521 * and {@link Double#equals} methods, specifically with respect to 1522 * comparing NaN values or comparing {@code -0.0} with {@code +0.0}. 1523 * Care should be taken when performing a compare and set or a compare 1524 * and exchange operation with such values since the operation may 1525 * unexpectedly fail. 1526 * There are many possible NaN values that are considered to be 1527 * {@code NaN} in Java, although no IEEE 754 floating-point operation 1528 * provided by Java can distinguish between them. Operation failure can 1529 * occur if the expected or witness value is a NaN value and it is 1530 * transformed (perhaps in a platform specific manner) into another NaN 1531 * value, and thus has a different bitwise representation (see 1532 * {@link Float#intBitsToFloat} or {@link Double#longBitsToDouble} for more 1533 * details). 1534 * The values {@code -0.0} and {@code +0.0} have different bitwise 1535 * representations but are considered equal when using the primitive 1536 * {@code ==} operator. Operation failure can occur if, for example, a 1537 * numeric algorithm computes an expected value to be say {@code -0.0} 1538 * and previously computed the witness value to be say {@code +0.0}. 1539 * @param recv the receiver class, of type {@code R}, that declares the 1540 * non-static field 1541 * @param name the field's name 1542 * @param type the field's type, of type {@code T} 1543 * @return a VarHandle giving access to non-static fields. 1544 * @throws NoSuchFieldException if the field does not exist 1545 * @throws IllegalAccessException if access checking fails, or if the field is {@code static} 1546 * @exception SecurityException if a security manager is present and it 1547 * <a href="MethodHandles.Lookup.html#secmgr">refuses access</a> 1548 * @throws NullPointerException if any argument is null 1549 * @since 9 1550 */ findVarHandle(Class<?> recv, String name, Class<?> type)1551 public VarHandle findVarHandle(Class<?> recv, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException { 1552 final Field field = findFieldOfType(recv, name, type); 1553 final boolean isStatic = false; 1554 final boolean performAccessChecks = true; 1555 commonFieldChecks(field, recv, type, isStatic, performAccessChecks); 1556 return FieldVarHandle.create(field); 1557 } 1558 // END Android-changed: OpenJDK 9+181 VarHandle API factory method. 1559 1560 // BEGIN Android-added: Common field resolution and access check methods. findFieldOfType(final Class<?> refc, String name, Class<?> type)1561 private Field findFieldOfType(final Class<?> refc, String name, Class<?> type) 1562 throws NoSuchFieldException { 1563 Field field = null; 1564 1565 // Search refc and super classes for the field. 1566 for (Class<?> cls = refc; cls != null; cls = cls.getSuperclass()) { 1567 try { 1568 field = cls.getDeclaredField(name); 1569 break; 1570 } catch (NoSuchFieldException e) { 1571 } 1572 } 1573 1574 if (field == null) { 1575 // Force failure citing refc. 1576 field = refc.getDeclaredField(name); 1577 } 1578 1579 final Class<?> fieldType = field.getType(); 1580 if (fieldType != type) { 1581 throw new NoSuchFieldException(name); 1582 } 1583 return field; 1584 } 1585 commonFieldChecks(Field field, Class<?> refc, Class<?> type, boolean isStatic, boolean performAccessChecks)1586 private void commonFieldChecks(Field field, Class<?> refc, Class<?> type, 1587 boolean isStatic, boolean performAccessChecks) 1588 throws IllegalAccessException { 1589 final int modifiers = field.getModifiers(); 1590 if (performAccessChecks) { 1591 checkAccess(refc, field.getDeclaringClass(), modifiers, field.getName()); 1592 } 1593 if (Modifier.isStatic(modifiers) != isStatic) { 1594 String reason = "Field " + field + " is " + 1595 (isStatic ? "not " : "") + "static"; 1596 throw new IllegalAccessException(reason); 1597 } 1598 } 1599 // END Android-added: Common field resolution and access check methods. 1600 1601 /** 1602 * Produces a method handle giving read access to a static field. 1603 * The type of the method handle will have a return type of the field's 1604 * value type. 1605 * The method handle will take no arguments. 1606 * Access checking is performed immediately on behalf of the lookup class. 1607 * <p> 1608 * If the returned method handle is invoked, the field's class will 1609 * be initialized, if it has not already been initialized. 1610 * @param refc the class or interface from which the method is accessed 1611 * @param name the field's name 1612 * @param type the field's type 1613 * @return a method handle which can load values from the field 1614 * @throws NoSuchFieldException if the field does not exist 1615 * @throws IllegalAccessException if access checking fails, or if the field is not {@code static} 1616 * @exception SecurityException if a security manager is present and it 1617 * <a href="MethodHandles.Lookup.html#secmgr">refuses access</a> 1618 * @throws NullPointerException if any argument is null 1619 */ findStaticGetter(Class<?> refc, String name, Class<?> type)1620 public MethodHandle findStaticGetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException { 1621 return findAccessor(refc, name, type, MethodHandle.SGET); 1622 } 1623 1624 /** 1625 * Produces a method handle giving write access to a static field. 1626 * The type of the method handle will have a void return type. 1627 * The method handle will take a single 1628 * argument, of the field's value type, the value to be stored. 1629 * Access checking is performed immediately on behalf of the lookup class. 1630 * <p> 1631 * If the returned method handle is invoked, the field's class will 1632 * be initialized, if it has not already been initialized. 1633 * @param refc the class or interface from which the method is accessed 1634 * @param name the field's name 1635 * @param type the field's type 1636 * @return a method handle which can store values into the field 1637 * @throws NoSuchFieldException if the field does not exist 1638 * @throws IllegalAccessException if access checking fails, or if the field is not {@code static} 1639 * @exception SecurityException if a security manager is present and it 1640 * <a href="MethodHandles.Lookup.html#secmgr">refuses access</a> 1641 * @throws NullPointerException if any argument is null 1642 */ findStaticSetter(Class<?> refc, String name, Class<?> type)1643 public MethodHandle findStaticSetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException { 1644 return findAccessor(refc, name, type, MethodHandle.SPUT); 1645 } 1646 1647 // BEGIN Android-changed: OpenJDK 9+181 VarHandle API factory method. 1648 /** 1649 * Produces a VarHandle giving access to a static field {@code name} of 1650 * type {@code type} declared in a class of type {@code decl}. 1651 * The VarHandle's variable type is {@code type} and it has no 1652 * coordinate types. 1653 * <p> 1654 * Access checking is performed immediately on behalf of the lookup 1655 * class. 1656 * <p> 1657 * If the returned VarHandle is operated on, the declaring class will be 1658 * initialized, if it has not already been initialized. 1659 * <p> 1660 * Certain access modes of the returned VarHandle are unsupported under 1661 * the following conditions: 1662 * <ul> 1663 * <li>if the field is declared {@code final}, then the write, atomic 1664 * update, numeric atomic update, and bitwise atomic update access 1665 * modes are unsupported. 1666 * <li>if the field type is anything other than {@code byte}, 1667 * {@code short}, {@code char}, {@code int}, {@code long}, 1668 * {@code float}, or {@code double}, then numeric atomic update 1669 * access modes are unsupported. 1670 * <li>if the field type is anything other than {@code boolean}, 1671 * {@code byte}, {@code short}, {@code char}, {@code int} or 1672 * {@code long} then bitwise atomic update access modes are 1673 * unsupported. 1674 * </ul> 1675 * <p> 1676 * If the field is declared {@code volatile} then the returned VarHandle 1677 * will override access to the field (effectively ignore the 1678 * {@code volatile} declaration) in accordance to its specified 1679 * access modes. 1680 * <p> 1681 * If the field type is {@code float} or {@code double} then numeric 1682 * and atomic update access modes compare values using their bitwise 1683 * representation (see {@link Float#floatToRawIntBits} and 1684 * {@link Double#doubleToRawLongBits}, respectively). 1685 * @apiNote 1686 * Bitwise comparison of {@code float} values or {@code double} values, 1687 * as performed by the numeric and atomic update access modes, differ 1688 * from the primitive {@code ==} operator and the {@link Float#equals} 1689 * and {@link Double#equals} methods, specifically with respect to 1690 * comparing NaN values or comparing {@code -0.0} with {@code +0.0}. 1691 * Care should be taken when performing a compare and set or a compare 1692 * and exchange operation with such values since the operation may 1693 * unexpectedly fail. 1694 * There are many possible NaN values that are considered to be 1695 * {@code NaN} in Java, although no IEEE 754 floating-point operation 1696 * provided by Java can distinguish between them. Operation failure can 1697 * occur if the expected or witness value is a NaN value and it is 1698 * transformed (perhaps in a platform specific manner) into another NaN 1699 * value, and thus has a different bitwise representation (see 1700 * {@link Float#intBitsToFloat} or {@link Double#longBitsToDouble} for more 1701 * details). 1702 * The values {@code -0.0} and {@code +0.0} have different bitwise 1703 * representations but are considered equal when using the primitive 1704 * {@code ==} operator. Operation failure can occur if, for example, a 1705 * numeric algorithm computes an expected value to be say {@code -0.0} 1706 * and previously computed the witness value to be say {@code +0.0}. 1707 * @param decl the class that declares the static field 1708 * @param name the field's name 1709 * @param type the field's type, of type {@code T} 1710 * @return a VarHandle giving access to a static field 1711 * @throws NoSuchFieldException if the field does not exist 1712 * @throws IllegalAccessException if access checking fails, or if the field is not {@code static} 1713 * @exception SecurityException if a security manager is present and it 1714 * <a href="MethodHandles.Lookup.html#secmgr">refuses access</a> 1715 * @throws NullPointerException if any argument is null 1716 * @since 9 1717 */ findStaticVarHandle(Class<?> decl, String name, Class<?> type)1718 public VarHandle findStaticVarHandle(Class<?> decl, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException { 1719 final Field field = findFieldOfType(decl, name, type); 1720 final boolean isStatic = true; 1721 final boolean performAccessChecks = true; 1722 commonFieldChecks(field, decl, type, isStatic, performAccessChecks); 1723 return StaticFieldVarHandle.create(field); 1724 } 1725 // END Android-changed: OpenJDK 9+181 VarHandle API factory method. 1726 1727 /** 1728 * Produces an early-bound method handle for a non-static method. 1729 * The receiver must have a supertype {@code defc} in which a method 1730 * of the given name and type is accessible to the lookup class. 1731 * The method and all its argument types must be accessible to the lookup object. 1732 * The type of the method handle will be that of the method, 1733 * without any insertion of an additional receiver parameter. 1734 * The given receiver will be bound into the method handle, 1735 * so that every call to the method handle will invoke the 1736 * requested method on the given receiver. 1737 * <p> 1738 * The returned method handle will have 1739 * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if 1740 * the method's variable arity modifier bit ({@code 0x0080}) is set 1741 * <em>and</em> the trailing array argument is not the only argument. 1742 * (If the trailing array argument is the only argument, 1743 * the given receiver value will be bound to it.) 1744 * <p> 1745 * This is equivalent to the following code: 1746 * <blockquote><pre>{@code 1747 import static java.lang.invoke.MethodHandles.*; 1748 import static java.lang.invoke.MethodType.*; 1749 ... 1750 MethodHandle mh0 = lookup().findVirtual(defc, name, type); 1751 MethodHandle mh1 = mh0.bindTo(receiver); 1752 MethodType mt1 = mh1.type(); 1753 if (mh0.isVarargsCollector()) 1754 mh1 = mh1.asVarargsCollector(mt1.parameterType(mt1.parameterCount()-1)); 1755 return mh1; 1756 * }</pre></blockquote> 1757 * where {@code defc} is either {@code receiver.getClass()} or a super 1758 * type of that class, in which the requested method is accessible 1759 * to the lookup class. 1760 * (Note that {@code bindTo} does not preserve variable arity.) 1761 * @param receiver the object from which the method is accessed 1762 * @param name the name of the method 1763 * @param type the type of the method, with the receiver argument omitted 1764 * @return the desired method handle 1765 * @throws NoSuchMethodException if the method does not exist 1766 * @throws IllegalAccessException if access checking fails 1767 * or if the method's variable arity modifier bit 1768 * is set and {@code asVarargsCollector} fails 1769 * @exception SecurityException if a security manager is present and it 1770 * <a href="MethodHandles.Lookup.html#secmgr">refuses access</a> 1771 * @throws NullPointerException if any argument is null 1772 * @see MethodHandle#bindTo 1773 * @see #findVirtual 1774 */ bind(Object receiver, String name, MethodType type)1775 public MethodHandle bind(Object receiver, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException { 1776 MethodHandle handle = findVirtual(receiver.getClass(), name, type); 1777 MethodHandle adapter = handle.bindTo(receiver); 1778 MethodType adapterType = adapter.type(); 1779 if (handle.isVarargsCollector()) { 1780 adapter = adapter.asVarargsCollector( 1781 adapterType.parameterType(adapterType.parameterCount() - 1)); 1782 } 1783 1784 return adapter; 1785 } 1786 1787 /** 1788 * Makes a <a href="MethodHandleInfo.html#directmh">direct method handle</a> 1789 * to <i>m</i>, if the lookup class has permission. 1790 * If <i>m</i> is non-static, the receiver argument is treated as an initial argument. 1791 * If <i>m</i> is virtual, overriding is respected on every call. 1792 * Unlike the Core Reflection API, exceptions are <em>not</em> wrapped. 1793 * The type of the method handle will be that of the method, 1794 * with the receiver type prepended (but only if it is non-static). 1795 * If the method's {@code accessible} flag is not set, 1796 * access checking is performed immediately on behalf of the lookup class. 1797 * If <i>m</i> is not public, do not share the resulting handle with untrusted parties. 1798 * <p> 1799 * The returned method handle will have 1800 * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if 1801 * the method's variable arity modifier bit ({@code 0x0080}) is set. 1802 * <p> 1803 * If <i>m</i> is static, and 1804 * if the returned method handle is invoked, the method's class will 1805 * be initialized, if it has not already been initialized. 1806 * @param m the reflected method 1807 * @return a method handle which can invoke the reflected method 1808 * @throws IllegalAccessException if access checking fails 1809 * or if the method's variable arity modifier bit 1810 * is set and {@code asVarargsCollector} fails 1811 * @throws NullPointerException if the argument is null 1812 */ unreflect(Method m)1813 public MethodHandle unreflect(Method m) throws IllegalAccessException { 1814 if (m == null) { 1815 throw new NullPointerException("m == null"); 1816 } 1817 1818 MethodType methodType = MethodType.methodType(m.getReturnType(), 1819 m.getParameterTypes()); 1820 1821 // We should only perform access checks if setAccessible hasn't been called yet. 1822 if (!m.isAccessible()) { 1823 checkAccess(m.getDeclaringClass(), m.getDeclaringClass(), m.getModifiers(), 1824 m.getName()); 1825 } 1826 1827 if (Modifier.isStatic(m.getModifiers())) { 1828 return createMethodHandle(m, MethodHandle.INVOKE_STATIC, methodType); 1829 } else { 1830 methodType = methodType.insertParameterTypes(0, m.getDeclaringClass()); 1831 return createMethodHandle(m, MethodHandle.INVOKE_VIRTUAL, methodType); 1832 } 1833 } 1834 1835 /** 1836 * Produces a method handle for a reflected method. 1837 * It will bypass checks for overriding methods on the receiver, 1838 * <a href="MethodHandles.Lookup.html#equiv">as if called</a> from an {@code invokespecial} 1839 * instruction from within the explicitly specified {@code specialCaller}. 1840 * The type of the method handle will be that of the method, 1841 * with a suitably restricted receiver type prepended. 1842 * (The receiver type will be {@code specialCaller} or a subtype.) 1843 * If the method's {@code accessible} flag is not set, 1844 * access checking is performed immediately on behalf of the lookup class, 1845 * as if {@code invokespecial} instruction were being linked. 1846 * <p> 1847 * Before method resolution, 1848 * if the explicitly specified caller class is not identical with the 1849 * lookup class, or if this lookup object does not have 1850 * <a href="MethodHandles.Lookup.html#privacc">private access</a> 1851 * privileges, the access fails. 1852 * <p> 1853 * The returned method handle will have 1854 * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if 1855 * the method's variable arity modifier bit ({@code 0x0080}) is set. 1856 * @param m the reflected method 1857 * @param specialCaller the class nominally calling the method 1858 * @return a method handle which can invoke the reflected method 1859 * @throws IllegalAccessException if access checking fails 1860 * or if the method's variable arity modifier bit 1861 * is set and {@code asVarargsCollector} fails 1862 * @throws NullPointerException if any argument is null 1863 */ unreflectSpecial(Method m, Class<?> specialCaller)1864 public MethodHandle unreflectSpecial(Method m, Class<?> specialCaller) throws IllegalAccessException { 1865 if (m == null) { 1866 throw new NullPointerException("m == null"); 1867 } 1868 1869 if (specialCaller == null) { 1870 throw new NullPointerException("specialCaller == null"); 1871 } 1872 1873 if (!m.isAccessible()) { 1874 // Android-changed: Match Java language 9 behavior where unreflectSpecial continues 1875 // to require exact caller lookupClass match. 1876 checkSpecialCaller(specialCaller, null); 1877 } 1878 1879 final MethodType methodType = MethodType.methodType(m.getReturnType(), 1880 m.getParameterTypes()); 1881 return findSpecial(m, methodType, m.getDeclaringClass() /* refc */, specialCaller); 1882 } 1883 1884 /** 1885 * Produces a method handle for a reflected constructor. 1886 * The type of the method handle will be that of the constructor, 1887 * with the return type changed to the declaring class. 1888 * The method handle will perform a {@code newInstance} operation, 1889 * creating a new instance of the constructor's class on the 1890 * arguments passed to the method handle. 1891 * <p> 1892 * If the constructor's {@code accessible} flag is not set, 1893 * access checking is performed immediately on behalf of the lookup class. 1894 * <p> 1895 * The returned method handle will have 1896 * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if 1897 * the constructor's variable arity modifier bit ({@code 0x0080}) is set. 1898 * <p> 1899 * If the returned method handle is invoked, the constructor's class will 1900 * be initialized, if it has not already been initialized. 1901 * @param c the reflected constructor 1902 * @return a method handle which can invoke the reflected constructor 1903 * @throws IllegalAccessException if access checking fails 1904 * or if the method's variable arity modifier bit 1905 * is set and {@code asVarargsCollector} fails 1906 * @throws NullPointerException if the argument is null 1907 */ unreflectConstructor(Constructor<?> c)1908 public MethodHandle unreflectConstructor(Constructor<?> c) throws IllegalAccessException { 1909 if (c == null) { 1910 throw new NullPointerException("c == null"); 1911 } 1912 1913 if (!c.isAccessible()) { 1914 checkAccess(c.getDeclaringClass(), c.getDeclaringClass(), c.getModifiers(), 1915 c.getName()); 1916 } 1917 1918 return createMethodHandleForConstructor(c); 1919 } 1920 1921 /** 1922 * Produces a method handle giving read access to a reflected field. 1923 * The type of the method handle will have a return type of the field's 1924 * value type. 1925 * If the field is static, the method handle will take no arguments. 1926 * Otherwise, its single argument will be the instance containing 1927 * the field. 1928 * If the field's {@code accessible} flag is not set, 1929 * access checking is performed immediately on behalf of the lookup class. 1930 * <p> 1931 * If the field is static, and 1932 * if the returned method handle is invoked, the field's class will 1933 * be initialized, if it has not already been initialized. 1934 * @param f the reflected field 1935 * @return a method handle which can load values from the reflected field 1936 * @throws IllegalAccessException if access checking fails 1937 * @throws NullPointerException if the argument is null 1938 */ unreflectGetter(Field f)1939 public MethodHandle unreflectGetter(Field f) throws IllegalAccessException { 1940 return findAccessor(f, f.getDeclaringClass(), f.getType(), 1941 Modifier.isStatic(f.getModifiers()) ? MethodHandle.SGET : MethodHandle.IGET, 1942 !f.isAccessible() /* performAccessChecks */); 1943 } 1944 1945 /** 1946 * Produces a method handle giving write access to a reflected field. 1947 * The type of the method handle will have a void return type. 1948 * If the field is static, the method handle will take a single 1949 * argument, of the field's value type, the value to be stored. 1950 * Otherwise, the two arguments will be the instance containing 1951 * the field, and the value to be stored. 1952 * If the field's {@code accessible} flag is not set, 1953 * access checking is performed immediately on behalf of the lookup class. 1954 * <p> 1955 * If the field is static, and 1956 * if the returned method handle is invoked, the field's class will 1957 * be initialized, if it has not already been initialized. 1958 * @param f the reflected field 1959 * @return a method handle which can store values into the reflected field 1960 * @throws IllegalAccessException if access checking fails 1961 * @throws NullPointerException if the argument is null 1962 */ unreflectSetter(Field f)1963 public MethodHandle unreflectSetter(Field f) throws IllegalAccessException { 1964 return findAccessor(f, f.getDeclaringClass(), f.getType(), 1965 Modifier.isStatic(f.getModifiers()) ? MethodHandle.SPUT : MethodHandle.IPUT, 1966 !f.isAccessible() /* performAccessChecks */); 1967 } 1968 1969 // BEGIN Android-changed: OpenJDK 9+181 VarHandle API factory method. 1970 /** 1971 * Produces a VarHandle giving access to a reflected field {@code f} 1972 * of type {@code T} declared in a class of type {@code R}. 1973 * The VarHandle's variable type is {@code T}. 1974 * If the field is non-static the VarHandle has one coordinate type, 1975 * {@code R}. Otherwise, the field is static, and the VarHandle has no 1976 * coordinate types. 1977 * <p> 1978 * Access checking is performed immediately on behalf of the lookup 1979 * class, regardless of the value of the field's {@code accessible} 1980 * flag. 1981 * <p> 1982 * If the field is static, and if the returned VarHandle is operated 1983 * on, the field's declaring class will be initialized, if it has not 1984 * already been initialized. 1985 * <p> 1986 * Certain access modes of the returned VarHandle are unsupported under 1987 * the following conditions: 1988 * <ul> 1989 * <li>if the field is declared {@code final}, then the write, atomic 1990 * update, numeric atomic update, and bitwise atomic update access 1991 * modes are unsupported. 1992 * <li>if the field type is anything other than {@code byte}, 1993 * {@code short}, {@code char}, {@code int}, {@code long}, 1994 * {@code float}, or {@code double} then numeric atomic update 1995 * access modes are unsupported. 1996 * <li>if the field type is anything other than {@code boolean}, 1997 * {@code byte}, {@code short}, {@code char}, {@code int} or 1998 * {@code long} then bitwise atomic update access modes are 1999 * unsupported. 2000 * </ul> 2001 * <p> 2002 * If the field is declared {@code volatile} then the returned VarHandle 2003 * will override access to the field (effectively ignore the 2004 * {@code volatile} declaration) in accordance to its specified 2005 * access modes. 2006 * <p> 2007 * If the field type is {@code float} or {@code double} then numeric 2008 * and atomic update access modes compare values using their bitwise 2009 * representation (see {@link Float#floatToRawIntBits} and 2010 * {@link Double#doubleToRawLongBits}, respectively). 2011 * @apiNote 2012 * Bitwise comparison of {@code float} values or {@code double} values, 2013 * as performed by the numeric and atomic update access modes, differ 2014 * from the primitive {@code ==} operator and the {@link Float#equals} 2015 * and {@link Double#equals} methods, specifically with respect to 2016 * comparing NaN values or comparing {@code -0.0} with {@code +0.0}. 2017 * Care should be taken when performing a compare and set or a compare 2018 * and exchange operation with such values since the operation may 2019 * unexpectedly fail. 2020 * There are many possible NaN values that are considered to be 2021 * {@code NaN} in Java, although no IEEE 754 floating-point operation 2022 * provided by Java can distinguish between them. Operation failure can 2023 * occur if the expected or witness value is a NaN value and it is 2024 * transformed (perhaps in a platform specific manner) into another NaN 2025 * value, and thus has a different bitwise representation (see 2026 * {@link Float#intBitsToFloat} or {@link Double#longBitsToDouble} for more 2027 * details). 2028 * The values {@code -0.0} and {@code +0.0} have different bitwise 2029 * representations but are considered equal when using the primitive 2030 * {@code ==} operator. Operation failure can occur if, for example, a 2031 * numeric algorithm computes an expected value to be say {@code -0.0} 2032 * and previously computed the witness value to be say {@code +0.0}. 2033 * @param f the reflected field, with a field of type {@code T}, and 2034 * a declaring class of type {@code R} 2035 * @return a VarHandle giving access to non-static fields or a static 2036 * field 2037 * @throws IllegalAccessException if access checking fails 2038 * @throws NullPointerException if the argument is null 2039 * @since 9 2040 */ unreflectVarHandle(Field f)2041 public VarHandle unreflectVarHandle(Field f) throws IllegalAccessException { 2042 final boolean isStatic = Modifier.isStatic(f.getModifiers()); 2043 final boolean performAccessChecks = true; 2044 commonFieldChecks(f, f.getDeclaringClass(), f.getType(), isStatic, performAccessChecks); 2045 return isStatic ? StaticFieldVarHandle.create(f) : FieldVarHandle.create(f); 2046 } 2047 // END Android-changed: OpenJDK 9+181 VarHandle API factory method. 2048 2049 /** 2050 * Cracks a <a href="MethodHandleInfo.html#directmh">direct method handle</a> 2051 * created by this lookup object or a similar one. 2052 * Security and access checks are performed to ensure that this lookup object 2053 * is capable of reproducing the target method handle. 2054 * This means that the cracking may fail if target is a direct method handle 2055 * but was created by an unrelated lookup object. 2056 * This can happen if the method handle is <a href="MethodHandles.Lookup.html#callsens">caller sensitive</a> 2057 * and was created by a lookup object for a different class. 2058 * @param target a direct method handle to crack into symbolic reference components 2059 * @return a symbolic reference which can be used to reconstruct this method handle from this lookup object 2060 * @exception SecurityException if a security manager is present and it 2061 * <a href="MethodHandles.Lookup.html#secmgr">refuses access</a> 2062 * @throws IllegalArgumentException if the target is not a direct method handle or if access checking fails 2063 * @exception NullPointerException if the target is {@code null} 2064 * @see MethodHandleInfo 2065 * @since 1.8 2066 */ revealDirect(MethodHandle target)2067 public MethodHandleInfo revealDirect(MethodHandle target) { 2068 MethodHandleImpl directTarget = getMethodHandleImpl(target); 2069 MethodHandleInfo info = directTarget.reveal(); 2070 2071 try { 2072 checkAccess(lookupClass(), info.getDeclaringClass(), info.getModifiers(), 2073 info.getName()); 2074 } catch (IllegalAccessException exception) { 2075 throw new IllegalArgumentException("Unable to access memeber.", exception); 2076 } 2077 2078 return info; 2079 } 2080 hasPrivateAccess()2081 private boolean hasPrivateAccess() { 2082 return (allowedModes & PRIVATE) != 0; 2083 } 2084 2085 /** Check public/protected/private bits on the symbolic reference class and its member. */ checkAccess(Class<?> refc, Class<?> defc, int mods, String methName)2086 void checkAccess(Class<?> refc, Class<?> defc, int mods, String methName) 2087 throws IllegalAccessException { 2088 int allowedModes = this.allowedModes; 2089 2090 if (Modifier.isProtected(mods) && 2091 defc == Object.class && 2092 "clone".equals(methName) && 2093 refc.isArray()) { 2094 // The JVM does this hack also. 2095 // (See ClassVerifier::verify_invoke_instructions 2096 // and LinkResolver::check_method_accessability.) 2097 // Because the JVM does not allow separate methods on array types, 2098 // there is no separate method for int[].clone. 2099 // All arrays simply inherit Object.clone. 2100 // But for access checking logic, we make Object.clone 2101 // (normally protected) appear to be public. 