1 /* 2 * Copyright 2019 Google Inc. 3 * 4 * Use of this source code is governed by a BSD-style license that can be 5 * found in the LICENSE file. 6 */ 7 8 #ifndef SKVX_DEFINED 9 #define SKVX_DEFINED 10 11 // skvx::Vec<N,T> are SIMD vectors of N T's, a v1.5 successor to SkNx<N,T>. 12 // 13 // This time we're leaning a bit less on platform-specific intrinsics and a bit 14 // more on Clang/GCC vector extensions, but still keeping the option open to 15 // drop in platform-specific intrinsics, actually more easily than before. 16 // 17 // We've also fixed a few of the caveats that used to make SkNx awkward to work 18 // with across translation units. skvx::Vec<N,T> always has N*sizeof(T) size 19 // and alignment and is safe to use across translation units freely. 20 // (Ideally we'd only align to T, but that tanks ARMv7 NEON codegen.) 21 22 // Please try to keep this file independent of Skia headers. 23 #include <algorithm> // std::min, std::max 24 #include <cassert> // assert() 25 #include <cmath> // ceilf, floorf, truncf, roundf, sqrtf, etc. 26 #include <cstdint> // intXX_t 27 #include <cstring> // memcpy() 28 #include <initializer_list> // std::initializer_list 29 #include <utility> // std::index_sequence 30 31 // Users may disable SIMD with SKNX_NO_SIMD, which may be set via compiler flags. 32 // The gn build has no option which sets SKNX_NO_SIMD. 33 // Use SKVX_USE_SIMD internally to avoid confusing double negation. 34 // Do not use 'defined' in a macro expansion. 35 #if !defined(SKNX_NO_SIMD) 36 #define SKVX_USE_SIMD 1 37 #else 38 #define SKVX_USE_SIMD 0 39 #endif 40 41 #if SKVX_USE_SIMD 42 #if defined(__SSE__) || defined(__AVX__) || defined(__AVX2__) 43 #include <immintrin.h> 44 #elif defined(__ARM_NEON) 45 #include <arm_neon.h> 46 #elif defined(__wasm_simd128__) 47 #include <wasm_simd128.h> 48 #endif 49 #endif 50 51 // To avoid ODR violations, all methods must be force-inlined... 52 #if defined(_MSC_VER) 53 #define SKVX_ALWAYS_INLINE __forceinline 54 #else 55 #define SKVX_ALWAYS_INLINE __attribute__((always_inline)) 56 #endif 57 58 // ... and all standalone functions must be static. Please use these helpers: 59 #define SI static inline 60 #define SIT template < typename T> SI 61 #define SIN template <int N > SI 62 #define SINT template <int N, typename T> SI 63 #define SINTU template <int N, typename T, typename U, \ 64 typename=std::enable_if_t<std::is_convertible<U,T>::value>> SI 65 66 namespace skvx { 67 68 template <int N, typename T> 69 struct alignas(N*sizeof(T)) Vec; 70 71 template <int... Ix, int N, typename T> 72 SI Vec<sizeof...(Ix),T> shuffle(const Vec<N,T>&); 73 74 template <typename D, typename S> 75 SI D bit_pun(const S&); 76 77 // All Vec have the same simple memory layout, the same as `T vec[N]`. 78 template <int N, typename T> 79 struct alignas(N*sizeof(T)) VecStorage { 80 SKVX_ALWAYS_INLINE VecStorage() = default; VecStorageVecStorage81 SKVX_ALWAYS_INLINE VecStorage(T s) : lo(s), hi(s) {} 82 83 Vec<N/2,T> lo, hi; 84 }; 85 86 template <typename T> 87 struct VecStorage<4,T> { 88 SKVX_ALWAYS_INLINE VecStorage() = default; 89 SKVX_ALWAYS_INLINE VecStorage(T s) : lo(s), hi(s) {} 90 SKVX_ALWAYS_INLINE VecStorage(T x, T y, T z, T w) : lo(x,y), hi(z, w) {} 91 SKVX_ALWAYS_INLINE VecStorage(Vec<2,T> xy, T z, T w) : lo(xy), hi(z,w) {} 92 SKVX_ALWAYS_INLINE VecStorage(T x, T y, Vec<2,T> zw) : lo(x,y), hi(zw) {} 93 SKVX_ALWAYS_INLINE VecStorage(Vec<2,T> xy, Vec<2,T> zw) : lo(xy), hi(zw) {} 94 95 SKVX_ALWAYS_INLINE Vec<2,T>& xy() { return lo; } 96 SKVX_ALWAYS_INLINE Vec<2,T>& zw() { return hi; } 97 SKVX_ALWAYS_INLINE T& x() { return lo.lo.val; } 98 SKVX_ALWAYS_INLINE T& y() { return lo.hi.val; } 99 SKVX_ALWAYS_INLINE T& z() { return hi.lo.val; } 100 SKVX_ALWAYS_INLINE T& w() { return hi.hi.val; } 101 102 SKVX_ALWAYS_INLINE Vec<2,T> xy() const { return lo; } 103 SKVX_ALWAYS_INLINE Vec<2,T> zw() const { return hi; } 104 SKVX_ALWAYS_INLINE T x() const { return lo.lo.val; } 105 SKVX_ALWAYS_INLINE T y() const { return lo.hi.val; } 106 SKVX_ALWAYS_INLINE T z() const { return hi.lo.val; } 107 SKVX_ALWAYS_INLINE T w() const { return hi.hi.val; } 108 109 // Exchange-based swizzles. These should take 1 cycle on NEON and 3 (pipelined) cycles on SSE. 110 SKVX_ALWAYS_INLINE Vec<4,T> yxwz() const { return shuffle<1,0,3,2>(bit_pun<Vec<4,T>>(*this)); } 111 SKVX_ALWAYS_INLINE Vec<4,T> zwxy() const { return shuffle<2,3,0,1>(bit_pun<Vec<4,T>>(*this)); } 112 113 Vec<2,T> lo, hi; 114 }; 115 116 template <typename T> 117 struct VecStorage<2,T> { 118 SKVX_ALWAYS_INLINE VecStorage() = default; 119 SKVX_ALWAYS_INLINE VecStorage(T s) : lo(s), hi(s) {} 120 SKVX_ALWAYS_INLINE VecStorage(T x, T y) : lo(x), hi(y) {} 121 122 SKVX_ALWAYS_INLINE T& x() { return lo.val; } 123 SKVX_ALWAYS_INLINE T& y() { return hi.val; } 124 125 SKVX_ALWAYS_INLINE T x() const { return lo.val; } 126 SKVX_ALWAYS_INLINE T y() const { return hi.val; } 127 128 // This exchange-based swizzle should take 1 cycle on NEON and 3 (pipelined) cycles on SSE. 129 SKVX_ALWAYS_INLINE Vec<2,T> yx() const { return shuffle<1,0>(bit_pun<Vec<2,T>>(*this)); } 130 131 SKVX_ALWAYS_INLINE Vec<4,T> xyxy() const { 132 return Vec<4,T>(bit_pun<Vec<2,T>>(*this), bit_pun<Vec<2,T>>(*this)); 133 } 134 135 Vec<1,T> lo, hi; 136 }; 137 138 template <int N, typename T> 139 struct alignas(N*sizeof(T)) Vec : public VecStorage<N,T> { 140 static_assert((N & (N-1)) == 0, "N must be a power of 2."); 141 static_assert(sizeof(T) >= alignof(T), "What kind of unusual T is this?"); 142 143 // Methods belong here in the class declaration of Vec only if: 144 // - they must be here, like constructors or operator[]; 145 // - they'll definitely never want a specialized implementation. 