• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Licensed to the Apache Software Foundation (ASF) under one or more
3  * contributor license agreements.  See the NOTICE file distributed with
4  * this work for additional information regarding copyright ownership.
5  * The ASF licenses this file to You under the Apache License, Version 2.0
6  * (the "License"); you may not use this file except in compliance with
7  * the License.  You may obtain a copy of the License at
8  *
9  *      http://www.apache.org/licenses/LICENSE-2.0
10  *
11  * Unless required by applicable law or agreed to in writing, software
12  * distributed under the License is distributed on an "AS IS" BASIS,
13  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14  * See the License for the specific language governing permissions and
15  * limitations under the License.
16  */
17 package org.apache.commons.lang3.math;
18 
19 import java.math.BigInteger;
20 import java.util.Objects;
21 
22 /**
23  * {@link Fraction} is a {@link Number} implementation that
24  * stores fractions accurately.
25  *
26  * <p>This class is immutable, and interoperable with most methods that accept
27  * a {@link Number}.</p>
28  *
29  * <p>Note that this class is intended for common use cases, it is <i>int</i>
30  * based and thus suffers from various overflow issues. For a BigInteger based
31  * equivalent, please see the Commons Math BigFraction class.</p>
32  *
33  * @since 2.0
34  */
35 public final class Fraction extends Number implements Comparable<Fraction> {
36 
37     /**
38      * Required for serialization support. Lang version 2.0.
39      *
40      * @see java.io.Serializable
41      */
42     private static final long serialVersionUID = 65382027393090L;
43 
44     /**
45      * {@link Fraction} representation of 0.
46      */
47     public static final Fraction ZERO = new Fraction(0, 1);
48     /**
49      * {@link Fraction} representation of 1.
50      */
51     public static final Fraction ONE = new Fraction(1, 1);
52     /**
53      * {@link Fraction} representation of 1/2.
54      */
55     public static final Fraction ONE_HALF = new Fraction(1, 2);
56     /**
57      * {@link Fraction} representation of 1/3.
58      */
59     public static final Fraction ONE_THIRD = new Fraction(1, 3);
60     /**
61      * {@link Fraction} representation of 2/3.
62      */
63     public static final Fraction TWO_THIRDS = new Fraction(2, 3);
64     /**
65      * {@link Fraction} representation of 1/4.
66      */
67     public static final Fraction ONE_QUARTER = new Fraction(1, 4);
68     /**
69      * {@link Fraction} representation of 2/4.
70      */
71     public static final Fraction TWO_QUARTERS = new Fraction(2, 4);
72     /**
73      * {@link Fraction} representation of 3/4.
74      */
75     public static final Fraction THREE_QUARTERS = new Fraction(3, 4);
76     /**
77      * {@link Fraction} representation of 1/5.
78      */
79     public static final Fraction ONE_FIFTH = new Fraction(1, 5);
80     /**
81      * {@link Fraction} representation of 2/5.
82      */
83     public static final Fraction TWO_FIFTHS = new Fraction(2, 5);
84     /**
85      * {@link Fraction} representation of 3/5.
86      */
87     public static final Fraction THREE_FIFTHS = new Fraction(3, 5);
88     /**
89      * {@link Fraction} representation of 4/5.
90      */
91     public static final Fraction FOUR_FIFTHS = new Fraction(4, 5);
92 
93 
94     /**
95      * The numerator number part of the fraction (the three in three sevenths).
96      */
97     private final int numerator;
98     /**
99      * The denominator number part of the fraction (the seven in three sevenths).
100      */
101     private final int denominator;
102 
103     /**
104      * Cached output hashCode (class is immutable).
105      */
106     private transient int hashCode;
107     /**
108      * Cached output toString (class is immutable).
109      */
110     private transient String toString;
111     /**
112      * Cached output toProperString (class is immutable).
113      */
114     private transient String toProperString;
115 
116     /**
117      * Constructs a {@link Fraction} instance with the 2 parts
118      * of a fraction Y/Z.
119      *
120      * @param numerator  the numerator, for example the three in 'three sevenths'
121      * @param denominator  the denominator, for example the seven in 'three sevenths'
122      */
Fraction(final int numerator, final int denominator)123     private Fraction(final int numerator, final int denominator) {
124         this.numerator = numerator;
125         this.denominator = denominator;
126     }
127 
128     /**
129      * Creates a {@link Fraction} instance with the 2 parts
130      * of a fraction Y/Z.