2102 // Later on, when the DirectMethodHandle is created, 2103 // its leading argument will be restricted to the 2104 // requested array type. 2105 // N.B. The return type is not adjusted, because 2106 // that is *not* the bytecode behavior. 2107 mods ^= Modifier.PROTECTED | Modifier.PUBLIC; 2108 } 2109 2110 if (Modifier.isProtected(mods) && Modifier.isConstructor(mods)) { 2111 // cannot "new" a protected ctor in a different package 2112 mods ^= Modifier.PROTECTED; 2113 } 2114 2115 if (Modifier.isPublic(mods) && Modifier.isPublic(refc.getModifiers()) && allowedModes != 0) 2116 return; // common case 2117 int requestedModes = fixmods(mods); // adjust 0 => PACKAGE 2118 if ((requestedModes & allowedModes) != 0) { 2119 if (VerifyAccess.isMemberAccessible(refc, defc, mods, lookupClass(), allowedModes)) 2120 return; 2121 } else { 2122 // Protected members can also be checked as if they were package-private. 2123 if ((requestedModes & PROTECTED) != 0 && (allowedModes & PACKAGE) != 0 2124 && VerifyAccess.isSamePackage(defc, lookupClass())) 2125 return; 2126 } 2127 2128 throwMakeAccessException(accessFailedMessage(refc, defc, mods), this); 2129 } 2130 accessFailedMessage(Class<?> refc, Class<?> defc, int mods)2131 String accessFailedMessage(Class<?> refc, Class<?> defc, int mods) { 2132 // check the class first: 2133 boolean classOK = (Modifier.isPublic(defc.getModifiers()) && 2134 (defc == refc || 2135 Modifier.isPublic(refc.getModifiers()))); 2136 if (!classOK && (allowedModes & PACKAGE) != 0) { 2137 classOK = (VerifyAccess.isClassAccessible(defc, lookupClass(), ALL_MODES) && 2138 (defc == refc || 2139 VerifyAccess.isClassAccessible(refc, lookupClass(), ALL_MODES))); 2140 } 2141 if (!classOK) 2142 return "class is not public"; 2143 if (Modifier.isPublic(mods)) 2144 return "access to public member failed"; // (how?) 2145 if (Modifier.isPrivate(mods)) 2146 return "member is private"; 2147 if (Modifier.isProtected(mods)) 2148 return "member is protected"; 2149 return "member is private to package"; 2150 } 2151 2152 // Android-changed: checkSpecialCaller assumes that ALLOW_NESTMATE_ACCESS = false, 2153 // as in upstream OpenJDK. 2154 // 2155 // private static final boolean ALLOW_NESTMATE_ACCESS = false; 2156 2157 // Android-changed: Match java language 9 behavior allowing special access if the reflected 2158 // class (called 'refc', the class from which the method is being accessed) is an interface 2159 // and is implemented by the caller. checkSpecialCaller(Class<?> specialCaller, Class<?> refc)2160 private void checkSpecialCaller(Class<?> specialCaller, Class<?> refc) throws IllegalAccessException { 2161 // Android-changed: No support for TRUSTED lookups. Also construct the 2162 // IllegalAccessException by hand because the upstream code implicitly assumes 2163 // that the lookupClass == specialCaller. 2164 // 2165 // if (allowedModes == TRUSTED) return; 2166 boolean isInterfaceLookup = (refc != null && 2167 refc.isInterface() && 2168 refc.isAssignableFrom(specialCaller)); 2169 if (!hasPrivateAccess() || (specialCaller != lookupClass() && !isInterfaceLookup)) { 2170 throw new IllegalAccessException("no private access for invokespecial : " 2171 + specialCaller + ", from" + this); 2172 } 2173 } 2174 throwMakeAccessException(String message, Object from)2175 private void throwMakeAccessException(String message, Object from) throws 2176 IllegalAccessException{ 2177 message = message + ": "+ toString(); 2178 if (from != null) message += ", from " + from; 2179 throw new IllegalAccessException(message); 2180 } 2181 checkReturnType(Method method, MethodType methodType)2182 private void checkReturnType(Method method, MethodType methodType) 2183 throws NoSuchMethodException { 2184 if (method.getReturnType() != methodType.rtype()) { 2185 throw new NoSuchMethodException(method.getName() + methodType); 2186 } 2187 } 2188 } 2189 2190 /** 2191 * "Cracks" {@code target} to reveal the underlying {@code MethodHandleImpl}. 2192 */ getMethodHandleImpl(MethodHandle target)2193 private static MethodHandleImpl getMethodHandleImpl(MethodHandle target) { 2194 // Special case : We implement handles to constructors as transformers, 2195 // so we must extract the underlying handle from the transformer. 2196 if (target instanceof Transformers.Construct) { 2197 target = ((Transformers.Construct) target).getConstructorHandle(); 2198 } 2199 2200 // Special case: Var-args methods are also implemented as Transformers, 2201 // so we should get the underlying handle in that case as well. 2202 if (target instanceof Transformers.VarargsCollector) { 2203 target = target.asFixedArity(); 2204 } 2205 2206 if (target instanceof MethodHandleImpl) { 2207 return (MethodHandleImpl) target; 2208 } 2209 2210 throw new IllegalArgumentException(target + " is not a direct handle"); 2211 } 2212 2213 // Android-removed: unsupported @jvms tag in doc-comment. 2214 /** 2215 * Produces a method handle constructing arrays of a desired type, 2216 * as if by the {@code anewarray} bytecode. 2217 * The return type of the method handle will be the array type. 2218 * The type of its sole argument will be {@code int}, which specifies the size of the array. 2219 * 2220 * <p> If the returned method handle is invoked with a negative 2221 * array size, a {@code NegativeArraySizeException} will be thrown. 2222 * 2223 * @param arrayClass an array type 2224 * @return a method handle which can create arrays of the given type 2225 * @throws NullPointerException if the argument is {@code null} 2226 * @throws IllegalArgumentException if {@code arrayClass} is not an array type 2227 * @see java.lang.reflect.Array#newInstance(Class, int) 2228 * @since 9 2229 */ 2230 public static arrayConstructor(Class<?> arrayClass)2231 MethodHandle arrayConstructor(Class<?> arrayClass) throws IllegalArgumentException { 2232 if (!arrayClass.isArray()) { 2233 throw newIllegalArgumentException("not an array class: " + arrayClass.getName()); 2234 } 2235 // Android-changed: transformer based implementation. 2236 // MethodHandle ani = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_Array_newInstance). 2237 // bindTo(arrayClass.getComponentType()); 2238 // return ani.asType(ani.type().changeReturnType(arrayClass)) 2239 return new Transformers.ArrayConstructor(arrayClass); 2240 } 2241 2242 // Android-removed: unsupported @jvms tag in doc-comment. 2243 /** 2244 * Produces a method handle returning the length of an array, 2245 * as if by the {@code arraylength} bytecode. 2246 * The type of the method handle will have {@code int} as return type, 2247 * and its sole argument will be the array type. 2248 * 2249 * <p> If the returned method handle is invoked with a {@code null} 2250 * array reference, a {@code NullPointerException} will be thrown. 2251 * 2252 * @param arrayClass an array type 2253 * @return a method handle which can retrieve the length of an array of the given array type 2254 * @throws NullPointerException if the argument is {@code null} 2255 * @throws IllegalArgumentException if arrayClass is not an array type 2256 * @since 9 2257 */ 2258 public static arrayLength(Class<?> arrayClass)2259 MethodHandle arrayLength(Class<?> arrayClass) throws IllegalArgumentException { 2260 // Android-changed: transformer based implementation. 2261 // return MethodHandleImpl.makeArrayElementAccessor(arrayClass, MethodHandleImpl.ArrayAccess.LENGTH); 2262 if (!arrayClass.isArray()) { 2263 throw newIllegalArgumentException("not an array class: " + arrayClass.getName()); 2264 } 2265 return new Transformers.ArrayLength(arrayClass); 2266 } 2267 2268 // BEGIN Android-added: method to check if a class is an array. checkClassIsArray(Class<?> c)2269 private static void checkClassIsArray(Class<?> c) { 2270 if (!c.isArray()) { 2271 throw new IllegalArgumentException("Not an array type: " + c); 2272 } 2273 } 2274 checkTypeIsViewable(Class<?> componentType)2275 private static void checkTypeIsViewable(Class<?> componentType) { 2276 if (componentType == short.class || 2277 componentType == char.class || 2278 componentType == int.class || 2279 componentType == long.class || 2280 componentType == float.class || 2281 componentType == double.class) { 2282 return; 2283 } 2284 throw new UnsupportedOperationException("Component type not supported: " + componentType); 2285 } 2286 // END Android-added: method to check if a class is an array. 2287 2288 /** 2289 * Produces a method handle giving read access to elements of an array. 2290 * The type of the method handle will have a return type of the array's 2291 * element type. Its first argument will be the array type, 2292 * and the second will be {@code int}. 2293 * @param arrayClass an array type 2294 * @return a method handle which can load values from the given array type 2295 * @throws NullPointerException if the argument is null 2296 * @throws IllegalArgumentException if arrayClass is not an array type 2297 */ 2298 public static arrayElementGetter(Class<?> arrayClass)2299 MethodHandle arrayElementGetter(Class<?> arrayClass) throws IllegalArgumentException { 2300 checkClassIsArray(arrayClass); 2301 final Class<?> componentType = arrayClass.getComponentType(); 2302 if (componentType.isPrimitive()) { 2303 try { 2304 return Lookup.PUBLIC_LOOKUP.findStatic(MethodHandles.class, 2305 "arrayElementGetter", 2306 MethodType.methodType(componentType, arrayClass, int.class)); 2307 } catch (NoSuchMethodException | IllegalAccessException exception) { 2308 throw new AssertionError(exception); 2309 } 2310 } 2311 2312 return new Transformers.ReferenceArrayElementGetter(arrayClass); 2313 } 2314 arrayElementGetter(byte[] array, int i)2315 /** @hide */ public static byte arrayElementGetter(byte[] array, int i) { return array[i]; } arrayElementGetter(boolean[] array, int i)2316 /** @hide */ public static boolean arrayElementGetter(boolean[] array, int i) { return array[i]; } arrayElementGetter(char[] array, int i)2317 /** @hide */ public static char arrayElementGetter(char[] array, int i) { return array[i]; } arrayElementGetter(short[] array, int i)2318 /** @hide */ public static short arrayElementGetter(short[] array, int i) { return array[i]; } arrayElementGetter(int[] array, int i)2319 /** @hide */ public static int arrayElementGetter(int[] array, int i) { return array[i]; } arrayElementGetter(long[] array, int i)2320 /** @hide */ public static long arrayElementGetter(long[] array, int i) { return array[i]; } arrayElementGetter(float[] array, int i)2321 /** @hide */ public static float arrayElementGetter(float[] array, int i) { return array[i]; } arrayElementGetter(double[] array, int i)2322 /** @hide */ public static double arrayElementGetter(double[] array, int i) { return array[i]; } 2323 2324 /** 2325 * Produces a method handle giving write access to elements of an array. 2326 * The type of the method handle will have a void return type. 2327 * Its last argument will be the array's element type. 2328 * The first and second arguments will be the array type and int. 2329 * @param arrayClass the class of an array 2330 * @return a method handle which can store values into the array type 2331 * @throws NullPointerException if the argument is null 2332 * @throws IllegalArgumentException if arrayClass is not an array type 2333 */ 2334 public static arrayElementSetter(Class<?> arrayClass)2335 MethodHandle arrayElementSetter(Class<?> arrayClass) throws IllegalArgumentException { 2336 checkClassIsArray(arrayClass); 2337 final Class<?> componentType = arrayClass.getComponentType(); 2338 if (componentType.isPrimitive()) { 2339 try { 2340 return Lookup.PUBLIC_LOOKUP.findStatic(MethodHandles.class, 2341 "arrayElementSetter", 2342 MethodType.methodType(void.class, arrayClass, int.class, componentType)); 2343 } catch (NoSuchMethodException | IllegalAccessException exception) { 2344 throw new AssertionError(exception); 2345 } 2346 } 2347 2348 return new Transformers.ReferenceArrayElementSetter(arrayClass); 2349 } 2350 2351 /** @hide */ arrayElementSetter(byte[] array, int i, byte val)2352 public static void arrayElementSetter(byte[] array, int i, byte val) { array[i] = val; } 2353 /** @hide */ arrayElementSetter(boolean[] array, int i, boolean val)2354 public static void arrayElementSetter(boolean[] array, int i, boolean val) { array[i] = val; } 2355 /** @hide */ arrayElementSetter(char[] array, int i, char val)2356 public static void arrayElementSetter(char[] array, int i, char val) { array[i] = val; } 2357 /** @hide */ arrayElementSetter(short[] array, int i, short val)2358 public static void arrayElementSetter(short[] array, int i, short val) { array[i] = val; } 2359 /** @hide */ arrayElementSetter(int[] array, int i, int val)2360 public static void arrayElementSetter(int[] array, int i, int val) { array[i] = val; } 2361 /** @hide */ arrayElementSetter(long[] array, int i, long val)2362 public static void arrayElementSetter(long[] array, int i, long val) { array[i] = val; } 2363 /** @hide */ arrayElementSetter(float[] array, int i, float val)2364 public static void arrayElementSetter(float[] array, int i, float val) { array[i] = val; } 2365 /** @hide */ arrayElementSetter(double[] array, int i, double val)2366 public static void arrayElementSetter(double[] array, int i, double val) { array[i] = val; } 2367 2368 // BEGIN Android-changed: OpenJDK 9+181 VarHandle API factory methods. 2369 /** 2370 * Produces a VarHandle giving access to elements of an array of type 2371 * {@code arrayClass}. The VarHandle's variable type is the component type 2372 * of {@code arrayClass} and the list of coordinate types is 2373 * {@code (arrayClass, int)}, where the {@code int} coordinate type 2374 * corresponds to an argument that is an index into an array. 2375 * <p> 2376 * Certain access modes of the returned VarHandle are unsupported under 2377 * the following conditions: 2378 * <ul> 2379 * <li>if the component type is anything other than {@code byte}, 2380 * {@code short}, {@code char}, {@code int}, {@code long}, 2381 * {@code float}, or {@code double} then numeric atomic update access 2382 * modes are unsupported. 2383 * <li>if the field type is anything other than {@code boolean}, 2384 * {@code byte}, {@code short}, {@code char}, {@code int} or 2385 * {@code long} then bitwise atomic update access modes are 2386 * unsupported. 2387 * </ul> 2388 * <p> 2389 * If the component type is {@code float} or {@code double} then numeric 2390 * and atomic update access modes compare values using their bitwise 2391 * representation (see {@link Float#floatToRawIntBits} and 2392 * {@link Double#doubleToRawLongBits}, respectively). 2393 * @apiNote 2394 * Bitwise comparison of {@code float} values or {@code double} values, 2395 * as performed by the numeric and atomic update access modes, differ 2396 * from the primitive {@code ==} operator and the {@link Float#equals} 2397 * and {@link Double#equals} methods, specifically with respect to 2398 * comparing NaN values or comparing {@code -0.0} with {@code +0.0}. 2399 * Care should be taken when performing a compare and set or a compare 2400 * and exchange operation with such values since the operation may 2401 * unexpectedly fail. 2402 * There are many possible NaN values that are considered to be 2403 * {@code NaN} in Java, although no IEEE 754 floating-point operation 2404 * provided by Java can distinguish between them. Operation failure can 2405 * occur if the expected or witness value is a NaN value and it is 2406 * transformed (perhaps in a platform specific manner) into another NaN 2407 * value, and thus has a different bitwise representation (see 2408 * {@link Float#intBitsToFloat} or {@link Double#longBitsToDouble} for more 2409 * details). 2410 * The values {@code -0.0} and {@code +0.0} have different bitwise 2411 * representations but are considered equal when using the primitive 2412 * {@code ==} operator. Operation failure can occur if, for example, a 2413 * numeric algorithm computes an expected value to be say {@code -0.0} 2414 * and previously computed the witness value to be say {@code +0.0}. 2415 * @param arrayClass the class of an array, of type {@code T[]} 2416 * @return a VarHandle giving access to elements of an array 2417 * @throws NullPointerException if the arrayClass is null 2418 * @throws IllegalArgumentException if arrayClass is not an array type 2419 * @since 9 2420 */ 2421 public static arrayElementVarHandle(Class<?> arrayClass)2422 VarHandle arrayElementVarHandle(Class<?> arrayClass) throws IllegalArgumentException { 2423 checkClassIsArray(arrayClass); 2424 return ArrayElementVarHandle.create(arrayClass); 2425 } 2426 2427 /** 2428 * Produces a VarHandle giving access to elements of a {@code byte[]} array 2429 * viewed as if it were a different primitive array type, such as 2430 * {@code int[]} or {@code long[]}. 2431 * The VarHandle's variable type is the component type of 2432 * {@code viewArrayClass} and the list of coordinate types is 2433 * {@code (byte[], int)}, where the {@code int} coordinate type 2434 * corresponds to an argument that is an index into a {@code byte[]} array. 2435 * The returned VarHandle accesses bytes at an index in a {@code byte[]} 2436 * array, composing bytes to or from a value of the component type of 2437 * {@code viewArrayClass} according to the given endianness. 2438 * <p> 2439 * The supported component types (variables types) are {@code short}, 2440 * {@code char}, {@code int}, {@code long}, {@code float} and 2441 * {@code double}. 2442 * <p> 2443 * Access of bytes at a given index will result in an 2444 * {@code IndexOutOfBoundsException} if the index is less than {@code 0} 2445 * or greater than the {@code byte[]} array length minus the size (in bytes) 2446 * of {@code T}. 2447 * <p> 2448 * Access of bytes at an index may be aligned or misaligned for {@code T}, 2449 * with respect to the underlying memory address, {@code A} say, associated 2450 * with the array and index. 2451 * If access is misaligned then access for anything other than the 2452 * {@code get} and {@code set} access modes will result in an 2453 * {@code IllegalStateException}. In such cases atomic access is only 2454 * guaranteed with respect to the largest power of two that divides the GCD 2455 * of {@code A} and the size (in bytes) of {@code T}. 2456 * If access is aligned then following access modes are supported and are 2457 * guaranteed to support atomic access: 2458 * <ul> 2459 * <li>read write access modes for all {@code T}, with the exception of 2460 * access modes {@code get} and {@code set} for {@code long} and 2461 * {@code double} on 32-bit platforms. 2462 * <li>atomic update access modes for {@code int}, {@code long}, 2463 * {@code float} or {@code double}. 2464 * (Future major platform releases of the JDK may support additional 2465 * types for certain currently unsupported access modes.) 2466 * <li>numeric atomic update access modes for {@code int} and {@code long}. 2467 * (Future major platform releases of the JDK may support additional 2468 * numeric types for certain currently unsupported access modes.) 2469 * <li>bitwise atomic update access modes for {@code int} and {@code long}. 2470 * (Future major platform releases of the JDK may support additional 2471 * numeric types for certain currently unsupported access modes.) 2472 * </ul> 2473 * <p> 2474 * Misaligned access, and therefore atomicity guarantees, may be determined 2475 * for {@code byte[]} arrays without operating on a specific array. Given 2476 * an {@code index}, {@code T} and it's corresponding boxed type, 2477 * {@code T_BOX}, misalignment may be determined as follows: 2478 * <pre>{@code 2479 * int sizeOfT = T_BOX.BYTES; // size in bytes of T 2480 * int misalignedAtZeroIndex = ByteBuffer.wrap(new byte[0]). 2481 * alignmentOffset(0, sizeOfT); 2482 * int misalignedAtIndex = (misalignedAtZeroIndex + index) % sizeOfT; 2483 * boolean isMisaligned = misalignedAtIndex != 0; 2484 * }</pre> 2485 * <p> 2486 * If the variable type is {@code float} or {@code double} then atomic 2487 * update access modes compare values using their bitwise representation 2488 * (see {@link Float#floatToRawIntBits} and 2489 * {@link Double#doubleToRawLongBits}, respectively). 2490 * @param viewArrayClass the view array class, with a component type of 2491 * type {@code T} 2492 * @param byteOrder the endianness of the view array elements, as 2493 * stored in the underlying {@code byte} array 2494 * @return a VarHandle giving access to elements of a {@code byte[]} array 2495 * viewed as if elements corresponding to the components type of the view 2496 * array class 2497 * @throws NullPointerException if viewArrayClass or byteOrder is null 2498 * @throws IllegalArgumentException if viewArrayClass is not an array type 2499 * @throws UnsupportedOperationException if the component type of 2500 * viewArrayClass is not supported as a variable type 2501 * @since 9 2502 */ 2503 public static byteArrayViewVarHandle(Class<?> viewArrayClass, ByteOrder byteOrder)2504 VarHandle byteArrayViewVarHandle(Class<?> viewArrayClass, 2505 ByteOrder byteOrder) throws IllegalArgumentException { 2506 checkClassIsArray(viewArrayClass); 2507 checkTypeIsViewable(viewArrayClass.getComponentType()); 2508 return ByteArrayViewVarHandle.create(viewArrayClass, byteOrder); 2509 } 2510 2511 /** 2512 * Produces a VarHandle giving access to elements of a {@code ByteBuffer} 2513 * viewed as if it were an array of elements of a different primitive 2514 * component type to that of {@code byte}, such as {@code int[]} or 2515 * {@code long[]}. 2516 * The VarHandle's variable type is the component type of 2517 * {@code viewArrayClass} and the list of coordinate types is 2518 * {@code (ByteBuffer, int)}, where the {@code int} coordinate type 2519 * corresponds to an argument that is an index into a {@code byte[]} array. 2520 * The returned VarHandle accesses bytes at an index in a 2521 * {@code ByteBuffer}, composing bytes to or from a value of the component 2522 * type of {@code viewArrayClass} according to the given endianness. 2523 * <p> 2524 * The supported component types (variables types) are {@code short}, 2525 * {@code char}, {@code int}, {@code long}, {@code float} and 2526 * {@code double}. 2527 * <p> 2528 * Access will result in a {@code ReadOnlyBufferException} for anything 2529 * other than the read access modes if the {@code ByteBuffer} is read-only. 2530 * <p> 2531 * Access of bytes at a given index will result in an 2532 * {@code IndexOutOfBoundsException} if the index is less than {@code 0} 2533 * or greater than the {@code ByteBuffer} limit minus the size (in bytes) of 2534 * {@code T}. 2535 * <p> 2536 * Access of bytes at an index may be aligned or misaligned for {@code T}, 2537 * with respect to the underlying memory address, {@code A} say, associated 2538 * with the {@code ByteBuffer} and index. 2539 * If access is misaligned then access for anything other than the 2540 * {@code get} and {@code set} access modes will result in an 2541 * {@code IllegalStateException}. In such cases atomic access is only 2542 * guaranteed with respect to the largest power of two that divides the GCD 2543 * of {@code A} and the size (in bytes) of {@code T}. 2544 * If access is aligned then following access modes are supported and are 2545 * guaranteed to support atomic access: 2546 * <ul> 2547 * <li>read write access modes for all {@code T}, with the exception of 2548 * access modes {@code get} and {@code set} for {@code long} and 2549 * {@code double} on 32-bit platforms. 2550 * <li>atomic update access modes for {@code int}, {@code long}, 2551 * {@code float} or {@code double}. 2552 * (Future major platform releases of the JDK may support additional 2553 * types for certain currently unsupported access modes.) 2554 * <li>numeric atomic update access modes for {@code int} and {@code long}. 2555 * (Future major platform releases of the JDK may support additional 2556 * numeric types for certain currently unsupported access modes.) 2557 * <li>bitwise atomic update access modes for {@code int} and {@code long}. 2558 * (Future major platform releases of the JDK may support additional 2559 * numeric types for certain currently unsupported access modes.) 2560 * </ul> 2561 * <p> 2562 * Misaligned access, and therefore atomicity guarantees, may be determined 2563 * for a {@code ByteBuffer}, {@code bb} (direct or otherwise), an 2564 * {@code index}, {@code T} and it's corresponding boxed type, 2565 * {@code T_BOX}, as follows: 2566 * <pre>{@code 2567 * int sizeOfT = T_BOX.BYTES; // size in bytes of T 2568 * ByteBuffer bb = ... 2569 * int misalignedAtIndex = bb.alignmentOffset(index, sizeOfT); 2570 * boolean isMisaligned = misalignedAtIndex != 0; 2571 * }</pre> 2572 * <p> 2573 * If the variable type is {@code float} or {@code double} then atomic 2574 * update access modes compare values using their bitwise representation 2575 * (see {@link Float#floatToRawIntBits} and 2576 * {@link Double#doubleToRawLongBits}, respectively). 2577 * @param viewArrayClass the view array class, with a component type of 2578 * type {@code T} 2579 * @param byteOrder the endianness of the view array elements, as 2580 * stored in the underlying {@code ByteBuffer} (Note this overrides the 2581 * endianness of a {@code ByteBuffer}) 2582 * @return a VarHandle giving access to elements of a {@code ByteBuffer} 2583 * viewed as if elements corresponding to the components type of the view 2584 * array class 2585 * @throws NullPointerException if viewArrayClass or byteOrder is null 2586 * @throws IllegalArgumentException if viewArrayClass is not an array type 2587 * @throws UnsupportedOperationException if the component type of 2588 * viewArrayClass is not supported as a variable type 2589 * @since 9 2590 */ 2591 public static byteBufferViewVarHandle(Class<?> viewArrayClass, ByteOrder byteOrder)2592 VarHandle byteBufferViewVarHandle(Class<?> viewArrayClass, 2593 ByteOrder byteOrder) throws IllegalArgumentException { 2594 checkClassIsArray(viewArrayClass); 2595 checkTypeIsViewable(viewArrayClass.getComponentType()); 2596 return ByteBufferViewVarHandle.create(viewArrayClass, byteOrder); 2597 } 2598 // END Android-changed: OpenJDK 9+181 VarHandle API factory methods. 2599 2600 /// method handle invocation (reflective style) 2601 2602 /** 2603 * Produces a method handle which will invoke any method handle of the 2604 * given {@code type}, with a given number of trailing arguments replaced by 2605 * a single trailing {@code Object[]} array. 2606 * The resulting invoker will be a method handle with the following 2607 * arguments: 2608 * <ul> 2609 * <li>a single {@code MethodHandle} target 2610 * <li>zero or more leading values (counted by {@code leadingArgCount}) 2611 * <li>an {@code Object[]} array containing trailing arguments 2612 * </ul> 2613 * <p> 2614 * The invoker will invoke its target like a call to {@link MethodHandle#invoke invoke} with 2615 * the indicated {@code type}. 2616 * That is, if the target is exactly of the given {@code type}, it will behave 2617 * like {@code invokeExact}; otherwise it behave as if {@link MethodHandle#asType asType} 2618 * is used to convert the target to the required {@code type}. 2619 * <p> 2620 * The type of the returned invoker will not be the given {@code type}, but rather 2621 * will have all parameters except the first {@code leadingArgCount} 2622 * replaced by a single array of type {@code Object[]}, which will be 2623 * the final parameter. 2624 * <p> 2625 * Before invoking its target, the invoker will spread the final array, apply 2626 * reference casts as necessary, and unbox and widen primitive arguments. 2627 * If, when the invoker is called, the supplied array argument does 2628 * not have the correct number of elements, the invoker will throw 2629 * an {@link IllegalArgumentException} instead of invoking the target. 2630 * <p> 2631 * This method is equivalent to the following code (though it may be more efficient): 2632 * <blockquote><pre>{@code 2633 MethodHandle invoker = MethodHandles.invoker(type); 2634 int spreadArgCount = type.parameterCount() - leadingArgCount; 2635 invoker = invoker.asSpreader(Object[].class, spreadArgCount); 2636 return invoker; 2637 * }</pre></blockquote> 2638 * This method throws no reflective or security exceptions. 2639 * @param type the desired target type 2640 * @param leadingArgCount number of fixed arguments, to be passed unchanged to the target 2641 * @return a method handle suitable for invoking any method handle of the given type 2642 * @throws NullPointerException if {@code type} is null 2643 * @throws IllegalArgumentException if {@code leadingArgCount} is not in 2644 * the range from 0 to {@code type.parameterCount()} inclusive, 2645 * or if the resulting method handle's type would have 2646 * <a href="MethodHandle.html#maxarity">too many parameters</a> 2647 */ 2648 static public spreadInvoker(MethodType type, int leadingArgCount)2649 MethodHandle spreadInvoker(MethodType type, int leadingArgCount) { 2650 if (leadingArgCount < 0 || leadingArgCount > type.parameterCount()) 2651 throw newIllegalArgumentException("bad argument count", leadingArgCount); 2652 2653 MethodHandle invoker = MethodHandles.invoker(type); 2654 int spreadArgCount = type.parameterCount() - leadingArgCount; 2655 invoker = invoker.asSpreader(Object[].class, spreadArgCount); 2656 return invoker; 2657 } 2658 2659 /** 2660 * Produces a special <em>invoker method handle</em> which can be used to 2661 * invoke any method handle of the given type, as if by {@link MethodHandle#invokeExact invokeExact}. 2662 * The resulting invoker will have a type which is 2663 * exactly equal to the desired type, except that it will accept 2664 * an additional leading argument of type {@code MethodHandle}. 