146 // Other operations on Vec should be defined outside the type. 147 148 SKVX_ALWAYS_INLINE Vec() = default; 149 150 using VecStorage<N,T>::VecStorage; 151 152 // NOTE: Vec{x} produces x000..., whereas Vec(x) produces xxxx.... since this constructor fills 153 // unspecified lanes with 0s, whereas the single T constructor fills all lanes with the value. 154 SKVX_ALWAYS_INLINE Vec(std::initializer_list<T> xs) { 155 T vals[N] = {0}; 156 memcpy(vals, xs.begin(), std::min(xs.size(), (size_t)N)*sizeof(T)); 157 158 this->lo = Vec<N/2,T>::Load(vals + 0); 159 this->hi = Vec<N/2,T>::Load(vals + N/2); 160 } 161 162 SKVX_ALWAYS_INLINE T operator[](int i) const { return i<N/2 ? this->lo[i] : this->hi[i-N/2]; } 163 SKVX_ALWAYS_INLINE T& operator[](int i) { return i<N/2 ? this->lo[i] : this->hi[i-N/2]; } 164 165 SKVX_ALWAYS_INLINE static Vec Load(const void* ptr) { 166 Vec v; 167 memcpy(&v, ptr, sizeof(Vec)); 168 return v; 169 } 170 SKVX_ALWAYS_INLINE void store(void* ptr) const { 171 memcpy(ptr, this, sizeof(Vec)); 172 } 173 }; 174 175 template <typename T> 176 struct Vec<1,T> { 177 T val; 178 179 SKVX_ALWAYS_INLINE Vec() = default; 180 181 Vec(T s) : val(s) {} 182 183 SKVX_ALWAYS_INLINE Vec(std::initializer_list<T> xs) : val(xs.size() ? *xs.begin() : 0) {} 184 185 SKVX_ALWAYS_INLINE T operator[](int) const { return val; } 186 SKVX_ALWAYS_INLINE T& operator[](int) { return val; } 187 188 SKVX_ALWAYS_INLINE static Vec Load(const void* ptr) { 189 Vec v; 190 memcpy(&v, ptr, sizeof(Vec)); 191 return v; 192 } 193 SKVX_ALWAYS_INLINE void store(void* ptr) const { 194 memcpy(ptr, this, sizeof(Vec)); 195 } 196 }; 197 198 template <typename D, typename S> 199 SI D bit_pun(const S& s) { 200 static_assert(sizeof(D) == sizeof(S)); 201 D d; 202 memcpy(&d, &s, sizeof(D)); 203 return d; 204 } 205 206 // Translate from a value type T to its corresponding Mask, the result of a comparison. 207 template <typename T> struct Mask { using type = T; }; 208 template <> struct Mask<float > { using type = int32_t; }; 209 template <> struct Mask<double> { using type = int64_t; }; 210 template <typename T> using M = typename Mask<T>::type; 211 212 // Join two Vec<N,T> into one Vec<2N,T>. 213 SINT Vec<2*N,T> join(const Vec<N,T>& lo, const Vec<N,T>& hi) { 214 Vec<2*N,T> v; 215 v.lo = lo; 216 v.hi = hi; 217 return v; 218 } 219 220 // We have three strategies for implementing Vec operations: 221 // 1) lean on Clang/GCC vector extensions when available; 222 // 2) use map() to apply a scalar function lane-wise; 223 // 3) recurse on lo/hi to scalar portable implementations. 224 // We can slot in platform-specific implementations as overloads for particular Vec<N,T>, 225 // or often integrate them directly into the recursion of style 3), allowing fine control. 226 227 #if SKVX_USE_SIMD && (defined(__clang__) || defined(__GNUC__)) 228 229 // VExt<N,T> types have the same size as Vec<N,T> and support most operations directly. 230 #if defined(__clang__) 231 template <int N, typename T> 232 using VExt = T __attribute__((ext_vector_type(N))); 233 234 #elif defined(__GNUC__) 235 template <int N, typename T> 236 struct VExtHelper { 237 typedef T __attribute__((vector_size(N*sizeof(T)))) type; 238 }; 239 240 template <int N, typename T> 241 using VExt = typename VExtHelper<N,T>::type; 242 243 // For some reason some (new!) versions of GCC cannot seem to deduce N in the generic 244 // to_vec<N,T>() below for N=4 and T=float. This workaround seems to help... 245 SI Vec<4,float> to_vec(VExt<4,float> v) { return bit_pun<Vec<4,float>>(v); } 246 #endif 247 248 SINT VExt<N,T> to_vext(const Vec<N,T>& v) { return bit_pun<VExt<N,T>>(v); } 249 SINT Vec <N,T> to_vec(const VExt<N,T>& v) { return bit_pun<Vec <N,T>>(v); } 250 251 SINT Vec<N,T> operator+(const Vec<N,T>& x, const Vec<N,T>& y) { 252 return to_vec<N,T>(to_vext(x) + to_vext(y)); 253 } 254 SINT Vec<N,T> operator-(const Vec<N,T>& x, const Vec<N,T>& y) { 255 return to_vec<N,T>(to_vext(x) - to_vext(y)); 256 } 257 SINT Vec<N,T> operator*(const Vec<N,T>& x, const Vec<N,T>& y) { 258 return to_vec<N,T>(to_vext(x) * to_vext(y)); 259 } 260 SINT Vec<N,T> operator/(const Vec<N,T>& x, const Vec<N,T>& y) { 261 return to_vec<N,T>(to_vext(x) / to_vext(y)); 262 } 263 264 SINT Vec<N,T> operator^(const Vec<N,T>& x, const Vec<N,T>& y) { 265 return to_vec<N,T>(to_vext(x) ^ to_vext(y)); 266 } 267 SINT Vec<N,T> operator&(const Vec<N,T>& x, const Vec<N,T>& y) { 268 return to_vec<N,T>(to_vext(x) & to_vext(y)); 269 } 270 SINT Vec<N,T> operator|(const Vec<N,T>& x, const Vec<N,T>& y) { 271 return to_vec<N,T>(to_vext(x) | to_vext(y)); 272 } 273 274 SINT Vec<N,T> operator!