131      *
132      * <p>Any negative signs are resolved to be on the numerator.</p>
133      *
134      * @param numerator  the numerator, for example the three in 'three sevenths'
135      * @param denominator  the denominator, for example the seven in 'three sevenths'
136      * @return a new fraction instance
137      * @throws ArithmeticException if the denominator is {@code zero}
138      * or the denominator is {@code negative} and the numerator is {@code Integer#MIN_VALUE}
139      */
getFraction(int numerator, int denominator)140     public static Fraction getFraction(int numerator, int denominator) {
141         if (denominator == 0) {
142             throw new ArithmeticException("The denominator must not be zero");
143         }
144         if (denominator < 0) {
145             if (numerator == Integer.MIN_VALUE || denominator == Integer.MIN_VALUE) {
146                 throw new ArithmeticException("overflow: can't negate");
147             }
148             numerator = -numerator;
149             denominator = -denominator;
150         }
151         return new Fraction(numerator, denominator);
152     }
153 
154     /**
155      * Creates a {@link Fraction} instance with the 3 parts
156      * of a fraction X Y/Z.
157      *
158      * <p>The negative sign must be passed in on the whole number part.</p>
159      *
160      * @param whole  the whole number, for example the one in 'one and three sevenths'
161      * @param numerator  the numerator, for example the three in 'one and three sevenths'
162      * @param denominator  the denominator, for example the seven in 'one and three sevenths'
163      * @return a new fraction instance
164      * @throws ArithmeticException if the denominator is {@code zero}
165      * @throws ArithmeticException if the denominator is negative
166      * @throws ArithmeticException if the numerator is negative
167      * @throws ArithmeticException if the resulting numerator exceeds
168      *  {@code Integer.MAX_VALUE}
169      */
getFraction(final int whole, final int numerator, final int denominator)170     public static Fraction getFraction(final int whole, final int numerator, final int denominator) {
171         if (denominator == 0) {
172             throw new ArithmeticException("The denominator must not be zero");
173         }
174         if (denominator < 0) {
175             throw new ArithmeticException("The denominator must not be negative");
176         }
177         if (numerator < 0) {
178             throw new ArithmeticException("The numerator must not be negative");
179         }
180         final long numeratorValue;
181         if (whole < 0) {
182             numeratorValue = whole * (long) denominator - numerator;
183         } else {
184             numeratorValue = whole * (long) denominator + numerator;
185         }
186         if (numeratorValue < Integer.MIN_VALUE || numeratorValue > Integer.MAX_VALUE) {
187             throw new ArithmeticException("Numerator too large to represent as an Integer.");
188         }
189         return new Fraction((int) numeratorValue, denominator);
190     }
191 
192     /**
193      * Creates a reduced {@link Fraction} instance with the 2 parts
194      * of a fraction Y/Z.
195      *
196      * <p>For example, if the input parameters represent 2/4, then the created
197      * fraction will be 1/2.</p>
198      *
199      * <p>Any negative signs are resolved to be on the numerator.</p>
200      *
201      * @param numerator  the numerator, for example the three in 'three sevenths'
202      * @param denominator  the denominator, for example the seven in 'three sevenths'
203      * @return a new fraction instance, with the numerator and denominator reduced
204      * @throws ArithmeticException if the denominator is {@code zero}
205      */
getReducedFraction(int numerator, int denominator)206     public static Fraction getReducedFraction(int numerator, int denominator) {
207         if (denominator == 0) {
208             throw new ArithmeticException("The denominator must not be zero");
209         }
210         if (numerator == 0) {
211             return ZERO; // normalize zero.
212         }
213         // allow 2^k/-2^31 as a valid fraction (where k>0)
214         if (denominator == Integer.MIN_VALUE && (numerator & 1) == 0) {
215             numerator /= 2;
216             denominator /= 2;
217         }
218         if (denominator < 0) {
219             if (numerator == Integer.MIN_VALUE || denominator == Integer.MIN_VALUE) {
220                 throw new ArithmeticException("overflow: can't negate");
221             }
222             numerator = -numerator;
223             denominator = -denominator;
224         }
225         // simplify fraction.
