1 /*
2 * Copyright (C) 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "optimizing_compiler.h"
18
19 #include <fstream>
20 #include <memory>
21 #include <sstream>
22
23 #include <stdint.h>
24
25 #include "art_method-inl.h"
26 #include "base/arena_allocator.h"
27 #include "base/arena_containers.h"
28 #include "base/dumpable.h"
29 #include "base/logging.h"
30 #include "base/macros.h"
31 #include "base/mutex.h"
32 #include "base/scoped_arena_allocator.h"
33 #include "base/timing_logger.h"
34 #include "builder.h"
35 #include "code_generator.h"
36 #include "compiler.h"
37 #include "debug/elf_debug_writer.h"
38 #include "debug/method_debug_info.h"
39 #include "dex/dex_file_types.h"
40 #include "driver/compiled_code_storage.h"
41 #include "driver/compiler_options.h"
42 #include "driver/dex_compilation_unit.h"
43 #include "graph_checker.h"
44 #include "graph_visualizer.h"
45 #include "inliner.h"
46 #include "jit/debugger_interface.h"
47 #include "jit/jit.h"
48 #include "jit/jit_code_cache.h"
49 #include "jit/jit_logger.h"
50 #include "jni/quick/jni_compiler.h"
51 #include "linker/linker_patch.h"
52 #include "nodes.h"
53 #include "oat_quick_method_header.h"
54 #include "optimizing/write_barrier_elimination.h"
55 #include "prepare_for_register_allocation.h"
56 #include "reference_type_propagation.h"
57 #include "register_allocator_linear_scan.h"
58 #include "select_generator.h"
59 #include "ssa_builder.h"
60 #include "ssa_liveness_analysis.h"
61 #include "ssa_phi_elimination.h"
62 #include "stack_map_stream.h"
63 #include "utils/assembler.h"
64
65 namespace art HIDDEN {
66
67 static constexpr size_t kArenaAllocatorMemoryReportThreshold = 8 * MB;
68
69 static constexpr const char* kPassNameSeparator = "$";
70
71 /**
72 * Used by the code generator, to allocate the code in a vector.
73 */
74 class CodeVectorAllocator final : public CodeAllocator {
75 public:
CodeVectorAllocator(ArenaAllocator * allocator)76 explicit CodeVectorAllocator(ArenaAllocator* allocator)
77 : memory_(allocator->Adapter(kArenaAllocCodeBuffer)) {}
78
Allocate(size_t size)79 uint8_t* Allocate(size_t size) override {
80 memory_.resize(size);
81 return &memory_[0];
82 }
83
GetMemory() const84 ArrayRef<const uint8_t> GetMemory() const override { return ArrayRef<const uint8_t>(memory_); }
GetData()85 uint8_t* GetData() { return memory_.data(); }
86
87 private:
88 ArenaVector<uint8_t> memory_;
89
90 DISALLOW_COPY_AND_ASSIGN(CodeVectorAllocator);
91 };
92
93 /**
94 * Filter to apply to the visualizer. Methods whose name contain that filter will
95 * be dumped.
96 */
97 static constexpr const char kStringFilter[] = "";
98
99 class PassScope;
100
101 class PassObserver : public ValueObject {
102 public:
PassObserver(HGraph * graph,CodeGenerator * codegen,std::ostream * visualizer_output,const CompilerOptions & compiler_options)103 PassObserver(HGraph* graph,
104 CodeGenerator* codegen,
105 std::ostream* visualizer_output,
106 const CompilerOptions& compiler_options)
107 : graph_(graph),
108 last_seen_graph_size_(0),
109 cached_method_name_(),
110 timing_logger_enabled_(compiler_options.GetDumpPassTimings()),
111 timing_logger_(timing_logger_enabled_ ? GetMethodName() : "", true, true),
112 disasm_info_(graph->GetAllocator()),
113 visualizer_oss_(),
114 visualizer_output_(visualizer_output),
115 visualizer_enabled_(!compiler_options.GetDumpCfgFileName().empty()),
116 visualizer_(&visualizer_oss_, graph, codegen),
117 codegen_(codegen),
118 graph_in_bad_state_(false) {
119 if (timing_logger_enabled_ || visualizer_enabled_) {
120 if (!IsVerboseMethod(compiler_options, GetMethodName())) {
121 timing_logger_enabled_ = visualizer_enabled_ = false;
122 }
123 if (visualizer_enabled_) {
124 visualizer_.PrintHeader(GetMethodName());
125 codegen->SetDisassemblyInformation(&disasm_info_);
126 }
127 }
128 }
129
~PassObserver()130 ~PassObserver() {
131 if (timing_logger_enabled_) {
132 LOG(INFO) << "TIMINGS " << GetMethodName();
133 LOG(INFO) << Dumpable<TimingLogger>(timing_logger_);
134 }
135 if (visualizer_enabled_) {
136 FlushVisualizer();
137 }
138 DCHECK(visualizer_oss_.str().empty());
139 }
140
DumpDisassembly()141 void DumpDisassembly() {
142 if (visualizer_enabled_) {
143 visualizer_.DumpGraphWithDisassembly();
144 FlushVisualizer();
145 }
146 }
147
SetGraphInBadState()148 void SetGraphInBadState() { graph_in_bad_state_ = true; }
149
GetMethodName()150 const char* GetMethodName() {
151 // PrettyMethod() is expensive, so we delay calling it until we actually have to.
152 if (cached_method_name_.empty()) {
153 cached_method_name_ = graph_->GetDexFile().PrettyMethod(graph_->GetMethodIdx());
154 }
155 return cached_method_name_.c_str();
156 }
157
158 private:
StartPass(const char * pass_name)159 void StartPass(const char* pass_name) {
160 VLOG(compiler) << "Starting pass: " << pass_name;
161 // Dump graph first, then start timer.
162 if (visualizer_enabled_) {
163 visualizer_.DumpGraph(pass_name, /* is_after_pass= */ false, graph_in_bad_state_);
164 FlushVisualizer();
165 }
166 if (timing_logger_enabled_) {
167 timing_logger_.StartTiming(pass_name);
168 }
169 }
170
FlushVisualizer()171 void FlushVisualizer() {
172 *visualizer_output_ << visualizer_oss_.str();
173 visualizer_output_->flush();
174 visualizer_oss_.str("");
175 visualizer_oss_.clear();
176 }
177
EndPass(const char * pass_name,bool pass_change)178 void EndPass(const char* pass_name, bool pass_change) {
179 // Pause timer first, then dump graph.
180 if (timing_logger_enabled_) {
181 timing_logger_.EndTiming();
182 }
183 if (visualizer_enabled_) {
184 visualizer_.DumpGraph(pass_name, /* is_after_pass= */ true, graph_in_bad_state_);
185 FlushVisualizer();
186 }
187
188 // Validate the HGraph if running in debug mode.
189 if (kIsDebugBuild) {
190 if (!graph_in_bad_state_) {
191 GraphChecker checker(graph_, codegen_);
192 last_seen_graph_size_ = checker.Run(pass_change, last_seen_graph_size_);
193 if (!checker.IsValid()) {
194 std::ostringstream stream;
195 graph_->Dump(stream, codegen_);
196 LOG(FATAL_WITHOUT_ABORT) << "Error after " << pass_name << "(" << graph_->PrettyMethod()
197 << "): " << stream.str();
198 LOG(FATAL) << "(" << pass_name << "): " << Dumpable<GraphChecker>(checker);
199 }
200 }
201 }
202 }
203
IsVerboseMethod(const CompilerOptions & compiler_options,const char * method_name)204 static bool IsVerboseMethod(const CompilerOptions& compiler_options, const char* method_name) {
205 // Test an exact match to --verbose-methods. If verbose-methods is set, this overrides an
206 // empty kStringFilter matching all methods.
207 if (compiler_options.HasVerboseMethods()) {
208 return compiler_options.IsVerboseMethod(method_name);
209 }
210
211 // Test the kStringFilter sub-string. constexpr helper variable to silence unreachable-code
212 // warning when the string is empty.
213 constexpr bool kStringFilterEmpty = arraysize(kStringFilter) <= 1;
214 if (kStringFilterEmpty || strstr(method_name, kStringFilter) != nullptr) {
215 return true;
216 }
217
218 return false;
219 }
220
221 HGraph* const graph_;
222 size_t last_seen_graph_size_;
223
224 std::string cached_method_name_;
225
226 bool timing_logger_enabled_;
227 TimingLogger timing_logger_;
228
229 DisassemblyInformation disasm_info_;
230
231 std::ostringstream visualizer_oss_;
232 std::ostream* visualizer_output_;
233 bool visualizer_enabled_;
234 HGraphVisualizer visualizer_;
235 CodeGenerator* codegen_;
236
237 // Flag to be set by the compiler if the pass failed and the graph is not
238 // expected to validate.