(const Vec<N,T>& x) { return to_vec<N,T>(!to_vext(x)); } 275 SINT Vec<N,T> operator-(const Vec<N,T>& x) { return to_vec<N,T>(-to_vext(x)); } 276 SINT Vec<N,T> operator~(const Vec<N,T>& x) { return to_vec<N,T>(~to_vext(x)); } 277 278 SINT Vec<N,T> operator<<(const Vec<N,T>& x, int k) { return to_vec<N,T>(to_vext(x) << k); } 279 SINT Vec<N,T> operator>>(const Vec<N,T>& x, int k) { return to_vec<N,T>(to_vext(x) >> k); } 280 281 SINT Vec<N,M<T>> operator==(const Vec<N,T>& x, const Vec<N,T>& y) { 282 return bit_pun<Vec<N,M<T>>>(to_vext(x) == to_vext(y)); 283 } 284 SINT Vec<N,M<T>> operator!=(const Vec<N,T>& x, const Vec<N,T>& y) { 285 return bit_pun<Vec<N,M<T>>>(to_vext(x) != to_vext(y)); 286 } 287 SINT Vec<N,M<T>> operator<=(const Vec<N,T>& x, const Vec<N,T>& y) { 288 return bit_pun<Vec<N,M<T>>>(to_vext(x) <= to_vext(y)); 289 } 290 SINT Vec<N,M<T>> operator>=(const Vec<N,T>& x, const Vec<N,T>& y) { 291 return bit_pun<Vec<N,M<T>>>(to_vext(x) >= to_vext(y)); 292 } 293 SINT Vec<N,M<T>> operator< (const Vec<N,T>& x, const Vec<N,T>& y) { 294 return bit_pun<Vec<N,M<T>>>(to_vext(x) < to_vext(y)); 295 } 296 SINT Vec<N,M<T>> operator> (const Vec<N,T>& x, const Vec<N,T>& y) { 297 return bit_pun<Vec<N,M<T>>>(to_vext(x) > to_vext(y)); 298 } 299 300 #else 301 302 // Either SKNX_NO_SIMD is defined, or Clang/GCC vector extensions are not available. 303 // We'll implement things portably with N==1 scalar implementations and recursion onto them. 304 305 // N == 1 scalar implementations. 306 SIT Vec<1,T> operator+(const Vec<1,T>& x, const Vec<1,T>& y) { return x.val + y.val; } 307 SIT Vec<1,T> operator-(const Vec<1,T>& x, const Vec<1,T>& y) { return x.val - y.val; } 308 SIT Vec<1,T> operator*(const Vec<1,T>& x, const Vec<1,T>& y) { return x.val * y.val; } 309 SIT Vec<1,T> operator/(const Vec<1,T>& x, const Vec<1,T>& y) { return x.val / y.val; } 310 311 SIT Vec<1,T> operator^(const Vec<1,T>& x, const Vec<1,T>& y) { return x.val ^ y.val; } 312 SIT Vec<1,T> operator&(const Vec<1,T>& x, const Vec<1,T>& y) { return x.val & y.val; } 313 SIT Vec<1,T> operator|(const Vec<1,T>& x, const Vec<1,T>& y) { return x.val | y.val; } 314 315 SIT Vec<1,T> operator!(const Vec<1,T>& x) { return !x.val; } 316 SIT Vec<1,T> operator-(const Vec<1,T>& x) { return -x.val; } 317 SIT Vec<1,T> operator~(const Vec<1,T>& x) { return ~x.val; } 318 319 SIT Vec<1,T> operator<<(const Vec<1,T>& x, int k) { return x.val << k; } 320 SIT Vec<1,T> operator>>(const Vec<1,T>& x, int k) { return x.val >> k; } 321 322 SIT Vec<1,M<T>> operator==(const Vec<1,T>& x, const Vec<1,T>& y) { 323 return x.val == y.val ? ~0 : 0; 324 } 325 SIT Vec<1,M<T>> operator!=(const Vec<1,T>& x, const Vec<1,T>& y) { 326 return x.val != y.val ? ~0 : 0; 327 } 328 SIT Vec<1,M<T>> operator<=(const Vec<1,T>& x, const Vec<1,T>& y) { 329 return x.val <= y.val ? ~0 : 0; 330 } 331 SIT Vec<1,M<T>> operator>=(const Vec<1,T>& x, const Vec<1,T>& y) { 332 return x.val >= y.val ? ~0 : 0; 333 } 334 SIT Vec<1,M<T>> operator< (const Vec<1,T>& x, const Vec<1,T>& y) { 335 return x.val < y.val ? ~0 : 0; 336 } 337 SIT Vec<1,M<T>> operator> (const Vec<1,T>& x, const Vec<1,T>& y) { 338 return x.val > y.val ? ~0 : 0; 339 } 340 341 // Recurse on lo/hi down to N==1 scalar implementations. 342 SINT Vec<N,T> operator+(const Vec<N,T>& x, const Vec<N,T>& y) { 343 return join(x.lo + y.lo, x.hi + y.hi); 344 } 345 SINT Vec<N,T> operator-(const Vec<N,T>& x, const Vec<N,T>& y) { 346 return join(x.lo - y.lo, x.hi - y.hi); 347 } 348 SINT Vec<N,T> operator*(const Vec<N,T>& x, const Vec<N,T>& y) { 349 return join(x.lo * y.lo, x.hi * y.hi); 350 } 351 SINT Vec<N,T> operator/(const Vec<N,T>& x, const Vec<N,T>& y) { 352 return join(x.lo / y.lo, x.hi / y.hi); 353 } 354 355 SINT Vec<N,T> operator^(const Vec<N,T>& x, const Vec<N,T>& y) { 356 return join(x.lo ^ y.lo, x.hi ^ y.hi); 357 } 358 SINT Vec<N,T> operator&(const Vec<N,T>& x, const Vec<N,T>& y) { 359 return join(x.lo & y.lo, x.hi & y.hi); 360 } 361 SINT Vec<N,T> operator|(const Vec<N,T>& x, const Vec<N,T>& y) { 362 return join(x.lo | y.lo, x.hi | y.hi); 363 } 364 365 SINT Vec<N,T> operator!(const Vec<N,T>& x) { return join(!x.lo, !x.hi); } 366 SINT Vec<N,T> operator-(const Vec<N,T>& x) { return join(-x.lo, -x.hi); } 367 SINT Vec<N,T> operator~(const Vec<N,T>& x) { return join(~x.lo, ~x.hi); } 368 369 SINT Vec<N,T> operator<<(const Vec<N,T>& x, int k) { return join(x.lo << k, x.hi << k); } 370 SINT Vec<N,T> operator>>(const Vec<N,T>& x, int k) { return join(x.lo >> k, x.hi >> k); } 371 372 SINT Vec<N,M<T>> operator==(const Vec<N,T>& x, const Vec<N,T>& y) { 373 return join(x.lo == y.lo, x.hi == y.hi); 374 } 375 SINT Vec<N,M<T>> operator!