2665 * <p> 2666 * This method is equivalent to the following code (though it may be more efficient): 2667 * {@code publicLookup().findVirtual(MethodHandle.class, "invokeExact", type)} 2668 * 2669 * <p style="font-size:smaller;"> 2670 * <em>Discussion:</em> 2671 * Invoker method handles can be useful when working with variable method handles 2672 * of unknown types. 2673 * For example, to emulate an {@code invokeExact} call to a variable method 2674 * handle {@code M}, extract its type {@code T}, 2675 * look up the invoker method {@code X} for {@code T}, 2676 * and call the invoker method, as {@code X.invoke(T, A...)}. 2677 * (It would not work to call {@code X.invokeExact}, since the type {@code T} 2678 * is unknown.) 2679 * If spreading, collecting, or other argument transformations are required, 2680 * they can be applied once to the invoker {@code X} and reused on many {@code M} 2681 * method handle values, as long as they are compatible with the type of {@code X}. 2682 * <p style="font-size:smaller;"> 2683 * <em>(Note: The invoker method is not available via the Core Reflection API. 2684 * An attempt to call {@linkplain java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke} 2685 * on the declared {@code invokeExact} or {@code invoke} method will raise an 2686 * {@link java.lang.UnsupportedOperationException UnsupportedOperationException}.)</em> 2687 * <p> 2688 * This method throws no reflective or security exceptions. 2689 * @param type the desired target type 2690 * @return a method handle suitable for invoking any method handle of the given type 2691 * @throws IllegalArgumentException if the resulting method handle's type would have 2692 * <a href="MethodHandle.html#maxarity">too many parameters</a> 2693 */ 2694 static public exactInvoker(MethodType type)2695 MethodHandle exactInvoker(MethodType type) { 2696 return new Transformers.Invoker(type, true /* isExactInvoker */); 2697 } 2698 2699 /** 2700 * Produces a special <em>invoker method handle</em> which can be used to 2701 * invoke any method handle compatible with the given type, as if by {@link MethodHandle#invoke invoke}. 2702 * The resulting invoker will have a type which is 2703 * exactly equal to the desired type, except that it will accept 2704 * an additional leading argument of type {@code MethodHandle}. 2705 * <p> 2706 * Before invoking its target, if the target differs from the expected type, 2707 * the invoker will apply reference casts as 2708 * necessary and box, unbox, or widen primitive values, as if by {@link MethodHandle#asType asType}. 2709 * Similarly, the return value will be converted as necessary. 2710 * If the target is a {@linkplain MethodHandle#asVarargsCollector variable arity method handle}, 2711 * the required arity conversion will be made, again as if by {@link MethodHandle#asType asType}. 2712 * <p> 2713 * This method is equivalent to the following code (though it may be more efficient): 2714 * {@code publicLookup().findVirtual(MethodHandle.class, "invoke", type)} 2715 * <p style="font-size:smaller;"> 2716 * <em>Discussion:</em> 2717 * A {@linkplain MethodType#genericMethodType general method type} is one which 2718 * mentions only {@code Object} arguments and return values. 2719 * An invoker for such a type is capable of calling any method handle 2720 * of the same arity as the general type. 2721 * <p style="font-size:smaller;"> 2722 * <em>(Note: The invoker method is not available via the Core Reflection API. 2723 * An attempt to call {@linkplain java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke} 2724 * on the declared {@code invokeExact} or {@code invoke} method will raise an 2725 * {@link java.lang.UnsupportedOperationException UnsupportedOperationException}.)</em> 2726 * <p> 2727 * This method throws no reflective or security exceptions. 2728 * @param type the desired target type 2729 * @return a method handle suitable for invoking any method handle convertible to the given type 2730 * @throws IllegalArgumentException if the resulting method handle's type would have 2731 * <a href="MethodHandle.html#maxarity">too many parameters</a> 2732 */ 2733 static public invoker(MethodType type)2734 MethodHandle invoker(MethodType type) { 2735 return new Transformers.Invoker(type, false /* isExactInvoker */); 2736 } 2737 2738 // BEGIN Android-added: resolver for VarHandle accessor methods. methodHandleForVarHandleAccessor(VarHandle.AccessMode accessMode, MethodType type, boolean isExactInvoker)2739 static private MethodHandle methodHandleForVarHandleAccessor(VarHandle.AccessMode accessMode, 2740 MethodType type, 2741 boolean isExactInvoker) { 2742 Class<?> refc = VarHandle.class; 2743 Method method; 2744 try { 2745 method = refc.getDeclaredMethod(accessMode.methodName(), Object[].class); 2746 } catch (NoSuchMethodException e) { 2747 throw new InternalError("No method for AccessMode " + accessMode, e); 2748 } 2749 MethodType methodType = type.insertParameterTypes(0, VarHandle.class); 2750 int kind = isExactInvoker ? MethodHandle.INVOKE_VAR_HANDLE_EXACT 2751 : MethodHandle.INVOKE_VAR_HANDLE; 2752 return new MethodHandleImpl(method.getArtMethod(), kind, methodType); 2753 } 2754 // END Android-added: resolver for VarHandle accessor methods. 2755 2756 /** 2757 * Produces a special <em>invoker method handle</em> which can be used to 2758 * invoke a signature-polymorphic access mode method on any VarHandle whose 2759 * associated access mode type is compatible with the given type. 2760 * The resulting invoker will have a type which is exactly equal to the 2761 * desired given type, except that it will accept an additional leading 2762 * argument of type {@code VarHandle}. 2763 * 2764 * @param accessMode the VarHandle access mode 2765 * @param type the desired target type 2766 * @return a method handle suitable for invoking an access mode method of 2767 * any VarHandle whose access mode type is of the given type. 2768 * @since 9 2769 */ 2770 static public varHandleExactInvoker(VarHandle.AccessMode accessMode, MethodType type)2771 MethodHandle varHandleExactInvoker(VarHandle.AccessMode accessMode, MethodType type) { 2772 return methodHandleForVarHandleAccessor(accessMode, type, true /* isExactInvoker */); 2773 } 2774 2775 /** 2776 * Produces a special <em>invoker method handle</em> which can be used to 2777 * invoke a signature-polymorphic access mode method on any VarHandle whose 2778 * associated access mode type is compatible with the given type. 2779 * The resulting invoker will have a type which is exactly equal to the 2780 * desired given type, except that it will accept an additional leading 2781 * argument of type {@code VarHandle}. 2782 * <p> 2783 * Before invoking its target, if the access mode type differs from the 2784 * desired given type, the invoker will apply reference casts as necessary 2785 * and box, unbox, or widen primitive values, as if by 2786 * {@link MethodHandle#asType asType}. Similarly, the return value will be 2787 * converted as necessary. 2788 * <p> 2789 * This method is equivalent to the following code (though it may be more 2790 * efficient): {@code publicLookup().findVirtual(VarHandle.class, accessMode.name(), type)} 2791 * 2792 * @param accessMode the VarHandle access mode 2793 * @param type the desired target type 2794 * @return a method handle suitable for invoking an access mode method of 2795 * any VarHandle whose access mode type is convertible to the given 2796 * type. 2797 * @since 9 2798 */ 2799 static public varHandleInvoker(VarHandle.AccessMode accessMode, MethodType type)2800 MethodHandle varHandleInvoker(VarHandle.AccessMode accessMode, MethodType type) { 2801 return methodHandleForVarHandleAccessor(accessMode, type, false /* isExactInvoker */); 2802 } 2803 2804 // Android-changed: Basic invokers are not supported. 2805 // 2806 // static /*non-public*/ 2807 // MethodHandle basicInvoker(MethodType type) { 2808 // return type.invokers().basicInvoker(); 2809 // } 2810 2811 /// method handle modification (creation from other method handles) 2812 2813 /** 2814 * Produces a method handle which adapts the type of the 2815 * given method handle to a new type by pairwise argument and return type conversion. 2816 * The original type and new type must have the same number of arguments. 2817 * The resulting method handle is guaranteed to report a type 2818 * which is equal to the desired new type. 2819 * <p> 2820 * If the original type and new type are equal, returns target. 2821 * <p> 2822 * The same conversions are allowed as for {@link MethodHandle#asType MethodHandle.asType}, 2823 * and some additional conversions are also applied if those conversions fail. 2824 * Given types <em>T0</em>, <em>T1</em>, one of the following conversions is applied 2825 * if possible, before or instead of any conversions done by {@code asType}: 2826 * <ul> 2827 * <li>If <em>T0</em> and <em>T1</em> are references, and <em>T1</em> is an interface type, 2828 * then the value of type <em>T0</em> is passed as a <em>T1</em> without a cast. 2829 * (This treatment of interfaces follows the usage of the bytecode verifier.) 2830 * <li>If <em>T0</em> is boolean and <em>T1</em> is another primitive, 2831 * the boolean is converted to a byte value, 1 for true, 0 for false. 2832 * (This treatment follows the usage of the bytecode verifier.) 2833 * <li>If <em>T1</em> is boolean and <em>T0</em> is another primitive, 2834 * <em>T0</em> is converted to byte via Java casting conversion (JLS 5.5), 2835 * and the low order bit of the result is tested, as if by {@code (x & 1) != 0}. 2836 * <li>If <em>T0</em> and <em>T1</em> are primitives other than boolean, 2837 * then a Java casting conversion (JLS 5.5) is applied. 2838 * (Specifically, <em>T0</em> will convert to <em>T1</em> by 2839 * widening and/or narrowing.) 2840 * <li>If <em>T0</em> is a reference and <em>T1</em> a primitive, an unboxing 2841 * conversion will be applied at runtime, possibly followed 2842 * by a Java casting conversion (JLS 5.5) on the primitive value, 2843 * possibly followed by a conversion from byte to boolean by testing 2844 * the low-order bit. 2845 * <li>If <em>T0</em> is a reference and <em>T1</em> a primitive, 2846 * and if the reference is null at runtime, a zero value is introduced. 2847 * </ul> 2848 * @param target the method handle to invoke after arguments are retyped 2849 * @param newType the expected type of the new method handle 2850 * @return a method handle which delegates to the target after performing 2851 * any necessary argument conversions, and arranges for any 2852 * necessary return value conversions 2853 * @throws NullPointerException if either argument is null 2854 * @throws WrongMethodTypeException if the conversion cannot be made 2855 * @see MethodHandle#asType 2856 */ 2857 public static explicitCastArguments(MethodHandle target, MethodType newType)2858 MethodHandle explicitCastArguments(MethodHandle target, MethodType newType) { 2859 explicitCastArgumentsChecks(target, newType); 2860 // use the asTypeCache when possible: 2861 MethodType oldType = target.type(); 2862 if (oldType == newType) return target; 2863 if (oldType.explicitCastEquivalentToAsType(newType)) { 2864 if (Transformers.Transformer.class.isAssignableFrom(target.getClass())) { 2865 // The StackFrameReader and StackFrameWriter used to perform transforms on 2866 // EmulatedStackFrames (in Transformers.java) do not how to perform asType() 2867 // conversions, but we know here that an explicit cast transform is the same as 2868 // having called asType() on the method handle. 2869 return new Transformers.ExplicitCastArguments(target.asFixedArity(), newType); 2870 } else { 2871 // Runtime will perform asType() conversion during invocation. 2872 return target.asFixedArity().asType(newType); 2873 } 2874 } 2875 return new Transformers.ExplicitCastArguments(target, newType); 2876 } 2877 explicitCastArgumentsChecks(MethodHandle target, MethodType newType)2878 private static void explicitCastArgumentsChecks(MethodHandle target, MethodType newType) { 2879 if (target.type().parameterCount() != newType.parameterCount()) { 2880 throw new WrongMethodTypeException("cannot explicitly cast " + target + 2881 " to " + newType); 2882 } 2883 } 2884 2885 /** 2886 * Produces a method handle which adapts the calling sequence of the 2887 * given method handle to a new type, by reordering the arguments. 2888 * The resulting method handle is guaranteed to report a type 2889 * which is equal to the desired new type. 2890 * <p> 2891 * The given array controls the reordering. 2892 * Call {@code #I} the number of incoming parameters (the value 2893 * {@code newType.parameterCount()}, and call {@code #O} the number 2894 * of outgoing parameters (the value {@code target.type().parameterCount()}). 2895 * Then the length of the reordering array must be {@code #O}, 2896 * and each element must be a non-negative number less than {@code #I}. 2897 * For every {@code N} less than {@code #O}, the {@code N}-th 2898 * outgoing argument will be taken from the {@code I}-th incoming 2899 * argument, where {@code I} is {@code reorder[N]}. 2900 * <p> 2901 * No argument or return value conversions are applied. 2902 * The type of each incoming argument, as determined by {@code newType}, 2903 * must be identical to the type of the corresponding outgoing parameter 2904 * or parameters in the target method handle. 2905 * The return type of {@code newType} must be identical to the return 2906 * type of the original target. 2907 * <p> 2908 * The reordering array need not specify an actual permutation. 2909 * An incoming argument will be duplicated if its index appears 2910 * more than once in the array, and an incoming argument will be dropped 2911 * if its index does not appear in the array. 2912 * As in the case of {@link #dropArguments(MethodHandle,int,List) dropArguments}, 2913 * incoming arguments which are not mentioned in the reordering array 2914 * are may be any type, as determined only by {@code newType}. 2915 * <blockquote><pre>{@code 2916 import static java.lang.invoke.MethodHandles.*; 2917 import static java.lang.invoke.MethodType.*; 2918 ... 2919 MethodType intfn1 = methodType(int.class, int.class); 2920 MethodType intfn2 = methodType(int.class, int.class, int.class); 2921 MethodHandle sub = ... (int x, int y) -> (x-y) ...; 2922 assert(sub.type().equals(intfn2)); 2923 MethodHandle sub1 = permuteArguments(sub, intfn2, 0, 1); 2924 MethodHandle rsub = permuteArguments(sub, intfn2, 1, 0); 2925 assert((int)rsub.invokeExact(1, 100) == 99); 2926 MethodHandle add = ... (int x, int y) -> (x+y) ...; 2927 assert(add.type().equals(intfn2)); 2928 MethodHandle twice = permuteArguments(add, intfn1, 0, 0); 2929 assert(twice.type().equals(intfn1)); 2930 assert((int)twice.invokeExact(21) == 42); 2931 * }</pre></blockquote> 2932 * @param target the method handle to invoke after arguments are reordered 2933 * @param newType the expected type of the new method handle 2934 * @param reorder an index array which controls the reordering 2935 * @return a method handle which delegates to the target after it 2936 * drops unused arguments and moves and/or duplicates the other arguments 2937 * @throws NullPointerException if any argument is null 2938 * @throws IllegalArgumentException if the index array length is not equal to 2939 * the arity of the target, or if any index array element 2940 * not a valid index for a parameter of {@code newType}, 2941 * or if two corresponding parameter types in 2942 * {@code target.type()} and {@code newType} are not identical, 2943 */ 2944 public static permuteArguments(MethodHandle target, MethodType newType, int... reorder)2945 MethodHandle permuteArguments(MethodHandle target, MethodType newType, int... reorder) { 2946 reorder = reorder.clone(); // get a private copy 2947 MethodType oldType = target.type(); 2948 permuteArgumentChecks(reorder, newType, oldType); 2949 2950 return new Transformers.PermuteArguments(newType, target, reorder); 2951 } 2952 2953 // Android-changed: findFirstDupOrDrop is unused and removed. 2954 // private static int findFirstDupOrDrop(int[] reorder, int newArity); 2955 permuteArgumentChecks(int[] reorder, MethodType newType, MethodType oldType)2956 private static boolean permuteArgumentChecks(int[] reorder, MethodType newType, MethodType oldType) { 2957 if (newType.returnType() != oldType.returnType()) 2958 throw newIllegalArgumentException("return types do not match", 2959 oldType, newType); 2960 if (reorder.length == oldType.parameterCount()) { 2961 int limit = newType.parameterCount(); 2962 boolean bad = false; 2963 for (int j = 0; j < reorder.length; j++) { 2964 int i = reorder[j]; 2965 if (i < 0 || i >= limit) { 2966 bad = true; break; 2967 } 2968 Class<?> src = newType.parameterType(i); 2969 Class<?> dst = oldType.parameterType(j); 2970 if (src != dst) 2971 throw newIllegalArgumentException("parameter types do not match after reorder", 2972 oldType, newType); 2973 } 2974 if (!bad) return true; 2975 } 2976 throw newIllegalArgumentException("bad reorder array: "+Arrays.toString(reorder)); 2977 } 2978 2979 /** 2980 * Produces a method handle of the requested return type which returns the given 2981 * constant value every time it is invoked. 2982 * <p> 2983 * Before the method handle is returned, the passed-in value is converted to the requested type. 2984 * If the requested type is primitive, widening primitive conversions are attempted, 2985 * else reference conversions are attempted. 2986 * <p>The returned method handle is equivalent to {@code identity(type).bindTo(value)}. 2987 * @param type the return type of the desired method handle 2988 * @param value the value to return 2989 * @return a method handle of the given return type and no arguments, which always returns the given value 2990 * @throws NullPointerException if the {@code type} argument is null 2991 * @throws ClassCastException if the value cannot be converted to the required return type 2992 * @throws IllegalArgumentException if the given type is {@code void.class} 2993 */ 2994 public static constant(Class<?> type, Object value)2995 MethodHandle constant(Class<?> type, Object value) { 2996 if (type.isPrimitive()) { 2997 if (type == void.class) 2998 throw newIllegalArgumentException("void type"); 2999 Wrapper w = Wrapper.forPrimitiveType(type); 3000 value = w.convert(value, type); 3001 if (w.zero().equals(value)) 3002 return zero(w, type); 3003 return insertArguments(identity(type), 0, value); 3004 } else { 3005 if (value == null) 3006 return zero(Wrapper.OBJECT, type); 3007 return identity(type).bindTo(value); 3008 } 3009 } 3010 3011 /** 3012 * Produces a method handle which returns its sole argument when invoked. 3013 * @param type the type of the sole parameter and return value of the desired method handle 3014 * @return a unary method handle which accepts and returns the given type 3015 * @throws NullPointerException if the argument is null 3016 * @throws IllegalArgumentException if the given type is {@code void.class} 3017 */ 3018 public static identity(Class<?> type)3019 MethodHandle identity(Class<?> type) { 3020 // Android-added: explicit non-null check. 3021 Objects.requireNonNull(type); 3022 Wrapper btw = (type.isPrimitive() ? Wrapper.forPrimitiveType(type) : Wrapper.OBJECT); 3023 int pos = btw.ordinal(); 3024 MethodHandle ident = IDENTITY_MHS[pos]; 3025 if (ident == null) { 3026 ident = setCachedMethodHandle(IDENTITY_MHS, pos, makeIdentity(btw.primitiveType())); 3027 } 3028 if (ident.type().returnType() == type) 3029 return ident; 3030 // something like identity(Foo.class); do not bother to intern these 3031 assert (btw == Wrapper.OBJECT); 3032 return makeIdentity(type); 3033 } 3034 3035 /** 3036 * Produces a constant method handle of the requested return type which 3037 * returns the default value for that type every time it is invoked. 3038 * The resulting constant method handle will have no side effects. 3039 * <p>The returned method handle is equivalent to {@code empty(methodType(type))}. 3040 * It is also equivalent to {@code explicitCastArguments(constant(Object.class, null), methodType(type))}, 3041 * since {@code explicitCastArguments} converts {@code null} to default values. 3042 * @param type the expected return type of the desired method handle 3043 * @return a constant method handle that takes no arguments 3044 * and returns the default value of the given type (or void, if the type is void) 3045 * @throws NullPointerException if the argument is null 3046 * @see MethodHandles#constant 3047 * @see MethodHandles#empty 3048 * @see MethodHandles#explicitCastArguments 3049 * @since 9 3050 */ zero(Class<?> type)3051 public static MethodHandle zero(Class<?> type) { 3052 Objects.requireNonNull(type); 3053 return type.isPrimitive() ? zero(Wrapper.forPrimitiveType(type), type) : zero(Wrapper.OBJECT, type); 3054 } 3055 identityOrVoid(Class<?> type)3056 private static MethodHandle identityOrVoid(Class<?> type) { 3057 return type == void.class ? zero(type) : identity(type); 3058 } 3059 3060 /** 3061 * Produces a method handle of the requested type which ignores any arguments, does nothing, 3062 * and returns a suitable default depending on the return type. 3063 * That is, it returns a zero primitive value, a {@code null}, or {@code void}. 3064 * <p>The returned method handle is equivalent to 3065 * {@code dropArguments(zero(type.returnType()), 0, type.parameterList())}. 3066 * 3067 * @apiNote Given a predicate and target, a useful "if-then" construct can be produced as 3068 * {@code guardWithTest(pred, target, empty(target.type())}. 3069 * @param type the type of the desired method handle 3070 * @return a constant method handle of the given type, which returns a default value of the given return type 3071 * @throws NullPointerException if the argument is null 3072 * @see MethodHandles#zero 3073 * @see MethodHandles#constant 3074 * @since 9 3075 */ empty(MethodType type)3076 public static MethodHandle empty(MethodType type) { 3077 Objects.requireNonNull(type); 3078 return dropArguments(zero(type.returnType()), 0, type.parameterList()); 3079 } 3080 3081 private static final MethodHandle[] IDENTITY_MHS = new MethodHandle[Wrapper.COUNT]; makeIdentity(Class<?> ptype)3082 private static MethodHandle makeIdentity(Class<?> ptype) { 3083 // Android-changed: Android implementation using identity() functions and transformers. 3084 // MethodType mtype = methodType(ptype, ptype); 3085 // LambdaForm lform = LambdaForm.identityForm(BasicType.basicType(ptype)); 3086 // return MethodHandleImpl.makeIntrinsic(mtype, lform, Intrinsic.IDENTITY); 3087 if (ptype.isPrimitive()) { 3088 try { 3089 final MethodType mt = methodType(ptype, ptype); 3090 return Lookup.PUBLIC_LOOKUP.findStatic(MethodHandles.class, "identity", mt); 3091 } catch (NoSuchMethodException | IllegalAccessException e) { 3092 throw new AssertionError(e); 3093 } 3094 } else { 3095 return new Transformers.ReferenceIdentity(ptype); 3096 } 3097 } 3098 3099 // Android-added: helper methods for identity(). identity(byte val)3100 /** @hide */ public static byte identity(byte val) { return val; } identity(boolean val)3101 /** @hide */ public static boolean identity(boolean val) { return val; } identity(char val)3102 /** @hide */ public static char identity(char val) { return val; } identity(short val)3103 /** @hide */ public static short identity(short val) { return val; } identity(int val)3104 /** @hide */ public static int identity(int val) { return val; } identity(long val)3105 /** @hide */ public static long identity(long val) { return val; } identity(float val)3106 /** @hide */ public static float identity(float val) { return val; } identity(double val)3107 /** @hide */ public static double identity(double val) { return val; } 3108 zero(Wrapper btw, Class<?> rtype)3109 private static MethodHandle zero(Wrapper btw, Class<?> rtype) { 3110 int pos = btw.ordinal(); 3111 MethodHandle zero = ZERO_MHS[pos]; 3112 if (zero == null) { 3113 zero = setCachedMethodHandle(ZERO_MHS, pos, makeZero(btw.primitiveType())); 3114 } 3115 if (zero.type().returnType() == rtype) 3116 return zero; 3117 assert(btw == Wrapper.OBJECT); 3118 return makeZero(rtype); 3119 } 3120 private static final MethodHandle[] ZERO_MHS = new MethodHandle[Wrapper.COUNT]; makeZero(Class<?> rtype)3121 private static MethodHandle makeZero(Class<?> rtype) { 3122 // Android-changed: use Android specific implementation. 3123 // MethodType mtype = methodType(rtype); 3124 // LambdaForm lform = LambdaForm.zeroForm(BasicType.basicType(rtype)); 3125 // return MethodHandleImpl.makeIntrinsic(mtype, lform, Intrinsic.ZERO); 3126 return new Transformers.ZeroValue(rtype); 3127 } 3128 setCachedMethodHandle(MethodHandle[] cache, int pos, MethodHandle value)3129 private static synchronized MethodHandle setCachedMethodHandle(MethodHandle[] cache, int pos, MethodHandle value) { 3130 // Simulate a CAS, to avoid racy duplication of results. 3131 MethodHandle prev = cache[pos]; 3132 if (prev != null) return prev; 3133 return cache[pos] = value; 3134 } 3135 3136 /** 3137 * Provides a target method handle with one or more <em>bound arguments</em> 3138 * in advance of the method handle's invocation. 3139 * The formal parameters to the target corresponding to the bound 3140 * arguments are called <em>bound parameters</em>. 3141 * Returns a new method handle which saves away the bound arguments. 3142 * When it is invoked, it receives arguments for any non-bound parameters, 3143 * binds the saved arguments to their corresponding parameters, 3144 * and calls the original target. 3145 * <p> 3146 * The type of the new method handle will drop the types for the bound 3147 * parameters from the original target type, since the new method handle 3148 * will no longer require those arguments to be supplied by its callers. 3149 * <p> 3150 * Each given argument object must match the corresponding bound parameter type. 3151 * If a bound parameter type is a primitive, the argument object 3152 * must be a wrapper, and will be unboxed to produce the primitive value. 3153 * <p> 3154 * The {@code pos} argument selects which parameters are to be bound. 3155 * It may range between zero and <i>N-L</i> (inclusively), 3156 * where <i>N</i> is the arity of the target method handle 3157 * and <i>L</i> is the length of the values array. 3158 * @param target the method handle to invoke after the argument is inserted 3159 * @param pos where to insert the argument (zero for the first) 3160 * @param values the series of arguments to insert 3161 * @return a method handle which inserts an additional argument, 3162 * before calling the original method handle 3163 * @throws NullPointerException if the target or the {@code values} array is null 3164 * @see MethodHandle#bindTo 3165 */ 3166 public static insertArguments(MethodHandle target, int pos, Object... values)3167 MethodHandle insertArguments(MethodHandle target, int pos, Object... values) { 3168 int insCount = values.length; 3169 Class<?>[] ptypes = insertArgumentsChecks(target, insCount, pos); 3170 if (insCount == 0) { 3171 return target; 3172 } 3173 3174 // Throw ClassCastExceptions early if we can't cast any of the provided values 3175 // to the required type. 3176 for (int i = 0; i < insCount; i++) { 3177 final Class<?> ptype = ptypes[pos + i]; 3178 if (!ptype.isPrimitive()) { 3179 ptypes[pos + i].cast(values[i]); 3180 } else { 3181 // Will throw a ClassCastException if something terrible happens. 3182 values[i] = Wrapper.forPrimitiveType(ptype).convert(values[i], ptype); 3183 } 3184 } 3185 3186 return new Transformers.InsertArguments(target, pos, values); 3187 } 3188 3189 // Android-changed: insertArgumentPrimitive is unused. 3190 // 3191 // private static BoundMethodHandle insertArgumentPrimitive(BoundMethodHandle result, int pos, 3192 // Class<?> ptype, Object value) { 3193 // Wrapper w = Wrapper.forPrimitiveType(ptype); 3194 // // perform unboxing and/or primitive conversion 3195 // value = w.convert(value, ptype); 3196 // switch (w) { 3197 // case INT: return result.bindArgumentI(pos, (int)value); 3198 // case LONG: return result.bindArgumentJ(pos, (long)value); 3199 // case FLOAT: return result.bindArgumentF(pos, (float)value); 3200 // case DOUBLE: return result.bindArgumentD(pos, (double)value); 3201 // default: return result.bindArgumentI(pos, ValueConversions.widenSubword(value)); 3202 // } 3203 // } 3204 insertArgumentsChecks(MethodHandle target, int insCount, int pos)3205 private static Class<?>[] insertArgumentsChecks(MethodHandle target, int insCount, int pos) throws RuntimeException { 3206 MethodType oldType = target.type(); 3207 int outargs = oldType.parameterCount(); 3208 int inargs = outargs - insCount; 3209 if (inargs < 0) 3210 throw newIllegalArgumentException("too many values to insert"); 3211 if (pos < 0 || pos > inargs) 3212 throw newIllegalArgumentException("no argument type to append"); 3213 return oldType.ptypes(); 3214 } 3215 3216 // Android-changed: inclusive language preference for 'placeholder'. 3217 /** 3218 * Produces a method handle which will discard some placeholder arguments 3219 * before calling some other specified <i>target</i> method handle. 3220 * The type of the new method handle will be the same as the target's type, 3221 * except it will also include the placeholder argument types, 3222 * at some given position. 3223 * <p> 3224 * The {@code pos} argument may range between zero and <i>N</i>, 3225 * where <i>N</i> is the arity of the target. 3226 * If {@code pos} is zero, the placeholder arguments will precede 3227 * the target's real arguments; if {@code pos} is <i>N</i> 3228 * they will come after. 3229 * <p> 3230 * <b>Example:</b> 3231 * <blockquote><pre>{@code 3232 import static java.lang.invoke.MethodHandles.*; 3233 import static java.lang.invoke.MethodType.*; 3234 ... 