226         final int gcd = greatestCommonDivisor(numerator, denominator);
227         numerator /= gcd;
228         denominator /= gcd;
229         return new Fraction(numerator, denominator);
230     }
231 
232     /**
233      * Creates a {@link Fraction} instance from a {@code double} value.
234      *
235      * <p>This method uses the <a href="https://web.archive.org/web/20210516065058/http%3A//archives.math.utk.edu/articles/atuyl/confrac/">
236      *  continued fraction algorithm</a>, computing a maximum of
237      *  25 convergents and bounding the denominator by 10,000.</p>
238      *
239      * @param value  the double value to convert
240      * @return a new fraction instance that is close to the value
241      * @throws ArithmeticException if {@code |value| &gt; Integer.MAX_VALUE}
242      *  or {@code value = NaN}
243      * @throws ArithmeticException if the calculated denominator is {@code zero}
244      * @throws ArithmeticException if the algorithm does not converge
245      */
getFraction(double value)246     public static Fraction getFraction(double value) {
247         final int sign = value < 0 ? -1 : 1;
248         value = Math.abs(value);
249         if (value > Integer.MAX_VALUE || Double.isNaN(value)) {
250             throw new ArithmeticException("The value must not be greater than Integer.MAX_VALUE or NaN");
251         }
252         final int wholeNumber = (int) value;
253         value -= wholeNumber;
254 
255         int numer0 = 0; // the pre-previous
256         int denom0 = 1; // the pre-previous
257         int numer1 = 1; // the previous
258         int denom1 = 0; // the previous
259         int numer2; // the current, setup in calculation
260         int denom2; // the current, setup in calculation
261         int a1 = (int) value;
262         int a2;
263         double x1 = 1;
264         double x2;
265         double y1 = value - a1;
266         double y2;
267         double delta1, delta2 = Double.MAX_VALUE;
268         double fraction;
269         int i = 1;
270         do {
271             delta1 = delta2;
272             a2 = (int) (x1 / y1);
273             x2 = y1;
274             y2 = x1 - a2 * y1;
275             numer2 = a1 * numer1 + numer0;
276             denom2 = a1 * denom1 + denom0;
277             fraction = (double) numer2 / (double) denom2;
278             delta2 = Math.abs(value - fraction);
279             a1 = a2;
280             x1 = x2;
281             y1 = y2;
282             numer0 = numer1;
283             denom0 = denom1;
284             numer1 = numer2;
285             denom1 = denom2;
286             i++;
287         } while (delta1 > delta2 && denom2 <= 10000 && denom2 > 0 && i < 25);
288         if (i == 25) {
289             throw new ArithmeticException("Unable to convert double to fraction");
290         }
291         return getReducedFraction((numer0 + wholeNumber * denom0) * sign, denom0);
292     }
293 
294     /**
295      * Creates a Fraction from a {@link String}.
296      *
297      * <p>The formats accepted are:</p>
298      *
299      * <ol>
300      *  <li>{@code double} String containing a dot</li>
301      *  <li>'X Y/Z'</li>
302      *  <li>'Y/Z'</li>
303      *  <li>'X' (a simple whole number)</li>
304      * </ol>
305      * <p>and a .</p>
306      *
307      * @param str  the string to parse, must not be {@code null}
308      * @return the new {@link Fraction} instance
309      * @throws NullPointerException if the string is {@code null}
310      * @throws NumberFormatException if the number format is invalid
311      */
getFraction(String str)312     public static Fraction getFraction(String str) {
313         Objects.requireNonNull(str, "str");
314         // parse double format
315         int pos = str.indexOf('.');
316         if (pos >= 0) {
317             return getFraction(Double.parseDouble(str));
318         }
319 
320         // parse X Y/Z format
321         pos = str.indexOf(' ');
322         if (pos > 0) {
323             final int whole = Integer.parseInt(str.substring(0, pos));
324             str = str.substring(pos + 1);
325             pos = str.indexOf('/');
326             if (pos < 0) {
327                 throw new NumberFormatException("The fraction could not be parsed as the format X Y/Z");
328             }
329             final int numer = Integer.parseInt(str.substring(0, pos));
330             final int denom = Integer.parseInt(str.substring(pos + 1));
331             return getFraction(whole, numer, denom);
332         }
333 
334         // parse Y/Z format
335         pos = str.indexOf('/');
336         if (pos < 0) {
337             // simple whole number
338             return getFraction(Integer.parseInt(str), 1);
339         }
340         final int numer = Integer.parseInt(str.substring(0, pos));
341         final int denom = Integer.parseInt(str.substring(pos + 1));
342         return getFraction(numer, denom);
343     }
344 
345     /**
346      * Gets the numerator part of the fraction.