=(const Vec<N,T>& x, const Vec<N,T>& y) { 376 return join(x.lo != y.lo, x.hi != y.hi); 377 } 378 SINT Vec<N,M<T>> operator<=(const Vec<N,T>& x, const Vec<N,T>& y) { 379 return join(x.lo <= y.lo, x.hi <= y.hi); 380 } 381 SINT Vec<N,M<T>> operator>=(const Vec<N,T>& x, const Vec<N,T>& y) { 382 return join(x.lo >= y.lo, x.hi >= y.hi); 383 } 384 SINT Vec<N,M<T>> operator< (const Vec<N,T>& x, const Vec<N,T>& y) { 385 return join(x.lo < y.lo, x.hi < y.hi); 386 } 387 SINT Vec<N,M<T>> operator> (const Vec<N,T>& x, const Vec<N,T>& y) { 388 return join(x.lo > y.lo, x.hi > y.hi); 389 } 390 #endif 391 392 // Scalar/vector operations splat the scalar to a vector. 393 SINTU Vec<N,T> operator+ (U x, const Vec<N,T>& y) { return Vec<N,T>(x) + y; } 394 SINTU Vec<N,T> operator- (U x, const Vec<N,T>& y) { return Vec<N,T>(x) - y; } 395 SINTU Vec<N,T> operator* (U x, const Vec<N,T>& y) { return Vec<N,T>(x) * y; } 396 SINTU Vec<N,T> operator/ (U x, const Vec<N,T>& y) { return Vec<N,T>(x) / y; } 397 SINTU Vec<N,T> operator^ (U x, const Vec<N,T>& y) { return Vec<N,T>(x) ^ y; } 398 SINTU Vec<N,T> operator& (U x, const Vec<N,T>& y) { return Vec<N,T>(x) & y; } 399 SINTU Vec<N,T> operator| (U x, const Vec<N,T>& y) { return Vec<N,T>(x) | y; } 400 SINTU Vec<N,M<T>> operator==(U x, const Vec<N,T>& y) { return Vec<N,T>(x) == y; } 401 SINTU Vec<N,M<T>> operator!=(U x, const Vec<N,T>& y) { return Vec<N,T>(x) != y; } 402 SINTU Vec<N,M<T>> operator<=(U x, const Vec<N,T>& y) { return Vec<N,T>(x) <= y; } 403 SINTU Vec<N,M<T>> operator>=(U x, const Vec<N,T>& y) { return Vec<N,T>(x) >= y; } 404 SINTU Vec<N,M<T>> operator< (U x, const Vec<N,T>& y) { return Vec<N,T>(x) < y; } 405 SINTU Vec<N,M<T>> operator> (U x, const Vec<N,T>& y) { return Vec<N,T>(x) > y; } 406 407 SINTU Vec<N,T> operator+ (const Vec<N,T>& x, U y) { return x + Vec<N,T>(y); } 408 SINTU Vec<N,T> operator- (const Vec<N,T>& x, U y) { return x - Vec<N,T>(y); } 409 SINTU Vec<N,T> operator* (const Vec<N,T>& x, U y) { return x * Vec<N,T>(y); } 410 SINTU Vec<N,T> operator/ (const Vec<N,T>& x, U y) { return x / Vec<N,T>(y); } 411 SINTU Vec<N,T> operator^ (const Vec<N,T>& x, U y) { return x ^ Vec<N,T>(y); } 412 SINTU Vec<N,T> operator& (const Vec<N,T>& x, U y) { return x & Vec<N,T>(y); } 413 SINTU Vec<N,T> operator| (const Vec<N,T>& x, U y) { return x | Vec<N,T>(y); } 414 SINTU Vec<N,M<T>> operator==(const Vec<N,T>& x, U y) { return x == Vec<N,T>(y); } 415 SINTU Vec<N,M<T>> operator!=(const Vec<N,T>& x, U y) { return x != Vec<N,T>(y); } 416 SINTU Vec<N,M<T>> operator<=(const Vec<N,T>& x, U y) { return x <= Vec<N,T>(y); } 417 SINTU Vec<N,M<T>> operator>=(const Vec<N,T>& x, U y) { return x >= Vec<N,T>(y); } 418 SINTU Vec<N,M<T>> operator< (const Vec<N,T>& x, U y) { return x < Vec<N,T>(y); } 419 SINTU Vec<N,M<T>> operator> (const Vec<N,T>& x, U y) { return x > Vec<N,T>(y); } 420 421 SINT Vec<N,T>& operator+=(Vec<N,T>& x, const Vec<N,T>& y) { return (x = x + y); } 422 SINT Vec<N,T>& operator-=(Vec<N,T>& x, const Vec<N,T>& y) { return (x = x - y); } 423 SINT Vec<N,T>& operator*=(Vec<N,T>& x, const Vec<N,T>& y) { return (x = x * y); } 424 SINT Vec<N,T>& operator/=(Vec<N,T>& x, const Vec<N,T>& y) { return (x = x / y); } 425 SINT Vec<N,T>& operator^=(Vec<N,T>& x, const Vec<N,T>& y) { return (x = x ^ y); } 426 SINT Vec<N,T>& operator&=(Vec<N,T>& x, const Vec<N,T>& y) { return (x = x & y); } 427 SINT Vec<N,T>& operator|=(Vec<N,T>& x, const Vec<N,T>& y) { return (x = x | y); } 428 429 SINTU Vec<N,T>& operator+=(Vec<N,T>& x, U y) { return (x = x + Vec<N,T>(y)); } 430 SINTU Vec<N,T>& operator-=(Vec<N,T>& x, U y) { return (x = x - Vec<N,T>(y)); } 431 SINTU Vec<N,T>& operator*=(Vec<N,T>& x, U y) { return (x = x * Vec<N,T>(y)); } 432 SINTU Vec<N,T>& operator/=(Vec<N,T>& x, U y) { return (x = x / Vec<N,T>(y)); } 433 SINTU Vec<N,T>& operator^=(Vec<N,T>& x, U y) { return (x = x ^ Vec<N,T>(y)); } 434 SINTU Vec<N,T>& operator&=(Vec<N,T>& x, U y) { return (x = x & Vec<N,T>(y)); } 435 SINTU Vec<N,T>& operator|=(Vec<N,T>& x, U y) { return (x = x | Vec<N,T>(y)); } 436 437 SINT Vec<N,T>& operator<<=(Vec<N,T>& x, int bits) { return (x = x << bits); } 438 SINT Vec<N,T>& operator>>=(Vec<N,T>& x, int bits) { return (x = x >> bits); } 439 440 // Some operations we want are not expressible with Clang/GCC vector extensions. 441 442 // Clang can reason about naive_if_then_else() and optimize through it better 443 // than if_then_else(), so it's sometimes useful to call it directly when we 444 // think an entire expression should optimize away, e.g. min()/max(). 445 SINT Vec<N,T> naive_if_then_else(const Vec<N,M<T>>& cond, const Vec<N,T>& t, const Vec<N,T>& e) { 446 return bit_pun<Vec<N,T>>(( cond & bit_pun<Vec<N, M<T>>>(t)) | 447 (~cond & bit_pun<Vec<N, M<T>>>(e)) ); 448 } 449 450 SIT Vec<1,T> if_then_else(const Vec<1,M<T>>& cond, const Vec<1,T>& t, const Vec<1,T>& e) { 451 // In practice this scalar implementation is unlikely to be used. See next if_then_else(). 