3235 MethodHandle cat = lookup().findVirtual(String.class, 3236 "concat", methodType(String.class, String.class)); 3237 assertEquals("xy", (String) cat.invokeExact("x", "y")); 3238 MethodType bigType = cat.type().insertParameterTypes(0, int.class, String.class); 3239 MethodHandle d0 = dropArguments(cat, 0, bigType.parameterList().subList(0,2)); 3240 assertEquals(bigType, d0.type()); 3241 assertEquals("yz", (String) d0.invokeExact(123, "x", "y", "z")); 3242 * }</pre></blockquote> 3243 * <p> 3244 * This method is also equivalent to the following code: 3245 * <blockquote><pre> 3246 * {@link #dropArguments(MethodHandle,int,Class...) dropArguments}{@code (target, pos, valueTypes.toArray(new Class[0]))} 3247 * </pre></blockquote> 3248 * @param target the method handle to invoke after the arguments are dropped 3249 * @param valueTypes the type(s) of the argument(s) to drop 3250 * @param pos position of first argument to drop (zero for the leftmost) 3251 * @return a method handle which drops arguments of the given types, 3252 * before calling the original method handle 3253 * @throws NullPointerException if the target is null, 3254 * or if the {@code valueTypes} list or any of its elements is null 3255 * @throws IllegalArgumentException if any element of {@code valueTypes} is {@code void.class}, 3256 * or if {@code pos} is negative or greater than the arity of the target, 3257 * or if the new method handle's type would have too many parameters 3258 */ 3259 public static dropArguments(MethodHandle target, int pos, List<Class<?>> valueTypes)3260 MethodHandle dropArguments(MethodHandle target, int pos, List<Class<?>> valueTypes) { 3261 return dropArguments0(target, pos, copyTypes(valueTypes.toArray())); 3262 } 3263 copyTypes(Object[] array)3264 private static List<Class<?>> copyTypes(Object[] array) { 3265 return Arrays.asList(Arrays.copyOf(array, array.length, Class[].class)); 3266 } 3267 3268 private static dropArguments0(MethodHandle target, int pos, List<Class<?>> valueTypes)3269 MethodHandle dropArguments0(MethodHandle target, int pos, List<Class<?>> valueTypes) { 3270 MethodType oldType = target.type(); // get NPE 3271 int dropped = dropArgumentChecks(oldType, pos, valueTypes); 3272 MethodType newType = oldType.insertParameterTypes(pos, valueTypes); 3273 if (dropped == 0) return target; 3274 // Android-changed: transformer implementation. 3275 // BoundMethodHandle result = target.rebind(); 3276 // LambdaForm lform = result.form; 3277 // int insertFormArg = 1 + pos; 3278 // for (Class<?> ptype : valueTypes) { 3279 // lform = lform.editor().addArgumentForm(insertFormArg++, BasicType.basicType(ptype)); 3280 // } 3281 // result = result.copyWith(newType, lform); 3282 // return result; 3283 return new Transformers.DropArguments(newType, target, pos, dropped); 3284 } 3285 dropArgumentChecks(MethodType oldType, int pos, List<Class<?>> valueTypes)3286 private static int dropArgumentChecks(MethodType oldType, int pos, List<Class<?>> valueTypes) { 3287 int dropped = valueTypes.size(); 3288 MethodType.checkSlotCount(dropped); 3289 int outargs = oldType.parameterCount(); 3290 int inargs = outargs + dropped; 3291 if (pos < 0 || pos > outargs) 3292 throw newIllegalArgumentException("no argument type to remove" 3293 + Arrays.asList(oldType, pos, valueTypes, inargs, outargs) 3294 ); 3295 return dropped; 3296 } 3297 3298 // Android-changed: inclusive language preference for 'placeholder'. 3299 /** 3300 * Produces a method handle which will discard some placeholder arguments 3301 * before calling some other specified <i>target</i> method handle. 3302 * The type of the new method handle will be the same as the target's type, 3303 * except it will also include the placeholder argument types, 3304 * at some given position. 3305 * <p> 3306 * The {@code pos} argument may range between zero and <i>N</i>, 3307 * where <i>N</i> is the arity of the target. 3308 * If {@code pos} is zero, the placeholder arguments will precede 3309 * the target's real arguments; if {@code pos} is <i>N</i> 3310 * they will come after. 3311 * @apiNote 3312 * <blockquote><pre>{@code 3313 import static java.lang.invoke.MethodHandles.*; 3314 import static java.lang.invoke.MethodType.*; 3315 ... 3316 MethodHandle cat = lookup().findVirtual(String.class, 3317 "concat", methodType(String.class, String.class)); 3318 assertEquals("xy", (String) cat.invokeExact("x", "y")); 3319 MethodHandle d0 = dropArguments(cat, 0, String.class); 3320 assertEquals("yz", (String) d0.invokeExact("x", "y", "z")); 3321 MethodHandle d1 = dropArguments(cat, 1, String.class); 3322 assertEquals("xz", (String) d1.invokeExact("x", "y", "z")); 3323 MethodHandle d2 = dropArguments(cat, 2, String.class); 3324 assertEquals("xy", (String) d2.invokeExact("x", "y", "z")); 3325 MethodHandle d12 = dropArguments(cat, 1, int.class, boolean.class); 3326 assertEquals("xz", (String) d12.invokeExact("x", 12, true, "z")); 3327 * }</pre></blockquote> 3328 * <p> 3329 * This method is also equivalent to the following code: 3330 * <blockquote><pre> 3331 * {@link #dropArguments(MethodHandle,int,List) dropArguments}{@code (target, pos, Arrays.asList(valueTypes))} 3332 * </pre></blockquote> 3333 * @param target the method handle to invoke after the arguments are dropped 3334 * @param valueTypes the type(s) of the argument(s) to drop 3335 * @param pos position of first argument to drop (zero for the leftmost) 3336 * @return a method handle which drops arguments of the given types, 3337 * before calling the original method handle 3338 * @throws NullPointerException if the target is null, 3339 * or if the {@code valueTypes} array or any of its elements is null 3340 * @throws IllegalArgumentException if any element of {@code valueTypes} is {@code void.class}, 3341 * or if {@code pos} is negative or greater than the arity of the target, 3342 * or if the new method handle's type would have 3343 * <a href="MethodHandle.html#maxarity">too many parameters</a> 3344 */ 3345 public static dropArguments(MethodHandle target, int pos, Class<?>... valueTypes)3346 MethodHandle dropArguments(MethodHandle target, int pos, Class<?>... valueTypes) { 3347 return dropArguments0(target, pos, copyTypes(valueTypes)); 3348 } 3349 3350 // private version which allows caller some freedom with error handling dropArgumentsToMatch(MethodHandle target, int skip, List<Class<?>> newTypes, int pos, boolean nullOnFailure)3351 private static MethodHandle dropArgumentsToMatch(MethodHandle target, int skip, List<Class<?>> newTypes, int pos, 3352 boolean nullOnFailure) { 3353 newTypes = copyTypes(newTypes.toArray()); 3354 List<Class<?>> oldTypes = target.type().parameterList(); 3355 int match = oldTypes.size(); 3356 if (skip != 0) { 3357 if (skip < 0 || skip > match) { 3358 throw newIllegalArgumentException("illegal skip", skip, target); 3359 } 3360 oldTypes = oldTypes.subList(skip, match); 3361 match -= skip; 3362 } 3363 List<Class<?>> addTypes = newTypes; 3364 int add = addTypes.size(); 3365 if (pos != 0) { 3366 if (pos < 0 || pos > add) { 3367 throw newIllegalArgumentException("illegal pos", pos, newTypes); 3368 } 3369 addTypes = addTypes.subList(pos, add); 3370 add -= pos; 3371 assert(addTypes.size() == add); 3372 } 3373 // Do not add types which already match the existing arguments. 3374 if (match > add || !oldTypes.equals(addTypes.subList(0, match))) { 3375 if (nullOnFailure) { 3376 return null; 3377 } 3378 throw newIllegalArgumentException("argument lists do not match", oldTypes, newTypes); 3379 } 3380 addTypes = addTypes.subList(match, add); 3381 add -= match; 3382 assert(addTypes.size() == add); 3383 // newTypes: ( P*[pos], M*[match], A*[add] ) 3384 // target: ( S*[skip], M*[match] ) 3385 MethodHandle adapter = target; 3386 if (add > 0) { 3387 adapter = dropArguments0(adapter, skip+ match, addTypes); 3388 } 3389 // adapter: (S*[skip], M*[match], A*[add] ) 3390 if (pos > 0) { 3391 adapter = dropArguments0(adapter, skip, newTypes.subList(0, pos)); 3392 } 3393 // adapter: (S*[skip], P*[pos], M*[match], A*[add] ) 3394 return adapter; 3395 } 3396 3397 // Android-changed: inclusive language preference for 'placeholder'. 3398 /** 3399 * Adapts a target method handle to match the given parameter type list. If necessary, adds placeholder arguments. Some 3400 * leading parameters can be skipped before matching begins. The remaining types in the {@code target}'s parameter 3401 * type list must be a sub-list of the {@code newTypes} type list at the starting position {@code pos}. The 3402 * resulting handle will have the target handle's parameter type list, with any non-matching parameter types (before 3403 * or after the matching sub-list) inserted in corresponding positions of the target's original parameters, as if by 3404 * {@link #dropArguments(MethodHandle, int, Class[])}. 3405 * <p> 3406 * The resulting handle will have the same return type as the target handle. 3407 * <p> 3408 * In more formal terms, assume these two type lists:<ul> 3409 * <li>The target handle has the parameter type list {@code S..., M...}, with as many types in {@code S} as 3410 * indicated by {@code skip}. The {@code M} types are those that are supposed to match part of the given type list, 3411 * {@code newTypes}. 3412 * <li>The {@code newTypes} list contains types {@code P..., M..., A...}, with as many types in {@code P} as 3413 * indicated by {@code pos}. The {@code M} types are precisely those that the {@code M} types in the target handle's 3414 * parameter type list are supposed to match. The types in {@code A} are additional types found after the matching 3415 * sub-list. 3416 * </ul> 3417 * Given these assumptions, the result of an invocation of {@code dropArgumentsToMatch} will have the parameter type 3418 * list {@code S..., P..., M..., A...}, with the {@code P} and {@code A} types inserted as if by 3419 * {@link #dropArguments(MethodHandle, int, Class[])}. 3420 * 3421 * @apiNote 3422 * Two method handles whose argument lists are "effectively identical" (i.e., identical in a common prefix) may be 3423 * mutually converted to a common type by two calls to {@code dropArgumentsToMatch}, as follows: 3424 * <blockquote><pre>{@code 3425 import static java.lang.invoke.MethodHandles.*; 3426 import static java.lang.invoke.MethodType.*; 3427 ... 3428 ... 3429 MethodHandle h0 = constant(boolean.class, true); 3430 MethodHandle h1 = lookup().findVirtual(String.class, "concat", methodType(String.class, String.class)); 3431 MethodType bigType = h1.type().insertParameterTypes(1, String.class, int.class); 3432 MethodHandle h2 = dropArguments(h1, 0, bigType.parameterList()); 3433 if (h1.type().parameterCount() < h2.type().parameterCount()) 3434 h1 = dropArgumentsToMatch(h1, 0, h2.type().parameterList(), 0); // lengthen h1 3435 else 3436 h2 = dropArgumentsToMatch(h2, 0, h1.type().parameterList(), 0); // lengthen h2 3437 MethodHandle h3 = guardWithTest(h0, h1, h2); 3438 assertEquals("xy", h3.invoke("x", "y", 1, "a", "b", "c")); 3439 * }</pre></blockquote> 3440 * @param target the method handle to adapt 3441 * @param skip number of targets parameters to disregard (they will be unchanged) 3442 * @param newTypes the list of types to match {@code target}'s parameter type list to 3443 * @param pos place in {@code newTypes} where the non-skipped target parameters must occur 3444 * @return a possibly adapted method handle 3445 * @throws NullPointerException if either argument is null 3446 * @throws IllegalArgumentException if any element of {@code newTypes} is {@code void.class}, 3447 * or if {@code skip} is negative or greater than the arity of the target, 3448 * or if {@code pos} is negative or greater than the newTypes list size, 3449 * or if {@code newTypes} does not contain the {@code target}'s non-skipped parameter types at position 3450 * {@code pos}. 3451 * @since 9 3452 */ 3453 public static dropArgumentsToMatch(MethodHandle target, int skip, List<Class<?>> newTypes, int pos)3454 MethodHandle dropArgumentsToMatch(MethodHandle target, int skip, List<Class<?>> newTypes, int pos) { 3455 Objects.requireNonNull(target); 3456 Objects.requireNonNull(newTypes); 3457 return dropArgumentsToMatch(target, skip, newTypes, pos, false); 3458 } 3459 3460 /** 3461 * Drop the return value of the target handle (if any). 3462 * The returned method handle will have a {@code void} return type. 3463 * 3464 * @param target the method handle to adapt 3465 * @return a possibly adapted method handle 3466 * @throws NullPointerException if {@code target} is null 3467 * @since 16 3468 */ dropReturn(MethodHandle target)3469 public static MethodHandle dropReturn(MethodHandle target) { 3470 Objects.requireNonNull(target); 3471 MethodType oldType = target.type(); 3472 Class<?> oldReturnType = oldType.returnType(); 3473 if (oldReturnType == void.class) 3474 return target; 3475 3476 MethodType newType = oldType.changeReturnType(void.class); 3477 // Android-changed: no support for BoundMethodHandle or LambdaForm. 3478 // BoundMethodHandle result = target.rebind(); 3479 // LambdaForm lform = result.editor().filterReturnForm(V_TYPE, true); 3480 // result = result.copyWith(newType, lform); 3481 // return result; 3482 return target.asType(newType); 3483 } 3484 3485 /** 3486 * Adapts a target method handle by pre-processing 3487 * one or more of its arguments, each with its own unary filter function, 3488 * and then calling the target with each pre-processed argument 3489 * replaced by the result of its corresponding filter function. 3490 * <p> 3491 * The pre-processing is performed by one or more method handles, 3492 * specified in the elements of the {@code filters} array. 3493 * The first element of the filter array corresponds to the {@code pos} 3494 * argument of the target, and so on in sequence. 3495 * The filter functions are invoked in left to right order. 3496 * <p> 3497 * Null arguments in the array are treated as identity functions, 3498 * and the corresponding arguments left unchanged. 3499 * (If there are no non-null elements in the array, the original target is returned.) 3500 * Each filter is applied to the corresponding argument of the adapter. 3501 * <p> 3502 * If a filter {@code F} applies to the {@code N}th argument of 3503 * the target, then {@code F} must be a method handle which 3504 * takes exactly one argument. The type of {@code F}'s sole argument 3505 * replaces the corresponding argument type of the target 3506 * in the resulting adapted method handle. 3507 * The return type of {@code F} must be identical to the corresponding 3508 * parameter type of the target. 3509 * <p> 3510 * It is an error if there are elements of {@code filters} 3511 * (null or not) 3512 * which do not correspond to argument positions in the target. 3513 * <p><b>Example:</b> 3514 * <blockquote><pre>{@code 3515 import static java.lang.invoke.MethodHandles.*; 3516 import static java.lang.invoke.MethodType.*; 3517 ... 3518 MethodHandle cat = lookup().findVirtual(String.class, 3519 "concat", methodType(String.class, String.class)); 3520 MethodHandle upcase = lookup().findVirtual(String.class, 3521 "toUpperCase", methodType(String.class)); 3522 assertEquals("xy", (String) cat.invokeExact("x", "y")); 3523 MethodHandle f0 = filterArguments(cat, 0, upcase); 3524 assertEquals("Xy", (String) f0.invokeExact("x", "y")); // Xy 3525 MethodHandle f1 = filterArguments(cat, 1, upcase); 3526 assertEquals("xY", (String) f1.invokeExact("x", "y")); // xY 3527 MethodHandle f2 = filterArguments(cat, 0, upcase, upcase); 3528 assertEquals("XY", (String) f2.invokeExact("x", "y")); // XY 3529 * }</pre></blockquote> 3530 * <p>Here is pseudocode for the resulting adapter. In the code, {@code T} 3531 * denotes the return type of both the {@code target} and resulting adapter. 3532 * {@code P}/{@code p} and {@code B}/{@code b} represent the types and values 3533 * of the parameters and arguments that precede and follow the filter position 3534 * {@code pos}, respectively. {@code A[i]}/{@code a[i]} stand for the types and 3535 * values of the filtered parameters and arguments; they also represent the 3536 * return types of the {@code filter[i]} handles. The latter accept arguments 3537 * {@code v[i]} of type {@code V[i]}, which also appear in the signature of 3538 * the resulting adapter. 3539 * <blockquote><pre>{@code 3540 * T target(P... p, A[i]... a[i], B... b); 3541 * A[i] filter[i](V[i]); 3542 * T adapter(P... p, V[i]... v[i], B... b) { 3543 * return target(p..., filter[i](v[i])..., b...); 3544 * } 3545 * }</pre></blockquote> 3546 * <p> 3547 * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector 3548 * variable-arity method handle}, even if the original target method handle was. 3549 * 3550 * @param target the method handle to invoke after arguments are filtered 3551 * @param pos the position of the first argument to filter 3552 * @param filters method handles to call initially on filtered arguments 3553 * @return method handle which incorporates the specified argument filtering logic 3554 * @throws NullPointerException if the target is null 3555 * or if the {@code filters} array is null 3556 * @throws IllegalArgumentException if a non-null element of {@code filters} 3557 * does not match a corresponding argument type of target as described above, 3558 * or if the {@code pos+filters.length} is greater than {@code target.type().parameterCount()}, 3559 * or if the resulting method handle's type would have 3560 * <a href="MethodHandle.html#maxarity">too many parameters</a> 3561 */ 3562 public static filterArguments(MethodHandle target, int pos, MethodHandle... filters)3563 MethodHandle filterArguments(MethodHandle target, int pos, MethodHandle... filters) { 3564 filterArgumentsCheckArity(target, pos, filters); 3565 MethodHandle adapter = target; 3566 // Android-changed: transformer implementation. 3567 // process filters in reverse order so that the invocation of 3568 // the resulting adapter will invoke the filters in left-to-right order 3569 // for (int i = filters.length - 1; i >= 0; --i) { 3570 // MethodHandle filter = filters[i]; 3571 // if (filter == null) continue; // ignore null elements of filters 3572 // adapter = filterArgument(adapter, pos + i, filter); 3573 // } 3574 // return adapter; 3575 for (int i = 0; i < filters.length; ++i) { 3576 filterArgumentChecks(target, i + pos, filters[i]); 3577 } 3578 return new Transformers.FilterArguments(target, pos, filters); 3579 } 3580 3581 /*non-public*/ static filterArgument(MethodHandle target, int pos, MethodHandle filter)3582 MethodHandle filterArgument(MethodHandle target, int pos, MethodHandle filter) { 3583 filterArgumentChecks(target, pos, filter); 3584 // Android-changed: use Transformer implementation. 3585 // MethodType targetType = target.type(); 3586 // MethodType filterType = filter.type(); 3587 // BoundMethodHandle result = target.rebind(); 3588 // Class<?> newParamType = filterType.parameterType(0); 3589 // LambdaForm lform = result.editor().filterArgumentForm(1 + pos, BasicType.basicType(newParamType)); 3590 // MethodType newType = targetType.changeParameterType(pos, newParamType); 3591 // result = result.copyWithExtendL(newType, lform, filter); 3592 // return result; 3593 return new Transformers.FilterArguments(target, pos, filter); 3594 } 3595 filterArgumentsCheckArity(MethodHandle target, int pos, MethodHandle[] filters)3596 private static void filterArgumentsCheckArity(MethodHandle target, int pos, MethodHandle[] filters) { 3597 MethodType targetType = target.type(); 3598 int maxPos = targetType.parameterCount(); 3599 if (pos + filters.length > maxPos) 3600 throw newIllegalArgumentException("too many filters"); 3601 } 3602 filterArgumentChecks(MethodHandle target, int pos, MethodHandle filter)3603 private static void filterArgumentChecks(MethodHandle target, int pos, MethodHandle filter) throws RuntimeException { 3604 MethodType targetType = target.type(); 3605 MethodType filterType = filter.type(); 3606 if (filterType.parameterCount() != 1 3607 || filterType.returnType() != targetType.parameterType(pos)) 3608 throw newIllegalArgumentException("target and filter types do not match", targetType, filterType); 3609 } 3610 3611 /** 3612 * Adapts a target method handle by pre-processing 3613 * a sub-sequence of its arguments with a filter (another method handle). 3614 * The pre-processed arguments are replaced by the result (if any) of the 3615 * filter function. 3616 * The target is then called on the modified (usually shortened) argument list. 3617 * <p> 3618 * If the filter returns a value, the target must accept that value as 3619 * its argument in position {@code pos}, preceded and/or followed by 3620 * any arguments not passed to the filter. 3621 * If the filter returns void, the target must accept all arguments 3622 * not passed to the filter. 3623 * No arguments are reordered, and a result returned from the filter 3624 * replaces (in order) the whole subsequence of arguments originally 3625 * passed to the adapter. 3626 * <p> 3627 * The argument types (if any) of the filter 3628 * replace zero or one argument types of the target, at position {@code pos}, 3629 * in the resulting adapted method handle. 3630 * The return type of the filter (if any) must be identical to the 3631 * argument type of the target at position {@code pos}, and that target argument 3632 * is supplied by the return value of the filter. 3633 * <p> 3634 * In all cases, {@code pos} must be greater than or equal to zero, and 3635 * {@code pos} must also be less than or equal to the target's arity. 3636 * <p><b>Example:</b> 3637 * <blockquote><pre>{@code 3638 import static java.lang.invoke.MethodHandles.*; 3639 import static java.lang.invoke.MethodType.*; 3640 ... 3641 MethodHandle deepToString = publicLookup() 3642 .findStatic(Arrays.class, "deepToString", methodType(String.class, Object[].class)); 3643 3644 MethodHandle ts1 = deepToString.asCollector(String[].class, 1); 3645 assertEquals("[strange]", (String) ts1.invokeExact("strange")); 3646 3647 MethodHandle ts2 = deepToString.asCollector(String[].class, 2); 3648 assertEquals("[up, down]", (String) ts2.invokeExact("up", "down")); 3649 3650 MethodHandle ts3 = deepToString.asCollector(String[].class, 3); 3651 MethodHandle ts3_ts2 = collectArguments(ts3, 1, ts2); 3652 assertEquals("[top, [up, down], strange]", 3653 (String) ts3_ts2.invokeExact("top", "up", "down", "strange")); 3654 3655 MethodHandle ts3_ts2_ts1 = collectArguments(ts3_ts2, 3, ts1); 3656 assertEquals("[top, [up, down], [strange]]", 3657 (String) ts3_ts2_ts1.invokeExact("top", "up", "down", "strange")); 3658 3659 MethodHandle ts3_ts2_ts3 = collectArguments(ts3_ts2, 1, ts3); 3660 assertEquals("[top, [[up, down, strange], charm], bottom]", 3661 (String) ts3_ts2_ts3.invokeExact("top", "up", "down", "strange", "charm", "bottom")); 3662 * }</pre></blockquote> 3663 * <p> Here is pseudocode for the resulting adapter: 3664 * <blockquote><pre>{@code 3665 * T target(A...,V,C...); 3666 * V filter(B...); 3667 * T adapter(A... a,B... b,C... c) { 3668 * V v = filter(b...); 3669 * return target(a...,v,c...); 3670 * } 3671 * // and if the filter has no arguments: 3672 * T target2(A...,V,C...); 3673 * V filter2(); 3674 * T adapter2(A... a,C... c) { 3675 * V v = filter2(); 3676 * return target2(a...,v,c...); 3677 * } 3678 * // and if the filter has a void return: 3679 * T target3(A...,C...); 3680 * void filter3(B...); 3681 * void adapter3(A... a,B... b,C... c) { 3682 * filter3(b...); 3683 * return target3(a...,c...); 3684 * } 3685 * }</pre></blockquote> 3686 * <p> 3687 * A collection adapter {@code collectArguments(mh, 0, coll)} is equivalent to 3688 * one which first "folds" the affected arguments, and then drops them, in separate 3689 * steps as follows: 3690 * <blockquote><pre>{@code 3691 * mh = MethodHandles.dropArguments(mh, 1, coll.type().parameterList()); //step 2 3692 * mh = MethodHandles.foldArguments(mh, coll); //step 1 3693 * }</pre></blockquote> 3694 * If the target method handle consumes no arguments besides than the result 3695 * (if any) of the filter {@code coll}, then {@code collectArguments(mh, 0, coll)} 3696 * is equivalent to {@code filterReturnValue(coll, mh)}. 3697 * If the filter method handle {@code coll} consumes one argument and produces 3698 * a non-void result, then {@code collectArguments(mh, N, coll)} 3699 * is equivalent to {@code filterArguments(mh, N, coll)}. 3700 * Other equivalences are possible but would require argument permutation. 3701 * 3702 * @param target the method handle to invoke after filtering the subsequence of arguments 3703 * @param pos the position of the first adapter argument to pass to the filter, 3704 * and/or the target argument which receives the result of the filter 3705 * @param filter method handle to call on the subsequence of arguments 3706 * @return method handle which incorporates the specified argument subsequence filtering logic 3707 * @throws NullPointerException if either argument is null 3708 * @throws IllegalArgumentException if the return type of {@code filter} 3709 * is non-void and is not the same as the {@code pos} argument of the target, 3710 * or if {@code pos} is not between 0 and the target's arity, inclusive, 3711 * or if the resulting method handle's type would have 3712 * <a href="MethodHandle.html#maxarity">too many parameters</a> 3713 * @see MethodHandles#foldArguments 3714 * @see MethodHandles#filterArguments 3715 * @see MethodHandles#filterReturnValue 3716 */ 3717 public static collectArguments(MethodHandle target, int pos, MethodHandle filter)3718 MethodHandle collectArguments(MethodHandle target, int pos, MethodHandle filter) { 3719 MethodType newType = collectArgumentsChecks(target, pos, filter); 3720 return new Transformers.CollectArguments(target, filter, pos, newType); 3721 } 3722 collectArgumentsChecks(MethodHandle target, int pos, MethodHandle filter)3723 private static MethodType collectArgumentsChecks(MethodHandle target, int pos, MethodHandle filter) throws RuntimeException { 3724 MethodType targetType = target.type(); 3725 MethodType filterType = filter.type(); 3726 Class<?> rtype = filterType.returnType(); 3727 List<Class<?>> filterArgs = filterType.parameterList(); 3728 if (rtype == void.class) { 3729 return targetType.insertParameterTypes(pos, filterArgs); 3730 } 3731 if (rtype != targetType.parameterType(pos)) { 3732 throw newIllegalArgumentException("target and filter types do not match", targetType, filterType); 3733 } 3734 return targetType.dropParameterTypes(pos, pos+1).insertParameterTypes(pos, filterArgs); 3735 } 3736 3737 /** 3738 * Adapts a target method handle by post-processing 3739 * its return value (if any) with a filter (another method handle). 3740 * The result of the filter is returned from the adapter. 3741 * <p> 3742 * If the target returns a value, the filter must accept that value as 3743 * its only argument. 3744 * If the target returns void, the filter must accept no arguments. 3745 * <p> 3746 * The return type of the filter 3747 * replaces the return type of the target 3748 * in the resulting adapted method handle. 3749 * The argument type of the filter (if any) must be identical to the 3750 * return type of the target. 3751 * <p><b>Example:</b> 3752 * <blockquote><pre>{@code 3753 import static java.lang.invoke.MethodHandles.*; 3754 import static java.lang.invoke.MethodType.*; 3755 ... 3756 MethodHandle cat = lookup().findVirtual(String.class, 3757 "concat", methodType(String.class, String.class)); 3758 MethodHandle length = lookup().findVirtual(String.class, 3759 "length", methodType(int.class)); 3760 System.out.println((String) cat.invokeExact("x", "y")); // xy 3761 MethodHandle f0 = filterReturnValue(cat, length); 3762 System.out.println((int) f0.invokeExact("x", "y")); // 2 3763 * }</pre></blockquote> 3764 * <p>Here is pseudocode for the resulting adapter. In the code, 3765 * {@code T}/{@code t} represent the result type and value of the 3766 * {@code target}; {@code V}, the result type of the {@code filter}; and 3767 * {@code A}/{@code a}, the types and values of the parameters and arguments 3768 * of the {@code target} as well as the resulting adapter. 3769 * <blockquote><pre>{@code 3770 * T target(A...); 3771 * V filter(T); 3772 * V adapter(A... a) { 3773 * T t = target(a...); 3774 * return filter(t); 3775 * } 3776 * // and if the target has a void return: 3777 * void target2(A...); 3778 * V filter2(); 3779 * V adapter2(A... a) { 3780 * target2(a...); 3781 * return filter2(); 3782 * } 3783 * // and if the filter has a void return: 3784 * T target3(A...); 3785 * void filter3(V); 3786 * void adapter3(A... a) { 3787 * T t = target3(a...); 3788 * filter3(t); 3789 * } 3790 * }</pre></blockquote> 3791 * <p> 3792 * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector 3793 * variable-arity method handle}, even if the original target method handle was. 3794 * @param target the method handle to invoke before filtering the return value 3795 * @param filter method handle to call on the return value 3796 * @return method handle which incorporates the specified return value filtering logic 3797 * @throws NullPointerException if either argument is null 3798 * @throws IllegalArgumentException if the argument list of {@code filter} 3799 * does not match the return type of target as described above 3800 */ 3801 public static filterReturnValue(MethodHandle target, MethodHandle filter)3802 MethodHandle filterReturnValue(MethodHandle target, MethodHandle filter) { 3803 MethodType targetType = target.type(); 3804 MethodType filterType = filter.type(); 3805 filterReturnValueChecks(targetType, filterType); 3806 // Android-changed: use a transformer. 