239 bool graph_in_bad_state_;
240
241 friend PassScope;
242
243 DISALLOW_COPY_AND_ASSIGN(PassObserver);
244 };
245
246 class PassScope : public ValueObject {
247 public:
PassScope(const char * pass_name,PassObserver * pass_observer)248 PassScope(const char *pass_name, PassObserver* pass_observer)
249 : pass_name_(pass_name),
250 pass_change_(true), // assume change
251 pass_observer_(pass_observer) {
252 pass_observer_->StartPass(pass_name_);
253 }
254
SetPassNotChanged()255 void SetPassNotChanged() {
256 pass_change_ = false;
257 }
258
~PassScope()259 ~PassScope() {
260 pass_observer_->EndPass(pass_name_, pass_change_);
261 }
262
263 private:
264 const char* const pass_name_;
265 bool pass_change_;
266 PassObserver* const pass_observer_;
267 };
268
269 class OptimizingCompiler final : public Compiler {
270 public:
271 explicit OptimizingCompiler(const CompilerOptions& compiler_options,
272 CompiledCodeStorage* storage);
273 ~OptimizingCompiler() override;
274
275 bool CanCompileMethod(uint32_t method_idx, const DexFile& dex_file) const override;
276
277 CompiledMethod* Compile(const dex::CodeItem* code_item,
278 uint32_t access_flags,
279 InvokeType invoke_type,
280 uint16_t class_def_idx,
281 uint32_t method_idx,
282 Handle<mirror::ClassLoader> class_loader,
283 const DexFile& dex_file,
284 Handle<mirror::DexCache> dex_cache) const override;
285
286 CompiledMethod* JniCompile(uint32_t access_flags,
287 uint32_t method_idx,
288 const DexFile& dex_file,
289 Handle<mirror::DexCache> dex_cache) const override;
290
GetEntryPointOf(ArtMethod * method) const291 uintptr_t GetEntryPointOf(ArtMethod* method) const override
292 REQUIRES_SHARED(Locks::mutator_lock_) {
293 return reinterpret_cast<uintptr_t>(method->GetEntryPointFromQuickCompiledCodePtrSize(
294 InstructionSetPointerSize(GetCompilerOptions().GetInstructionSet())));
295 }
296
297 bool JitCompile(Thread* self,
298 jit::JitCodeCache* code_cache,
299 jit::JitMemoryRegion* region,
300 ArtMethod* method,
301 CompilationKind compilation_kind,
302 jit::JitLogger* jit_logger)
303 override
304 REQUIRES_SHARED(Locks::mutator_lock_);
305
306 private:
RunOptimizations(HGraph * graph,CodeGenerator * codegen,const DexCompilationUnit & dex_compilation_unit,PassObserver * pass_observer,const OptimizationDef definitions[],size_t length) const307 bool RunOptimizations(HGraph* graph,
308 CodeGenerator* codegen,
309 const DexCompilationUnit& dex_compilation_unit,
310 PassObserver* pass_observer,
311 const OptimizationDef definitions[],
312 size_t length) const {
313 // Convert definitions to optimization passes.
314 ArenaVector<HOptimization*> optimizations = ConstructOptimizations(
315 definitions,
316 length,
317 graph->GetAllocator(),
318 graph,
319 compilation_stats_.get(),
320 codegen,
321 dex_compilation_unit);
322 DCHECK_EQ(length, optimizations.size());
323 // Run the optimization passes one by one. Any "depends_on" pass refers back to
324 // the most recent occurrence of that pass, skipped or executed.
325 std::bitset<static_cast<size_t>(OptimizationPass::kLast) + 1u> pass_changes;
326 pass_changes[static_cast<size_t>(OptimizationPass::kNone)] = true;
327 bool change = false;
328 for (size_t i = 0; i < length; ++i) {
329 if (pass_changes[static_cast<size_t>(definitions[i].depends_on)]) {
330 // Execute the pass and record whether it changed anything.
331 PassScope scope(optimizations[i]->GetPassName(), pass_observer);
332 bool pass_change = optimizations[i]->Run();
333 pass_changes[static_cast<size_t>(definitions[i].pass)] = pass_change;
334 if (pass_change) {
335 change = true;
336 } else {
337 scope.SetPassNotChanged();
338 }
339 } else {
340 // Skip the pass and record that nothing changed.
341 pass_changes[static_cast<size_t>(definitions[i].pass)] = false;
342 }
343 }
344 return change;
345 }
346
RunOptimizations(HGraph * graph,CodeGenerator * codegen,const DexCompilationUnit & dex_compilation_unit,PassObserver * pass_observer,const OptimizationDef (& definitions)[length]) const347 template <size_t length> bool RunOptimizations(
348 HGraph* graph,
349 CodeGenerator* codegen,
350 const DexCompilationUnit& dex_compilation_unit,
351 PassObserver* pass_observer,
352 const OptimizationDef (&definitions)[length]) const {
353 return RunOptimizations(
354 graph, codegen, dex_compilation_unit, pass_observer, definitions, length);
355 }
356
357 void RunOptimizations(HGraph* graph,
358 CodeGenerator* codegen,
359 const DexCompilationUnit& dex_compilation_unit,
360 PassObserver* pass_observer) const;
361
362 // Create a 'CompiledMethod' for an optimized graph.
363 CompiledMethod* Emit(ArenaAllocator* allocator,
364 CodeVectorAllocator* code_allocator,
365 CodeGenerator* codegen,
366 bool is_intrinsic,
367 const dex::CodeItem* item) const;
368
369 // Try compiling a method and return the code generator used for
370 // compiling it.
371 // This method:
372 // 1) Builds the graph. Returns null if it failed to build it.
373 // 2) Transforms the graph to SSA. Returns null if it failed.
374 // 3) Runs optimizations on the graph, including register allocator.
375 // 4) Generates code with the `code_allocator` provided.
376 CodeGenerator* TryCompile(ArenaAllocator* allocator,
377 ArenaStack* arena_stack,
378 CodeVectorAllocator* code_allocator,
379 const DexCompilationUnit& dex_compilation_unit,
380 ArtMethod* method,
381 CompilationKind compilation_kind,
382 VariableSizedHandleScope* handles) const;
383
384 CodeGenerator* TryCompileIntrinsic(ArenaAllocator* allocator,
385 ArenaStack* arena_stack,
386 CodeVectorAllocator* code_allocator,
387 const DexCompilationUnit& dex_compilation_unit,
388 ArtMethod* method,
389 VariableSizedHandleScope* handles) const;
390
391 bool RunArchOptimizations(HGraph* graph,
392 CodeGenerator* codegen,
393 const DexCompilationUnit& dex_compilation_unit,
394 PassObserver* pass_observer) const;
395
396 bool RunBaselineOptimizations(HGraph* graph,
397 CodeGenerator* codegen,
398 const DexCompilationUnit& dex_compilation_unit,
399 PassObserver* pass_observer) const;
400
401 std::vector<uint8_t> GenerateJitDebugInfo(const debug::MethodDebugInfo& method_debug_info);
402
403 // This must be called before any other function that dumps data to the cfg
404 void DumpInstructionSetFeaturesToCfg() const;
405
406 std::unique_ptr<OptimizingCompilerStats> compilation_stats_;
407
408 std::unique_ptr<std::ostream> visualizer_output_;
409
410 DISALLOW_COPY_AND_ASSIGN(OptimizingCompiler);
411 };
412
413 static const int kMaximumCompilationTimeBeforeWarning = 100; /* ms */
414
OptimizingCompiler(const CompilerOptions & compiler_options,CompiledCodeStorage * storage)415 OptimizingCompiler::OptimizingCompiler(const CompilerOptions& compiler_options,
416 CompiledCodeStorage* storage)
417 : Compiler(compiler_options, storage, kMaximumCompilationTimeBeforeWarning) {
418 // Enable C1visualizer output.