452 return bit_pun<Vec<1,T>>(( cond & bit_pun<Vec<1, M<T>>>(t)) | 453 (~cond & bit_pun<Vec<1, M<T>>>(e)) ); 454 } 455 SINT Vec<N,T> if_then_else(const Vec<N,M<T>>& cond, const Vec<N,T>& t, const Vec<N,T>& e) { 456 // Specializations inline here so they can generalize what types the apply to. 457 #if SKVX_USE_SIMD && defined(__AVX2__) 458 if constexpr (N*sizeof(T) == 32) { 459 return bit_pun<Vec<N,T>>(_mm256_blendv_epi8(bit_pun<__m256i>(e), 460 bit_pun<__m256i>(t), 461 bit_pun<__m256i>(cond))); 462 } 463 #endif 464 #if SKVX_USE_SIMD && defined(__SSE4_1__) 465 if constexpr (N*sizeof(T) == 16) { 466 return bit_pun<Vec<N,T>>(_mm_blendv_epi8(bit_pun<__m128i>(e), 467 bit_pun<__m128i>(t), 468 bit_pun<__m128i>(cond))); 469 } 470 #endif 471 #if SKVX_USE_SIMD && defined(__ARM_NEON) 472 if constexpr (N*sizeof(T) == 16) { 473 return bit_pun<Vec<N,T>>(vbslq_u8(bit_pun<uint8x16_t>(cond), 474 bit_pun<uint8x16_t>(t), 475 bit_pun<uint8x16_t>(e))); 476 } 477 #endif 478 // Recurse for large vectors to try to hit the specializations above. 479 if constexpr (N*sizeof(T) > 16) { 480 return join(if_then_else(cond.lo, t.lo, e.lo), 481 if_then_else(cond.hi, t.hi, e.hi)); 482 } 483 // This default can lead to better code than the recursing onto scalars. 484 return naive_if_then_else(cond, t, e); 485 } 486 487 SIT bool any(const Vec<1,T>& x) { return x.val != 0; } 488 SINT bool any(const Vec<N,T>& x) { 489 // For any(), the _mm_testz intrinsics are correct and don't require comparing 'x' to 0, so it's 490 // lower latency compared to _mm_movemask + _mm_compneq on plain SSE. 491 #if SKVX_USE_SIMD && defined(__AVX2__) 492 if constexpr (N*sizeof(T) == 32) { 493 return !_mm256_testz_si256(bit_pun<__m256i>(x), _mm256_set1_epi32(-1)); 494 } 495 #endif 496 #if SKVX_USE_SIMD && defined(__SSE_4_1__) 497 if constexpr (N*sizeof(T) == 16) { 498 return !_mm_testz_si128(bit_pun<__m128i>(x), _mm_set1_epi32(-1)); 499 } 500 #endif 501 #if SKVX_USE_SIMD && defined(__SSE__) 502 if constexpr (N*sizeof(T) == 16) { 503 // On SSE, movemask checks only the MSB in each lane, which is fine if the lanes were set 504 // directly from a comparison op (which sets all bits to 1 when true), but skvx::Vec<> 505 // treats any non-zero value as true, so we have to compare 'x' to 0 before calling movemask 506 return _mm_movemask_ps(_mm_cmpneq_ps(bit_pun<__m128>(x), _mm_set1_ps(0))) != 0b0000; 507 } 508 #endif 509 #if SKVX_USE_SIMD && defined(__aarch64__) 510 // On 64-bit NEON, take the max across lanes, which will be non-zero if any lane was true. 511 // The specific lane-size doesn't really matter in this case since it's really any set bit 512 // that we're looking for. 513 if constexpr (N*sizeof(T) == 8 ) { return vmaxv_u8 (bit_pun<uint8x8_t> (x)) > 0; } 514 if constexpr (N*sizeof(T) == 16) { return vmaxvq_u8(bit_pun<uint8x16_t>(x)) > 0; } 515 #endif 516 #if SKVX_USE_SIMD && defined(__wasm_simd128__) 517 if constexpr (N == 4 && sizeof(T) == 4) { 518 return wasm_i32x4_any_true(bit_pun<VExt<4,int>>(x)); 519 } 520 #endif 521 return any(x.lo) 522 || any(x.hi); 523 } 524 525 SIT bool all(const Vec<1,T>& x) { return x.val != 0; } 526 SINT bool all(const Vec<N,T>& x) { 527 // Unlike any(), we have to respect the lane layout, or we'll miss cases where a 528 // true lane has a mix of 0 and 1 bits. 529 #if SKVX_USE_SIMD && defined(__SSE__) 530 // Unfortunately, the _mm_testc intrinsics don't let us avoid the comparison to 0 for all()'s 531 // correctness, so always just use the plain SSE version. 532 if constexpr (N == 4 && sizeof(T) == 4) { 533 return _mm_movemask_ps(_mm_cmpneq_ps(bit_pun<__m128>(x), _mm_set1_ps(0))) == 0b1111; 534 } 535 #endif 536 #if SKVX_USE_SIMD && defined(__aarch64__) 537 // On 64-bit NEON, take the min across the lanes, which will be non-zero if all lanes are != 0. 538 if constexpr (sizeof(T)==1 && N==8) {return vminv_u8 (bit_pun<uint8x8_t> (x)) > 0;} 539 if constexpr (sizeof(T)==1 && N==16) {return vminvq_u8 (bit_pun<uint8x16_t>(x)) > 0;} 540 if constexpr (sizeof(T)==2 && N==4) {return vminv_u16 (bit_pun<uint16x4_t>(x)) > 0;} 541 if constexpr (sizeof(T)==2 && N==8) {return vminvq_u16(bit_pun<uint16x8_t>(x)) > 0;} 542 if constexpr (sizeof(T)==4 && N==2) {return vminv_u32 (bit_pun<uint32x2_t>(x)) > 0;} 543 if constexpr (sizeof(T)==4 && N==4) {return vminvq_u32(bit_pun<uint32x4_t>(x)) > 0;} 544 #endif 545 #if SKVX_USE_SIMD && defined(__wasm_simd128__) 546 if constexpr (N == 4 && sizeof(T) == 4) { 547 return wasm_i32x4_all_true(bit_pun<VExt<4,int>>(x)); 548 } 549 #endif 550 return all(x.lo) 551 && all(x.hi); 552 } 553 554 // cast() Vec<N,S> to Vec<N,D>, as if applying a C-cast to each lane. 555 // TODO: implement with map()? 556 template <typename D, typename S> 557 SI Vec<1,D> cast(const Vec<1,S>& src) { return (D)src.val; } 558 559 template <typename D, int N, typename S> 560 SI Vec<N,D> cast(const Vec<N,S>& src) { 561 #if SKVX_USE_SIMD && defined(__clang__) 562 return to_vec(__builtin_convertvector(to_vext(src), VExt<N,D>)); 563 #else 564 return join(cast<D>(src.lo), cast<D>(src.hi)); 565 #endif 566 } 567 568 // min/max match logic of std::min/std::max, which is important when NaN is involved. 