3807 // BoundMethodHandle result = target.rebind(); 3808 // BasicType rtype = BasicType.basicType(filterType.returnType()); 3809 // LambdaForm lform = result.editor().filterReturnForm(rtype, false); 3810 // MethodType newType = targetType.changeReturnType(filterType.returnType()); 3811 // result = result.copyWithExtendL(newType, lform, filter); 3812 // return result; 3813 return new Transformers.FilterReturnValue(target, filter); 3814 } 3815 filterReturnValueChecks(MethodType targetType, MethodType filterType)3816 private static void filterReturnValueChecks(MethodType targetType, MethodType filterType) throws RuntimeException { 3817 Class<?> rtype = targetType.returnType(); 3818 int filterValues = filterType.parameterCount(); 3819 if (filterValues == 0 3820 ? (rtype != void.class) 3821 : (rtype != filterType.parameterType(0) || filterValues != 1)) 3822 throw newIllegalArgumentException("target and filter types do not match", targetType, filterType); 3823 } 3824 3825 /** 3826 * Adapts a target method handle by pre-processing 3827 * some of its arguments, and then calling the target with 3828 * the result of the pre-processing, inserted into the original 3829 * sequence of arguments. 3830 * <p> 3831 * The pre-processing is performed by {@code combiner}, a second method handle. 3832 * Of the arguments passed to the adapter, the first {@code N} arguments 3833 * are copied to the combiner, which is then called. 3834 * (Here, {@code N} is defined as the parameter count of the combiner.) 3835 * After this, control passes to the target, with any result 3836 * from the combiner inserted before the original {@code N} incoming 3837 * arguments. 3838 * <p> 3839 * If the combiner returns a value, the first parameter type of the target 3840 * must be identical with the return type of the combiner, and the next 3841 * {@code N} parameter types of the target must exactly match the parameters 3842 * of the combiner. 3843 * <p> 3844 * If the combiner has a void return, no result will be inserted, 3845 * and the first {@code N} parameter types of the target 3846 * must exactly match the parameters of the combiner. 3847 * <p> 3848 * The resulting adapter is the same type as the target, except that the 3849 * first parameter type is dropped, 3850 * if it corresponds to the result of the combiner. 3851 * <p> 3852 * (Note that {@link #dropArguments(MethodHandle,int,List) dropArguments} can be used to remove any arguments 3853 * that either the combiner or the target does not wish to receive. 3854 * If some of the incoming arguments are destined only for the combiner, 3855 * consider using {@link MethodHandle#asCollector asCollector} instead, since those 3856 * arguments will not need to be live on the stack on entry to the 3857 * target.) 3858 * <p><b>Example:</b> 3859 * <blockquote><pre>{@code 3860 import static java.lang.invoke.MethodHandles.*; 3861 import static java.lang.invoke.MethodType.*; 3862 ... 3863 MethodHandle trace = publicLookup().findVirtual(java.io.PrintStream.class, 3864 "println", methodType(void.class, String.class)) 3865 .bindTo(System.out); 3866 MethodHandle cat = lookup().findVirtual(String.class, 3867 "concat", methodType(String.class, String.class)); 3868 assertEquals("boojum", (String) cat.invokeExact("boo", "jum")); 3869 MethodHandle catTrace = foldArguments(cat, trace); 3870 // also prints "boo": 3871 assertEquals("boojum", (String) catTrace.invokeExact("boo", "jum")); 3872 * }</pre></blockquote> 3873 * <p>Here is pseudocode for the resulting adapter. In the code, {@code T} 3874 * represents the result type of the {@code target} and resulting adapter. 3875 * {@code V}/{@code v} represent the type and value of the parameter and argument 3876 * of {@code target} that precedes the folding position; {@code V} also is 3877 * the result type of the {@code combiner}. {@code A}/{@code a} denote the 3878 * types and values of the {@code N} parameters and arguments at the folding 3879 * position. {@code B}/{@code b} represent the types and values of the 3880 * {@code target} parameters and arguments that follow the folded parameters 3881 * and arguments. 3882 * <blockquote><pre>{@code 3883 * // there are N arguments in A... 3884 * T target(V, A[N]..., B...); 3885 * V combiner(A...); 3886 * T adapter(A... a, B... b) { 3887 * V v = combiner(a...); 3888 * return target(v, a..., b...); 3889 * } 3890 * // and if the combiner has a void return: 3891 * T target2(A[N]..., B...); 3892 * void combiner2(A...); 3893 * T adapter2(A... a, B... b) { 3894 * combiner2(a...); 3895 * return target2(a..., b...); 3896 * } 3897 * }</pre></blockquote> 3898 * <p> 3899 * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector 3900 * variable-arity method handle}, even if the original target method handle was. 3901 * @param target the method handle to invoke after arguments are combined 3902 * @param combiner method handle to call initially on the incoming arguments 3903 * @return method handle which incorporates the specified argument folding logic 3904 * @throws NullPointerException if either argument is null 3905 * @throws IllegalArgumentException if {@code combiner}'s return type 3906 * is non-void and not the same as the first argument type of 3907 * the target, or if the initial {@code N} argument types 3908 * of the target 3909 * (skipping one matching the {@code combiner}'s return type) 3910 * are not identical with the argument types of {@code combiner} 3911 */ 3912 public static foldArguments(MethodHandle target, MethodHandle combiner)3913 MethodHandle foldArguments(MethodHandle target, MethodHandle combiner) { 3914 return foldArguments(target, 0, combiner); 3915 } 3916 3917 /** 3918 * Adapts a target method handle by pre-processing some of its arguments, starting at a given position, and then 3919 * calling the target with the result of the pre-processing, inserted into the original sequence of arguments just 3920 * before the folded arguments. 3921 * <p> 3922 * This method is closely related to {@link #foldArguments(MethodHandle, MethodHandle)}, but allows to control the 3923 * position in the parameter list at which folding takes place. The argument controlling this, {@code pos}, is a 3924 * zero-based index. The aforementioned method {@link #foldArguments(MethodHandle, MethodHandle)} assumes position 3925 * 0. 3926 * 3927 * @apiNote Example: 3928 * <blockquote><pre>{@code 3929 import static java.lang.invoke.MethodHandles.*; 3930 import static java.lang.invoke.MethodType.*; 3931 ... 3932 MethodHandle trace = publicLookup().findVirtual(java.io.PrintStream.class, 3933 "println", methodType(void.class, String.class)) 3934 .bindTo(System.out); 3935 MethodHandle cat = lookup().findVirtual(String.class, 3936 "concat", methodType(String.class, String.class)); 3937 assertEquals("boojum", (String) cat.invokeExact("boo", "jum")); 3938 MethodHandle catTrace = foldArguments(cat, 1, trace); 3939 // also prints "jum": 3940 assertEquals("boojum", (String) catTrace.invokeExact("boo", "jum")); 3941 * }</pre></blockquote> 3942 * <p>Here is pseudocode for the resulting adapter. In the code, {@code T} 3943 * represents the result type of the {@code target} and resulting adapter. 3944 * {@code V}/{@code v} represent the type and value of the parameter and argument 3945 * of {@code target} that precedes the folding position; {@code V} also is 3946 * the result type of the {@code combiner}. {@code A}/{@code a} denote the 3947 * types and values of the {@code N} parameters and arguments at the folding 3948 * position. {@code Z}/{@code z} and {@code B}/{@code b} represent the types 3949 * and values of the {@code target} parameters and arguments that precede and 3950 * follow the folded parameters and arguments starting at {@code pos}, 3951 * respectively. 3952 * <blockquote><pre>{@code 3953 * // there are N arguments in A... 3954 * T target(Z..., V, A[N]..., B...); 3955 * V combiner(A...); 3956 * T adapter(Z... z, A... a, B... b) { 3957 * V v = combiner(a...); 3958 * return target(z..., v, a..., b...); 3959 * } 3960 * // and if the combiner has a void return: 3961 * T target2(Z..., A[N]..., B...); 3962 * void combiner2(A...); 3963 * T adapter2(Z... z, A... a, B... b) { 3964 * combiner2(a...); 3965 * return target2(z..., a..., b...); 3966 * } 3967 * }</pre></blockquote> 3968 * <p> 3969 * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector 3970 * variable-arity method handle}, even if the original target method handle was. 3971 * 3972 * @param target the method handle to invoke after arguments are combined 3973 * @param pos the position at which to start folding and at which to insert the folding result; if this is {@code 3974 * 0}, the effect is the same as for {@link #foldArguments(MethodHandle, MethodHandle)}. 3975 * @param combiner method handle to call initially on the incoming arguments 3976 * @return method handle which incorporates the specified argument folding logic 3977 * @throws NullPointerException if either argument is null 3978 * @throws IllegalArgumentException if either of the following two conditions holds: 3979 * (1) {@code combiner}'s return type is non-{@code void} and not the same as the argument type at position 3980 * {@code pos} of the target signature; 3981 * (2) the {@code N} argument types at position {@code pos} of the target signature (skipping one matching 3982 * the {@code combiner}'s return type) are not identical with the argument types of {@code combiner}. 3983 * 3984 * @see #foldArguments(MethodHandle, MethodHandle) 3985 * @since 9 3986 */ 3987 public static foldArguments(MethodHandle target, int pos, MethodHandle combiner)3988 MethodHandle foldArguments(MethodHandle target, int pos, MethodHandle combiner) { 3989 MethodType targetType = target.type(); 3990 MethodType combinerType = combiner.type(); 3991 Class<?> rtype = foldArgumentChecks(pos, targetType, combinerType); 3992 // Android-changed: // Android-changed: transformer implementation. 3993 // BoundMethodHandle result = target.rebind(); 3994 // boolean dropResult = rtype == void.class; 3995 // LambdaForm lform = result.editor().foldArgumentsForm(1 + pos, dropResult, combinerType.basicType()); 3996 // MethodType newType = targetType; 3997 // if (!dropResult) { 3998 // newType = newType.dropParameterTypes(pos, pos + 1); 3999 // } 4000 // result = result.copyWithExtendL(newType, lform, combiner); 4001 // return result; 4002 4003 return new Transformers.FoldArguments(target, pos, combiner); 4004 } 4005 foldArgumentChecks(int foldPos, MethodType targetType, MethodType combinerType)4006 private static Class<?> foldArgumentChecks(int foldPos, MethodType targetType, MethodType combinerType) { 4007 int foldArgs = combinerType.parameterCount(); 4008 Class<?> rtype = combinerType.returnType(); 4009 int foldVals = rtype == void.class ? 0 : 1; 4010 int afterInsertPos = foldPos + foldVals; 4011 boolean ok = (targetType.parameterCount() >= afterInsertPos + foldArgs); 4012 if (ok) { 4013 for (int i = 0; i < foldArgs; i++) { 4014 if (combinerType.parameterType(i) != targetType.parameterType(i + afterInsertPos)) { 4015 ok = false; 4016 break; 4017 } 4018 } 4019 } 4020 if (ok && foldVals != 0 && combinerType.returnType() != targetType.parameterType(foldPos)) 4021 ok = false; 4022 if (!ok) 4023 throw misMatchedTypes("target and combiner types", targetType, combinerType); 4024 return rtype; 4025 } 4026 4027 /** 4028 * Makes a method handle which adapts a target method handle, 4029 * by guarding it with a test, a boolean-valued method handle. 4030 * If the guard fails, a fallback handle is called instead. 4031 * All three method handles must have the same corresponding 4032 * argument and return types, except that the return type 4033 * of the test must be boolean, and the test is allowed 4034 * to have fewer arguments than the other two method handles. 4035 * <p> Here is pseudocode for the resulting adapter: 4036 * <blockquote><pre>{@code 4037 * boolean test(A...); 4038 * T target(A...,B...); 4039 * T fallback(A...,B...); 4040 * T adapter(A... a,B... b) { 4041 * if (test(a...)) 4042 * return target(a..., b...); 4043 * else 4044 * return fallback(a..., b...); 4045 * } 4046 * }</pre></blockquote> 4047 * Note that the test arguments ({@code a...} in the pseudocode) cannot 4048 * be modified by execution of the test, and so are passed unchanged 4049 * from the caller to the target or fallback as appropriate. 4050 * @param test method handle used for test, must return boolean 4051 * @param target method handle to call if test passes 4052 * @param fallback method handle to call if test fails 4053 * @return method handle which incorporates the specified if/then/else logic 4054 * @throws NullPointerException if any argument is null 4055 * @throws IllegalArgumentException if {@code test} does not return boolean, 4056 * or if all three method types do not match (with the return 4057 * type of {@code test} changed to match that of the target). 4058 */ 4059 public static guardWithTest(MethodHandle test, MethodHandle target, MethodHandle fallback)4060 MethodHandle guardWithTest(MethodHandle test, 4061 MethodHandle target, 4062 MethodHandle fallback) { 4063 MethodType gtype = test.type(); 4064 MethodType ttype = target.type(); 4065 MethodType ftype = fallback.type(); 4066 if (!ttype.equals(ftype)) 4067 throw misMatchedTypes("target and fallback types", ttype, ftype); 4068 if (gtype.returnType() != boolean.class) 4069 throw newIllegalArgumentException("guard type is not a predicate "+gtype); 4070 List<Class<?>> targs = ttype.parameterList(); 4071 List<Class<?>> gargs = gtype.parameterList(); 4072 if (!targs.equals(gargs)) { 4073 int gpc = gargs.size(), tpc = targs.size(); 4074 if (gpc >= tpc || !targs.subList(0, gpc).equals(gargs)) 4075 throw misMatchedTypes("target and test types", ttype, gtype); 4076 test = dropArguments(test, gpc, targs.subList(gpc, tpc)); 4077 gtype = test.type(); 4078 } 4079 4080 return new Transformers.GuardWithTest(test, target, fallback); 4081 } 4082 misMatchedTypes(String what, T t1, T t2)4083 static <T> RuntimeException misMatchedTypes(String what, T t1, T t2) { 4084 return newIllegalArgumentException(what + " must match: " + t1 + " != " + t2); 4085 } 4086 4087 /** 4088 * Makes a method handle which adapts a target method handle, 4089 * by running it inside an exception handler. 4090 * If the target returns normally, the adapter returns that value. 4091 * If an exception matching the specified type is thrown, the fallback 4092 * handle is called instead on the exception, plus the original arguments. 4093 * <p> 4094 * The target and handler must have the same corresponding 4095 * argument and return types, except that handler may omit trailing arguments 4096 * (similarly to the predicate in {@link #guardWithTest guardWithTest}). 4097 * Also, the handler must have an extra leading parameter of {@code exType} or a supertype. 4098 * <p> 4099 * Here is pseudocode for the resulting adapter. In the code, {@code T} 4100 * represents the return type of the {@code target} and {@code handler}, 4101 * and correspondingly that of the resulting adapter; {@code A}/{@code a}, 4102 * the types and values of arguments to the resulting handle consumed by 4103 * {@code handler}; and {@code B}/{@code b}, those of arguments to the 4104 * resulting handle discarded by {@code handler}. 4105 * <blockquote><pre>{@code 4106 * T target(A..., B...); 4107 * T handler(ExType, A...); 4108 * T adapter(A... a, B... b) { 4109 * try { 4110 * return target(a..., b...); 4111 * } catch (ExType ex) { 4112 * return handler(ex, a...); 4113 * } 4114 * } 4115 * }</pre></blockquote> 4116 * Note that the saved arguments ({@code a...} in the pseudocode) cannot 4117 * be modified by execution of the target, and so are passed unchanged 4118 * from the caller to the handler, if the handler is invoked. 4119 * <p> 4120 * The target and handler must return the same type, even if the handler 4121 * always throws. (This might happen, for instance, because the handler 4122 * is simulating a {@code finally} clause). 4123 * To create such a throwing handler, compose the handler creation logic 4124 * with {@link #throwException throwException}, 4125 * in order to create a method handle of the correct return type. 4126 * @param target method handle to call 4127 * @param exType the type of exception which the handler will catch 4128 * @param handler method handle to call if a matching exception is thrown 4129 * @return method handle which incorporates the specified try/catch logic 4130 * @throws NullPointerException if any argument is null 4131 * @throws IllegalArgumentException if {@code handler} does not accept 4132 * the given exception type, or if the method handle types do 4133 * not match in their return types and their 4134 * corresponding parameters 4135 * @see MethodHandles#tryFinally(MethodHandle, MethodHandle) 4136 */ 4137 public static catchException(MethodHandle target, Class<? extends Throwable> exType, MethodHandle handler)4138 MethodHandle catchException(MethodHandle target, 4139 Class<? extends Throwable> exType, 4140 MethodHandle handler) { 4141 MethodType ttype = target.type(); 4142 MethodType htype = handler.type(); 4143 if (!Throwable.class.isAssignableFrom(exType)) 4144 throw new ClassCastException(exType.getName()); 4145 if (htype.parameterCount() < 1 || 4146 !htype.parameterType(0).isAssignableFrom(exType)) 4147 throw newIllegalArgumentException("handler does not accept exception type "+exType); 4148 if (htype.returnType() != ttype.returnType()) 4149 throw misMatchedTypes("target and handler return types", ttype, htype); 4150 handler = dropArgumentsToMatch(handler, 1, ttype.parameterList(), 0, true); 4151 if (handler == null) { 4152 throw misMatchedTypes("target and handler types", ttype, htype); 4153 } 4154 // Android-changed: use Transformer implementation. 4155 // return MethodHandleImpl.makeGuardWithCatch(target, exType, handler); 4156 return new Transformers.CatchException(target, handler, exType); 4157 } 4158 4159 /** 4160 * Produces a method handle which will throw exceptions of the given {@code exType}. 4161 * The method handle will accept a single argument of {@code exType}, 4162 * and immediately throw it as an exception. 4163 * The method type will nominally specify a return of {@code returnType}. 4164 * The return type may be anything convenient: It doesn't matter to the 4165 * method handle's behavior, since it will never return normally. 4166 * @param returnType the return type of the desired method handle 4167 * @param exType the parameter type of the desired method handle 4168 * @return method handle which can throw the given exceptions 4169 * @throws NullPointerException if either argument is null 4170 */ 4171 public static throwException(Class<?> returnType, Class<? extends Throwable> exType)4172 MethodHandle throwException(Class<?> returnType, Class<? extends Throwable> exType) { 4173 if (!Throwable.class.isAssignableFrom(exType)) 4174 throw new ClassCastException(exType.getName()); 4175 // Android-changed: use Transformer implementation. 4176 // return MethodHandleImpl.throwException(methodType(returnType, exType)); 4177 return new Transformers.AlwaysThrow(returnType, exType); 4178 } 4179 4180 /** 4181 * Constructs a method handle representing a loop with several loop variables that are updated and checked upon each 4182 * iteration. Upon termination of the loop due to one of the predicates, a corresponding finalizer is run and 4183 * delivers the loop's result, which is the return value of the resulting handle. 4184 * <p> 4185 * Intuitively, every loop is formed by one or more "clauses", each specifying a local <em>iteration variable</em> and/or a loop 4186 * exit. Each iteration of the loop executes each clause in order. A clause can optionally update its iteration 4187 * variable; it can also optionally perform a test and conditional loop exit. In order to express this logic in 4188 * terms of method handles, each clause will specify up to four independent actions:<ul> 4189 * <li><em>init:</em> Before the loop executes, the initialization of an iteration variable {@code v} of type {@code V}. 4190 * <li><em>step:</em> When a clause executes, an update step for the iteration variable {@code v}. 4191 * <li><em>pred:</em> When a clause executes, a predicate execution to test for loop exit. 4192 * <li><em>fini:</em> If a clause causes a loop exit, a finalizer execution to compute the loop's return value. 4193 * </ul> 4194 * The full sequence of all iteration variable types, in clause order, will be notated as {@code (V...)}. 4195 * The values themselves will be {@code (v...)}. When we speak of "parameter lists", we will usually 4196 * be referring to types, but in some contexts (describing execution) the lists will be of actual values. 4197 * <p> 4198 * Some of these clause parts may be omitted according to certain rules, and useful default behavior is provided in 4199 * this case. See below for a detailed description. 4200 * <p> 4201 * <em>Parameters optional everywhere:</em> 4202 * Each clause function is allowed but not required to accept a parameter for each iteration variable {@code v}. 4203 * As an exception, the init functions cannot take any {@code v} parameters, 4204 * because those values are not yet computed when the init functions are executed. 4205 * Any clause function may neglect to take any trailing subsequence of parameters it is entitled to take. 4206 * In fact, any clause function may take no arguments at all. 4207 * <p> 4208 * <em>Loop parameters:</em> 4209 * A clause function may take all the iteration variable values it is entitled to, in which case 4210 * it may also take more trailing parameters. Such extra values are called <em>loop parameters</em>, 4211 * with their types and values notated as {@code (A...)} and {@code (a...)}. 4212 * These become the parameters of the resulting loop handle, to be supplied whenever the loop is executed. 4213 * (Since init functions do not accept iteration variables {@code v}, any parameter to an 4214 * init function is automatically a loop parameter {@code a}.) 4215 * As with iteration variables, clause functions are allowed but not required to accept loop parameters. 4216 * These loop parameters act as loop-invariant values visible across the whole loop. 4217 * <p> 4218 * <em>Parameters visible everywhere:</em> 4219 * Each non-init clause function is permitted to observe the entire loop state, because it can be passed the full 4220 * list {@code (v... a...)} of current iteration variable values and incoming loop parameters. 4221 * The init functions can observe initial pre-loop state, in the form {@code (a...)}. 4222 * Most clause functions will not need all of this information, but they will be formally connected to it 4223 * as if by {@link #dropArguments}. 4224 * <a id="astar"></a> 4225 * More specifically, we shall use the notation {@code (V*)} to express an arbitrary prefix of a full 4226 * sequence {@code (V...)} (and likewise for {@code (v*)}, {@code (A*)}, {@code (a*)}). 4227 * In that notation, the general form of an init function parameter list 4228 * is {@code (A*)}, and the general form of a non-init function parameter list is {@code (V*)} or {@code (V... A*)}. 4229 * <p> 4230 * <em>Checking clause structure:</em> 4231 * Given a set of clauses, there is a number of checks and adjustments performed to connect all the parts of the 4232 * loop. They are spelled out in detail in the steps below. In these steps, every occurrence of the word "must" 4233 * corresponds to a place where {@link IllegalArgumentException} will be thrown if the required constraint is not 4234 * met by the inputs to the loop combinator. 4235 * <p> 4236 * <em>Effectively identical sequences:</em> 4237 * <a id="effid"></a> 4238 * A parameter list {@code A} is defined to be <em>effectively identical</em> to another parameter list {@code B} 4239 * if {@code A} and {@code B} are identical, or if {@code A} is shorter and is identical with a proper prefix of {@code B}. 4240 * When speaking of an unordered set of parameter lists, we say they the set is "effectively identical" 4241 * as a whole if the set contains a longest list, and all members of the set are effectively identical to 4242 * that longest list. 4243 * For example, any set of type sequences of the form {@code (V*)} is effectively identical, 4244 * and the same is true if more sequences of the form {@code (V... A*)} are added. 4245 * <p> 4246 * <em>Step 0: Determine clause structure.</em><ol type="a"> 4247 * <li>The clause array (of type {@code MethodHandle[][]}) must be non-{@code null} and contain at least one element. 4248 * <li>The clause array may not contain {@code null}s or sub-arrays longer than four elements. 4249 * <li>Clauses shorter than four elements are treated as if they were padded by {@code null} elements to length 4250 * four. Padding takes place by appending elements to the array. 4251 * <li>Clauses with all {@code null}s are disregarded. 4252 * <li>Each clause is treated as a four-tuple of functions, called "init", "step", "pred", and "fini". 4253 * </ol> 4254 * <p> 4255 * <em>Step 1A: Determine iteration variable types {@code (V...)}.</em><ol type="a"> 4256 * <li>The iteration variable type for each clause is determined using the clause's init and step return types. 4257 * <li>If both functions are omitted, there is no iteration variable for the corresponding clause ({@code void} is 4258 * used as the type to indicate that). If one of them is omitted, the other's return type defines the clause's 4259 * iteration variable type. If both are given, the common return type (they must be identical) defines the clause's 4260 * iteration variable type. 4261 * <li>Form the list of return types (in clause order), omitting all occurrences of {@code void}. 4262 * <li>This list of types is called the "iteration variable types" ({@code (V...)}). 4263 * </ol> 4264 * <p> 4265 * <em>Step 1B: Determine loop parameters {@code (A...)}.</em><ul> 4266 * <li>Examine and collect init function parameter lists (which are of the form {@code (A*)}). 4267 * <li>Examine and collect the suffixes of the step, pred, and fini parameter lists, after removing the iteration variable types. 4268 * (They must have the form {@code (V... A*)}; collect the {@code (A*)} parts only.) 4269 * <li>Do not collect suffixes from step, pred, and fini parameter lists that do not begin with all the iteration variable types. 4270 * (These types will be checked in step 2, along with all the clause function types.) 4271 * <li>Omitted clause functions are ignored. (Equivalently, they are deemed to have empty parameter lists.) 4272 * <li>All of the collected parameter lists must be effectively identical. 4273 * <li>The longest parameter list (which is necessarily unique) is called the "external parameter list" ({@code (A...)}). 4274 * <li>If there is no such parameter list, the external parameter list is taken to be the empty sequence. 4275 * <li>The combined list consisting of iteration variable types followed by the external parameter types is called 4276 * the "internal parameter list". 4277 * </ul> 4278 * <p> 4279 * <em>Step 1C: Determine loop return type.</em><ol type="a"> 4280 * <li>Examine fini function return types, disregarding omitted fini functions. 4281 * <li>If there are no fini functions, the loop return type is {@code void}. 4282 * <li>Otherwise, the common return type {@code R} of the fini functions (their return types must be identical) defines the loop return 4283 * type. 4284 * </ol> 4285 * <p> 4286 * <em>Step 1D: Check other types.</em><ol type="a"> 4287 * <li>There must be at least one non-omitted pred function. 4288 * <li>Every non-omitted pred function must have a {@code boolean} return type. 4289 * </ol> 4290 * <p> 4291 * <em>Step 2: Determine parameter lists.</em><ol type="a"> 4292 * <li>The parameter list for the resulting loop handle will be the external parameter list {@code (A...)}. 4293 * <li>The parameter list for init functions will be adjusted to the external parameter list. 4294 * (Note that their parameter lists are already effectively identical to this list.) 4295 * <li>The parameter list for every non-omitted, non-init (step, pred, and fini) function must be 4296 * effectively identical to the internal parameter list {@code (V... A...)}. 4297 * </ol> 4298 * <p> 4299 * <em>Step 3: Fill in omitted functions.</em><ol type="a"> 4300 * <li>If an init function is omitted, use a {@linkplain #empty default value} for the clause's iteration variable 4301 * type. 4302 * <li>If a step function is omitted, use an {@linkplain #identity identity function} of the clause's iteration 4303 * variable type; insert dropped argument parameters before the identity function parameter for the non-{@code void} 4304 * iteration variables of preceding clauses. (This will turn the loop variable into a local loop invariant.) 4305 * <li>If a pred function is omitted, use a constant {@code true} function. (This will keep the loop going, as far 4306 * as this clause is concerned. Note that in such cases the corresponding fini function is unreachable.) 4307 * <li>If a fini function is omitted, use a {@linkplain #empty default value} for the 4308 * loop return type. 4309 * </ol> 4310 * <p> 4311 * <em>Step 4: Fill in missing parameter types.</em><ol type="a"> 4312 * <li>At this point, every init function parameter list is effectively identical to the external parameter list {@code (A...)}, 4313 * but some lists may be shorter. For every init function with a short parameter list, pad out the end of the list. 4314 * <li>At this point, every non-init function parameter list is effectively identical to the internal parameter 4315 * list {@code (V... A...)}, but some lists may be shorter. For every non-init function with a short parameter list, 4316 * pad out the end of the list. 4317 * <li>Argument lists are padded out by {@linkplain #dropArgumentsToMatch(MethodHandle, int, List, int) dropping unused trailing arguments}. 