419 const std::string& cfg_file_name = compiler_options.GetDumpCfgFileName();
420 if (!cfg_file_name.empty()) {
421 std::ios_base::openmode cfg_file_mode =
422 compiler_options.GetDumpCfgAppend() ? std::ofstream::app : std::ofstream::out;
423 visualizer_output_.reset(new std::ofstream(cfg_file_name, cfg_file_mode));
424 DumpInstructionSetFeaturesToCfg();
425 }
426 if (compiler_options.GetDumpStats()) {
427 compilation_stats_.reset(new OptimizingCompilerStats());
428 }
429 }
430
~OptimizingCompiler()431 OptimizingCompiler::~OptimizingCompiler() {
432 if (compilation_stats_.get() != nullptr) {
433 compilation_stats_->Log();
434 }
435 }
436
DumpInstructionSetFeaturesToCfg() const437 void OptimizingCompiler::DumpInstructionSetFeaturesToCfg() const {
438 const CompilerOptions& compiler_options = GetCompilerOptions();
439 const InstructionSetFeatures* features = compiler_options.GetInstructionSetFeatures();
440 std::string isa_string =
441 std::string("isa:") + GetInstructionSetString(features->GetInstructionSet());
442 std::string features_string = "isa_features:" + features->GetFeatureString();
443 // It is assumed that visualizer_output_ is empty when calling this function, hence the fake
444 // compilation block containing the ISA features will be printed at the beginning of the .cfg
445 // file.
446 *visualizer_output_
447 << HGraphVisualizer::InsertMetaDataAsCompilationBlock(isa_string + ' ' + features_string);
448 }
449
CanCompileMethod(uint32_t method_idx ATTRIBUTE_UNUSED,const DexFile & dex_file ATTRIBUTE_UNUSED) const450 bool OptimizingCompiler::CanCompileMethod(uint32_t method_idx ATTRIBUTE_UNUSED,
451 const DexFile& dex_file ATTRIBUTE_UNUSED) const {
452 return true;
453 }
454
IsInstructionSetSupported(InstructionSet instruction_set)455 static bool IsInstructionSetSupported(InstructionSet instruction_set) {
456 return instruction_set == InstructionSet::kArm
457 || instruction_set == InstructionSet::kArm64
458 || instruction_set == InstructionSet::kThumb2
459 || instruction_set == InstructionSet::kX86
460 || instruction_set == InstructionSet::kX86_64;
461 }
462
RunBaselineOptimizations(HGraph * graph,CodeGenerator * codegen,const DexCompilationUnit & dex_compilation_unit,PassObserver * pass_observer) const463 bool OptimizingCompiler::RunBaselineOptimizations(HGraph* graph,
464 CodeGenerator* codegen,
465 const DexCompilationUnit& dex_compilation_unit,
466 PassObserver* pass_observer) const {
467 switch (codegen->GetCompilerOptions().GetInstructionSet()) {
468 #if defined(ART_ENABLE_CODEGEN_arm)
469 case InstructionSet::kThumb2:
470 case InstructionSet::kArm: {
471 OptimizationDef arm_optimizations[] = {
472 OptDef(OptimizationPass::kCriticalNativeAbiFixupArm),
473 };
474 return RunOptimizations(graph,
475 codegen,
476 dex_compilation_unit,
477 pass_observer,
478 arm_optimizations);
479 }
480 #endif
481 #ifdef ART_ENABLE_CODEGEN_x86
482 case InstructionSet::kX86: {
483 OptimizationDef x86_optimizations[] = {
484 OptDef(OptimizationPass::kPcRelativeFixupsX86),
485 };
486 return RunOptimizations(graph,
487 codegen,
488 dex_compilation_unit,
489 pass_observer,
490 x86_optimizations);
491 }
492 #endif
493 default:
494 UNUSED(graph);
495 UNUSED(codegen);
496 UNUSED(dex_compilation_unit);
497 UNUSED(pass_observer);
498 return false;
499 }
500 }
501
RunArchOptimizations(HGraph * graph,CodeGenerator * codegen,const DexCompilationUnit & dex_compilation_unit,PassObserver * pass_observer) const502 bool OptimizingCompiler::RunArchOptimizations(HGraph* graph,
503 CodeGenerator* codegen,
504 const DexCompilationUnit& dex_compilation_unit,
505 PassObserver* pass_observer) const {
506 switch (codegen->GetCompilerOptions().GetInstructionSet()) {
507 #if defined(ART_ENABLE_CODEGEN_arm)
508 case InstructionSet::kThumb2:
509 case InstructionSet::kArm: {
510 OptimizationDef arm_optimizations[] = {
511 OptDef(OptimizationPass::kInstructionSimplifierArm),
512 OptDef(OptimizationPass::kSideEffectsAnalysis),
513 OptDef(OptimizationPass::kGlobalValueNumbering, "GVN$after_arch"),
514 OptDef(OptimizationPass::kCriticalNativeAbiFixupArm),
515 OptDef(OptimizationPass::kScheduling)
516 };
517 return RunOptimizations(graph,
518 codegen,
519 dex_compilation_unit,
520 pass_observer,
521 arm_optimizations);
522 }
523 #endif
524 #ifdef ART_ENABLE_CODEGEN_arm64
525 case InstructionSet::kArm64: {
526 OptimizationDef arm64_optimizations[] = {
527 OptDef(OptimizationPass::kInstructionSimplifierArm64),
528 OptDef(OptimizationPass::kSideEffectsAnalysis),
529 OptDef(OptimizationPass::kGlobalValueNumbering, "GVN$after_arch"),
530 OptDef(OptimizationPass::kScheduling)
531 };
532 return RunOptimizations(graph,
533 codegen,
534 dex_compilation_unit,
535 pass_observer,
536 arm64_optimizations);
537 }
538 #endif
539 #ifdef ART_ENABLE_CODEGEN_x86
540 case InstructionSet::kX86: {
541 OptimizationDef x86_optimizations[] = {
542 OptDef(OptimizationPass::kInstructionSimplifierX86),
543 OptDef(OptimizationPass::kSideEffectsAnalysis),
544 OptDef(OptimizationPass::kGlobalValueNumbering, "GVN$after_arch"),
545 OptDef(OptimizationPass::kPcRelativeFixupsX86),
546 OptDef(OptimizationPass::kX86MemoryOperandGeneration)
547 };
548 return RunOptimizations(graph,
549 codegen,
550 dex_compilation_unit,
551 pass_observer,
552 x86_optimizations);
553 }
554 #endif
555 #ifdef ART_ENABLE_CODEGEN_x86_64
556 case InstructionSet::kX86_64: {
557 OptimizationDef x86_64_optimizations[] = {
558 OptDef(OptimizationPass::kInstructionSimplifierX86_64),
559 OptDef(OptimizationPass::kSideEffectsAnalysis),
560 OptDef(OptimizationPass::kGlobalValueNumbering, "GVN$after_arch"),
561 OptDef(OptimizationPass::kX86MemoryOperandGeneration)
562 };
563 return RunOptimizations(graph,
564 codegen,
565 dex_compilation_unit,
566 pass_observer,
567 x86_64_optimizations);
568 }
569 #endif
570 default:
571 UNUSED(graph);
572 UNUSED(dex_compilation_unit);
573 UNUSED(pass_observer);
574 return false;
575 }
576 }
577
578 NO_INLINE // Avoid increasing caller's frame size by large stack-allocated objects.
AllocateRegisters(HGraph * graph,CodeGenerator * codegen,PassObserver * pass_observer,RegisterAllocator::Strategy strategy,OptimizingCompilerStats * stats)579 static void AllocateRegisters(HGraph* graph,
580 CodeGenerator* codegen,
581 PassObserver* pass_observer,
582 RegisterAllocator::Strategy strategy,
583 OptimizingCompilerStats* stats) {
584 {
585 PassScope scope(PrepareForRegisterAllocation::kPrepareForRegisterAllocationPassName,
586 pass_observer);
587 PrepareForRegisterAllocation(graph, codegen->GetCompilerOptions(), stats).Run();
588 }
589 // Use local allocator shared by SSA liveness analysis and register allocator.
590 // (Register allocator creates new objects in the liveness data.)
591 ScopedArenaAllocator local_allocator(graph->GetArenaStack());
592 SsaLivenessAnalysis liveness(graph, codegen, &local_allocator);
593 {
594 PassScope scope(SsaLivenessAnalysis::kLivenessPassName, pass_observer);
595 liveness.Analyze();
596 }
597 {
598 PassScope scope(RegisterAllocator::kRegisterAllocatorPassName, pass_observer);
599 std::unique_ptr<RegisterAllocator> register_allocator =
600 RegisterAllocator::Create(&local_allocator, codegen, liveness, strategy);
601 register_allocator->AllocateRegisters();
602 }
603 }
604
605 // Strip pass name suffix to get optimization name.