569 SIT T min(const Vec<1,T>& x) { return x.val; } 570 SIT T max(const Vec<1,T>& x) { return x.val; } 571 SINT T min(const Vec<N,T>& x) { return std::min(min(x.lo), min(x.hi)); } 572 SINT T max(const Vec<N,T>& x) { return std::max(max(x.lo), max(x.hi)); } 573 574 SINT Vec<N,T> min(const Vec<N,T>& x, const Vec<N,T>& y) { return naive_if_then_else(y < x, y, x); } 575 SINT Vec<N,T> max(const Vec<N,T>& x, const Vec<N,T>& y) { return naive_if_then_else(x < y, y, x); } 576 577 SINTU Vec<N,T> min(const Vec<N,T>& x, U y) { return min(x, Vec<N,T>(y)); } 578 SINTU Vec<N,T> max(const Vec<N,T>& x, U y) { return max(x, Vec<N,T>(y)); } 579 SINTU Vec<N,T> min(U x, const Vec<N,T>& y) { return min(Vec<N,T>(x), y); } 580 SINTU Vec<N,T> max(U x, const Vec<N,T>& y) { return max(Vec<N,T>(x), y); } 581 582 // pin matches the logic of SkTPin, which is important when NaN is involved. It always returns 583 // values in the range lo..hi, and if x is NaN, it returns lo. 584 SINT Vec<N,T> pin(const Vec<N,T>& x, const Vec<N,T>& lo, const Vec<N,T>& hi) { 585 return max(lo, min(x, hi)); 586 } 587 588 // Shuffle values from a vector pretty arbitrarily: 589 // skvx::Vec<4,float> rgba = {R,G,B,A}; 590 // shuffle<2,1,0,3> (rgba) ~> {B,G,R,A} 591 // shuffle<2,1> (rgba) ~> {B,G} 592 // shuffle<2,1,2,1,2,1,2,1>(rgba) ~> {B,G,B,G,B,G,B,G} 593 // shuffle<3,3,3,3> (rgba) ~> {A,A,A,A} 594 // The only real restriction is that the output also be a legal N=power-of-two sknx::Vec. 595 template <int... Ix, int N, typename T> 596 SI Vec<sizeof...(Ix),T> shuffle(const Vec<N,T>& x) { 597 #if SKVX_USE_SIMD && defined(__clang__) 598 // TODO: can we just always use { x[Ix]... }? 599 return to_vec<sizeof...(Ix),T>(__builtin_shufflevector(to_vext(x), to_vext(x), Ix...)); 600 #else 601 return { x[Ix]... }; 602 #endif 603 } 604 605 // Call map(fn, x) for a vector with fn() applied to each lane of x, { fn(x[0]), fn(x[1]), ... }, 606 // or map(fn, x,y) for a vector of fn(x[i], y[i]), etc. 607 608 template <typename Fn, typename... Args, size_t... I> 609 SI auto map(std::index_sequence<I...>, 610 Fn&& fn, const Args&... args) -> skvx::Vec<sizeof...(I), decltype(fn(args[0]...))> { 611 auto lane = [&](size_t i) 612 #if defined(__clang__) 613 // CFI, specifically -fsanitize=cfi-icall, seems to give a false positive here, 614 // with errors like "control flow integrity check for type 'float (float) 615 // noexcept' failed during indirect function call... note: sqrtf.cfi_jt defined 616 // here". But we can be quite sure fn is the right type: it's all inferred! 617 // So, stifle CFI in this function. 618 __attribute__((no_sanitize("cfi"))) 619 #endif 620 { return fn(args[static_cast<int>(i)]...); }; 621 622 return { lane(I)... }; 623 } 624 625 template <typename Fn, int N, typename T, typename... Rest> 626 auto map(Fn&& fn, const Vec<N,T>& first, const Rest&... rest) { 627 // Derive an {0...N-1} index_sequence from the size of the first arg: N lanes in, N lanes out. 628 return map(std::make_index_sequence<N>{}, fn, first,rest...); 629 } 630 631 SIN Vec<N,float> ceil(const Vec<N,float>& x) { return map( ceilf, x); } 632 SIN Vec<N,float> floor(const Vec<N,float>& x) { return map(floorf, x); } 633 SIN Vec<N,float> trunc(const Vec<N,float>& x) { return map(truncf, x); } 634 SIN Vec<N,float> round(const Vec<N,float>& x) { return map(roundf, x); } 635 SIN Vec<N,float> sqrt(const Vec<N,float>& x) { return map( sqrtf, x); } 636 SIN Vec<N,float> abs(const Vec<N,float>& x) { return map( fabsf, x); } 637 SIN Vec<N,float> fma(const Vec<N,float>& x, 638 const Vec<N,float>& y, 639 const Vec<N,float>& z) { 640 // I don't understand why Clang's codegen is terrible if we write map(fmaf, x,y,z) directly. 641 auto fn = [](float x, float y, float z) { return fmaf(x,y,z); }; 642 return map(fn, x,y,z); 643 } 644 645 SI Vec<1,int> lrint(const Vec<1,float>& x) { 646 return (int)lrintf(x.val); 647 } 648 SIN Vec<N,int> lrint(const Vec<N,float>& x) { 649 #if SKVX_USE_SIMD && defined(__AVX__) 650 if constexpr (N == 8) { 651 return bit_pun<Vec<N,int>>(_mm256_cvtps_epi32(bit_pun<__m256>(x))); 652 } 653 #endif 654 #if SKVX_USE_SIMD && defined(__SSE__) 655 if constexpr (N == 4) { 656 return bit_pun<Vec<N,int>>(_mm_cvtps_epi32(bit_pun<__m128>(x))); 657 } 658 #endif 659 return join(lrint(x.lo), 660 lrint(x.hi)); 661 } 662 663 SIN Vec<N,float> fract(const Vec<N,float>& x) { return x - floor(x); } 664 665 // Assumes inputs are finite and treat/flush denorm half floats as/to zero. 666 // Key constants to watch for: 667 // - a float is 32-bit, 1-8-23 sign-exponent-mantissa, with 127 exponent bias; 668 // - a half is 16-bit, 1-5-10 sign-exponent-mantissa, with 15 exponent bias. 669 SIN Vec<N,uint16_t> to_half_finite_ftz(const Vec<N,float>& x) { 670 Vec<N,uint32_t> sem = bit_pun<Vec<N,uint32_t>>(x), 671 s = sem & 0x8000'0000, 672 em = sem ^ s, 673 is_norm = em > 0x387f'd000, // halfway between largest f16 denorm and smallest norm 674 norm = (em>>13) - ((127-15)<<10); 675 return cast<uint16_t>((s>>16) | (is_norm & norm)); 676 } 677 SIN Vec<N,float> from_half_finite_ftz(const Vec<N,uint16_t>& x) { 678 Vec<N,uint32_t> wide = cast<uint32_t>(x), 679 s = wide & 0x8000, 680 em = wide ^ s, 681 is_norm = em > 0x3ff, 682 norm = (em<<13) + ((127-15)<<23); 683 return bit_pun<Vec<N,float>>((s<<16) | (is_norm & norm)); 684 } 685 686 // Like if_then_else(), these N=1 base cases won't actually be used unless explicitly called. 