4318 * </ol> 4319 * <p> 4320 * <em>Final observations.</em><ol type="a"> 4321 * <li>After these steps, all clauses have been adjusted by supplying omitted functions and arguments. 4322 * <li>All init functions have a common parameter type list {@code (A...)}, which the final loop handle will also have. 4323 * <li>All fini functions have a common return type {@code R}, which the final loop handle will also have. 4324 * <li>All non-init functions have a common parameter type list {@code (V... A...)}, of 4325 * (non-{@code void}) iteration variables {@code V} followed by loop parameters. 4326 * <li>Each pair of init and step functions agrees in their return type {@code V}. 4327 * <li>Each non-init function will be able to observe the current values {@code (v...)} of all iteration variables. 4328 * <li>Every function will be able to observe the incoming values {@code (a...)} of all loop parameters. 4329 * </ol> 4330 * <p> 4331 * <em>Example.</em> As a consequence of step 1A above, the {@code loop} combinator has the following property: 4332 * <ul> 4333 * <li>Given {@code N} clauses {@code Cn = {null, Sn, Pn}} with {@code n = 1..N}. 4334 * <li>Suppose predicate handles {@code Pn} are either {@code null} or have no parameters. 4335 * (Only one {@code Pn} has to be non-{@code null}.) 4336 * <li>Suppose step handles {@code Sn} have signatures {@code (B1..BX)Rn}, for some constant {@code X>=N}. 4337 * <li>Suppose {@code Q} is the count of non-void types {@code Rn}, and {@code (V1...VQ)} is the sequence of those types. 4338 * <li>It must be that {@code Vn == Bn} for {@code n = 1..min(X,Q)}. 4339 * <li>The parameter types {@code Vn} will be interpreted as loop-local state elements {@code (V...)}. 4340 * <li>Any remaining types {@code BQ+1..BX} (if {@code Q<X}) will determine 4341 * the resulting loop handle's parameter types {@code (A...)}. 4342 * </ul> 4343 * In this example, the loop handle parameters {@code (A...)} were derived from the step functions, 4344 * which is natural if most of the loop computation happens in the steps. For some loops, 4345 * the burden of computation might be heaviest in the pred functions, and so the pred functions 4346 * might need to accept the loop parameter values. For loops with complex exit logic, the fini 4347 * functions might need to accept loop parameters, and likewise for loops with complex entry logic, 4348 * where the init functions will need the extra parameters. For such reasons, the rules for 4349 * determining these parameters are as symmetric as possible, across all clause parts. 4350 * In general, the loop parameters function as common invariant values across the whole 4351 * loop, while the iteration variables function as common variant values, or (if there is 4352 * no step function) as internal loop invariant temporaries. 4353 * <p> 4354 * <em>Loop execution.</em><ol type="a"> 4355 * <li>When the loop is called, the loop input values are saved in locals, to be passed to 4356 * every clause function. These locals are loop invariant. 4357 * <li>Each init function is executed in clause order (passing the external arguments {@code (a...)}) 4358 * and the non-{@code void} values are saved (as the iteration variables {@code (v...)}) into locals. 4359 * These locals will be loop varying (unless their steps behave as identity functions, as noted above). 4360 * <li>All function executions (except init functions) will be passed the internal parameter list, consisting of 4361 * the non-{@code void} iteration values {@code (v...)} (in clause order) and then the loop inputs {@code (a...)} 4362 * (in argument order). 4363 * <li>The step and pred functions are then executed, in clause order (step before pred), until a pred function 4364 * returns {@code false}. 4365 * <li>The non-{@code void} result from a step function call is used to update the corresponding value in the 4366 * sequence {@code (v...)} of loop variables. 4367 * The updated value is immediately visible to all subsequent function calls. 4368 * <li>If a pred function returns {@code false}, the corresponding fini function is called, and the resulting value 4369 * (of type {@code R}) is returned from the loop as a whole. 4370 * <li>If all the pred functions always return true, no fini function is ever invoked, and the loop cannot exit 4371 * except by throwing an exception. 4372 * </ol> 4373 * <p> 4374 * <em>Usage tips.</em> 4375 * <ul> 4376 * <li>Although each step function will receive the current values of <em>all</em> the loop variables, 4377 * sometimes a step function only needs to observe the current value of its own variable. 4378 * In that case, the step function may need to explicitly {@linkplain #dropArguments drop all preceding loop variables}. 4379 * This will require mentioning their types, in an expression like {@code dropArguments(step, 0, V0.class, ...)}. 4380 * <li>Loop variables are not required to vary; they can be loop invariant. A clause can create 4381 * a loop invariant by a suitable init function with no step, pred, or fini function. This may be 4382 * useful to "wire" an incoming loop argument into the step or pred function of an adjacent loop variable. 4383 * <li>If some of the clause functions are virtual methods on an instance, the instance 4384 * itself can be conveniently placed in an initial invariant loop "variable", using an initial clause 4385 * like {@code new MethodHandle[]{identity(ObjType.class)}}. In that case, the instance reference 4386 * will be the first iteration variable value, and it will be easy to use virtual 4387 * methods as clause parts, since all of them will take a leading instance reference matching that value. 4388 * </ul> 4389 * <p> 4390 * Here is pseudocode for the resulting loop handle. As above, {@code V} and {@code v} represent the types 4391 * and values of loop variables; {@code A} and {@code a} represent arguments passed to the whole loop; 4392 * and {@code R} is the common result type of all finalizers as well as of the resulting loop. 4393 * <blockquote><pre>{@code 4394 * V... init...(A...); 4395 * boolean pred...(V..., A...); 4396 * V... step...(V..., A...); 4397 * R fini...(V..., A...); 4398 * R loop(A... a) { 4399 * V... v... = init...(a...); 4400 * for (;;) { 4401 * for ((v, p, s, f) in (v..., pred..., step..., fini...)) { 4402 * v = s(v..., a...); 4403 * if (!p(v..., a...)) { 4404 * return f(v..., a...); 4405 * } 4406 * } 4407 * } 4408 * } 4409 * }</pre></blockquote> 4410 * Note that the parameter type lists {@code (V...)} and {@code (A...)} have been expanded 4411 * to their full length, even though individual clause functions may neglect to take them all. 4412 * As noted above, missing parameters are filled in as if by {@link #dropArgumentsToMatch(MethodHandle, int, List, int)}. 4413 * 4414 * @apiNote Example: 4415 * <blockquote><pre>{@code 4416 * // iterative implementation of the factorial function as a loop handle 4417 * static int one(int k) { return 1; } 4418 * static int inc(int i, int acc, int k) { return i + 1; } 4419 * static int mult(int i, int acc, int k) { return i * acc; } 4420 * static boolean pred(int i, int acc, int k) { return i < k; } 4421 * static int fin(int i, int acc, int k) { return acc; } 4422 * // assume MH_one, MH_inc, MH_mult, MH_pred, and MH_fin are handles to the above methods 4423 * // null initializer for counter, should initialize to 0 4424 * MethodHandle[] counterClause = new MethodHandle[]{null, MH_inc}; 4425 * MethodHandle[] accumulatorClause = new MethodHandle[]{MH_one, MH_mult, MH_pred, MH_fin}; 4426 * MethodHandle loop = MethodHandles.loop(counterClause, accumulatorClause); 4427 * assertEquals(120, loop.invoke(5)); 4428 * }</pre></blockquote> 4429 * The same example, dropping arguments and using combinators: 4430 * <blockquote><pre>{@code 4431 * // simplified implementation of the factorial function as a loop handle 4432 * static int inc(int i) { return i + 1; } // drop acc, k 4433 * static int mult(int i, int acc) { return i * acc; } //drop k 4434 * static boolean cmp(int i, int k) { return i < k; } 4435 * // assume MH_inc, MH_mult, and MH_cmp are handles to the above methods 4436 * // null initializer for counter, should initialize to 0 4437 * MethodHandle MH_one = MethodHandles.constant(int.class, 1); 4438 * MethodHandle MH_pred = MethodHandles.dropArguments(MH_cmp, 1, int.class); // drop acc 4439 * MethodHandle MH_fin = MethodHandles.dropArguments(MethodHandles.identity(int.class), 0, int.class); // drop i 4440 * MethodHandle[] counterClause = new MethodHandle[]{null, MH_inc}; 4441 * MethodHandle[] accumulatorClause = new MethodHandle[]{MH_one, MH_mult, MH_pred, MH_fin}; 4442 * MethodHandle loop = MethodHandles.loop(counterClause, accumulatorClause); 4443 * assertEquals(720, loop.invoke(6)); 4444 * }</pre></blockquote> 4445 * A similar example, using a helper object to hold a loop parameter: 4446 * <blockquote><pre>{@code 4447 * // instance-based implementation of the factorial function as a loop handle 4448 * static class FacLoop { 4449 * final int k; 4450 * FacLoop(int k) { this.k = k; } 4451 * int inc(int i) { return i + 1; } 4452 * int mult(int i, int acc) { return i * acc; } 4453 * boolean pred(int i) { return i < k; } 4454 * int fin(int i, int acc) { return acc; } 4455 * } 4456 * // assume MH_FacLoop is a handle to the constructor 4457 * // assume MH_inc, MH_mult, MH_pred, and MH_fin are handles to the above methods 4458 * // null initializer for counter, should initialize to 0 4459 * MethodHandle MH_one = MethodHandles.constant(int.class, 1); 4460 * MethodHandle[] instanceClause = new MethodHandle[]{MH_FacLoop}; 4461 * MethodHandle[] counterClause = new MethodHandle[]{null, MH_inc}; 4462 * MethodHandle[] accumulatorClause = new MethodHandle[]{MH_one, MH_mult, MH_pred, MH_fin}; 4463 * MethodHandle loop = MethodHandles.loop(instanceClause, counterClause, accumulatorClause); 4464 * assertEquals(5040, loop.invoke(7)); 4465 * }</pre></blockquote> 4466 * 4467 * @param clauses an array of arrays (4-tuples) of {@link MethodHandle}s adhering to the rules described above. 4468 * 4469 * @return a method handle embodying the looping behavior as defined by the arguments. 4470 * 4471 * @throws IllegalArgumentException in case any of the constraints described above is violated. 4472 * 4473 * @see MethodHandles#whileLoop(MethodHandle, MethodHandle, MethodHandle) 4474 * @see MethodHandles#doWhileLoop(MethodHandle, MethodHandle, MethodHandle) 4475 * @see MethodHandles#countedLoop(MethodHandle, MethodHandle, MethodHandle) 4476 * @see MethodHandles#iteratedLoop(MethodHandle, MethodHandle, MethodHandle) 4477 * @since 9 4478 */ loop(MethodHandle[].... clauses)4479 public static MethodHandle loop(MethodHandle[]... clauses) { 4480 // Step 0: determine clause structure. 4481 loopChecks0(clauses); 4482 4483 List<MethodHandle> init = new ArrayList<>(); 4484 List<MethodHandle> step = new ArrayList<>(); 4485 List<MethodHandle> pred = new ArrayList<>(); 4486 List<MethodHandle> fini = new ArrayList<>(); 4487 4488 Stream.of(clauses).filter(c -> Stream.of(c).anyMatch(Objects::nonNull)).forEach(clause -> { 4489 init.add(clause[0]); // all clauses have at least length 1 4490 step.add(clause.length <= 1 ? null : clause[1]); 4491 pred.add(clause.length <= 2 ? null : clause[2]); 4492 fini.add(clause.length <= 3 ? null : clause[3]); 4493 }); 4494 4495 assert Stream.of(init, step, pred, fini).map(List::size).distinct().count() == 1; 4496 final int nclauses = init.size(); 4497 4498 // Step 1A: determine iteration variables (V...). 4499 final List<Class<?>> iterationVariableTypes = new ArrayList<>(); 4500 for (int i = 0; i < nclauses; ++i) { 4501 MethodHandle in = init.get(i); 4502 MethodHandle st = step.get(i); 4503 if (in == null && st == null) { 4504 iterationVariableTypes.add(void.class); 4505 } else if (in != null && st != null) { 4506 loopChecks1a(i, in, st); 4507 iterationVariableTypes.add(in.type().returnType()); 4508 } else { 4509 iterationVariableTypes.add(in == null ? st.type().returnType() : in.type().returnType()); 4510 } 4511 } 4512 final List<Class<?>> commonPrefix = iterationVariableTypes.stream().filter(t -> t != void.class). 4513 collect(Collectors.toList()); 4514 4515 // Step 1B: determine loop parameters (A...). 4516 final List<Class<?>> commonSuffix = buildCommonSuffix(init, step, pred, fini, commonPrefix.size()); 4517 loopChecks1b(init, commonSuffix); 4518 4519 // Step 1C: determine loop return type. 4520 // Step 1D: check other types. 4521 // local variable required here; see JDK-8223553 4522 Stream<Class<?>> cstream = fini.stream().filter(Objects::nonNull).map(MethodHandle::type) 4523 .map(MethodType::returnType); 4524 final Class<?> loopReturnType = cstream.findFirst().orElse(void.class); 4525 loopChecks1cd(pred, fini, loopReturnType); 4526 4527 // Step 2: determine parameter lists. 4528 final List<Class<?>> commonParameterSequence = new ArrayList<>(commonPrefix); 4529 commonParameterSequence.addAll(commonSuffix); 4530 loopChecks2(step, pred, fini, commonParameterSequence); 4531 4532 // Step 3: fill in omitted functions. 4533 for (int i = 0; i < nclauses; ++i) { 4534 Class<?> t = iterationVariableTypes.get(i); 4535 if (init.get(i) == null) { 4536 init.set(i, empty(methodType(t, commonSuffix))); 4537 } 4538 if (step.get(i) == null) { 4539 step.set(i, dropArgumentsToMatch(identityOrVoid(t), 0, commonParameterSequence, i)); 4540 } 4541 if (pred.get(i) == null) { 4542 pred.set(i, dropArguments0(constant(boolean.class, true), 0, commonParameterSequence)); 4543 } 4544 if (fini.get(i) == null) { 4545 fini.set(i, empty(methodType(t, commonParameterSequence))); 4546 } 4547 } 4548 4549 // Step 4: fill in missing parameter types. 4550 // Also convert all handles to fixed-arity handles. 4551 List<MethodHandle> finit = fixArities(fillParameterTypes(init, commonSuffix)); 4552 List<MethodHandle> fstep = fixArities(fillParameterTypes(step, commonParameterSequence)); 4553 List<MethodHandle> fpred = fixArities(fillParameterTypes(pred, commonParameterSequence)); 4554 List<MethodHandle> ffini = fixArities(fillParameterTypes(fini, commonParameterSequence)); 4555 4556 assert finit.stream().map(MethodHandle::type).map(MethodType::parameterList). 4557 allMatch(pl -> pl.equals(commonSuffix)); 4558 assert Stream.of(fstep, fpred, ffini).flatMap(List::stream).map(MethodHandle::type).map(MethodType::parameterList). 4559 allMatch(pl -> pl.equals(commonParameterSequence)); 4560 4561 // Android-changed: transformer implementation. 4562 // return MethodHandleImpl.makeLoop(loopReturnType, commonSuffix, finit, fstep, fpred, ffini); 4563 return new Transformers.Loop(loopReturnType, 4564 commonSuffix, 4565 finit.toArray(MethodHandle[]::new), 4566 fstep.toArray(MethodHandle[]::new), 4567 fpred.toArray(MethodHandle[]::new), 4568 ffini.toArray(MethodHandle[]::new)); 4569 } 4570 loopChecks0(MethodHandle[][] clauses)4571 private static void loopChecks0(MethodHandle[][] clauses) { 4572 if (clauses == null || clauses.length == 0) { 4573 throw newIllegalArgumentException("null or no clauses passed"); 4574 } 4575 if (Stream.of(clauses).anyMatch(Objects::isNull)) { 4576 throw newIllegalArgumentException("null clauses are not allowed"); 4577 } 4578 if (Stream.of(clauses).anyMatch(c -> c.length > 4)) { 4579 throw newIllegalArgumentException("All loop clauses must be represented as MethodHandle arrays with at most 4 elements."); 4580 } 4581 } 4582 loopChecks1a(int i, MethodHandle in, MethodHandle st)4583 private static void loopChecks1a(int i, MethodHandle in, MethodHandle st) { 4584 if (in.type().returnType() != st.type().returnType()) { 4585 throw misMatchedTypes("clause " + i + ": init and step return types", in.type().returnType(), 4586 st.type().returnType()); 4587 } 4588 } 4589 longestParameterList(Stream<MethodHandle> mhs, int skipSize)4590 private static List<Class<?>> longestParameterList(Stream<MethodHandle> mhs, int skipSize) { 4591 final List<Class<?>> empty = List.of(); 4592 final List<Class<?>> longest = mhs.filter(Objects::nonNull). 4593 // take only those that can contribute to a common suffix because they are longer than the prefix 4594 map(MethodHandle::type). 4595 filter(t -> t.parameterCount() > skipSize). 4596 map(MethodType::parameterList). 4597 reduce((p, q) -> p.size() >= q.size() ? p : q).orElse(empty); 4598 return longest.size() == 0 ? empty : longest.subList(skipSize, longest.size()); 4599 } 4600 longestParameterList(List<List<Class<?>>> lists)4601 private static List<Class<?>> longestParameterList(List<List<Class<?>>> lists) { 4602 final List<Class<?>> empty = List.of(); 4603 return lists.stream().reduce((p, q) -> p.size() >= q.size() ? p : q).orElse(empty); 4604 } 4605 buildCommonSuffix(List<MethodHandle> init, List<MethodHandle> step, List<MethodHandle> pred, List<MethodHandle> fini, int cpSize)4606 private static List<Class<?>> buildCommonSuffix(List<MethodHandle> init, List<MethodHandle> step, List<MethodHandle> pred, List<MethodHandle> fini, int cpSize) { 4607 final List<Class<?>> longest1 = longestParameterList(Stream.of(step, pred, fini).flatMap(List::stream), cpSize); 4608 final List<Class<?>> longest2 = longestParameterList(init.stream(), 0); 4609 return longestParameterList(Arrays.asList(longest1, longest2)); 4610 } 4611 loopChecks1b(List<MethodHandle> init, List<Class<?>> commonSuffix)4612 private static void loopChecks1b(List<MethodHandle> init, List<Class<?>> commonSuffix) { 4613 if (init.stream().filter(Objects::nonNull).map(MethodHandle::type). 4614 anyMatch(t -> !t.effectivelyIdenticalParameters(0, commonSuffix))) { 4615 throw newIllegalArgumentException("found non-effectively identical init parameter type lists: " + init + 4616 " (common suffix: " + commonSuffix + ")"); 4617 } 4618 } 4619 loopChecks1cd(List<MethodHandle> pred, List<MethodHandle> fini, Class<?> loopReturnType)4620 private static void loopChecks1cd(List<MethodHandle> pred, List<MethodHandle> fini, Class<?> loopReturnType) { 4621 if (fini.stream().filter(Objects::nonNull).map(MethodHandle::type).map(MethodType::returnType). 4622 anyMatch(t -> t != loopReturnType)) { 4623 throw newIllegalArgumentException("found non-identical finalizer return types: " + fini + " (return type: " + 4624 loopReturnType + ")"); 4625 } 4626 4627 if (!pred.stream().filter(Objects::nonNull).findFirst().isPresent()) { 4628 throw newIllegalArgumentException("no predicate found", pred); 4629 } 4630 if (pred.stream().filter(Objects::nonNull).map(MethodHandle::type).map(MethodType::returnType). 4631 anyMatch(t -> t != boolean.class)) { 4632 throw newIllegalArgumentException("predicates must have boolean return type", pred); 4633 } 4634 } 4635 loopChecks2(List<MethodHandle> step, List<MethodHandle> pred, List<MethodHandle> fini, List<Class<?>> commonParameterSequence)4636 private static void loopChecks2(List<MethodHandle> step, List<MethodHandle> pred, List<MethodHandle> fini, List<Class<?>> commonParameterSequence) { 4637 if (Stream.of(step, pred, fini).flatMap(List::stream).filter(Objects::nonNull).map(MethodHandle::type). 4638 anyMatch(t -> !t.effectivelyIdenticalParameters(0, commonParameterSequence))) { 4639 throw newIllegalArgumentException("found non-effectively identical parameter type lists:\nstep: " + step + 4640 "\npred: " + pred + "\nfini: " + fini + " (common parameter sequence: " + commonParameterSequence + ")"); 4641 } 4642 } 4643 fillParameterTypes(List<MethodHandle> hs, final List<Class<?>> targetParams)4644 private static List<MethodHandle> fillParameterTypes(List<MethodHandle> hs, final List<Class<?>> targetParams) { 4645 return hs.stream().map(h -> { 4646 int pc = h.type().parameterCount(); 4647 int tpsize = targetParams.size(); 4648 return pc < tpsize ? dropArguments0(h, pc, targetParams.subList(pc, tpsize)) : h; 4649 }).collect(Collectors.toList()); 4650 } 4651 fixArities(List<MethodHandle> hs)4652 private static List<MethodHandle> fixArities(List<MethodHandle> hs) { 4653 return hs.stream().map(MethodHandle::asFixedArity).collect(Collectors.toList()); 4654 } 4655 4656 /** 4657 * Constructs a {@code while} loop from an initializer, a body, and a predicate. 4658 * This is a convenience wrapper for the {@linkplain #loop(MethodHandle[][]) generic loop combinator}. 4659 * <p> 4660 * The {@code pred} handle describes the loop condition; and {@code body}, its body. The loop resulting from this 4661 * method will, in each iteration, first evaluate the predicate and then execute its body (if the predicate 4662 * evaluates to {@code true}). 4663 * The loop will terminate once the predicate evaluates to {@code false} (the body will not be executed in this case). 4664 * <p> 4665 * The {@code init} handle describes the initial value of an additional optional loop-local variable. 4666 * In each iteration, this loop-local variable, if present, will be passed to the {@code body} 4667 * and updated with the value returned from its invocation. The result of loop execution will be 4668 * the final value of the additional loop-local variable (if present). 4669 * <p> 4670 * The following rules hold for these argument handles:<ul> 4671 * <li>The {@code body} handle must not be {@code null}; its type must be of the form 4672 * {@code (V A...)V}, where {@code V} is non-{@code void}, or else {@code (A...)void}. 4673 * (In the {@code void} case, we assign the type {@code void} to the name {@code V}, 4674 * and we will write {@code (V A...)V} with the understanding that a {@code void} type {@code V} 4675 * is quietly dropped from the parameter list, leaving {@code (A...)V}.) 4676 * <li>The parameter list {@code (V A...)} of the body is called the <em>internal parameter list</em>. 4677 * It will constrain the parameter lists of the other loop parts. 4678 * <li>If the iteration variable type {@code V} is dropped from the internal parameter list, the resulting shorter 4679 * list {@code (A...)} is called the <em>external parameter list</em>. 4680 * <li>The body return type {@code V}, if non-{@code void}, determines the type of an 4681 * additional state variable of the loop. 4682 * The body must both accept and return a value of this type {@code V}. 4683 * <li>If {@code init} is non-{@code null}, it must have return type {@code V}. 4684 * Its parameter list (of some <a href="MethodHandles.html#astar">form {@code (A*)}</a>) must be 4685 * <a href="MethodHandles.html#effid">effectively identical</a> 4686 * to the external parameter list {@code (A...)}. 4687 * <li>If {@code init} is {@code null}, the loop variable will be initialized to its 4688 * {@linkplain #empty default value}. 4689 * <li>The {@code pred} handle must not be {@code null}. It must have {@code boolean} as its return type. 4690 * Its parameter list (either empty or of the form {@code (V A*)}) must be 4691 * effectively identical to the internal parameter list. 4692 * </ul> 4693 * <p> 4694 * The resulting loop handle's result type and parameter signature are determined as follows:<ul> 4695 * <li>The loop handle's result type is the result type {@code V} of the body. 4696 * <li>The loop handle's parameter types are the types {@code (A...)}, 4697 * from the external parameter list. 4698 * </ul> 4699 * <p> 4700 * Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the type / value of 4701 * the sole loop variable as well as the result type of the loop; and {@code A}/{@code a}, that of the argument 4702 * passed to the loop. 4703 * <blockquote><pre>{@code 4704 * V init(A...); 4705 * boolean pred(V, A...); 4706 * V body(V, A...); 4707 * V whileLoop(A... a...) { 4708 * V v = init(a...); 4709 * while (pred(v, a...)) { 4710 * v = body(v, a...); 4711 * } 4712 * return v; 4713 * } 4714 * }</pre></blockquote> 4715 * 4716 * @apiNote Example: 4717 * <blockquote><pre>{@code 4718 * // implement the zip function for lists as a loop handle 4719 * static List<String> initZip(Iterator<String> a, Iterator<String> b) { return new ArrayList<>(); } 4720 * static boolean zipPred(List<String> zip, Iterator<String> a, Iterator<String> b) { return a.hasNext() && b.hasNext(); } 4721 * static List<String> zipStep(List<String> zip, Iterator<String> a, Iterator<String> b) { 4722 * zip.add(a.next()); 4723 * zip.add(b.next()); 4724 * return zip; 4725 * } 4726 * // assume MH_initZip, MH_zipPred, and MH_zipStep are handles to the above methods 4727 * MethodHandle loop = MethodHandles.whileLoop(MH_initZip, MH_zipPred, MH_zipStep); 4728 * List<String> a = Arrays.asList("a", "b", "c", "d"); 4729 * List<String> b = Arrays.asList("e", "f", "g", "h"); 4730 * List<String> zipped = Arrays.asList("a", "e", "b", "f", "c", "g", "d", "h"); 4731 * assertEquals(zipped, (List<String>) loop.invoke(a.iterator(), b.iterator())); 4732 * }</pre></blockquote> 4733 * 4734 * 4735 * @apiNote The implementation of this method can be expressed as follows: 4736 * <blockquote><pre>{@code 4737 * MethodHandle whileLoop(MethodHandle init, MethodHandle pred, MethodHandle body) { 4738 * MethodHandle fini = (body.type().returnType() == void.class 4739 * ? null : identity(body.type().returnType())); 4740 * MethodHandle[] 4741 * checkExit = { null, null, pred, fini }, 4742 * varBody = { init, body }; 4743 * return loop(checkExit, varBody); 4744 * } 4745 * }</pre></blockquote> 4746 * 4747 * @param init optional initializer, providing the initial value of the loop variable. 4748 * May be {@code null}, implying a default initial value. See above for other constraints. 4749 * @param pred condition for the loop, which may not be {@code null}. Its result type must be {@code boolean}. See 4750 * above for other constraints. 4751 * @param body body of the loop, which may not be {@code null}. It controls the loop parameters and result type. 4752 * See above for other constraints. 4753 * 4754 * @return a method handle implementing the {@code while} loop as described by the arguments. 4755 * @throws IllegalArgumentException if the rules for the arguments are violated. 4756 * @throws NullPointerException if {@code pred} or {@code body} are {@code null}. 4757 * 4758 * @see #loop(MethodHandle[][]) 4759 * @see #doWhileLoop(MethodHandle, MethodHandle, MethodHandle) 4760 * @since 9 4761 */ whileLoop(MethodHandle init, MethodHandle pred, MethodHandle body)4762 public static MethodHandle whileLoop(MethodHandle init, MethodHandle pred, MethodHandle body) { 4763 whileLoopChecks(init, pred, body); 4764 MethodHandle fini = identityOrVoid(body.type().returnType()); 4765 MethodHandle[] checkExit = { null, null, pred, fini }; 4766 MethodHandle[] varBody = { init, body }; 4767 return loop(checkExit, varBody); 4768 } 4769 4770 /** 4771 * Constructs a {@code do-while} loop from an initializer, a body, and a predicate. 4772 * This is a convenience wrapper for the {@linkplain #loop(MethodHandle[][]) generic loop combinator}. 4773 * <p> 4774 * The {@code pred} handle describes the loop condition; and {@code body}, its body. The loop resulting from this 4775 * method will, in each iteration, first execute its body and then evaluate the predicate. 4776 * The loop will terminate once the predicate evaluates to {@code false} after an execution of the body. 4777 * <p> 4778 * The {@code init} handle describes the initial value of an additional optional loop-local variable. 4779 * In each iteration, this loop-local variable, if present, will be passed to the {@code body} 4780 * and updated with the value returned from its invocation. The result of loop execution will be 4781 * the final value of the additional loop-local variable (if present). 4782 * <p> 4783 * The following rules hold for these argument handles:<ul> 4784 * <li>The {@code body} handle must not be {@code null}; its type must be of the form 4785 * {@code (V A...)V}, where {@code V} is non-{@code void}, or else {@code (A...)void}. 4786 * (In the {@code void} case, we assign the type {@code void} to the name {@code V}, 4787 * and we will write {@code (V A...)V} with the understanding that a {@code void} type {@code V} 4788 * is quietly dropped from the parameter list, leaving {@code (A...)V}.) 4789 * <li>The parameter list {@code (V A...)} of the body is called the <em>internal parameter list</em>. 4790 * It will constrain the parameter lists of the other loop parts. 4791 * <li>If the iteration variable type {@code V} is dropped from the internal parameter list, the resulting shorter 4792 * list {@code (A...)} is called the <em>external parameter list</em>. 4793 * <li>The body return type {@code V}, if non-{@code void}, determines the type of an 4794 * additional state variable of the loop. 4795 * The body must both accept and return a value of this type {@code V}. 4796 * <li>If {@code init} is non-{@code null}, it must have return type {@code V}. 4797 * Its parameter list (of some <a href="MethodHandles.html#astar">form {@code (A*)}</a>) must be 4798 * <a href="MethodHandles.html#effid">effectively identical</a> 4799 * to the external parameter list {@code (A...)}. 4800 * <li>If {@code init} is {@code null}, the loop variable will be initialized to its 4801 * {@linkplain #empty default value}. 4802 * <li>The {@code pred} handle must not be {@code null}. It must have {@code boolean} as its return type. 4803 * Its parameter list (either empty or of the form {@code (V A*)}) must be 4804 * effectively identical to the internal parameter list. 4805 * </ul> 4806 * <p> 4807 * The resulting loop handle's result type and parameter signature are determined as follows:<ul> 4808 * <li>The loop handle's result type is the result type {@code V} of the body. 4809 * <li>The loop handle's parameter types are the types {@code (A...)