ConvertPassNameToOptimizationName(const std::string & pass_name)606 static std::string ConvertPassNameToOptimizationName(const std::string& pass_name) {
607 size_t pos = pass_name.find(kPassNameSeparator);
608 return pos == std::string::npos ? pass_name : pass_name.substr(0, pos);
609 }
610
RunOptimizations(HGraph * graph,CodeGenerator * codegen,const DexCompilationUnit & dex_compilation_unit,PassObserver * pass_observer) const611 void OptimizingCompiler::RunOptimizations(HGraph* graph,
612 CodeGenerator* codegen,
613 const DexCompilationUnit& dex_compilation_unit,
614 PassObserver* pass_observer) const {
615 const std::vector<std::string>* pass_names = GetCompilerOptions().GetPassesToRun();
616 if (pass_names != nullptr) {
617 // If passes were defined on command-line, build the optimization
618 // passes and run these instead of the built-in optimizations.
619 // TODO: a way to define depends_on via command-line?
620 const size_t length = pass_names->size();
621 std::vector<OptimizationDef> optimizations;
622 for (const std::string& pass_name : *pass_names) {
623 std::string opt_name = ConvertPassNameToOptimizationName(pass_name);
624 optimizations.push_back(OptDef(OptimizationPassByName(opt_name), pass_name.c_str()));
625 }
626 RunOptimizations(graph,
627 codegen,
628 dex_compilation_unit,
629 pass_observer,
630 optimizations.data(),
631 length);
632 return;
633 }
634
635 OptimizationDef optimizations[] = {
636 // Initial optimizations.
637 OptDef(OptimizationPass::kConstantFolding),
638 OptDef(OptimizationPass::kInstructionSimplifier),
639 OptDef(OptimizationPass::kDeadCodeElimination,
640 "dead_code_elimination$initial"),
641 // Inlining.
642 OptDef(OptimizationPass::kInliner),
643 // Simplification (if inlining occurred, or if we analyzed the invoke as "always throwing").
644 OptDef(OptimizationPass::kConstantFolding,
645 "constant_folding$after_inlining",
646 OptimizationPass::kInliner),
647 OptDef(OptimizationPass::kInstructionSimplifier,
648 "instruction_simplifier$after_inlining",
649 OptimizationPass::kInliner),
650 OptDef(OptimizationPass::kDeadCodeElimination,
651 "dead_code_elimination$after_inlining",
652 OptimizationPass::kInliner),
653 // GVN.
654 OptDef(OptimizationPass::kSideEffectsAnalysis,
655 "side_effects$before_gvn"),
656 OptDef(OptimizationPass::kGlobalValueNumbering),
657 // Simplification (TODO: only if GVN occurred).
658 OptDef(OptimizationPass::kSelectGenerator),
659 OptDef(OptimizationPass::kAggressiveConstantFolding,
660 "constant_folding$after_gvn"),
661 OptDef(OptimizationPass::kInstructionSimplifier,
662 "instruction_simplifier$after_gvn"),
663 OptDef(OptimizationPass::kDeadCodeElimination,
664 "dead_code_elimination$after_gvn"),
665 // High-level optimizations.
666 OptDef(OptimizationPass::kSideEffectsAnalysis,
667 "side_effects$before_licm"),
668 OptDef(OptimizationPass::kInvariantCodeMotion),
669 OptDef(OptimizationPass::kInductionVarAnalysis),
670 OptDef(OptimizationPass::kBoundsCheckElimination),
671 OptDef(OptimizationPass::kLoopOptimization),
672 // Simplification.
673 OptDef(OptimizationPass::kConstantFolding,
674 "constant_folding$after_loop_opt"),
675 OptDef(OptimizationPass::kAggressiveInstructionSimplifier,
676 "instruction_simplifier$after_loop_opt"),
677 OptDef(OptimizationPass::kDeadCodeElimination,
678 "dead_code_elimination$after_loop_opt"),
679 // Other high-level optimizations.
680 OptDef(OptimizationPass::kLoadStoreElimination),
681 OptDef(OptimizationPass::kCHAGuardOptimization),
682 OptDef(OptimizationPass::kCodeSinking),
683 // Simplification.
684 OptDef(OptimizationPass::kConstantFolding,
685 "constant_folding$before_codegen"),
686 // The codegen has a few assumptions that only the instruction simplifier
687 // can satisfy. For example, the code generator does not expect to see a
688 // HTypeConversion from a type to the same type.
689 OptDef(OptimizationPass::kAggressiveInstructionSimplifier,
690 "instruction_simplifier$before_codegen"),
691 // Simplification may result in dead code that should be removed prior to
692 // code generation.
693 OptDef(OptimizationPass::kDeadCodeElimination,
694 "dead_code_elimination$before_codegen"),
695 // Eliminate constructor fences after code sinking to avoid
696 // complicated sinking logic to split a fence with many inputs.
697 OptDef(OptimizationPass::kConstructorFenceRedundancyElimination)
698 };
699 RunOptimizations(graph,
700 codegen,
701 dex_compilation_unit,
702 pass_observer,
703 optimizations);
704
705 RunArchOptimizations(graph, codegen, dex_compilation_unit, pass_observer);
706 }
707
EmitAndSortLinkerPatches(CodeGenerator * codegen)708 static ArenaVector<linker::LinkerPatch> EmitAndSortLinkerPatches(CodeGenerator* codegen) {
709 ArenaVector<linker::LinkerPatch> linker_patches(codegen->GetGraph()->GetAllocator()->Adapter());
710 codegen->EmitLinkerPatches(&linker_patches);
711
712 // Sort patches by literal offset. Required for .oat_patches encoding.
713 std::sort(linker_patches.begin(), linker_patches.end(),
714 [](const linker::LinkerPatch& lhs, const linker::LinkerPatch& rhs) {
715 return lhs.LiteralOffset() < rhs.LiteralOffset();
716 });
717
718 return linker_patches;
719 }
720
Emit(ArenaAllocator * allocator,CodeVectorAllocator * code_allocator,CodeGenerator * codegen,bool is_intrinsic,const dex::CodeItem * code_item_for_osr_check) const721 CompiledMethod* OptimizingCompiler::Emit(ArenaAllocator* allocator,
722 CodeVectorAllocator* code_allocator,
723 CodeGenerator* codegen,
724 bool is_intrinsic,
725 const dex::CodeItem* code_item_for_osr_check) const {
726 ArenaVector<linker::LinkerPatch> linker_patches = EmitAndSortLinkerPatches(codegen);
727 ScopedArenaVector<uint8_t> stack_map = codegen->BuildStackMaps(code_item_for_osr_check);
728
729 CompiledCodeStorage* storage = GetCompiledCodeStorage();
730 CompiledMethod* compiled_method = storage->CreateCompiledMethod(
731 codegen->GetInstructionSet(),
732 code_allocator->GetMemory(),
733 ArrayRef<const uint8_t>(stack_map),
734 ArrayRef<const uint8_t>(*codegen->GetAssembler()->cfi().data()),
735 ArrayRef<const linker::LinkerPatch>(linker_patches),
736 is_intrinsic);
737
738 for (const linker::LinkerPatch& patch : linker_patches) {
739 if (codegen->NeedsThunkCode(patch) && storage->GetThunkCode(patch).empty()) {
740 ArenaVector<uint8_t> code(allocator->Adapter());
741 std::string debug_name;
742 codegen->EmitThunkCode(patch, &code, &debug_name);
743 storage->SetThunkCode(patch, ArrayRef<const uint8_t>(code), debug_name);
744 }
745 }
746
747 return compiled_method;
748 }
749
TryCompile(ArenaAllocator * allocator,ArenaStack * arena_stack,CodeVectorAllocator * code_allocator,const DexCompilationUnit & dex_compilation_unit,ArtMethod * method,CompilationKind compilation_kind,VariableSizedHandleScope * handles) const750 CodeGenerator* OptimizingCompiler::TryCompile(ArenaAllocator* allocator,
751 ArenaStack* arena_stack,
752 CodeVectorAllocator* code_allocator,
753 const DexCompilationUnit& dex_compilation_unit,
754 ArtMethod* method,
755 CompilationKind compilation_kind,
756 VariableSizedHandleScope* handles) const {
757 MaybeRecordStat(compilation_stats_.get(), MethodCompilationStat::kAttemptBytecodeCompilation);
758 const CompilerOptions& compiler_options = GetCompilerOptions();
759 InstructionSet instruction_set = compiler_options.GetInstructionSet();
760 const DexFile& dex_file = *dex_compilation_unit.GetDexFile();
761 uint32_t method_idx = dex_compilation_unit.GetDexMethodIndex();
762 const dex::CodeItem* code_item = dex_compilation_unit.GetCodeItem();
763
764 // Always use the Thumb-2 assembler: some runtime functionality
765 // (like implicit stack overflow checks) assume Thumb-2.
766 DCHECK_NE(instruction_set, InstructionSet::kArm);
767
768 // Do not attempt to compile on architectures we do not support.
