1 /*
2 * The copyright in this software is being made available under the 2-clauses
3 * BSD License, included below. This software may be subject to other third
4 * party and contributor rights, including patent rights, and no such rights
5 * are granted under this license.
6 *
7 * Copyright (c) 2002-2014, Universite catholique de Louvain (UCL), Belgium
8 * Copyright (c) 2002-2014, Professor Benoit Macq
9 * Copyright (c) 2001-2003, David Janssens
10 * Copyright (c) 2002-2003, Yannick Verschueren
11 * Copyright (c) 2003-2007, Francois-Olivier Devaux
12 * Copyright (c) 2003-2014, Antonin Descampe
13 * Copyright (c) 2005, Herve Drolon, FreeImage Team
14 * All rights reserved.
15 *
16 * Redistribution and use in source and binary forms, with or without
17 * modification, are permitted provided that the following conditions
18 * are met:
19 * 1. Redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer.
21 * 2. Redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS `AS IS'
26 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
29 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37 #ifndef OPJ_INTMATH_H
38 #define OPJ_INTMATH_H
39 /**
40 @file opj_intmath.h
41 @brief Implementation of operations on integers (INT)
42
43 The functions in OPJ_INTMATH.H have for goal to realize operations on integers.
44 */
45
46 /** @defgroup OPJ_INTMATH OPJ_INTMATH - Implementation of operations on integers */
47 /*@{*/
48
49 /** @name Exported functions (see also openjpeg.h) */
50 /*@{*/
51 /* ----------------------------------------------------------------------- */
52 /**
53 Get the minimum of two integers
54 @return Returns a if a < b else b
55 */
opj_int_min(OPJ_INT32 a,OPJ_INT32 b)56 static INLINE OPJ_INT32 opj_int_min(OPJ_INT32 a, OPJ_INT32 b)
57 {
58 return a < b ? a : b;
59 }
60
61 /**
62 Get the minimum of two integers
63 @return Returns a if a < b else b
64 */
opj_uint_min(OPJ_UINT32 a,OPJ_UINT32 b)65 static INLINE OPJ_UINT32 opj_uint_min(OPJ_UINT32 a, OPJ_UINT32 b)
66 {
67 return a < b ? a : b;
68 }
69
70 /**
71 Get the maximum of two integers
72 @return Returns a if a > b else b
73 */
opj_int_max(OPJ_INT32 a,OPJ_INT32 b)74 static INLINE OPJ_INT32 opj_int_max(OPJ_INT32 a, OPJ_INT32 b)
75 {
76 return (a > b) ? a : b;
77 }
78
79 /**
80 Get the maximum of two integers
81 @return Returns a if a > b else b
82 */
opj_uint_max(OPJ_UINT32 a,OPJ_UINT32 b)83 static INLINE OPJ_UINT32 opj_uint_max(OPJ_UINT32 a, OPJ_UINT32 b)
84 {
85 return (a > b) ? a : b;
86 }
87
88 /**
89 Get the saturated sum of two unsigned integers
90 @return Returns saturated sum of a+b
91 */
opj_uint_adds(OPJ_UINT32 a,OPJ_UINT32 b)92 static INLINE OPJ_UINT32 opj_uint_adds(OPJ_UINT32 a, OPJ_UINT32 b)
93 {
94 OPJ_UINT64 sum = (OPJ_UINT64)a + (OPJ_UINT64)b;
95 return (OPJ_UINT32)(-(OPJ_INT32)(sum >> 32)) | (OPJ_UINT32)sum;
96 }
97
98 /**
99 Get the saturated difference of two unsigned integers
100 @return Returns saturated sum of a-b
101 */
opj_uint_subs(OPJ_UINT32 a,OPJ_UINT32 b)102 static INLINE OPJ_UINT32 opj_uint_subs(OPJ_UINT32 a, OPJ_UINT32 b)
103 {
104 return (a >= b) ? a - b : 0;
105 }
106
107 /**
108 Clamp an integer inside an interval
109 @return
110 <ul>
111 <li>Returns a if (min < a < max)
112 <li>Returns max if (a > max)
113 <li>Returns min if (a < min)
114 </ul>
115 */
opj_int_clamp(OPJ_INT32 a,OPJ_INT32 min,OPJ_INT32 max)116 static INLINE OPJ_INT32 opj_int_clamp(OPJ_INT32 a, OPJ_INT32 min,