347      *
348      * <p>This method may return a value greater than the denominator, an
349      * improper fraction, such as the seven in 7/4.</p>
350      *
351      * @return the numerator fraction part
352      */
getNumerator()353     public int getNumerator() {
354         return numerator;
355     }
356 
357     /**
358      * Gets the denominator part of the fraction.
359      *
360      * @return the denominator fraction part
361      */
getDenominator()362     public int getDenominator() {
363         return denominator;
364     }
365 
366     /**
367      * Gets the proper numerator, always positive.
368      *
369      * <p>An improper fraction 7/4 can be resolved into a proper one, 1 3/4.
370      * This method returns the 3 from the proper fraction.</p>
371      *
372      * <p>If the fraction is negative such as -7/4, it can be resolved into
373      * -1 3/4, so this method returns the positive proper numerator, 3.</p>
374      *
375      * @return the numerator fraction part of a proper fraction, always positive
376      */
getProperNumerator()377     public int getProperNumerator() {
378         return Math.abs(numerator % denominator);
379     }
380 
381     /**
382      * Gets the proper whole part of the fraction.
383      *
384      * <p>An improper fraction 7/4 can be resolved into a proper one, 1 3/4.
385      * This method returns the 1 from the proper fraction.</p>
386      *
387      * <p>If the fraction is negative such as -7/4, it can be resolved into
388      * -1 3/4, so this method returns the positive whole part -1.</p>
389      *
390      * @return the whole fraction part of a proper fraction, that includes the sign
391      */
getProperWhole()392     public int getProperWhole() {
393         return numerator / denominator;
394     }
395 
396     /**
397      * Gets the fraction as an {@code int}. This returns the whole number
398      * part of the fraction.
399      *
400      * @return the whole number fraction part
401      */
402     @Override
intValue()403     public int intValue() {
404         return numerator / denominator;
405     }
406 
407     /**
408      * Gets the fraction as a {@code long}. This returns the whole number
409      * part of the fraction.
410      *
411      * @return the whole number fraction part
412      */
413     @Override
longValue()414     public long longValue() {
415         return (long) numerator / denominator;
416     }
417 
418     /**
419      * Gets the fraction as a {@code float}. This calculates the fraction
420      * as the numerator divided by denominator.
421      *
422      * @return the fraction as a {@code float}
423      */
424     @Override
floatValue()425     public float floatValue() {
426         return (float) numerator / (float) denominator;
427     }
428 
429     /**
430      * Gets the fraction as a {@code double}. This calculates the fraction
431      * as the numerator divided by denominator.
432      *
433      * @return the fraction as a {@code double}
434      */
435     @Override
doubleValue()436     public double doubleValue() {
437         return (double) numerator / (double) denominator;
438     }
439 
440     /**
441      * Reduce the fraction to the smallest values for the numerator and
442      * denominator, returning the result.
443      *
444      * <p>For example, if this fraction represents 2/4, then the result
445      * will be 1/2.</p>
446      *
447      * @return a new reduced fraction instance, or this if no simplification possible
448      */
reduce()449     public Fraction reduce() {
450         if (numerator == 0) {
451             return equals(ZERO) ? this : ZERO;
452         }
453         final int gcd = greatestCommonDivisor(Math.abs(numerator), denominator);
454         if (gcd == 1) {
455             return this;
456         }
457         return getFraction(numerator / gcd, denominator / gcd);
458     }
459 
460     /**
461      * Gets a fraction that is the inverse (1/fraction) of this one.
462      *
463      * <p>The returned fraction is not reduced.</p>
464      *
465      * @return a new fraction instance with the numerator and denominator
466      *         inverted.
467      * @throws ArithmeticException if the fraction represents zero.