769 if (!IsInstructionSetSupported(instruction_set)) {
770 MaybeRecordStat(compilation_stats_.get(),
771 MethodCompilationStat::kNotCompiledUnsupportedIsa);
772 return nullptr;
773 }
774
775 if (Compiler::IsPathologicalCase(*code_item, method_idx, dex_file)) {
776 MaybeRecordStat(compilation_stats_.get(), MethodCompilationStat::kNotCompiledPathological);
777 return nullptr;
778 }
779
780 // Implementation of the space filter: do not compile a code item whose size in
781 // code units is bigger than 128.
782 static constexpr size_t kSpaceFilterOptimizingThreshold = 128;
783 if ((compiler_options.GetCompilerFilter() == CompilerFilter::kSpace)
784 && (CodeItemInstructionAccessor(dex_file, code_item).InsnsSizeInCodeUnits() >
785 kSpaceFilterOptimizingThreshold)) {
786 MaybeRecordStat(compilation_stats_.get(), MethodCompilationStat::kNotCompiledSpaceFilter);
787 return nullptr;
788 }
789
790 CodeItemDebugInfoAccessor code_item_accessor(dex_file, code_item, method_idx);
791
792 bool dead_reference_safe;
793 // For AOT compilation, we may not get a method, for example if its class is erroneous,
794 // possibly due to an unavailable superclass. JIT should always have a method.
795 DCHECK(Runtime::Current()->IsAotCompiler() || method != nullptr);
796 if (method != nullptr) {
797 const dex::ClassDef* containing_class;
798 {
799 ScopedObjectAccess soa(Thread::Current());
800 containing_class = &method->GetClassDef();
801 }
802 // MethodContainsRSensitiveAccess is currently slow, but HasDeadReferenceSafeAnnotation()
803 // is currently rarely true.
804 dead_reference_safe =
805 annotations::HasDeadReferenceSafeAnnotation(dex_file, *containing_class)
806 && !annotations::MethodContainsRSensitiveAccess(dex_file, *containing_class, method_idx);
807 } else {
808 // If we could not resolve the class, conservatively assume it's dead-reference unsafe.
809 dead_reference_safe = false;
810 }
811
812 HGraph* graph = new (allocator) HGraph(
813 allocator,
814 arena_stack,
815 handles,
816 dex_file,
817 method_idx,
818 compiler_options.GetInstructionSet(),
819 kInvalidInvokeType,
820 dead_reference_safe,
821 compiler_options.GetDebuggable(),
822 compilation_kind);
823
824 if (method != nullptr) {
825 graph->SetArtMethod(method);
826 }
827
828 jit::Jit* jit = Runtime::Current()->GetJit();
829 if (jit != nullptr) {
830 ProfilingInfo* info = jit->GetCodeCache()->GetProfilingInfo(method, Thread::Current());
831 DCHECK_IMPLIES(compilation_kind == CompilationKind::kBaseline, info != nullptr)
832 << "Compiling a method baseline should always have a ProfilingInfo";
833 graph->SetProfilingInfo(info);
834 }
835
836 std::unique_ptr<CodeGenerator> codegen(
837 CodeGenerator::Create(graph,
838 compiler_options,
839 compilation_stats_.get()));
840 if (codegen.get() == nullptr) {
841 MaybeRecordStat(compilation_stats_.get(), MethodCompilationStat::kNotCompiledNoCodegen);
842 return nullptr;
843 }
844 codegen->GetAssembler()->cfi().SetEnabled(compiler_options.GenerateAnyDebugInfo());
845
846 PassObserver pass_observer(graph,
847 codegen.get(),
848 visualizer_output_.get(),
849 compiler_options);
850
851 {
852 VLOG(compiler) << "Building " << pass_observer.GetMethodName();
853 PassScope scope(HGraphBuilder::kBuilderPassName, &pass_observer);
854 HGraphBuilder builder(graph,
855 code_item_accessor,
856 &dex_compilation_unit,
857 &dex_compilation_unit,
858 codegen.get(),
859 compilation_stats_.get());
860 GraphAnalysisResult result = builder.BuildGraph();
861 if (result != kAnalysisSuccess) {
862 switch (result) {
863 case kAnalysisSkipped: {
864 MaybeRecordStat(compilation_stats_.get(),
865 MethodCompilationStat::kNotCompiledSkipped);
866 break;
867 }
868 case kAnalysisInvalidBytecode: {
869 MaybeRecordStat(compilation_stats_.get(),
870 MethodCompilationStat::kNotCompiledInvalidBytecode);
871 break;
872 }
873 case kAnalysisFailThrowCatchLoop: {
874 MaybeRecordStat(compilation_stats_.get(),
875 MethodCompilationStat::kNotCompiledThrowCatchLoop);
876 break;
877 }
878 case kAnalysisFailAmbiguousArrayOp: {
879 MaybeRecordStat(compilation_stats_.get(),
880 MethodCompilationStat::kNotCompiledAmbiguousArrayOp);
881 break;
882 }
883 case kAnalysisFailIrreducibleLoopAndStringInit: {
884 MaybeRecordStat(compilation_stats_.get(),
885 MethodCompilationStat::kNotCompiledIrreducibleLoopAndStringInit);
886 break;
887 }
888 case kAnalysisFailPhiEquivalentInOsr: {
889 MaybeRecordStat(compilation_stats_.get(),
890 MethodCompilationStat::kNotCompiledPhiEquivalentInOsr);
891 break;
892 }
893 case kAnalysisSuccess:
894 UNREACHABLE();
895 }
896 pass_observer.SetGraphInBadState();
897 return nullptr;
898 }
899 }
900
901 if (compilation_kind == CompilationKind::kBaseline) {
902 RunBaselineOptimizations(graph, codegen.get(), dex_compilation_unit, &pass_observer);
903 } else {
904 RunOptimizations(graph, codegen.get(), dex_compilation_unit, &pass_observer);
905 PassScope scope(WriteBarrierElimination::kWBEPassName, &pass_observer);
906 WriteBarrierElimination(graph, compilation_stats_.get()).Run();
907 }
908
909 RegisterAllocator::Strategy regalloc_strategy =
910 compiler_options.GetRegisterAllocationStrategy();
911 AllocateRegisters(graph,
912 codegen.get(),
913 &pass_observer,
914 regalloc_strategy,
915 compilation_stats_.get());
916
917 codegen->Compile(code_allocator);
918 pass_observer.DumpDisassembly();
919
920 MaybeRecordStat(compilation_stats_.get(), MethodCompilationStat::kCompiledBytecode);
921 return codegen.release();
922 }
923
TryCompileIntrinsic(ArenaAllocator * allocator,ArenaStack * arena_stack,CodeVectorAllocator * code_allocator,const DexCompilationUnit & dex_compilation_unit,ArtMethod * method,VariableSizedHandleScope * handles) const924 CodeGenerator* OptimizingCompiler::TryCompileIntrinsic(
925 ArenaAllocator* allocator,
926 ArenaStack* arena_stack,
927 CodeVectorAllocator* code_allocator,
928 const DexCompilationUnit& dex_compilation_unit,
929 ArtMethod* method,
930 VariableSizedHandleScope* handles) const {
931 MaybeRecordStat(compilation_stats_.get(), MethodCompilationStat::kAttemptIntrinsicCompilation);
932 const CompilerOptions& compiler_options = GetCompilerOptions();
933 InstructionSet instruction_set = compiler_options.GetInstructionSet();
934 const DexFile& dex_file = *dex_compilation_unit.GetDexFile();
935 uint32_t method_idx = dex_compilation_unit.GetDexMethodIndex();
936
937 // Always use the Thumb-2 assembler: some runtime functionality
938 // (like implicit stack overflow checks) assume Thumb-2.
939 DCHECK_NE(instruction_set, InstructionSet::kArm);
940
941 // Do not attempt to compile on architectures we do not support.
942 if (!IsInstructionSetSupported(instruction_set)) {
943 return nullptr;
944 }
945
946 HGraph* graph = new (allocator) HGraph(
947 allocator,
948 arena_stack,
949 handles,
950 dex_file,
951 method_idx,
952 compiler_options.GetInstructionSet(),
953 kInvalidInvokeType,
954 /* dead_reference_safe= */ true, // Intrinsics don't affect dead reference safety.