117 OPJ_INT32 max)
118 {
119 if (a < min) {
120 return min;
121 }
122 if (a > max) {
123 return max;
124 }
125 return a;
126 }
127
128 /**
129 Clamp an integer inside an interval
130 @return
131 <ul>
132 <li>Returns a if (min < a < max)
133 <li>Returns max if (a > max)
134 <li>Returns min if (a < min)
135 </ul>
136 */
opj_int64_clamp(OPJ_INT64 a,OPJ_INT64 min,OPJ_INT64 max)137 static INLINE OPJ_INT64 opj_int64_clamp(OPJ_INT64 a, OPJ_INT64 min,
138 OPJ_INT64 max)
139 {
140 if (a < min) {
141 return min;
142 }
143 if (a > max) {
144 return max;
145 }
146 return a;
147 }
148
149 /**
150 @return Get absolute value of integer
151 */
opj_int_abs(OPJ_INT32 a)152 static INLINE OPJ_INT32 opj_int_abs(OPJ_INT32 a)
153 {
154 return a < 0 ? -a : a;
155 }
156 /**
157 Divide an integer and round upwards
158 @return Returns a divided by b
159 */
opj_int_ceildiv(OPJ_INT32 a,OPJ_INT32 b)160 static INLINE OPJ_INT32 opj_int_ceildiv(OPJ_INT32 a, OPJ_INT32 b)
161 {
162 assert(b);
163 return (OPJ_INT32)(((OPJ_INT64)a + b - 1) / b);
164 }
165
166 /**
167 Divide an integer and round upwards
168 @return Returns a divided by b
169 */
opj_uint_ceildiv(OPJ_UINT32 a,OPJ_UINT32 b)170 static INLINE OPJ_UINT32 opj_uint_ceildiv(OPJ_UINT32 a, OPJ_UINT32 b)
171 {
172 assert(b);
173 return (OPJ_UINT32)(((OPJ_UINT64)a + b - 1) / b);
174 }
175
176 /**
177 Divide an integer by a power of 2 and round upwards
178 @return Returns a divided by 2^b
179 */
opj_int_ceildivpow2(OPJ_INT32 a,OPJ_INT32 b)180 static INLINE OPJ_INT32 opj_int_ceildivpow2(OPJ_INT32 a, OPJ_INT32 b)
181 {
182 return (OPJ_INT32)((a + ((OPJ_INT64)1 << b) - 1) >> b);
183 }
184
185 /**
186 Divide a 64bits integer by a power of 2 and round upwards
187 @return Returns a divided by 2^b
188 */
opj_int64_ceildivpow2(OPJ_INT64 a,OPJ_INT32 b)189 static INLINE OPJ_INT32 opj_int64_ceildivpow2(OPJ_INT64 a, OPJ_INT32 b)
190 {
191 return (OPJ_INT32)((a + ((OPJ_INT64)1 << b) - 1) >> b);
192 }
193
194 /**
195 Divide an integer by a power of 2 and round upwards
196 @return Returns a divided by 2^b
197 */
opj_uint_ceildivpow2(OPJ_UINT32 a,OPJ_UINT32 b)198 static INLINE OPJ_UINT32 opj_uint_ceildivpow2(OPJ_UINT32 a, OPJ_UINT32 b)
199 {
200 return (OPJ_UINT32)((a + ((OPJ_UINT64)1U << b) - 1U) >> b);
201 }
202
203 /**
204 Divide an integer by a power of 2 and round downwards
205 @return Returns a divided by 2^b
206 */
opj_int_floordivpow2(OPJ_INT32 a,OPJ_INT32 b)207 static INLINE OPJ_INT32 opj_int_floordivpow2(OPJ_INT32 a, OPJ_INT32 b)
208 {
209 return a >> b;
210 }
211
212 /**
213 Divide an integer by a power of 2 and round downwards
214 @return Returns a divided by 2^b
215 */
opj_uint_floordivpow2(OPJ_UINT32 a,OPJ_UINT32 b)216 static INLINE OPJ_UINT32 opj_uint_floordivpow2(OPJ_UINT32 a, OPJ_UINT32 b)
217 {
218 return a >> b;
219 }
220
221 /**
222 Get logarithm of an integer and round downwards
223 @return Returns log2(a)
224 */
opj_int_floorlog2(OPJ_INT32 a)225 static INLINE OPJ_INT32 opj_int_floorlog2(OPJ_INT32 a)
226 {
227 OPJ_INT32 l;
228 for (l = 0; a > 1; l++) {
229 a >>= 1;
230 }
231 return l;
232 }
233 /**
234 Get logarithm of an integer and round downwards
235 @return Returns log2(a)
236 */
opj_uint_floorlog2(OPJ_UINT32 a)237 static INLINE OPJ_UINT32 opj_uint_floorlog2(OPJ_UINT32 a)
238 {
239 OPJ_UINT32 l;
240 for (l = 0; a > 1; ++l) {
241 a >>= 1;
242 }
243 return l;