687 SI Vec<1,uint16_t> to_half(const Vec<1,float>& x) { return to_half_finite_ftz(x); } 688 SI Vec<1,float> from_half(const Vec<1,uint16_t>& x) { return from_half_finite_ftz(x); } 689 690 SIN Vec<N,uint16_t> to_half(const Vec<N,float>& x) { 691 #if SKVX_USE_SIMD && defined(__F16C__) 692 if constexpr (N == 8) { 693 return bit_pun<Vec<N,uint16_t>>(_mm256_cvtps_ph(bit_pun<__m256>(x), 694 _MM_FROUND_TO_NEAREST_INT)); 695 } 696 #endif 697 #if SKVX_USE_SIMD && defined(__aarch64__) 698 if constexpr (N == 4) { 699 return bit_pun<Vec<N,uint16_t>>(vcvt_f16_f32(bit_pun<float32x4_t>(x))); 700 701 } 702 #endif 703 if constexpr (N > 4) { 704 return join(to_half(x.lo), 705 to_half(x.hi)); 706 } 707 return to_half_finite_ftz(x); 708 } 709 710 SIN Vec<N,float> from_half(const Vec<N,uint16_t>& x) { 711 #if SKVX_USE_SIMD && defined(__F16C__) 712 if constexpr (N == 8) { 713 return bit_pun<Vec<N,float>>(_mm256_cvtph_ps(bit_pun<__m128i>(x))); 714 } 715 #endif 716 #if SKVX_USE_SIMD && defined(__aarch64__) 717 if constexpr (N == 4) { 718 return bit_pun<Vec<N,float>>(vcvt_f32_f16(bit_pun<float16x4_t>(x))); 719 } 720 #endif 721 if constexpr (N > 4) { 722 return join(from_half(x.lo), 723 from_half(x.hi)); 724 } 725 return from_half_finite_ftz(x); 726 } 727 728 // div255(x) = (x + 127) / 255 is a bit-exact rounding divide-by-255, packing down to 8-bit. 729 SIN Vec<N,uint8_t> div255(const Vec<N,uint16_t>& x) { 730 return cast<uint8_t>( (x+127)/255 ); 731 } 732 733 // approx_scale(x,y) approximates div255(cast<uint16_t>(x)*cast<uint16_t>(y)) within a bit, 734 // and is always perfect when x or y is 0 or 255. 735 SIN Vec<N,uint8_t> approx_scale(const Vec<N,uint8_t>& x, const Vec<N,uint8_t>& y) { 736 // All of (x*y+x)/256, (x*y+y)/256, and (x*y+255)/256 meet the criteria above. 737 // We happen to have historically picked (x*y+x)/256. 738 auto X = cast<uint16_t>(x), 739 Y = cast<uint16_t>(y); 740 return cast<uint8_t>( (X*Y+X)/256 ); 741 } 742 743 // saturated_add(x,y) sums values and clamps to the maximum value instead of overflowing. 744 SINT std::enable_if_t<std::is_unsigned_v<T>, Vec<N,T>> saturated_add(const Vec<N,T>& x, 745 const Vec<N,T>& y) { 746 #if SKVX_USE_SIMD && (defined(__SSE__) || defined(__ARM_NEON)) 747 // Both SSE and ARM have 16-lane saturated adds, so use intrinsics for those and recurse down 748 // or join up to take advantage. 749 if constexpr (N == 16 && sizeof(T) == 1) { 750 #if defined(__SSE__) 751 return bit_pun<Vec<N,T>>(_mm_adds_epu8(bit_pun<__m128i>(x), bit_pun<__m128i>(y))); 752 #else // __ARM_NEON 753 return bit_pun<Vec<N,T>>(vqaddq_u8(bit_pun<uint8x16_t>(x), bit_pun<uint8x16_t>(y))); 754 #endif 755 } else if constexpr (N < 16 && sizeof(T) == 1) { 756 return saturated_add(join(x,x), join(y,y)).lo; 757 } else if constexpr (sizeof(T) == 1) { 758 return join(saturated_add(x.lo, y.lo), saturated_add(x.hi, y.hi)); 759 } 760 #endif 761 // Otherwise saturate manually 762 auto sum = x + y; 763 return if_then_else(sum < x, Vec<N,T>(std::numeric_limits<T>::max()), sum); 764 } 765 766 // The ScaledDividerU32 takes a divisor > 1, and creates a function divide(numerator) that 767 // calculates a numerator / denominator. For this to be rounded properly, numerator should have 768 // half added in: 769 // divide(numerator + half) == floor(numerator/denominator + 1/2). 770 // 771 // This gives an answer within +/- 1 from the true value. 772 // 773 // Derivation of half: 774 // numerator/denominator + 1/2 = (numerator + half) / d 775 // numerator + denominator / 2 = numerator + half 776 // half = denominator / 2. 777 // 778 // Because half is divided by 2, that division must also be rounded. 779 // half == denominator / 2 = (denominator + 1) / 2. 780 // 781 // The divisorFactor is just a scaled value: 782 // divisorFactor = (1 / divisor) * 2 ^ 32. 783 // The maximum that can be divided and rounded is UINT_MAX - half. 784 class ScaledDividerU32 { 785 public: 786 explicit ScaledDividerU32(uint32_t divisor) 787 : fDivisorFactor{(uint32_t)(std::round((1.0 / divisor) * (1ull << 32)))} 788 , fHalf{(divisor + 1) >> 1} { 789 assert(divisor > 1); 790 } 791 792 Vec<4, uint32_t> divide(const Vec<4, uint32_t>& numerator) const { 793 #if SKVX_USE_SIMD && defined(__ARM_NEON) 794 uint64x2_t hi = vmull_n_u32(vget_high_u32(to_vext(numerator)), fDivisorFactor); 795 uint64x2_t lo = vmull_n_u32(vget_low_u32(to_vext(numerator)), fDivisorFactor); 796 797 return to_vec<4, uint32_t>(vcombine_u32(vshrn_n_u64(lo,32), vshrn_n_u64(hi,32))); 798 #else 799 return cast<uint32_t>((cast<uint64_t>(numerator) * fDivisorFactor) >> 32); 800 #endif 801 } 802 803 uint32_t half() const { return fHalf; } 804 805 private: 806 const uint32_t fDivisorFactor; 807 const uint32_t fHalf; 808 }; 809 810 811 SIN Vec<N,uint16_t> mull(const Vec<N,uint8_t>& x, 812 const Vec<N,uint8_t>& y) { 813 #if SKVX_USE_SIMD && defined(__ARM_NEON) 814 // With NEON we can do eight u8*u8 -> u16 in one instruction, vmull_u8 (read, mul-long). 