468      */
invert()469     public Fraction invert() {
470         if (numerator == 0) {
471             throw new ArithmeticException("Unable to invert zero.");
472         }
473         if (numerator==Integer.MIN_VALUE) {
474             throw new ArithmeticException("overflow: can't negate numerator");
475         }
476         if (numerator<0) {
477             return new Fraction(-denominator, -numerator);
478         }
479         return new Fraction(denominator, numerator);
480     }
481 
482     /**
483      * Gets a fraction that is the negative (-fraction) of this one.
484      *
485      * <p>The returned fraction is not reduced.</p>
486      *
487      * @return a new fraction instance with the opposite signed numerator
488      */
negate()489     public Fraction negate() {
490         // the positive range is one smaller than the negative range of an int.
491         if (numerator==Integer.MIN_VALUE) {
492             throw new ArithmeticException("overflow: too large to negate");
493         }
494         return new Fraction(-numerator, denominator);
495     }
496 
497     /**
498      * Gets a fraction that is the positive equivalent of this one.
499      * <p>More precisely: {@code (fraction &gt;= 0 ? this : -fraction)}</p>
500      *
501      * <p>The returned fraction is not reduced.</p>
502      *
503      * @return {@code this} if it is positive, or a new positive fraction
504      *  instance with the opposite signed numerator
505      */
abs()506     public Fraction abs() {
507         if (numerator >= 0) {
508             return this;
509         }
510         return negate();
511     }
512 
513     /**
514      * Gets a fraction that is raised to the passed in power.
515      *
516      * <p>The returned fraction is in reduced form.</p>
517      *
518      * @param power  the power to raise the fraction to
519      * @return {@code this} if the power is one, {@link #ONE} if the power
520      * is zero (even if the fraction equals ZERO) or a new fraction instance
521      * raised to the appropriate power
522      * @throws ArithmeticException if the resulting numerator or denominator exceeds
523      *  {@code Integer.MAX_VALUE}
524      */
pow(final int power)525     public Fraction pow(final int power) {
526         if (power == 1) {
527             return this;
528         }
529         if (power == 0) {
530             return ONE;
531         }
532         if (power < 0) {
533             if (power == Integer.MIN_VALUE) { // MIN_VALUE can't be negated.
534                 return this.invert().pow(2).pow(-(power / 2));
535             }
536             return this.invert().pow(-power);
537         }
538         final Fraction f = this.multiplyBy(this);
539         if (power % 2 == 0) { // if even...
540             return f.pow(power / 2);
541         }
542         return f.pow(power / 2).multiplyBy(this);
543     }
544 
545     /**
546      * Gets the greatest common divisor of the absolute value of
547      * two numbers, using the "binary gcd" method which avoids
548      * division and modulo operations.  See Knuth 4.5.2 algorithm B.
549      * This algorithm is due to Josef Stein (1961).
550      *
551      * @param u  a non-zero number
552      * @param v  a non-zero number
553      * @return the greatest common divisor, never zero
554      */
greatestCommonDivisor(int u, int v)555     private static int greatestCommonDivisor(int u, int v) {
556         // From Commons Math:
557         if (u == 0 || v == 0) {
558             if (u == Integer.MIN_VALUE || v == Integer.MIN_VALUE) {
559                 throw new ArithmeticException("overflow: gcd is 2^31");
560             }
561             return Math.abs(u) + Math.abs(v);
562         }
563         // if either operand is abs 1, return 1:
564         if (Math.abs(u) == 1 || Math.abs(v) == 1) {
565             return 1;
566         }
567         // keep u and v negative, as negative integers range down to
568         // -2^31, while positive numbers can only be as large as 2^31-1
569         // (i.e. we can't necessarily negate a negative number without
570         // overflow)
571         if (u > 0) {
572             u = -u;
573         } // make u negative
574         if (v > 0) {
575             v = -v;
576         } // make v negative
577         // B1. [Find power of 2]
578         int k = 0;
579         while ((u & 1) == 0 && (v & 1) == 0 && k < 31) { // while u and v are both even...
580             u /= 2;
581             v /= 2;
582             k++; // cast out twos.
583         }
584         if (k == 31) {
585             throw new ArithmeticException("overflow: gcd is 2^31");
586         }
587         // B2. Initialize: u and v have been divided by 2^k and at least
588         // one is odd.