}, 4810 * from the external parameter list. 4811 * </ul> 4812 * <p> 4813 * Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the type / value of 4814 * the sole loop variable as well as the result type of the loop; and {@code A}/{@code a}, that of the argument 4815 * passed to the loop. 4816 * <blockquote><pre>{@code 4817 * V init(A...); 4818 * boolean pred(V, A...); 4819 * V body(V, A...); 4820 * V doWhileLoop(A... a...) { 4821 * V v = init(a...); 4822 * do { 4823 * v = body(v, a...); 4824 * } while (pred(v, a...)); 4825 * return v; 4826 * } 4827 * }</pre></blockquote> 4828 * 4829 * @apiNote Example: 4830 * <blockquote><pre>{@code 4831 * // int i = 0; while (i < limit) { ++i; } return i; => limit 4832 * static int zero(int limit) { return 0; } 4833 * static int step(int i, int limit) { return i + 1; } 4834 * static boolean pred(int i, int limit) { return i < limit; } 4835 * // assume MH_zero, MH_step, and MH_pred are handles to the above methods 4836 * MethodHandle loop = MethodHandles.doWhileLoop(MH_zero, MH_step, MH_pred); 4837 * assertEquals(23, loop.invoke(23)); 4838 * }</pre></blockquote> 4839 * 4840 * 4841 * @apiNote The implementation of this method can be expressed as follows: 4842 * <blockquote><pre>{@code 4843 * MethodHandle doWhileLoop(MethodHandle init, MethodHandle body, MethodHandle pred) { 4844 * MethodHandle fini = (body.type().returnType() == void.class 4845 * ? null : identity(body.type().returnType())); 4846 * MethodHandle[] clause = { init, body, pred, fini }; 4847 * return loop(clause); 4848 * } 4849 * }</pre></blockquote> 4850 * 4851 * @param init optional initializer, providing the initial value of the loop variable. 4852 * May be {@code null}, implying a default initial value. See above for other constraints. 4853 * @param body body of the loop, which may not be {@code null}. It controls the loop parameters and result type. 4854 * See above for other constraints. 4855 * @param pred condition for the loop, which may not be {@code null}. Its result type must be {@code boolean}. See 4856 * above for other constraints. 4857 * 4858 * @return a method handle implementing the {@code while} loop as described by the arguments. 4859 * @throws IllegalArgumentException if the rules for the arguments are violated. 4860 * @throws NullPointerException if {@code pred} or {@code body} are {@code null}. 4861 * 4862 * @see #loop(MethodHandle[][]) 4863 * @see #whileLoop(MethodHandle, MethodHandle, MethodHandle) 4864 * @since 9 4865 */ doWhileLoop(MethodHandle init, MethodHandle body, MethodHandle pred)4866 public static MethodHandle doWhileLoop(MethodHandle init, MethodHandle body, MethodHandle pred) { 4867 whileLoopChecks(init, pred, body); 4868 MethodHandle fini = identityOrVoid(body.type().returnType()); 4869 MethodHandle[] clause = {init, body, pred, fini }; 4870 return loop(clause); 4871 } 4872 whileLoopChecks(MethodHandle init, MethodHandle pred, MethodHandle body)4873 private static void whileLoopChecks(MethodHandle init, MethodHandle pred, MethodHandle body) { 4874 Objects.requireNonNull(pred); 4875 Objects.requireNonNull(body); 4876 MethodType bodyType = body.type(); 4877 Class<?> returnType = bodyType.returnType(); 4878 List<Class<?>> innerList = bodyType.parameterList(); 4879 List<Class<?>> outerList = innerList; 4880 if (returnType == void.class) { 4881 // OK 4882 } else if (innerList.size() == 0 || innerList.get(0) != returnType) { 4883 // leading V argument missing => error 4884 MethodType expected = bodyType.insertParameterTypes(0, returnType); 4885 throw misMatchedTypes("body function", bodyType, expected); 4886 } else { 4887 outerList = innerList.subList(1, innerList.size()); 4888 } 4889 MethodType predType = pred.type(); 4890 if (predType.returnType() != boolean.class || 4891 !predType.effectivelyIdenticalParameters(0, innerList)) { 4892 throw misMatchedTypes("loop predicate", predType, methodType(boolean.class, innerList)); 4893 } 4894 if (init != null) { 4895 MethodType initType = init.type(); 4896 if (initType.returnType() != returnType || 4897 !initType.effectivelyIdenticalParameters(0, outerList)) { 4898 throw misMatchedTypes("loop initializer", initType, methodType(returnType, outerList)); 4899 } 4900 } 4901 } 4902 4903 /** 4904 * Constructs a loop that runs a given number of iterations. 4905 * This is a convenience wrapper for the {@linkplain #loop(MethodHandle[][]) generic loop combinator}. 4906 * <p> 4907 * The number of iterations is determined by the {@code iterations} handle evaluation result. 4908 * The loop counter {@code i} is an extra loop iteration variable of type {@code int}. 4909 * It will be initialized to 0 and incremented by 1 in each iteration. 4910 * <p> 4911 * If the {@code body} handle returns a non-{@code void} type {@code V}, a leading loop iteration variable 4912 * of that type is also present. This variable is initialized using the optional {@code init} handle, 4913 * or to the {@linkplain #empty default value} of type {@code V} if that handle is {@code null}. 4914 * <p> 4915 * In each iteration, the iteration variables are passed to an invocation of the {@code body} handle. 4916 * A non-{@code void} value returned from the body (of type {@code V}) updates the leading 4917 * iteration variable. 4918 * The result of the loop handle execution will be the final {@code V} value of that variable 4919 * (or {@code void} if there is no {@code V} variable). 4920 * <p> 4921 * The following rules hold for the argument handles:<ul> 4922 * <li>The {@code iterations} handle must not be {@code null}, and must return 4923 * the type {@code int}, referred to here as {@code I} in parameter type lists. 4924 * <li>The {@code body} handle must not be {@code null}; its type must be of the form 4925 * {@code (V I A...)V}, where {@code V} is non-{@code void}, or else {@code (I A...)void}. 4926 * (In the {@code void} case, we assign the type {@code void} to the name {@code V}, 4927 * and we will write {@code (V I A...)V} with the understanding that a {@code void} type {@code V} 4928 * is quietly dropped from the parameter list, leaving {@code (I A...)V}.) 4929 * <li>The parameter list {@code (V I A...)} of the body contributes to a list 4930 * of types called the <em>internal parameter list</em>. 4931 * It will constrain the parameter lists of the other loop parts. 4932 * <li>As a special case, if the body contributes only {@code V} and {@code I} types, 4933 * with no additional {@code A} types, then the internal parameter list is extended by 4934 * the argument types {@code A...} of the {@code iterations} handle. 4935 * <li>If the iteration variable types {@code (V I)} are dropped from the internal parameter list, the resulting shorter 4936 * list {@code (A...)} is called the <em>external parameter list</em>. 4937 * <li>The body return type {@code V}, if non-{@code void}, determines the type of an 4938 * additional state variable of the loop. 4939 * The body must both accept a leading parameter and return a value of this type {@code V}. 4940 * <li>If {@code init} is non-{@code null}, it must have return type {@code V}. 4941 * Its parameter list (of some <a href="MethodHandles.html#astar">form {@code (A*)}</a>) must be 4942 * <a href="MethodHandles.html#effid">effectively identical</a> 4943 * to the external parameter list {@code (A...)}. 4944 * <li>If {@code init} is {@code null}, the loop variable will be initialized to its 4945 * {@linkplain #empty default value}. 4946 * <li>The parameter list of {@code iterations} (of some form {@code (A*)}) must be 4947 * effectively identical to the external parameter list {@code (A...)}. 4948 * </ul> 4949 * <p> 4950 * The resulting loop handle's result type and parameter signature are determined as follows:<ul> 4951 * <li>The loop handle's result type is the result type {@code V} of the body. 4952 * <li>The loop handle's parameter types are the types {@code (A...)}, 4953 * from the external parameter list. 4954 * </ul> 4955 * <p> 4956 * Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the type / value of 4957 * the second loop variable as well as the result type of the loop; and {@code A...}/{@code a...} represent 4958 * arguments passed to the loop. 4959 * <blockquote><pre>{@code 4960 * int iterations(A...); 4961 * V init(A...); 4962 * V body(V, int, A...); 4963 * V countedLoop(A... a...) { 4964 * int end = iterations(a...); 4965 * V v = init(a...); 4966 * for (int i = 0; i < end; ++i) { 4967 * v = body(v, i, a...); 4968 * } 4969 * return v; 4970 * } 4971 * }</pre></blockquote> 4972 * 4973 * @apiNote Example with a fully conformant body method: 4974 * <blockquote><pre>{@code 4975 * // String s = "Lambdaman!"; for (int i = 0; i < 13; ++i) { s = "na " + s; } return s; 4976 * // => a variation on a well known theme 4977 * static String step(String v, int counter, String init) { return "na " + v; } 4978 * // assume MH_step is a handle to the method above 4979 * MethodHandle fit13 = MethodHandles.constant(int.class, 13); 4980 * MethodHandle start = MethodHandles.identity(String.class); 4981 * MethodHandle loop = MethodHandles.countedLoop(fit13, start, MH_step); 4982 * assertEquals("na na na na na na na na na na na na na Lambdaman!", loop.invoke("Lambdaman!")); 4983 * }</pre></blockquote> 4984 * 4985 * @apiNote Example with the simplest possible body method type, 4986 * and passing the number of iterations to the loop invocation: 4987 * <blockquote><pre>{@code 4988 * // String s = "Lambdaman!"; for (int i = 0; i < 13; ++i) { s = "na " + s; } return s; 4989 * // => a variation on a well known theme 4990 * static String step(String v, int counter ) { return "na " + v; } 4991 * // assume MH_step is a handle to the method above 4992 * MethodHandle count = MethodHandles.dropArguments(MethodHandles.identity(int.class), 1, String.class); 4993 * MethodHandle start = MethodHandles.dropArguments(MethodHandles.identity(String.class), 0, int.class); 4994 * MethodHandle loop = MethodHandles.countedLoop(count, start, MH_step); // (v, i) -> "na " + v 4995 * assertEquals("na na na na na na na na na na na na na Lambdaman!", loop.invoke(13, "Lambdaman!")); 4996 * }</pre></blockquote> 4997 * 4998 * @apiNote Example that treats the number of iterations, string to append to, and string to append 4999 * as loop parameters: 5000 * <blockquote><pre>{@code 5001 * // String s = "Lambdaman!", t = "na"; for (int i = 0; i < 13; ++i) { s = t + " " + s; } return s; 5002 * // => a variation on a well known theme 5003 * static String step(String v, int counter, int iterations_, String pre, String start_) { return pre + " " + v; } 5004 * // assume MH_step is a handle to the method above 5005 * MethodHandle count = MethodHandles.identity(int.class); 5006 * MethodHandle start = MethodHandles.dropArguments(MethodHandles.identity(String.class), 0, int.class, String.class); 5007 * MethodHandle loop = MethodHandles.countedLoop(count, start, MH_step); // (v, i, _, pre, _) -> pre + " " + v 5008 * assertEquals("na na na na na na na na na na na na na Lambdaman!", loop.invoke(13, "na", "Lambdaman!")); 5009 * }</pre></blockquote> 5010 * 5011 * @apiNote Example that illustrates the usage of {@link #dropArgumentsToMatch(MethodHandle, int, List, int)} 5012 * to enforce a loop type: 5013 * <blockquote><pre>{@code 5014 * // String s = "Lambdaman!", t = "na"; for (int i = 0; i < 13; ++i) { s = t + " " + s; } return s; 5015 * // => a variation on a well known theme 5016 * static String step(String v, int counter, String pre) { return pre + " " + v; } 5017 * // assume MH_step is a handle to the method above 5018 * MethodType loopType = methodType(String.class, String.class, int.class, String.class); 5019 * MethodHandle count = MethodHandles.dropArgumentsToMatch(MethodHandles.identity(int.class), 0, loopType.parameterList(), 1); 5020 * MethodHandle start = MethodHandles.dropArgumentsToMatch(MethodHandles.identity(String.class), 0, loopType.parameterList(), 2); 5021 * MethodHandle body = MethodHandles.dropArgumentsToMatch(MH_step, 2, loopType.parameterList(), 0); 5022 * MethodHandle loop = MethodHandles.countedLoop(count, start, body); // (v, i, pre, _, _) -> pre + " " + v 5023 * assertEquals("na na na na na na na na na na na na na Lambdaman!", loop.invoke("na", 13, "Lambdaman!")); 5024 * }</pre></blockquote> 5025 * 5026 * @apiNote The implementation of this method can be expressed as follows: 5027 * <blockquote><pre>{@code 5028 * MethodHandle countedLoop(MethodHandle iterations, MethodHandle init, MethodHandle body) { 5029 * return countedLoop(empty(iterations.type()), iterations, init, body); 5030 * } 5031 * }</pre></blockquote> 5032 * 5033 * @param iterations a non-{@code null} handle to return the number of iterations this loop should run. The handle's 5034 * result type must be {@code int}. See above for other constraints. 5035 * @param init optional initializer, providing the initial value of the loop variable. 5036 * May be {@code null}, implying a default initial value. See above for other constraints. 5037 * @param body body of the loop, which may not be {@code null}. 5038 * It controls the loop parameters and result type in the standard case (see above for details). 5039 * It must accept its own return type (if non-void) plus an {@code int} parameter (for the counter), 5040 * and may accept any number of additional types. 5041 * See above for other constraints. 5042 * 5043 * @return a method handle representing the loop. 5044 * @throws NullPointerException if either of the {@code iterations} or {@code body} handles is {@code null}. 5045 * @throws IllegalArgumentException if any argument violates the rules formulated above. 5046 * 5047 * @see #countedLoop(MethodHandle, MethodHandle, MethodHandle, MethodHandle) 5048 * @since 9 5049 */ countedLoop(MethodHandle iterations, MethodHandle init, MethodHandle body)5050 public static MethodHandle countedLoop(MethodHandle iterations, MethodHandle init, MethodHandle body) { 5051 return countedLoop(empty(iterations.type()), iterations, init, body); 5052 } 5053 5054 /** 5055 * Constructs a loop that counts over a range of numbers. 5056 * This is a convenience wrapper for the {@linkplain #loop(MethodHandle[][]) generic loop combinator}. 5057 * <p> 5058 * The loop counter {@code i} is a loop iteration variable of type {@code int}. 5059 * The {@code start} and {@code end} handles determine the start (inclusive) and end (exclusive) 5060 * values of the loop counter. 5061 * The loop counter will be initialized to the {@code int} value returned from the evaluation of the 5062 * {@code start} handle and run to the value returned from {@code end} (exclusively) with a step width of 1. 5063 * <p> 5064 * If the {@code body} handle returns a non-{@code void} type {@code V}, a leading loop iteration variable 5065 * of that type is also present. This variable is initialized using the optional {@code init} handle, 5066 * or to the {@linkplain #empty default value} of type {@code V} if that handle is {@code null}. 5067 * <p> 5068 * In each iteration, the iteration variables are passed to an invocation of the {@code body} handle. 5069 * A non-{@code void} value returned from the body (of type {@code V}) updates the leading 5070 * iteration variable. 5071 * The result of the loop handle execution will be the final {@code V} value of that variable 5072 * (or {@code void} if there is no {@code V} variable). 5073 * <p> 5074 * The following rules hold for the argument handles:<ul> 5075 * <li>The {@code start} and {@code end} handles must not be {@code null}, and must both return 5076 * the common type {@code int}, referred to here as {@code I} in parameter type lists. 5077 * <li>The {@code body} handle must not be {@code null}; its type must be of the form 5078 * {@code (V I A...)V}, where {@code V} is non-{@code void}, or else {@code (I A...)void}. 5079 * (In the {@code void} case, we assign the type {@code void} to the name {@code V}, 5080 * and we will write {@code (V I A...)V} with the understanding that a {@code void} type {@code V} 5081 * is quietly dropped from the parameter list, leaving {@code (I A...)V}.) 5082 * <li>The parameter list {@code (V I A...)} of the body contributes to a list 5083 * of types called the <em>internal parameter list</em>. 5084 * It will constrain the parameter lists of the other loop parts. 5085 * <li>As a special case, if the body contributes only {@code V} and {@code I} types, 5086 * with no additional {@code A} types, then the internal parameter list is extended by 5087 * the argument types {@code A...} of the {@code end} handle. 5088 * <li>If the iteration variable types {@code (V I)} are dropped from the internal parameter list, the resulting shorter 5089 * list {@code (A...)} is called the <em>external parameter list</em>. 5090 * <li>The body return type {@code V}, if non-{@code void}, determines the type of an 5091 * additional state variable of the loop. 5092 * The body must both accept a leading parameter and return a value of this type {@code V}. 5093 * <li>If {@code init} is non-{@code null}, it must have return type {@code V}. 5094 * Its parameter list (of some <a href="MethodHandles.html#astar">form {@code (A*)}</a>) must be 5095 * <a href="MethodHandles.html#effid">effectively identical</a> 5096 * to the external parameter list {@code (A...)}. 5097 * <li>If {@code init} is {@code null}, the loop variable will be initialized to its 5098 * {@linkplain #empty default value}. 5099 * <li>The parameter list of {@code start} (of some form {@code (A*)}) must be 5100 * effectively identical to the external parameter list {@code (A...)}. 5101 * <li>Likewise, the parameter list of {@code end} must be effectively identical 5102 * to the external parameter list. 5103 * </ul> 5104 * <p> 5105 * The resulting loop handle's result type and parameter signature are determined as follows:<ul> 5106 * <li>The loop handle's result type is the result type {@code V} of the body. 5107 * <li>The loop handle's parameter types are the types {@code (A...)}, 5108 * from the external parameter list. 5109 * </ul> 5110 * <p> 5111 * Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the type / value of 5112 * the second loop variable as well as the result type of the loop; and {@code A...}/{@code a...} represent 5113 * arguments passed to the loop. 5114 * <blockquote><pre>{@code 5115 * int start(A...); 5116 * int end(A...); 5117 * V init(A...); 5118 * V body(V, int, A...); 5119 * V countedLoop(A... a...) { 5120 * int e = end(a...); 5121 * int s = start(a...); 5122 * V v = init(a...); 5123 * for (int i = s; i < e; ++i) { 5124 * v = body(v, i, a...); 5125 * } 5126 * return v; 5127 * } 5128 * }</pre></blockquote> 5129 * 5130 * @apiNote The implementation of this method can be expressed as follows: 5131 * <blockquote><pre>{@code 5132 * MethodHandle countedLoop(MethodHandle start, MethodHandle end, MethodHandle init, MethodHandle body) { 5133 * MethodHandle returnVar = dropArguments(identity(init.type().returnType()), 0, int.class, int.class); 5134 * // assume MH_increment and MH_predicate are handles to implementation-internal methods with 5135 * // the following semantics: 5136 * // MH_increment: (int limit, int counter) -> counter + 1 5137 * // MH_predicate: (int limit, int counter) -> counter < limit 5138 * Class<?> counterType = start.type().returnType(); // int 5139 * Class<?> returnType = body.type().returnType(); 5140 * MethodHandle incr = MH_increment, pred = MH_predicate, retv = null; 5141 * if (returnType != void.class) { // ignore the V variable 5142 * incr = dropArguments(incr, 1, returnType); // (limit, v, i) => (limit, i) 5143 * pred = dropArguments(pred, 1, returnType); // ditto 5144 * retv = dropArguments(identity(returnType), 0, counterType); // ignore limit 5145 * } 5146 * body = dropArguments(body, 0, counterType); // ignore the limit variable 5147 * MethodHandle[] 5148 * loopLimit = { end, null, pred, retv }, // limit = end(); i < limit || return v 5149 * bodyClause = { init, body }, // v = init(); v = body(v, i) 5150 * indexVar = { start, incr }; // i = start(); i = i + 1 5151 * return loop(loopLimit, bodyClause, indexVar); 5152 * } 5153 * }</pre></blockquote> 5154 * 5155 * @param start a non-{@code null} handle to return the start value of the loop counter, which must be {@code int}. 5156 * See above for other constraints. 5157 * @param end a non-{@code null} handle to return the end value of the loop counter (the loop will run to 5158 * {@code end-1}). The result type must be {@code int}. See above for other constraints. 5159 * @param init optional initializer, providing the initial value of the loop variable. 5160 * May be {@code null}, implying a default initial value. See above for other constraints. 5161 * @param body body of the loop, which may not be {@code null}. 5162 * It controls the loop parameters and result type in the standard case (see above for details). 5163 * It must accept its own return type (if non-void) plus an {@code int} parameter (for the counter), 5164 * and may accept any number of additional types. 5165 * See above for other constraints. 5166 * 5167 * @return a method handle representing the loop. 5168 * @throws NullPointerException if any of the {@code start}, {@code end}, or {@code body} handles is {@code null}. 5169 * @throws IllegalArgumentException if any argument violates the rules formulated above. 5170 * 5171 * @see #countedLoop(MethodHandle, MethodHandle, MethodHandle) 5172 * @since 9 5173 */ countedLoop(MethodHandle start, MethodHandle end, MethodHandle init, MethodHandle body)5174 public static MethodHandle countedLoop(MethodHandle start, MethodHandle end, MethodHandle init, MethodHandle body) { 5175 countedLoopChecks(start, end, init, body); 5176 Class<?> counterType = start.type().returnType(); // int, but who's counting? 5177 Class<?> limitType = end.type().returnType(); // yes, int again 5178 Class<?> returnType = body.type().returnType(); 5179 // Android-changed: getConstantHandle is in MethodHandles. 5180 // MethodHandle incr = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_countedLoopStep); 5181 // MethodHandle pred = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_countedLoopPred); 5182 MethodHandle incr = getConstantHandle(MH_countedLoopStep); 5183 MethodHandle pred = getConstantHandle(MH_countedLoopPred); 5184 MethodHandle retv = null; 5185 if (returnType != void.class) { 5186 incr = dropArguments(incr, 1, returnType); // (limit, v, i) => (limit, i) 5187 pred = dropArguments(pred, 1, returnType); // ditto 5188 retv = dropArguments(identity(returnType), 0, counterType); 5189 } 5190 body = dropArguments(body, 0, counterType); // ignore the limit variable 5191 MethodHandle[] 5192 loopLimit = { end, null, pred, retv }, // limit = end(); i < limit || return v 5193 bodyClause = { init, body }, // v = init(); v = body(v, i) 5194 indexVar = { start, incr }; // i = start(); i = i + 1 5195 return loop(loopLimit, bodyClause, indexVar); 5196 } 5197 countedLoopChecks(MethodHandle start, MethodHandle end, MethodHandle init, MethodHandle body)5198 private static void countedLoopChecks(MethodHandle start, MethodHandle end, MethodHandle init, MethodHandle body) { 5199 Objects.requireNonNull(start); 5200 Objects.requireNonNull(end); 5201 Objects.requireNonNull(body); 5202 Class<?> counterType = start.type().returnType(); 5203 if (counterType != int.class) { 5204 MethodType expected = start.type().changeReturnType(int.class); 5205 throw misMatchedTypes("start function", start.type(), expected); 5206 } else if (end.type().returnType() != counterType) { 5207 MethodType expected = end.type().changeReturnType(counterType); 5208 throw misMatchedTypes("end function", end.type(), expected); 5209 } 5210 MethodType bodyType = body.type(); 5211 Class<?> returnType = bodyType.returnType(); 5212 List<Class<?>> innerList = bodyType.parameterList(); 5213 // strip leading V value if present 5214 int vsize = (returnType == void.class ? 0 : 1); 5215 if (vsize != 0 && (innerList.size() == 0 || innerList.get(0) != returnType)) { 5216 // argument list has no "V" => error 5217 MethodType expected = bodyType.insertParameterTypes(0, returnType); 5218 throw misMatchedTypes("body function", bodyType, expected); 5219 } else if (innerList.size() <= vsize || innerList.get(vsize) != counterType) { 5220 // missing I type => error 5221 MethodType expected = bodyType.insertParameterTypes(vsize, counterType); 5222 throw misMatchedTypes("body function", bodyType, expected); 5223 } 5224 List<Class<?>> outerList = innerList.subList(vsize + 1, innerList.size()); 5225 if (outerList.isEmpty()) { 5226 // special case; take lists from end handle 5227 outerList = end.type().parameterList(); 5228 innerList = bodyType.insertParameterTypes(vsize + 1, outerList).parameterList(); 5229 } 5230 MethodType expected = methodType(counterType, outerList); 5231 if (!start.type().effectivelyIdenticalParameters(0, outerList)) { 5232 throw misMatchedTypes("start parameter types", start.type(), expected); 5233 } 5234 if (end.type() != start.type() && 5235 !end.type().effectivelyIdenticalParameters(0, outerList)) { 5236 throw misMatchedTypes("end parameter types", end.type(), expected); 5237 } 5238 if (init != null) { 5239 MethodType initType = init.type(); 5240 if (initType.returnType() != returnType || 5241 !initType.effectivelyIdenticalParameters(0, outerList)) { 5242 throw misMatchedTypes("loop initializer", initType, methodType(returnType, outerList)); 5243 } 5244 } 5245 } 5246 5247 /** 5248 * Constructs a loop that ranges over the values produced by an {@code Iterator<T>}. 5249 * This is a convenience wrapper for the {@linkplain #loop(MethodHandle[][]) generic loop combinator}. 5250 * <p> 5251 * The iterator itself will be determined by the evaluation of the {@code iterator} handle. 5252 * Each value it produces will be stored in a loop iteration variable of type {@code T}. 5253 * <p> 5254 * If the {@code body} handle returns a non-{@code void} type {@code V}, a leading loop iteration variable 5255 * of that type is also present. This variable is initialized using the optional {@code init} handle, 5256 * or to the {@linkplain #empty default value} of type {@code V} if that handle is {@code null}. 5257 * <p> 5258 * In each iteration, the iteration variables are passed to an invocation of the {@code body} handle. 5259 * A non-{@code void} value returned from the body (of type {@code V}) updates the leading 5260 * iteration variable. 5261 * The result of the loop handle execution will be the final {@code V} value of that variable 5262 * (or {@code void} if there is no {@code V} variable). 5263 * <p> 5264 * The following rules hold for the argument handles:<ul> 5265 * <li>The {@code body} handle must not be {@code null}; its type must be of the form 5266 * {@code (V T A...)V}, where {@code V} is non-{@code void}, or else {@code (T A...)void}. 5267 * (In the {@code void} case, we assign the type {@code void} to the name {@code V}, 5268 * and we will write {@code (V T A...)V} with the understanding that a {@code void} type {@code V} 5269 * is quietly dropped from the parameter list, leaving {@code (T A...)V}.) 5270 * <li>The parameter list {@code (V T A...)} of the body contributes to a list 5271 * of types called the <em>internal parameter list</em>. 5272 * It will constrain the parameter lists of the other loop parts. 5273 * <li>As a special case, if the body contributes only {@code V} and {@code T} types, 5274 * with no additional {@code A} types, then the internal parameter list is extended by 5275 * the argument types {@code A...} of the {@code iterator} handle; if it is {@code null} the 5276 * single type {@code Iterable} is added and constitutes the {@code A...} list. 5277 * <li>If the iteration variable types {@code (V T)} are dropped from the internal parameter list, the resulting shorter 5278 * list {@code (A...)} is called the <em>external parameter list</em>. 5279 * <li>The body return type {@code V}, if non-{@code void}, determines the type of an 5280 * additional state variable of the loop. 5281 * The body must both accept a leading parameter and return a value of this type {@code V}. 5282 * <li>If {@code init} is non-{@code null}, it must have return type {@code V}. 5283 * Its parameter list (of some <a href="MethodHandles.html#astar">form {@code (A*)}</a>) must be 5284 * <a href="MethodHandles.html#effid">effectively identical</a> 5285 * to the external parameter list {@code (A...)}. 5286 * <li>If {@code init} is {@code null}, the loop variable will be initialized to its 5287 * {@linkplain #empty default value}. 5288 * <li>If the {@code iterator} handle is non-{@code null}, it must have the return 5289 * type {@code java.util.Iterator} or a subtype thereof. 5290 * The iterator it produces when the loop is executed will be assumed 5291 * to yield values which can be converted to type {@code T}. 5292 * <li>The parameter list of an {@code iterator} that is non-{@code null} (of some form {@code (A*)}) must be 5293 * effectively identical to the external parameter list {@code (A...)}. 5294 * <li>If {@code iterator} is {@code null} it defaults to a method handle which behaves 5295 * like {@link java.lang.Iterable#iterator()}. In that case, the internal parameter list 5296 * {@code (V T A...)} must have at least one {@code A} type, and the default iterator 5297 * handle parameter is adjusted to accept the leading {@code A} type, as if by 5298 * the {@link MethodHandle#asType asType} conversion method. 5299 * The leading {@code A} type must be {@code Iterable} or a subtype thereof. 5300 * This conversion step, done at loop construction time, must not throw a {@code WrongMethodTypeException}. 5301 * </ul> 5302 * <p> 5303 * The type {@code T} may be either a primitive or reference. 5304 * Since type {@code Iterator<T>} is erased in the method handle representation to the raw type {@code Iterator}, 5305 * the {@code iteratedLoop} combinator adjusts the leading argument type for {@code body} to {@code Object} 5306 * as if by the {@link MethodHandle#asType asType} conversion method. 