955 compiler_options.GetDebuggable(),
956 CompilationKind::kOptimized);
957
958 DCHECK(Runtime::Current()->IsAotCompiler());
959 DCHECK(method != nullptr);
960 graph->SetArtMethod(method);
961
962 std::unique_ptr<CodeGenerator> codegen(
963 CodeGenerator::Create(graph,
964 compiler_options,
965 compilation_stats_.get()));
966 if (codegen.get() == nullptr) {
967 return nullptr;
968 }
969 codegen->GetAssembler()->cfi().SetEnabled(compiler_options.GenerateAnyDebugInfo());
970
971 PassObserver pass_observer(graph,
972 codegen.get(),
973 visualizer_output_.get(),
974 compiler_options);
975
976 {
977 VLOG(compiler) << "Building intrinsic graph " << pass_observer.GetMethodName();
978 PassScope scope(HGraphBuilder::kBuilderPassName, &pass_observer);
979 HGraphBuilder builder(graph,
980 CodeItemDebugInfoAccessor(), // Null code item.
981 &dex_compilation_unit,
982 &dex_compilation_unit,
983 codegen.get(),
984 compilation_stats_.get());
985 builder.BuildIntrinsicGraph(method);
986 }
987
988 OptimizationDef optimizations[] = {
989 // The codegen has a few assumptions that only the instruction simplifier
990 // can satisfy.
991 OptDef(OptimizationPass::kInstructionSimplifier),
992 };
993 RunOptimizations(graph,
994 codegen.get(),
995 dex_compilation_unit,
996 &pass_observer,
997 optimizations);
998
999 RunArchOptimizations(graph, codegen.get(), dex_compilation_unit, &pass_observer);
1000 {
1001 PassScope scope(WriteBarrierElimination::kWBEPassName, &pass_observer);
1002 WriteBarrierElimination(graph, compilation_stats_.get()).Run();
1003 }
1004
1005 AllocateRegisters(graph,
1006 codegen.get(),
1007 &pass_observer,
1008 compiler_options.GetRegisterAllocationStrategy(),
1009 compilation_stats_.get());
1010 if (!codegen->IsLeafMethod()) {
1011 VLOG(compiler) << "Intrinsic method is not leaf: " << method->GetIntrinsic()
1012 << " " << graph->PrettyMethod();
1013 return nullptr;
1014 }
1015
1016 codegen->Compile(code_allocator);
1017 pass_observer.DumpDisassembly();
1018
1019 VLOG(compiler) << "Compiled intrinsic: " << method->GetIntrinsic()
1020 << " " << graph->PrettyMethod();
1021 MaybeRecordStat(compilation_stats_.get(), MethodCompilationStat::kCompiledIntrinsic);
1022 return codegen.release();
1023 }
1024
Compile(const dex::CodeItem * code_item,uint32_t access_flags,InvokeType invoke_type,uint16_t class_def_idx,uint32_t method_idx,Handle<mirror::ClassLoader> jclass_loader,const DexFile & dex_file,Handle<mirror::DexCache> dex_cache) const1025 CompiledMethod* OptimizingCompiler::Compile(const dex::CodeItem* code_item,
1026 uint32_t access_flags,
1027 InvokeType invoke_type,
1028 uint16_t class_def_idx,
1029 uint32_t method_idx,
1030 Handle<mirror::ClassLoader> jclass_loader,
1031 const DexFile& dex_file,
1032 Handle<mirror::DexCache> dex_cache) const {
1033 const CompilerOptions& compiler_options = GetCompilerOptions();
1034 DCHECK(compiler_options.IsAotCompiler());
1035 CompiledMethod* compiled_method = nullptr;
1036 Runtime* runtime = Runtime::Current();
1037 DCHECK(runtime->IsAotCompiler());
1038 ArenaAllocator allocator(runtime->GetArenaPool());
1039 ArenaStack arena_stack(runtime->GetArenaPool());
1040 CodeVectorAllocator code_allocator(&allocator);
1041 std::unique_ptr<CodeGenerator> codegen;
1042 bool compiled_intrinsic = false;
1043 {
1044 ScopedObjectAccess soa(Thread::Current());
1045 ArtMethod* method =
1046 runtime->GetClassLinker()->ResolveMethod<ClassLinker::ResolveMode::kCheckICCEAndIAE>(
1047 method_idx, dex_cache, jclass_loader, /*referrer=*/ nullptr, invoke_type);
1048 DCHECK_EQ(method == nullptr, soa.Self()->IsExceptionPending());
1049 soa.Self()->ClearException(); // Suppress exception if any.
1050 VariableSizedHandleScope handles(soa.Self());
1051 Handle<mirror::Class> compiling_class =
1052 handles.NewHandle(method != nullptr ? method->GetDeclaringClass() : nullptr);
1053 DexCompilationUnit dex_compilation_unit(
1054 jclass_loader,
1055 runtime->GetClassLinker(),
1056 dex_file,
1057 code_item,
1058 class_def_idx,
1059 method_idx,
1060 access_flags,
1061 /*verified_method=*/ nullptr, // Not needed by the Optimizing compiler.
1062 dex_cache,
1063 compiling_class);
1064 // All signature polymorphic methods are native.
1065 DCHECK(method == nullptr || !method->IsSignaturePolymorphic());
1066 // Go to native so that we don't block GC during compilation.
1067 ScopedThreadSuspension sts(soa.Self(), ThreadState::kNative);
1068 // Try to compile a fully intrinsified implementation.
1069 if (method != nullptr && UNLIKELY(method->IsIntrinsic())) {
1070 DCHECK(compiler_options.IsBootImage());
1071 codegen.reset(
1072 TryCompileIntrinsic(&allocator,
1073 &arena_stack,
1074 &code_allocator,
1075 dex_compilation_unit,
1076 method,
1077 &handles));
1078 if (codegen != nullptr) {
1079 compiled_intrinsic = true;
1080 }
1081 }
1082 if (codegen == nullptr) {
1083 codegen.reset(
1084 TryCompile(&allocator,
1085 &arena_stack,
1086 &code_allocator,
1087 dex_compilation_unit,
1088 method,
1089 compiler_options.IsBaseline()
1090 ? CompilationKind::kBaseline
1091 : CompilationKind::kOptimized,
1092 &handles));
1093 }
1094 }
1095 if (codegen.get() != nullptr) {
1096 compiled_method = Emit(&allocator,
1097 &code_allocator,
1098 codegen.get(),
1099 compiled_intrinsic,
1100 compiled_intrinsic ? nullptr : code_item);
1101
1102 if (kArenaAllocatorCountAllocations) {
1103 codegen.reset(); // Release codegen's ScopedArenaAllocator for memory accounting.
1104 size_t total_allocated = allocator.BytesAllocated() + arena_stack.PeakBytesAllocated();
1105 if (total_allocated > kArenaAllocatorMemoryReportThreshold) {
1106 MemStats mem_stats(allocator.GetMemStats());
1107 MemStats peak_stats(arena_stack.GetPeakStats());
1108 LOG(INFO) << "Used " << total_allocated << " bytes of arena memory for compiling "
1109 << dex_file.PrettyMethod(method_idx)
1110 << "\n" << Dumpable<MemStats>(mem_stats)
1111 << "\n" << Dumpable<MemStats>(peak_stats);
1112 }
1113 }
1114 }
1115
1116 if (kIsDebugBuild &&
1117 compiler_options.CompileArtTest() &&
1118 IsInstructionSetSupported(compiler_options.GetInstructionSet())) {
1119 // For testing purposes, we put a special marker on method names
1120 // that should be compiled with this compiler (when the
1121 // instruction set is supported). This makes sure we're not
1122 // regressing.
1123 std::string method_name = dex_file.PrettyMethod(method_idx);
1124 bool shouldCompile = method_name.find("$opt$") != std::string::npos;
1125 DCHECK_IMPLIES(compiled_method == nullptr, !shouldCompile) << "Didn't compile " << method_name;
1126 }
1127
1128 return compiled_method;
1129 }
1130
CreateJniStackMap(ScopedArenaAllocator * allocator,const JniCompiledMethod & jni_compiled_method,size_t code_size,bool debuggable)1131 static ScopedArenaVector<uint8_t> CreateJniStackMap(ScopedArenaAllocator* allocator,
1132 const JniCompiledMethod& jni_compiled_method,
1133 size_t code_size,
1134 bool debuggable) {
1135 // StackMapStream is quite large, so allocate it using the ScopedArenaAllocator
1136 // to stay clear of the frame size limit.