589         int t = (u & 1) == 1 ? v : -(u / 2)/* B3 */;
590         // t negative: u was odd, v may be even (t replaces v)
591         // t positive: u was even, v is odd (t replaces u)
592         do {
593             /* assert u<0 && v<0; */
594             // B4/B3: cast out twos from t.
595             while ((t & 1) == 0) { // while t is even.
596                 t /= 2; // cast out twos
597             }
598             // B5 [reset max(u,v)]
599             if (t > 0) {
600                 u = -t;
601             } else {
602                 v = t;
603             }
604             // B6/B3. at this point both u and v should be odd.
605             t = (v - u) / 2;
606             // |u| larger: t positive (replace u)
607             // |v| larger: t negative (replace v)
608         } while (t != 0);
609         return -u * (1 << k); // gcd is u*2^k
610     }
611 
612     /**
613      * Multiply two integers, checking for overflow.
614      *
615      * @param x a factor
616      * @param y a factor
617      * @return the product {@code x*y}
618      * @throws ArithmeticException if the result can not be represented as
619      *                             an int
620      */
mulAndCheck(final int x, final int y)621     private static int mulAndCheck(final int x, final int y) {
622         final long m = (long) x * (long) y;
623         if (m < Integer.MIN_VALUE || m > Integer.MAX_VALUE) {
624             throw new ArithmeticException("overflow: mul");
625         }
626         return (int) m;
627     }
628 
629     /**
630      *  Multiply two non-negative integers, checking for overflow.
631      *
632      * @param x a non-negative factor
633      * @param y a non-negative factor
634      * @return the product {@code x*y}
635      * @throws ArithmeticException if the result can not be represented as
636      * an int
637      */
mulPosAndCheck(final int x, final int y)638     private static int mulPosAndCheck(final int x, final int y) {
639         /* assert x>=0 && y>=0; */
640         final long m = (long) x * (long) y;
641         if (m > Integer.MAX_VALUE) {
642             throw new ArithmeticException("overflow: mulPos");
643         }
644         return (int) m;
645     }
646 
647     /**
648      * Add two integers, checking for overflow.
649      *
650      * @param x an addend
651      * @param y an addend
652      * @return the sum {@code x+y}
653      * @throws ArithmeticException if the result can not be represented as
654      * an int
655      */
addAndCheck(final int x, final int y)656     private static int addAndCheck(final int x, final int y) {
657         final long s = (long) x + (long) y;
658         if (s < Integer.MIN_VALUE || s > Integer.MAX_VALUE) {
659             throw new ArithmeticException("overflow: add");
660         }
661         return (int) s;
662     }
663 
664     /**
665      * Subtract two integers, checking for overflow.
666      *
667      * @param x the minuend
668      * @param y the subtrahend
669      * @return the difference {@code x-y}
670      * @throws ArithmeticException if the result can not be represented as
671      * an int
672      */
subAndCheck(final int x, final int y)673     private static int subAndCheck(final int x, final int y) {
674         final long s = (long) x - (long) y;
675         if (s < Integer.MIN_VALUE || s > Integer.MAX_VALUE) {
676             throw new ArithmeticException("overflow: add");
677         }
678         return (int) s;
679     }
680 
681     /**
682      * Adds the value of this fraction to another, returning the result in reduced form.
683      * The algorithm follows Knuth, 4.5.1.
684      *
685      * @param fraction  the fraction to add, must not be {@code null}
686      * @return a {@link Fraction} instance with the resulting values
687      * @throws IllegalArgumentException if the fraction is {@code null}
688      * @throws ArithmeticException if the resulting numerator or denominator exceeds
689      *  {@code Integer.MAX_VALUE}
690      */
add(final Fraction fraction)691     public Fraction add(final Fraction fraction) {
692         return addSub(fraction, true /* add */);
693     }
694 
695     /**
696      * Subtracts the value of another fraction from the value of this one,
697      * returning the result in reduced form.
698      *
699      * @param fraction  the fraction to subtract, must not be {@code null}
700      * @return a {@link Fraction} instance with the resulting values
701      * @throws IllegalArgumentException if the fraction is {@code null}
702      * @throws ArithmeticException if the resulting numerator or denominator
703      *   cannot be represented in an {@code int}.