244 }
245
246 /**
247 Multiply two fixed-precision rational numbers.
248 @param a
249 @param b
250 @return Returns a * b
251 */
opj_int_fix_mul(OPJ_INT32 a,OPJ_INT32 b)252 static INLINE OPJ_INT32 opj_int_fix_mul(OPJ_INT32 a, OPJ_INT32 b)
253 {
254 #if defined(_MSC_VER) && (_MSC_VER >= 1400) && !defined(__INTEL_COMPILER) && defined(_M_IX86)
255 OPJ_INT64 temp = __emul(a, b);
256 #else
257 OPJ_INT64 temp = (OPJ_INT64) a * (OPJ_INT64) b ;
258 #endif
259 temp += 4096;
260 assert((temp >> 13) <= (OPJ_INT64)0x7FFFFFFF);
261 assert((temp >> 13) >= (-(OPJ_INT64)0x7FFFFFFF - (OPJ_INT64)1));
262 return (OPJ_INT32)(temp >> 13);
263 }
264
opj_int_fix_mul_t1(OPJ_INT32 a,OPJ_INT32 b)265 static INLINE OPJ_INT32 opj_int_fix_mul_t1(OPJ_INT32 a, OPJ_INT32 b)
266 {
267 #if defined(_MSC_VER) && (_MSC_VER >= 1400) && !defined(__INTEL_COMPILER) && defined(_M_IX86)
268 OPJ_INT64 temp = __emul(a, b);
269 #else
270 OPJ_INT64 temp = (OPJ_INT64) a * (OPJ_INT64) b ;
271 #endif
272 temp += 4096;
273 assert((temp >> (13 + 11 - T1_NMSEDEC_FRACBITS)) <= (OPJ_INT64)0x7FFFFFFF);
274 assert((temp >> (13 + 11 - T1_NMSEDEC_FRACBITS)) >= (-(OPJ_INT64)0x7FFFFFFF -
275 (OPJ_INT64)1));
276 return (OPJ_INT32)(temp >> (13 + 11 - T1_NMSEDEC_FRACBITS)) ;
277 }
278
279 /**
280 Addition two signed integers with a wrap-around behaviour.
281 Assumes complement-to-two signed integers.
282 @param a
283 @param b
284 @return Returns a + b
285 */
opj_int_add_no_overflow(OPJ_INT32 a,OPJ_INT32 b)286 static INLINE OPJ_INT32 opj_int_add_no_overflow(OPJ_INT32 a, OPJ_INT32 b)
287 {
288 void* pa = &a;
289 void* pb = &b;
290 OPJ_UINT32* upa = (OPJ_UINT32*)pa;
291 OPJ_UINT32* upb = (OPJ_UINT32*)pb;
292 OPJ_UINT32 ures = *upa + *upb;
293 void* pures = &ures;
294 OPJ_INT32* ipres = (OPJ_INT32*)pures;
295 return *ipres;
296 }
297
298 /**
299 Subtract two signed integers with a wrap-around behaviour.
300 Assumes complement-to-two signed integers.
301 @param a
302 @param b
303 @return Returns a - b
304 */
opj_int_sub_no_overflow(OPJ_INT32 a,OPJ_INT32 b)305 static INLINE OPJ_INT32 opj_int_sub_no_overflow(OPJ_INT32 a, OPJ_INT32 b)
306 {
307 void* pa = &a;
308 void* pb = &b;
309 OPJ_UINT32* upa = (OPJ_UINT32*)pa;
310 OPJ_UINT32* upb = (OPJ_UINT32*)pb;
311 OPJ_UINT32 ures = *upa - *upb;
312 void* pures = &ures;
313 OPJ_INT32* ipres = (OPJ_INT32*)pures;
314 return *ipres;
315 }
316
317 /* ----------------------------------------------------------------------- */
318 /*@}*/
319
320 /*@}*/
321
322 #endif /* OPJ_INTMATH_H */
323