1137 std::unique_ptr<StackMapStream> stack_map_stream(
1138 new (allocator) StackMapStream(allocator, jni_compiled_method.GetInstructionSet()));
1139 stack_map_stream->BeginMethod(jni_compiled_method.GetFrameSize(),
1140 jni_compiled_method.GetCoreSpillMask(),
1141 jni_compiled_method.GetFpSpillMask(),
1142 /* num_dex_registers= */ 0,
1143 /* baseline= */ false,
1144 debuggable);
1145 stack_map_stream->EndMethod(code_size);
1146 return stack_map_stream->Encode();
1147 }
1148
JniCompile(uint32_t access_flags,uint32_t method_idx,const DexFile & dex_file,Handle<mirror::DexCache> dex_cache) const1149 CompiledMethod* OptimizingCompiler::JniCompile(uint32_t access_flags,
1150 uint32_t method_idx,
1151 const DexFile& dex_file,
1152 Handle<mirror::DexCache> dex_cache) const {
1153 Runtime* runtime = Runtime::Current();
1154 ArenaAllocator allocator(runtime->GetArenaPool());
1155 ArenaStack arena_stack(runtime->GetArenaPool());
1156
1157 const CompilerOptions& compiler_options = GetCompilerOptions();
1158 if (compiler_options.IsBootImage()) {
1159 ScopedObjectAccess soa(Thread::Current());
1160 ArtMethod* method = runtime->GetClassLinker()->LookupResolvedMethod(
1161 method_idx, dex_cache.Get(), /*class_loader=*/ nullptr);
1162 // Try to compile a fully intrinsified implementation. Do not try to do this for
1163 // signature polymorphic methods as the InstructionBuilder cannot handle them;
1164 // and it would be useless as they always have a slow path for type conversions.
1165 if (method != nullptr && UNLIKELY(method->IsIntrinsic()) && !method->IsSignaturePolymorphic()) {
1166 VariableSizedHandleScope handles(soa.Self());
1167 ScopedNullHandle<mirror::ClassLoader> class_loader; // null means boot class path loader.
1168 Handle<mirror::Class> compiling_class = handles.NewHandle(method->GetDeclaringClass());
1169 DexCompilationUnit dex_compilation_unit(
1170 class_loader,
1171 runtime->GetClassLinker(),
1172 dex_file,
1173 /*code_item=*/ nullptr,
1174 /*class_def_idx=*/ DexFile::kDexNoIndex16,
1175 method_idx,
1176 access_flags,
1177 /*verified_method=*/ nullptr,
1178 dex_cache,
1179 compiling_class);
1180 CodeVectorAllocator code_allocator(&allocator);
1181 // Go to native so that we don't block GC during compilation.
1182 ScopedThreadSuspension sts(soa.Self(), ThreadState::kNative);
1183 std::unique_ptr<CodeGenerator> codegen(
1184 TryCompileIntrinsic(&allocator,
1185 &arena_stack,
1186 &code_allocator,
1187 dex_compilation_unit,
1188 method,
1189 &handles));
1190 if (codegen != nullptr) {
1191 return Emit(&allocator,
1192 &code_allocator,
1193 codegen.get(),
1194 /*is_intrinsic=*/ true,
1195 /*item=*/ nullptr);
1196 }
1197 }
1198 }
1199
1200 JniCompiledMethod jni_compiled_method = ArtQuickJniCompileMethod(
1201 compiler_options, access_flags, method_idx, dex_file, &allocator);
1202 MaybeRecordStat(compilation_stats_.get(), MethodCompilationStat::kCompiledNativeStub);
1203
1204 ScopedArenaAllocator stack_map_allocator(&arena_stack); // Will hold the stack map.
1205 ScopedArenaVector<uint8_t> stack_map =
1206 CreateJniStackMap(&stack_map_allocator,
1207 jni_compiled_method,
1208 jni_compiled_method.GetCode().size(),
1209 compiler_options.GetDebuggable() && compiler_options.IsJitCompiler());
1210 return GetCompiledCodeStorage()->CreateCompiledMethod(
1211 jni_compiled_method.GetInstructionSet(),
1212 jni_compiled_method.GetCode(),
1213 ArrayRef<const uint8_t>(stack_map),
1214 jni_compiled_method.GetCfi(),
1215 /*patches=*/ ArrayRef<const linker::LinkerPatch>(),
1216 /*is_intrinsic=*/ false);
1217 }
1218
CreateOptimizingCompiler(const CompilerOptions & compiler_options,CompiledCodeStorage * storage)1219 Compiler* CreateOptimizingCompiler(const CompilerOptions& compiler_options,
1220 CompiledCodeStorage* storage) {
1221 return new OptimizingCompiler(compiler_options, storage);
1222 }
1223
EncodeArtMethodInInlineInfo(ArtMethod * method ATTRIBUTE_UNUSED)1224 bool EncodeArtMethodInInlineInfo(ArtMethod* method ATTRIBUTE_UNUSED) {
1225 // Note: the runtime is null only for unit testing.
1226 return Runtime::Current() == nullptr || !Runtime::Current()->IsAotCompiler();
1227 }
1228
JitCompile(Thread * self,jit::JitCodeCache * code_cache,jit::JitMemoryRegion * region,ArtMethod * method,CompilationKind compilation_kind,jit::JitLogger * jit_logger)1229 bool OptimizingCompiler::JitCompile(Thread* self,
1230 jit::JitCodeCache* code_cache,
1231 jit::JitMemoryRegion* region,
1232 ArtMethod* method,
1233 CompilationKind compilation_kind,
1234 jit::JitLogger* jit_logger) {
1235 const CompilerOptions& compiler_options = GetCompilerOptions();
1236 DCHECK(compiler_options.IsJitCompiler());
1237 DCHECK_EQ(compiler_options.IsJitCompilerForSharedCode(), code_cache->IsSharedRegion(*region));
1238 StackHandleScope<3> hs(self);
1239 Handle<mirror::ClassLoader> class_loader(hs.NewHandle(
1240 method->GetDeclaringClass()->GetClassLoader()));
1241 Handle<mirror::DexCache> dex_cache(hs.NewHandle(method->GetDexCache()));
1242 DCHECK(method->IsCompilable());
1243
1244 const DexFile* dex_file = method->GetDexFile();
1245 const uint16_t class_def_idx = method->GetClassDefIndex();
1246 const dex::CodeItem* code_item = method->GetCodeItem();
1247 const uint32_t method_idx = method->GetDexMethodIndex();
1248 const uint32_t access_flags = method->GetAccessFlags();
1249
1250 Runtime* runtime = Runtime::Current();
1251 ArenaAllocator allocator(runtime->GetJitArenaPool());
1252
1253 if (UNLIKELY(method->IsNative())) {
1254 // Use GenericJniTrampoline for critical native methods in debuggable runtimes. We don't
1255 // support calling method entry / exit hooks for critical native methods yet.
1256 // TODO(mythria): Add support for calling method entry / exit hooks in JITed stubs for critical
1257 // native methods too.
1258 if (compiler_options.GetDebuggable() && method->IsCriticalNative()) {
1259 DCHECK(compiler_options.IsJitCompiler());
1260 return false;
1261 }
1262 // Java debuggable runtimes should set compiler options to debuggable, so that we either
1263 // generate method entry / exit hooks or skip JITing. For critical native methods we don't
1264 // generate method entry / exit hooks so we shouldn't JIT them in debuggable runtimes.
1265 DCHECK_IMPLIES(method->IsCriticalNative(), !runtime->IsJavaDebuggable());
1266
1267 JniCompiledMethod jni_compiled_method = ArtQuickJniCompileMethod(
1268 compiler_options, access_flags, method_idx, *dex_file, &allocator);
1269 std::vector<Handle<mirror::Object>> roots;
1270 ArenaSet<ArtMethod*, std::less<ArtMethod*>> cha_single_implementation_list(
1271 allocator.Adapter(kArenaAllocCHA));
1272 ArenaStack arena_stack(runtime->GetJitArenaPool());
1273 // StackMapStream is large and it does not fit into this frame, so we need helper method.
1274 ScopedArenaAllocator stack_map_allocator(&arena_stack); // Will hold the stack map.
1275 ScopedArenaVector<uint8_t> stack_map =
1276 CreateJniStackMap(&stack_map_allocator,
1277 jni_compiled_method,
1278 jni_compiled_method.GetCode().size(),
1279 compiler_options.GetDebuggable() && compiler_options.IsJitCompiler());
1280
1281 ArrayRef<const uint8_t> reserved_code;
1282 ArrayRef<const uint8_t> reserved_data;
1283 if (!code_cache->Reserve(self,
1284 region,
1285 jni_compiled_method.GetCode().size(),
1286 stack_map.size(),
1287 /* number_of_roots= */ 0,
1288 method,
1289 /*out*/ &reserved_code,
1290 /*out*/ &reserved_data)) {
1291 MaybeRecordStat(compilation_stats_.get(), MethodCompilationStat::kJitOutOfMemoryForCommit);
1292 return false;
1293 }
1294 const uint8_t* code = reserved_code.data() + OatQuickMethodHeader::InstructionAlignedSize();
1295
1296 // Add debug info after we know the code location but before we update entry-point.