704      */
subtract(final Fraction fraction)705     public Fraction subtract(final Fraction fraction) {
706         return addSub(fraction, false /* subtract */);
707     }
708 
709     /**
710      * Implement add and subtract using algorithm described in Knuth 4.5.1.
711      *
712      * @param fraction the fraction to subtract, must not be {@code null}
713      * @param isAdd true to add, false to subtract
714      * @return a {@link Fraction} instance with the resulting values
715      * @throws IllegalArgumentException if the fraction is {@code null}
716      * @throws ArithmeticException if the resulting numerator or denominator
717      *   cannot be represented in an {@code int}.
718      */
addSub(final Fraction fraction, final boolean isAdd)719     private Fraction addSub(final Fraction fraction, final boolean isAdd) {
720         Objects.requireNonNull(fraction, "fraction");
721         // zero is identity for addition.
722         if (numerator == 0) {
723             return isAdd ? fraction : fraction.negate();
724         }
725         if (fraction.numerator == 0) {
726             return this;
727         }
728         // if denominators are randomly distributed, d1 will be 1 about 61%
729         // of the time.
730         final int d1 = greatestCommonDivisor(denominator, fraction.denominator);
731         if (d1 == 1) {
732             // result is ( (u*v' +/- u'v) / u'v')
733             final int uvp = mulAndCheck(numerator, fraction.denominator);
734             final int upv = mulAndCheck(fraction.numerator, denominator);
735             return new Fraction(isAdd ? addAndCheck(uvp, upv) : subAndCheck(uvp, upv), mulPosAndCheck(denominator,
736                     fraction.denominator));
737         }
738         // the quantity 't' requires 65 bits of precision; see knuth 4.5.1
739         // exercise 7. we're going to use a BigInteger.
740         // t = u(v'/d1) +/- v(u'/d1)
741         final BigInteger uvp = BigInteger.valueOf(numerator).multiply(BigInteger.valueOf(fraction.denominator / d1));
742         final BigInteger upv = BigInteger.valueOf(fraction.numerator).multiply(BigInteger.valueOf(denominator / d1));
743         final BigInteger t = isAdd ? uvp.add(upv) : uvp.subtract(upv);
744         // but d2 doesn't need extra precision because
745         // d2 = gcd(t,d1) = gcd(t mod d1, d1)
746         final int tmodd1 = t.mod(BigInteger.valueOf(d1)).intValue();
747         final int d2 = tmodd1 == 0 ? d1 : greatestCommonDivisor(tmodd1, d1);
748 
749         // result is (t/d2) / (u'/d1)(v'/d2)
750         final BigInteger w = t.divide(BigInteger.valueOf(d2));
751         if (w.bitLength() > 31) {
752             throw new ArithmeticException("overflow: numerator too large after multiply");
753         }
754         return new Fraction(w.intValue(), mulPosAndCheck(denominator / d1, fraction.denominator / d2));
755     }
756 
757     /**
758      * Multiplies the value of this fraction by another, returning the
759      * result in reduced form.
760      *
761      * @param fraction  the fraction to multiply by, must not be {@code null}
762      * @return a {@link Fraction} instance with the resulting values
763      * @throws NullPointerException if the fraction is {@code null}
764      * @throws ArithmeticException if the resulting numerator or denominator exceeds
765      *  {@code Integer.MAX_VALUE}
766      */
multiplyBy(final Fraction fraction)767     public Fraction multiplyBy(final Fraction fraction) {
768         Objects.requireNonNull(fraction, "fraction");
769         if (numerator == 0 || fraction.numerator == 0) {
770             return ZERO;
771         }
772         // knuth 4.5.1
773         // make sure we don't overflow unless the result *must* overflow.
774         final int d1 = greatestCommonDivisor(numerator, fraction.denominator);
775         final int d2 = greatestCommonDivisor(fraction.numerator, denominator);
776         return getReducedFraction(mulAndCheck(numerator / d1, fraction.numerator / d2),
777                 mulPosAndCheck(denominator / d2, fraction.denominator / d1));
778     }
779 
780     /**
781      * Divide the value of this fraction by another.