5307 * Therefore, if an iterator of the wrong type appears as the loop is executed, runtime exceptions may occur 5308 * as the result of dynamic conversions performed by {@link MethodHandle#asType(MethodType)}. 5309 * <p> 5310 * The resulting loop handle's result type and parameter signature are determined as follows:<ul> 5311 * <li>The loop handle's result type is the result type {@code V} of the body. 5312 * <li>The loop handle's parameter types are the types {@code (A...)}, 5313 * from the external parameter list. 5314 * </ul> 5315 * <p> 5316 * Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the type / value of 5317 * the loop variable as well as the result type of the loop; {@code T}/{@code t}, that of the elements of the 5318 * structure the loop iterates over, and {@code A...}/{@code a...} represent arguments passed to the loop. 5319 * <blockquote><pre>{@code 5320 * Iterator<T> iterator(A...); // defaults to Iterable::iterator 5321 * V init(A...); 5322 * V body(V,T,A...); 5323 * V iteratedLoop(A... a...) { 5324 * Iterator<T> it = iterator(a...); 5325 * V v = init(a...); 5326 * while (it.hasNext()) { 5327 * T t = it.next(); 5328 * v = body(v, t, a...); 5329 * } 5330 * return v; 5331 * } 5332 * }</pre></blockquote> 5333 * 5334 * @apiNote Example: 5335 * <blockquote><pre>{@code 5336 * // get an iterator from a list 5337 * static List<String> reverseStep(List<String> r, String e) { 5338 * r.add(0, e); 5339 * return r; 5340 * } 5341 * static List<String> newArrayList() { return new ArrayList<>(); } 5342 * // assume MH_reverseStep and MH_newArrayList are handles to the above methods 5343 * MethodHandle loop = MethodHandles.iteratedLoop(null, MH_newArrayList, MH_reverseStep); 5344 * List<String> list = Arrays.asList("a", "b", "c", "d", "e"); 5345 * List<String> reversedList = Arrays.asList("e", "d", "c", "b", "a"); 5346 * assertEquals(reversedList, (List<String>) loop.invoke(list)); 5347 * }</pre></blockquote> 5348 * 5349 * @apiNote The implementation of this method can be expressed approximately as follows: 5350 * <blockquote><pre>{@code 5351 * MethodHandle iteratedLoop(MethodHandle iterator, MethodHandle init, MethodHandle body) { 5352 * // assume MH_next, MH_hasNext, MH_startIter are handles to methods of Iterator/Iterable 5353 * Class<?> returnType = body.type().returnType(); 5354 * Class<?> ttype = body.type().parameterType(returnType == void.class ? 0 : 1); 5355 * MethodHandle nextVal = MH_next.asType(MH_next.type().changeReturnType(ttype)); 5356 * MethodHandle retv = null, step = body, startIter = iterator; 5357 * if (returnType != void.class) { 5358 * // the simple thing first: in (I V A...), drop the I to get V 5359 * retv = dropArguments(identity(returnType), 0, Iterator.class); 5360 * // body type signature (V T A...), internal loop types (I V A...) 5361 * step = swapArguments(body, 0, 1); // swap V <-> T 5362 * } 5363 * if (startIter == null) startIter = MH_getIter; 5364 * MethodHandle[] 5365 * iterVar = { startIter, null, MH_hasNext, retv }, // it = iterator; while (it.hasNext()) 5366 * bodyClause = { init, filterArguments(step, 0, nextVal) }; // v = body(v, t, a) 5367 * return loop(iterVar, bodyClause); 5368 * } 5369 * }</pre></blockquote> 5370 * 5371 * @param iterator an optional handle to return the iterator to start the loop. 5372 * If non-{@code null}, the handle must return {@link java.util.Iterator} or a subtype. 5373 * See above for other constraints. 5374 * @param init optional initializer, providing the initial value of the loop variable. 5375 * May be {@code null}, implying a default initial value. See above for other constraints. 5376 * @param body body of the loop, which may not be {@code null}. 5377 * It controls the loop parameters and result type in the standard case (see above for details). 5378 * It must accept its own return type (if non-void) plus a {@code T} parameter (for the iterated values), 5379 * and may accept any number of additional types. 5380 * See above for other constraints. 5381 * 5382 * @return a method handle embodying the iteration loop functionality. 5383 * @throws NullPointerException if the {@code body} handle is {@code null}. 5384 * @throws IllegalArgumentException if any argument violates the above requirements. 5385 * 5386 * @since 9 5387 */ iteratedLoop(MethodHandle iterator, MethodHandle init, MethodHandle body)5388 public static MethodHandle iteratedLoop(MethodHandle iterator, MethodHandle init, MethodHandle body) { 5389 Class<?> iterableType = iteratedLoopChecks(iterator, init, body); 5390 Class<?> returnType = body.type().returnType(); 5391 // Android-changed: getConstantHandle is in MethodHandles. 5392 // MethodHandle hasNext = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_iteratePred); 5393 // MethodHandle nextRaw = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_iterateNext); 5394 MethodHandle hasNext = getConstantHandle(MH_iteratePred); 5395 MethodHandle nextRaw = getConstantHandle(MH_iterateNext); 5396 MethodHandle startIter; 5397 MethodHandle nextVal; 5398 { 5399 MethodType iteratorType; 5400 if (iterator == null) { 5401 // derive argument type from body, if available, else use Iterable 5402 // Android-changed: getConstantHandle is in MethodHandles. 5403 // startIter = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_initIterator); 5404 startIter = getConstantHandle(MH_initIterator); 5405 iteratorType = startIter.type().changeParameterType(0, iterableType); 5406 } else { 5407 // force return type to the internal iterator class 5408 iteratorType = iterator.type().changeReturnType(Iterator.class); 5409 startIter = iterator; 5410 } 5411 Class<?> ttype = body.type().parameterType(returnType == void.class ? 0 : 1); 5412 MethodType nextValType = nextRaw.type().changeReturnType(ttype); 5413 5414 // perform the asType transforms under an exception transformer, as per spec.: 5415 try { 5416 startIter = startIter.asType(iteratorType); 5417 nextVal = nextRaw.asType(nextValType); 5418 } catch (WrongMethodTypeException ex) { 5419 throw new IllegalArgumentException(ex); 5420 } 5421 } 5422 5423 MethodHandle retv = null, step = body; 5424 if (returnType != void.class) { 5425 // the simple thing first: in (I V A...), drop the I to get V 5426 retv = dropArguments(identity(returnType), 0, Iterator.class); 5427 // body type signature (V T A...), internal loop types (I V A...) 5428 step = swapArguments(body, 0, 1); // swap V <-> T 5429 } 5430 5431 MethodHandle[] 5432 iterVar = { startIter, null, hasNext, retv }, 5433 bodyClause = { init, filterArgument(step, 0, nextVal) }; 5434 return loop(iterVar, bodyClause); 5435 } 5436 iteratedLoopChecks(MethodHandle iterator, MethodHandle init, MethodHandle body)5437 private static Class<?> iteratedLoopChecks(MethodHandle iterator, MethodHandle init, MethodHandle body) { 5438 Objects.requireNonNull(body); 5439 MethodType bodyType = body.type(); 5440 Class<?> returnType = bodyType.returnType(); 5441 List<Class<?>> internalParamList = bodyType.parameterList(); 5442 // strip leading V value if present 5443 int vsize = (returnType == void.class ? 0 : 1); 5444 if (vsize != 0 && (internalParamList.size() == 0 || internalParamList.get(0) != returnType)) { 5445 // argument list has no "V" => error 5446 MethodType expected = bodyType.insertParameterTypes(0, returnType); 5447 throw misMatchedTypes("body function", bodyType, expected); 5448 } else if (internalParamList.size() <= vsize) { 5449 // missing T type => error 5450 MethodType expected = bodyType.insertParameterTypes(vsize, Object.class); 5451 throw misMatchedTypes("body function", bodyType, expected); 5452 } 5453 List<Class<?>> externalParamList = internalParamList.subList(vsize + 1, internalParamList.size()); 5454 Class<?> iterableType = null; 5455 if (iterator != null) { 5456 // special case; if the body handle only declares V and T then 5457 // the external parameter list is obtained from iterator handle 5458 if (externalParamList.isEmpty()) { 5459 externalParamList = iterator.type().parameterList(); 5460 } 5461 MethodType itype = iterator.type(); 5462 if (!Iterator.class.isAssignableFrom(itype.returnType())) { 5463 throw newIllegalArgumentException("iteratedLoop first argument must have Iterator return type"); 5464 } 5465 if (!itype.effectivelyIdenticalParameters(0, externalParamList)) { 5466 MethodType expected = methodType(itype.returnType(), externalParamList); 5467 throw misMatchedTypes("iterator parameters", itype, expected); 5468 } 5469 } else { 5470 if (externalParamList.isEmpty()) { 5471 // special case; if the iterator handle is null and the body handle 5472 // only declares V and T then the external parameter list consists 5473 // of Iterable 5474 externalParamList = Arrays.asList(Iterable.class); 5475 iterableType = Iterable.class; 5476 } else { 5477 // special case; if the iterator handle is null and the external 5478 // parameter list is not empty then the first parameter must be 5479 // assignable to Iterable 5480 iterableType = externalParamList.get(0); 5481 if (!Iterable.class.isAssignableFrom(iterableType)) { 5482 throw newIllegalArgumentException( 5483 "inferred first loop argument must inherit from Iterable: " + iterableType); 5484 } 5485 } 5486 } 5487 if (init != null) { 5488 MethodType initType = init.type(); 5489 if (initType.returnType() != returnType || 5490 !initType.effectivelyIdenticalParameters(0, externalParamList)) { 5491 throw misMatchedTypes("loop initializer", initType, methodType(returnType, externalParamList)); 5492 } 5493 } 5494 return iterableType; // help the caller a bit 5495 } 5496 swapArguments(MethodHandle mh, int i, int j)5497 /*non-public*/ static MethodHandle swapArguments(MethodHandle mh, int i, int j) { 5498 // there should be a better way to uncross my wires 5499 int arity = mh.type().parameterCount(); 5500 int[] order = new int[arity]; 5501 for (int k = 0; k < arity; k++) order[k] = k; 5502 order[i] = j; order[j] = i; 5503 Class<?>[] types = mh.type().parameterArray(); 5504 Class<?> ti = types[i]; types[i] = types[j]; types[j] = ti; 5505 MethodType swapType = methodType(mh.type().returnType(), types); 5506 return permuteArguments(mh, swapType, order); 5507 } 5508 5509 /** 5510 * Makes a method handle that adapts a {@code target} method handle by wrapping it in a {@code try-finally} block. 5511 * Another method handle, {@code cleanup}, represents the functionality of the {@code finally} block. Any exception 5512 * thrown during the execution of the {@code target} handle will be passed to the {@code cleanup} handle. The 5513 * exception will be rethrown, unless {@code cleanup} handle throws an exception first. The 5514 * value returned from the {@code cleanup} handle's execution will be the result of the execution of the 5515 * {@code try-finally} handle. 5516 * <p> 5517 * The {@code cleanup} handle will be passed one or two additional leading arguments. 5518 * The first is the exception thrown during the 5519 * execution of the {@code target} handle, or {@code null} if no exception was thrown. 5520 * The second is the result of the execution of the {@code target} handle, or, if it throws an exception, 5521 * a {@code null}, zero, or {@code false} value of the required type is supplied as a placeholder. 5522 * The second argument is not present if the {@code target} handle has a {@code void} return type. 5523 * (Note that, except for argument type conversions, combinators represent {@code void} values in parameter lists 5524 * by omitting the corresponding paradoxical arguments, not by inserting {@code null} or zero values.) 5525 * <p> 5526 * The {@code target} and {@code cleanup} handles must have the same corresponding argument and return types, except 5527 * that the {@code cleanup} handle may omit trailing arguments. Also, the {@code cleanup} handle must have one or 5528 * two extra leading parameters:<ul> 5529 * <li>a {@code Throwable}, which will carry the exception thrown by the {@code target} handle (if any); and 5530 * <li>a parameter of the same type as the return type of both {@code target} and {@code cleanup}, which will carry 5531 * the result from the execution of the {@code target} handle. 5532 * This parameter is not present if the {@code target} returns {@code void}. 5533 * </ul> 5534 * <p> 5535 * The pseudocode for the resulting adapter looks as follows. In the code, {@code V} represents the result type of 5536 * the {@code try/finally} construct; {@code A}/{@code a}, the types and values of arguments to the resulting 5537 * handle consumed by the cleanup; and {@code B}/{@code b}, those of arguments to the resulting handle discarded by 5538 * the cleanup. 5539 * <blockquote><pre>{@code 5540 * V target(A..., B...); 5541 * V cleanup(Throwable, V, A...); 5542 * V adapter(A... a, B... b) { 5543 * V result = (zero value for V); 5544 * Throwable throwable = null; 5545 * try { 5546 * result = target(a..., b...); 5547 * } catch (Throwable t) { 5548 * throwable = t; 5549 * throw t; 5550 * } finally { 5551 * result = cleanup(throwable, result, a...); 5552 * } 5553 * return result; 5554 * } 5555 * }</pre></blockquote> 5556 * <p> 5557 * Note that the saved arguments ({@code a...} in the pseudocode) cannot 5558 * be modified by execution of the target, and so are passed unchanged 5559 * from the caller to the cleanup, if it is invoked. 5560 * <p> 5561 * The target and cleanup must return the same type, even if the cleanup 5562 * always throws. 5563 * To create such a throwing cleanup, compose the cleanup logic 5564 * with {@link #throwException throwException}, 5565 * in order to create a method handle of the correct return type. 5566 * <p> 5567 * Note that {@code tryFinally} never converts exceptions into normal returns. 5568 * In rare cases where exceptions must be converted in that way, first wrap 5569 * the target with {@link #catchException(MethodHandle, Class, MethodHandle)} 5570 * to capture an outgoing exception, and then wrap with {@code tryFinally}. 5571 * <p> 5572 * It is recommended that the first parameter type of {@code cleanup} be 5573 * declared {@code Throwable} rather than a narrower subtype. This ensures 5574 * {@code cleanup} will always be invoked with whatever exception that 5575 * {@code target} throws. Declaring a narrower type may result in a 5576 * {@code ClassCastException} being thrown by the {@code try-finally} 5577 * handle if the type of the exception thrown by {@code target} is not 5578 * assignable to the first parameter type of {@code cleanup}. Note that 5579 * various exception types of {@code VirtualMachineError}, 5580 * {@code LinkageError}, and {@code RuntimeException} can in principle be 5581 * thrown by almost any kind of Java code, and a finally clause that 5582 * catches (say) only {@code IOException} would mask any of the others 5583 * behind a {@code ClassCastException}. 5584 * 5585 * @param target the handle whose execution is to be wrapped in a {@code try} block. 5586 * @param cleanup the handle that is invoked in the finally block. 5587 * 5588 * @return a method handle embodying the {@code try-finally} block composed of the two arguments. 5589 * @throws NullPointerException if any argument is null 5590 * @throws IllegalArgumentException if {@code cleanup} does not accept 5591 * the required leading arguments, or if the method handle types do 5592 * not match in their return types and their 5593 * corresponding trailing parameters 5594 * 5595 * @see MethodHandles#catchException(MethodHandle, Class, MethodHandle) 5596 * @since 9 5597 */ tryFinally(MethodHandle target, MethodHandle cleanup)5598 public static MethodHandle tryFinally(MethodHandle target, MethodHandle cleanup) { 5599 List<Class<?>> targetParamTypes = target.type().parameterList(); 5600 Class<?> rtype = target.type().returnType(); 5601 5602 tryFinallyChecks(target, cleanup); 5603 5604 // Match parameter lists: if the cleanup has a shorter parameter list than the target, add ignored arguments. 5605 // The cleanup parameter list (minus the leading Throwable and result parameters) must be a sublist of the 5606 // target parameter list. 5607 cleanup = dropArgumentsToMatch(cleanup, (rtype == void.class ? 1 : 2), targetParamTypes, 0); 5608 5609 // Ensure that the intrinsic type checks the instance thrown by the 5610 // target against the first parameter of cleanup 5611 cleanup = cleanup.asType(cleanup.type().changeParameterType(0, Throwable.class)); 5612 5613 // Use asFixedArity() to avoid unnecessary boxing of last argument for VarargsCollector case. 5614 // Android-changed: use Transformer implementation. 5615 // return MethodHandleImpl.makeTryFinally(target.asFixedArity(), cleanup.asFixedArity(), rtype, targetParamTypes); 5616 return new Transformers.TryFinally(target.asFixedArity(), cleanup.asFixedArity()); 5617 } 5618 tryFinallyChecks(MethodHandle target, MethodHandle cleanup)5619 private static void tryFinallyChecks(MethodHandle target, MethodHandle cleanup) { 5620 Class<?> rtype = target.type().returnType(); 5621 if (rtype != cleanup.type().returnType()) { 5622 throw misMatchedTypes("target and return types", cleanup.type().returnType(), rtype); 5623 } 5624 MethodType cleanupType = cleanup.type(); 5625 if (!Throwable.class.isAssignableFrom(cleanupType.parameterType(0))) { 5626 throw misMatchedTypes("cleanup first argument and Throwable", cleanup.type(), Throwable.class); 5627 } 5628 if (rtype != void.class && cleanupType.parameterType(1) != rtype) { 5629 throw misMatchedTypes("cleanup second argument and target return type", cleanup.type(), rtype); 5630 } 5631 // The cleanup parameter list (minus the leading Throwable and result parameters) must be a sublist of the 5632 // target parameter list. 5633 int cleanupArgIndex = rtype == void.class ? 1 : 2; 5634 if (!cleanupType.effectivelyIdenticalParameters(cleanupArgIndex, target.type().parameterList())) { 5635 throw misMatchedTypes("cleanup parameters after (Throwable,result) and target parameter list prefix", 5636 cleanup.type(), target.type()); 5637 } 5638 } 5639 5640 /** 5641 * Creates a table switch method handle, which can be used to switch over a set of target 5642 * method handles, based on a given target index, called selector. 5643 * <p> 5644 * For a selector value of {@code n}, where {@code n} falls in the range {@code [0, N)}, 5645 * and where {@code N} is the number of target method handles, the table switch method 5646 * handle will invoke the n-th target method handle from the list of target method handles. 5647 * <p> 5648 * For a selector value that does not fall in the range {@code [0, N)}, the table switch 5649 * method handle will invoke the given fallback method handle. 5650 * <p> 5651 * All method handles passed to this method must have the same type, with the additional 5652 * requirement that the leading parameter be of type {@code int}. The leading parameter 5653 * represents the selector. 5654 * <p> 5655 * Any trailing parameters present in the type will appear on the returned table switch 5656 * method handle as well. Any arguments assigned to these parameters will be forwarded, 5657 * together with the selector value, to the selected method handle when invoking it. 5658 * 5659 * @apiNote Example: 5660 * The cases each drop the {@code selector} value they are given, and take an additional 5661 * {@code String} argument, which is concatenated (using {@link String#concat(String)}) 5662 * to a specific constant label string for each case: 5663 * <blockquote><pre>{@code 5664 * MethodHandles.Lookup lookup = MethodHandles.lookup(); 5665 * MethodHandle caseMh = lookup.findVirtual(String.class, "concat", 5666 * MethodType.methodType(String.class, String.class)); 5667 * caseMh = MethodHandles.dropArguments(caseMh, 0, int.class); 5668 * 5669 * MethodHandle caseDefault = MethodHandles.insertArguments(caseMh, 1, "default: "); 5670 * MethodHandle case0 = MethodHandles.insertArguments(caseMh, 1, "case 0: "); 5671 * MethodHandle case1 = MethodHandles.insertArguments(caseMh, 1, "case 1: "); 5672 * 5673 * MethodHandle mhSwitch = MethodHandles.tableSwitch( 5674 * caseDefault, 5675 * case0, 5676 * case1 5677 * ); 5678 * 5679 * assertEquals("default: data", (String) mhSwitch.invokeExact(-1, "data")); 5680 * assertEquals("case 0: data", (String) mhSwitch.invokeExact(0, "data")); 5681 * assertEquals("case 1: data", (String) mhSwitch.invokeExact(1, "data")); 5682 * assertEquals("default: data", (String) mhSwitch.invokeExact(2, "data")); 5683 * }</pre></blockquote> 5684 * 5685 * @param fallback the fallback method handle that is called when the selector is not 5686 * within the range {@code [0, N)}. 5687 * @param targets array of target method handles. 5688 * @return the table switch method handle. 5689 * @throws NullPointerException if {@code fallback}, the {@code targets} array, or any 5690 * any of the elements of the {@code targets} array are 5691 * {@code null}. 5692 * @throws IllegalArgumentException if the {@code targets} array is empty, if the leading 5693 * parameter of the fallback handle or any of the target 5694 * handles is not {@code int}, or if the types of 5695 * the fallback handle and all of target handles are 5696 * not the same. 5697 */ tableSwitch(MethodHandle fallback, MethodHandle... targets)5698 public static MethodHandle tableSwitch(MethodHandle fallback, MethodHandle... targets) { 5699 Objects.requireNonNull(fallback); 5700 Objects.requireNonNull(targets); 5701 targets = targets.clone(); 5702 MethodType type = tableSwitchChecks(fallback, targets); 5703 // Android-changed: use a Transformer for the implementation. 5704 // return MethodHandleImpl.makeTableSwitch(type, fallback, targets); 5705 return new Transformers.TableSwitch(type, fallback, targets); 5706 } 5707 tableSwitchChecks(MethodHandle defaultCase, MethodHandle[] caseActions)5708 private static MethodType tableSwitchChecks(MethodHandle defaultCase, MethodHandle[] caseActions) { 5709 if (caseActions.length == 0) 5710 throw new IllegalArgumentException("Not enough cases: " + Arrays.toString(caseActions)); 5711 5712 MethodType expectedType = defaultCase.type(); 5713 5714 if (!(expectedType.parameterCount() >= 1) || expectedType.parameterType(0) != int.class) 5715 throw new IllegalArgumentException( 5716 "Case actions must have int as leading parameter: " + Arrays.toString(caseActions)); 5717 5718 for (MethodHandle mh : caseActions) { 5719 Objects.requireNonNull(mh); 5720 // Android-changed: MethodType's not interned. 5721 // if (mh.type() != expectedType) 5722 if (!mh.type().equals(expectedType)) 5723 throw new IllegalArgumentException( 5724 "Case actions must have the same type: " + Arrays.toString(caseActions)); 5725 } 5726 5727 return expectedType; 5728 } 5729 5730 // BEGIN Android-added: Code from OpenJDK's MethodHandleImpl. 5731 5732 /** 5733 * This method is bound as the predicate in {@linkplain MethodHandles#countedLoop(MethodHandle, MethodHandle, 5734 * MethodHandle) counting loops}. 5735 * 5736 * @param limit the upper bound of the parameter, statically bound at loop creation time. 5737 * @param counter the counter parameter, passed in during loop execution. 5738 * 5739 * @return whether the counter has reached the limit. 5740 * @hide 5741 */ countedLoopPredicate(int limit, int counter)5742 public static boolean countedLoopPredicate(int limit, int counter) { 5743 return counter < limit; 5744 } 5745 5746 /** 5747 * This method is bound as the step function in {@linkplain MethodHandles#countedLoop(MethodHandle, MethodHandle, 5748 * MethodHandle) counting loops} to increment the counter. 5749 * 5750 * @param limit the upper bound of the loop counter (ignored). 5751 * @param counter the loop counter. 5752 * 5753 * @return the loop counter incremented by 1. 5754 * @hide 5755 */ countedLoopStep(int limit, int counter)5756 public static int countedLoopStep(int limit, int counter) { 5757 return counter + 1; 5758 } 5759 5760 /** 5761 * This is bound to initialize the loop-local iterator in {@linkplain MethodHandles#iteratedLoop iterating loops}. 5762 * 5763 * @param it the {@link Iterable} over which the loop iterates. 5764 * 5765 * @return an {@link Iterator} over the argument's elements. 5766 * @hide 5767 */ initIterator(Iterable<?> it)5768 public static Iterator<?> initIterator(Iterable<?> it) { 5769 return it.iterator(); 5770 } 5771 5772 /** 5773 * This method is bound as the predicate in {@linkplain MethodHandles#iteratedLoop iterating loops}. 5774 * 5775 * @param it the iterator to be checked. 5776 * 5777 * @return {@code true} iff there are more elements to iterate over. 5778 * @hide 5779 */ iteratePredicate(Iterator<?> it)5780 public static boolean iteratePredicate(Iterator<?> it) { 5781 return it.hasNext(); 5782 } 5783 5784 /** 5785 * This method is bound as the step for retrieving the current value from the iterator in {@linkplain 5786 * MethodHandles#iteratedLoop iterating loops}. 5787 * 5788 * @param it the iterator. 5789 * 5790 * @return the next element from the iterator. 5791 * @hide 5792 */ iterateNext(Iterator<?> it)5793 public static Object iterateNext(Iterator<?> it) { 5794 return it.next(); 5795 } 5796 5797 // Indexes into constant method handles: 5798 static final int 5799 MH_cast = 0, 5800 MH_selectAlternative = 1, 5801 MH_copyAsPrimitiveArray = 2, 5802 MH_fillNewTypedArray = 3, 5803 MH_fillNewArray = 4, 5804 MH_arrayIdentity = 5, 5805 MH_countedLoopPred = 6, 5806 MH_countedLoopStep = 7, 5807 MH_initIterator = 8, 5808 MH_iteratePred = 9, 5809 MH_iterateNext = 10, 5810 MH_Array_newInstance = 11, 5811 MH_LIMIT = 12; 5812 getConstantHandle(int idx)5813 static MethodHandle getConstantHandle(int idx) { 5814 MethodHandle handle = HANDLES[idx]; 5815 if (handle != null) { 5816 return handle; 5817 } 5818 return setCachedHandle(idx, makeConstantHandle(idx)); 5819 } 5820 setCachedHandle(int idx, final MethodHandle method)5821 private static synchronized MethodHandle setCachedHandle(int idx, final MethodHandle method) { 5822 // Simulate a CAS, to avoid racy duplication of results. 5823 MethodHandle prev = HANDLES[idx]; 5824 if (prev != null) { 5825 return prev; 5826 } 5827 HANDLES[idx] = method; 5828 return method; 5829 } 5830 5831 // Local constant method handles: 5832 private static final @Stable MethodHandle[] HANDLES = new MethodHandle[MH_LIMIT]; 5833 makeConstantHandle(int idx)5834 private static MethodHandle makeConstantHandle(int idx) { 5835 try { 5836 // Android-added: local IMPL_LOOKUP. 5837 final Lookup IMPL_LOOKUP = MethodHandles.Lookup.IMPL_LOOKUP; 5838 switch (idx) { 5839 // Android-removed: not-used. 5840 /* 5841 case MH_cast: 5842 return IMPL_LOOKUP.findVirtual(Class.class, "cast", 5843 MethodType.methodType(Object.class, Object.class)); 5844 case MH_copyAsPrimitiveArray: 5845 return IMPL_LOOKUP.findStatic(MethodHandleImpl.class, "copyAsPrimitiveArray", 5846 MethodType.methodType(Object.class, Wrapper.class, Object[].class)); 5847 case MH_arrayIdentity: 5848 return IMPL_LOOKUP.findStatic(MethodHandleImpl.class, "identity", 5849 MethodType.methodType(Object[].class, Object[].class)); 5850 case MH_fillNewArray: 5851 return IMPL_LOOKUP.findStatic(MethodHandleImpl.class, "fillNewArray", 5852 MethodType.methodType(Object[].class, Integer.class, Object[].class)); 5853 case MH_fillNewTypedArray: 5854 return IMPL_LOOKUP.findStatic(MethodHandleImpl.class, "fillNewTypedArray", 5855 MethodType.methodType(Object[].class, Object[].class, Integer.class, Object[].class)); 5856 case MH_selectAlternative: 5857 return IMPL_LOOKUP.findStatic(MethodHandleImpl.class, "selectAlternative", 5858 MethodType.methodType(MethodHandle.class, boolean.class, MethodHandle.class, MethodHandle.class)); 5859 */ 5860 case MH_countedLoopPred: 5861 // Android-changed: methods moved to this file. 5862 // return IMPL_LOOKUP.findStatic(MethodHandleImpl.class, "countedLoopPredicate", 5863 // MethodType.methodType(boolean.class, int.class, int.class)); 5864 return IMPL_LOOKUP.findStatic(MethodHandles.class, "countedLoopPredicate", 5865 MethodType.methodType(boolean.class, int.class, int.class)); 5866 case MH_countedLoopStep: 5867 // Android-changed: methods moved to this file. 5868 // return IMPL_LOOKUP.findStatic(MethodHandleImpl.class, "countedLoopStep", 5869 // MethodType.methodType(int.class, int.class, int.class)); 5870 return IMPL_LOOKUP.findStatic(MethodHandles.class, "countedLoopStep", 5871 MethodType.methodType(int.class, int.class, int.class)); 5872 case MH_initIterator: 5873 // Android-changed: methods moved to this file. 5874 // return IMPL_LOOKUP.findStatic(MethodHandleImpl.class, "initIterator", 5875 // MethodType.methodType(Iterator.class, Iterable.class)); 5876 return IMPL_LOOKUP.findStatic(MethodHandles.class, "initIterator", 5877 MethodType.methodType(Iterator.class, Iterable.class)); 5878 case MH_iteratePred: 5879 // Android-changed: methods moved to this file. 5880 // return IMPL_LOOKUP.findStatic(MethodHandleImpl.class, "iteratePredicate", 5881 // MethodType.methodType(boolean.class, Iterator.class)); 5882 return IMPL_LOOKUP.findStatic(MethodHandles.class, "iteratePredicate", 5883 MethodType.methodType(boolean.class, Iterator.class)); 5884 case MH_iterateNext: 5885 // Android-changed: methods moved to this file. 5886 // return IMPL_LOOKUP.findStatic(MethodHandleImpl.class, "iterateNext", 5887 // MethodType.methodType(Object.class, Iterator.class)); 5888 return IMPL_LOOKUP.findStatic(MethodHandles.class, "iterateNext", 5889 MethodType.methodType(Object.class, Iterator.class)); 5890 // Android-removed: not-used. 5891 /* 5892 case MH_Array_newInstance: 5893 return IMPL_LOOKUP.findStatic(Array.class, "newInstance", 5894 MethodType.methodType(Object.class, Class.class, int.class)); 5895 */ 5896 } 5897 } catch (ReflectiveOperationException ex) { 5898 throw newInternalError(ex); 5899 } 5900 5901 throw newInternalError("Unknown function index: " + idx); 5902 } 5903 // END Android-added: Code from OpenJDK's MethodHandleImpl. 5904 } 5905