1297 std::vector<uint8_t> debug_info;
1298 if (compiler_options.GenerateAnyDebugInfo()) {
1299 debug::MethodDebugInfo info = {};
1300 // Simpleperf relies on art_jni_trampoline to detect jni methods.
1301 info.custom_name = "art_jni_trampoline";
1302 info.dex_file = dex_file;
1303 info.class_def_index = class_def_idx;
1304 info.dex_method_index = method_idx;
1305 info.access_flags = access_flags;
1306 info.code_item = code_item;
1307 info.isa = jni_compiled_method.GetInstructionSet();
1308 info.deduped = false;
1309 info.is_native_debuggable = compiler_options.GetNativeDebuggable();
1310 info.is_optimized = true;
1311 info.is_code_address_text_relative = false;
1312 info.code_address = reinterpret_cast<uintptr_t>(code);
1313 info.code_size = jni_compiled_method.GetCode().size();
1314 info.frame_size_in_bytes = jni_compiled_method.GetFrameSize();
1315 info.code_info = nullptr;
1316 info.cfi = jni_compiled_method.GetCfi();
1317 debug_info = GenerateJitDebugInfo(info);
1318 }
1319
1320 if (!code_cache->Commit(self,
1321 region,
1322 method,
1323 reserved_code,
1324 jni_compiled_method.GetCode(),
1325 reserved_data,
1326 roots,
1327 ArrayRef<const uint8_t>(stack_map),
1328 debug_info,
1329 /* is_full_debug_info= */ compiler_options.GetGenerateDebugInfo(),
1330 compilation_kind,
1331 /* has_should_deoptimize_flag= */ false,
1332 cha_single_implementation_list)) {
1333 code_cache->Free(self, region, reserved_code.data(), reserved_data.data());
1334 return false;
1335 }
1336
1337 Runtime::Current()->GetJit()->AddMemoryUsage(method, allocator.BytesUsed());
1338 if (jit_logger != nullptr) {
1339 jit_logger->WriteLog(code, jni_compiled_method.GetCode().size(), method);
1340 }
1341 return true;
1342 }
1343
1344 ArenaStack arena_stack(runtime->GetJitArenaPool());
1345 CodeVectorAllocator code_allocator(&allocator);
1346 VariableSizedHandleScope handles(self);
1347
1348 std::unique_ptr<CodeGenerator> codegen;
1349 {
1350 Handle<mirror::Class> compiling_class = handles.NewHandle(method->GetDeclaringClass());
1351 DexCompilationUnit dex_compilation_unit(
1352 class_loader,
1353 runtime->GetClassLinker(),
1354 *dex_file,
1355 code_item,
1356 class_def_idx,
1357 method_idx,
1358 access_flags,
1359 /*verified_method=*/ nullptr,
1360 dex_cache,
1361 compiling_class);
1362
1363 // Go to native so that we don't block GC during compilation.
1364 ScopedThreadSuspension sts(self, ThreadState::kNative);
1365 codegen.reset(
1366 TryCompile(&allocator,
1367 &arena_stack,
1368 &code_allocator,
1369 dex_compilation_unit,
1370 method,
1371 compilation_kind,
1372 &handles));
1373 if (codegen.get() == nullptr) {
1374 return false;
1375 }
1376 }
1377
1378 ScopedArenaVector<uint8_t> stack_map = codegen->BuildStackMaps(code_item);
1379
1380 ArrayRef<const uint8_t> reserved_code;
1381 ArrayRef<const uint8_t> reserved_data;
1382 if (!code_cache->Reserve(self,
1383 region,
1384 code_allocator.GetMemory().size(),
1385 stack_map.size(),
1386 /*number_of_roots=*/codegen->GetNumberOfJitRoots(),
1387 method,
1388 /*out*/ &reserved_code,
1389 /*out*/ &reserved_data)) {
1390 MaybeRecordStat(compilation_stats_.get(), MethodCompilationStat::kJitOutOfMemoryForCommit);
1391 return false;
1392 }
1393 const uint8_t* code = reserved_code.data() + OatQuickMethodHeader::InstructionAlignedSize();
1394 const uint8_t* roots_data = reserved_data.data();
1395
1396 std::vector<Handle<mirror::Object>> roots;
1397 codegen->EmitJitRoots(code_allocator.GetData(), roots_data, &roots);
1398 // The root Handle<>s filled by the codegen reference entries in the VariableSizedHandleScope.
1399 DCHECK(std::all_of(roots.begin(),
1400 roots.end(),
1401 [&handles](Handle<mirror::Object> root){
1402 return handles.Contains(root.GetReference());
1403 }));
1404
1405 // Add debug info after we know the code location but before we update entry-point.
1406 std::vector<uint8_t> debug_info;
1407 if (compiler_options.GenerateAnyDebugInfo()) {
1408 debug::MethodDebugInfo info = {};
1409 DCHECK(info.custom_name.empty());
1410 info.dex_file = dex_file;
1411 info.class_def_index = class_def_idx;
1412 info.dex_method_index = method_idx;
1413 info.access_flags = access_flags;
1414 info.code_item = code_item;
1415 info.isa = codegen->GetInstructionSet();
1416 info.deduped = false;
1417 info.is_native_debuggable = compiler_options.GetNativeDebuggable();
1418 info.is_optimized = true;
1419 info.is_code_address_text_relative = false;
1420 info.code_address = reinterpret_cast<uintptr_t>(code);
1421 info.code_size = code_allocator.GetMemory().size();
1422 info.frame_size_in_bytes = codegen->GetFrameSize();
1423 info.code_info = stack_map.size() == 0 ? nullptr : stack_map.data();
1424 info.cfi = ArrayRef<const uint8_t>(*codegen->GetAssembler()->cfi().data());
1425 debug_info = GenerateJitDebugInfo(info);
1426 }
1427
1428 if (!code_cache->Commit(self,
1429 region,
1430 method,
1431 reserved_code,
1432 code_allocator.GetMemory(),
1433 reserved_data,
1434 roots,
1435 ArrayRef<const uint8_t>(stack_map),
1436 debug_info,
1437 /* is_full_debug_info= */ compiler_options.GetGenerateDebugInfo(),
1438 compilation_kind,
1439 codegen->GetGraph()->HasShouldDeoptimizeFlag(),
1440 codegen->GetGraph()->GetCHASingleImplementationList())) {
1441 code_cache->Free(self, region, reserved_code.data(), reserved_data.data());
1442 return false;
1443 }
1444
1445 Runtime::Current()->GetJit()->AddMemoryUsage(method, allocator.BytesUsed());
1446 if (jit_logger != nullptr) {
1447 jit_logger->WriteLog(code, code_allocator.GetMemory().size(), method);
1448 }
1449
1450 if (kArenaAllocatorCountAllocations) {
1451 codegen.reset(); // Release codegen's ScopedArenaAllocator for memory accounting.
1452 size_t total_allocated = allocator.BytesAllocated() + arena_stack.PeakBytesAllocated();
1453 if (total_allocated > kArenaAllocatorMemoryReportThreshold) {
1454 MemStats mem_stats(allocator.GetMemStats());
1455 MemStats peak_stats(arena_stack.GetPeakStats());
1456 LOG(INFO) << "Used " << total_allocated << " bytes of arena memory for compiling "
1457 << dex_file->PrettyMethod(method_idx)
1458 << "\n" << Dumpable<MemStats>(mem_stats)
1459 << "\n" << Dumpable<MemStats>(peak_stats);
1460 }
1461 }
1462
1463 return true;
1464 }
1465
GenerateJitDebugInfo(const debug::MethodDebugInfo & info)1466 std::vector<uint8_t> OptimizingCompiler::GenerateJitDebugInfo(const debug::MethodDebugInfo& info) {
1467 const CompilerOptions& compiler_options = GetCompilerOptions();
1468 if (compiler_options.GenerateAnyDebugInfo()) {
1469 // If both flags are passed, generate full debug info.
1470 const bool mini_debug_info = !compiler_options.GetGenerateDebugInfo();
1471
1472 // Create entry for the single method that we just compiled.
1473 InstructionSet isa = compiler_options.GetInstructionSet();
1474 const InstructionSetFeatures* features = compiler_options.GetInstructionSetFeatures();
1475 return debug::MakeElfFileForJIT(isa, features, mini_debug_info, info);
1476 }
1477 return std::vector<uint8_t>();
1478 }
1479
1480 } // namespace art
1481