782      *
783      * @param fraction  the fraction to divide by, must not be {@code null}
784      * @return a {@link Fraction} instance with the resulting values
785      * @throws NullPointerException if the fraction is {@code null}
786      * @throws ArithmeticException if the fraction to divide by is zero
787      * @throws ArithmeticException if the resulting numerator or denominator exceeds
788      *  {@code Integer.MAX_VALUE}
789      */
divideBy(final Fraction fraction)790     public Fraction divideBy(final Fraction fraction) {
791         Objects.requireNonNull(fraction, "fraction");
792         if (fraction.numerator == 0) {
793             throw new ArithmeticException("The fraction to divide by must not be zero");
794         }
795         return multiplyBy(fraction.invert());
796     }
797 
798     /**
799      * Compares this fraction to another object to test if they are equal..
800      *
801      * <p>To be equal, both values must be equal. Thus 2/4 is not equal to 1/2.</p>
802      *
803      * @param obj the reference object with which to compare
804      * @return {@code true} if this object is equal
805      */
806     @Override
equals(final Object obj)807     public boolean equals(final Object obj) {
808         if (obj == this) {
809             return true;
810         }
811         if (!(obj instanceof Fraction)) {
812             return false;
813         }
814         final Fraction other = (Fraction) obj;
815         return getNumerator() == other.getNumerator() && getDenominator() == other.getDenominator();
816     }
817 
818     /**
819      * Gets a hashCode for the fraction.
820      *
821      * @return a hash code value for this object
822      */
823     @Override
hashCode()824     public int hashCode() {
825         if (hashCode == 0) {
826             // hash code update should be atomic.
827             hashCode = 37 * (37 * 17 + getNumerator()) + getDenominator();
828         }
829         return hashCode;
830     }
831 
832     /**
833      * Compares this object to another based on size.
834      *
835      * <p>Note: this class has a natural ordering that is inconsistent
836      * with equals, because, for example, equals treats 1/2 and 2/4 as
837      * different, whereas compareTo treats them as equal.
838      *
839      * @param other  the object to compare to
840      * @return -1 if this is less, 0 if equal, +1 if greater
841      * @throws ClassCastException if the object is not a {@link Fraction}
842      * @throws NullPointerException if the object is {@code null}
843      */
844     @Override
compareTo(final Fraction other)845     public int compareTo(final Fraction other) {
846         if (this == other) {
847             return 0;
848         }
849         if (numerator == other.numerator && denominator == other.denominator) {
850             return 0;
851         }
852 
853         // otherwise see which is less
854         final long first = (long) numerator * (long) other.denominator;
855         final long second = (long) other.numerator * (long) denominator;
856         return Long.compare(first, second);
857     }
858 
859     /**
860      * Gets the fraction as a {@link String}.
861      *
862      * <p>The format used is '<i>numerator</i>/<i>denominator</i>' always.
863      *
864      * @return a {@link String} form of the fraction
865      */
866     @Override
toString()867     public String toString() {
868         if (toString == null) {
869             toString = getNumerator() + "/" + getDenominator();
870         }
871         return toString;
872     }
873 
874     /**
875      * Gets the fraction as a proper {@link String} in the format X Y/Z.
876      *
877      * <p>The format used in '<i>wholeNumber</i> <i>numerator</i>/<i>denominator</i>'.
878      * If the whole number is zero it will be omitted. If the numerator is zero,
879      * only the whole number is returned.</p>
880      *
881      * @return a {@link String} form of the fraction
882      */
toProperString()883     public String toProperString() {
884         if (toProperString == null) {
885             if (numerator == 0) {
886                 toProperString = "0";
887             } else if (numerator == denominator) {
888                 toProperString = "1";
889             } else if (numerator == -1 * denominator) {
890                 toProperString = "-1";
891             } else if ((numerator > 0 ? -numerator : numerator) < -denominator) {
892                 // note that we do the magnitude comparison test above with
893                 // NEGATIVE (not positive) numbers, since negative numbers
894                 // have a larger range. otherwise numerator==Integer.MIN_VALUE
895                 // is handled incorrectly.
896                 final int properNumerator = getProperNumerator();
897                 if (properNumerator == 0) {
898                     toProperString = Integer.toString(getProperWhole());
899                 } else {
900                     toProperString = getProperWhole() + " " + properNumerator + "/" + getDenominator();
901                 }
902             } else {
903                 toProperString = getNumerator() + "/" + getDenominator();
904             }
905         }
906         return toProperString;
907     }
908 }
909