815 if constexpr (N == 8) { 816 return to_vec<8,uint16_t>(vmull_u8(to_vext(x), to_vext(y))); 817 } else if constexpr (N < 8) { 818 return mull(join(x,x), join(y,y)).lo; 819 } else { // N > 8 820 return join(mull(x.lo, y.lo), mull(x.hi, y.hi)); 821 } 822 #else 823 return cast<uint16_t>(x) * cast<uint16_t>(y); 824 #endif 825 } 826 827 SIN Vec<N,uint32_t> mull(const Vec<N,uint16_t>& x, 828 const Vec<N,uint16_t>& y) { 829 #if SKVX_USE_SIMD && defined(__ARM_NEON) 830 // NEON can do four u16*u16 -> u32 in one instruction, vmull_u16 831 if constexpr (N == 4) { 832 return to_vec<4,uint32_t>(vmull_u16(to_vext(x), to_vext(y))); 833 } else if constexpr (N < 4) { 834 return mull(join(x,x), join(y,y)).lo; 835 } else { // N > 4 836 return join(mull(x.lo, y.lo), mull(x.hi, y.hi)); 837 } 838 #else 839 return cast<uint32_t>(x) * cast<uint32_t>(y); 840 #endif 841 } 842 843 SIN Vec<N,uint16_t> mulhi(const Vec<N,uint16_t>& x, 844 const Vec<N,uint16_t>& y) { 845 #if SKVX_USE_SIMD && defined(__SSE__) 846 // Use _mm_mulhi_epu16 for 8xuint16_t and join or split to get there. 847 if constexpr (N == 8) { 848 return bit_pun<Vec<8,uint16_t>>(_mm_mulhi_epu16(bit_pun<__m128i>(x), bit_pun<__m128i>(y))); 849 } else if constexpr (N < 8) { 850 return mulhi(join(x,x), join(y,y)).lo; 851 } else { // N > 8 852 return join(mulhi(x.lo, y.lo), mulhi(x.hi, y.hi)); 853 } 854 #else 855 return skvx::cast<uint16_t>(mull(x, y) >> 16); 856 #endif 857 } 858 859 SINT T dot(const Vec<N, T>& a, const Vec<N, T>& b) { 860 // While dot is a "horizontal" operation like any or all, it needs to remain 861 // in floating point and there aren't really any good SIMD instructions that make it faster. 862 // The constexpr cases remove the for loop in the only cases we realistically call. 863 auto ab = a*b; 864 if constexpr (N == 2) { 865 return ab[0] + ab[1]; 866 } else if constexpr (N == 4) { 867 return ab[0] + ab[1] + ab[2] + ab[3]; 868 } else { 869 T sum = ab[0]; 870 for (int i = 1; i < N; ++i) { 871 sum += ab[i]; 872 } 873 return sum; 874 } 875 } 876 877 SIT T cross(const Vec<2, T>& a, const Vec<2, T>& b) { 878 auto x = a * shuffle<1,0>(b); 879 return x[0] - x[1]; 880 } 881 882 SIN float length(const Vec<N, float>& v) { 883 return std::sqrt(dot(v, v)); 884 } 885 886 SIN double length(const Vec<N, double>& v) { 887 return std::sqrt(dot(v, v)); 888 } 889 890 SIN Vec<N, float> normalize(const Vec<N, float>& v) { 891 return v / length(v); 892 } 893 894 SIN Vec<N, double> normalize(const Vec<N, double>& v) { 895 return v / length(v); 896 } 897 898 SINT bool isfinite(const Vec<N, T>& v) { 899 // Multiply all values together with 0. If they were all finite, the output is 900 // 0 (also finite). If any were not, we'll get nan. 901 return std::isfinite(dot(v, Vec<N, T>(0))); 902 } 903 904 // De-interleaving load of 4 vectors. 905 // 906 // WARNING: These are really only supported well on NEON. Consider restructuring your data before 907 // resorting to these methods. 908 SIT void strided_load4(const T* v, 909 Vec<1,T>& a, 910 Vec<1,T>& b, 911 Vec<1,T>& c, 912 Vec<1,T>& d) { 913 a.val = v[0]; 914 b.val = v[1]; 915 c.val = v[2]; 916 d.val = v[3]; 917 } 918 SINT void strided_load4(const T* v, 919 Vec<N,T>& a, 920 Vec<N,T>& b, 921 Vec<N,T>& c, 922 Vec<N,T>& d) { 923 strided_load4(v, a.lo, b.lo, c.lo, d.lo); 924 strided_load4(v + 4*(N/2), a.hi, b.hi, c.hi, d.hi); 925 } 926 #if SKVX_USE_SIMD && defined(__ARM_NEON) 927 #define IMPL_LOAD4_TRANSPOSED(N, T, VLD) \ 928 SI void strided_load4(const T* v, \ 929 Vec<N,T>& a, \ 930 Vec<N,T>& b, \ 931 Vec<N,T>& c, \ 932 Vec<N,T>& d) { \ 933 auto mat = VLD(v); \ 934 a = bit_pun<Vec<N,T>>(mat.val[0]); \ 935 b = bit_pun<Vec<N,T>>(mat.val[1]); \ 936 c = bit_pun<Vec<N,T>>(mat.val[2]); \ 937 d = bit_pun<Vec<N,T>>(mat.val[3]); \ 938 } 939 IMPL_LOAD4_TRANSPOSED(2, uint32_t, vld4_u32) 940 IMPL_LOAD4_TRANSPOSED(4, uint16_t, vld4_u16) 941 IMPL_LOAD4_TRANSPOSED(8, uint8_t, vld4_u8) 942 IMPL_LOAD4_TRANSPOSED(2, int32_t, vld4_s32) 943 IMPL_LOAD4_TRANSPOSED(4, int16_t, vld4_s16) 944 IMPL_LOAD4_TRANSPOSED(8, int8_t, vld4_s8) 945 IMPL_LOAD4_TRANSPOSED(2, float, vld4_f32) 946 IMPL_LOAD4_TRANSPOSED(4, uint32_t, vld4q_u32) 947 IMPL_LOAD4_TRANSPOSED(8, uint16_t, vld4q_u16) 948 IMPL_LOAD4_TRANSPOSED(16, uint8_t, vld4q_u8) 949 IMPL_LOAD4_TRANSPOSED(4, int32_t, vld4q_s32) 950 IMPL_LOAD4_TRANSPOSED(8, int16_t, vld4q_s16) 951 IMPL_LOAD4_TRANSPOSED(16, int8_t, vld4q_s8) 952 IMPL_LOAD4_TRANSPOSED(4, float, vld4q_f32) 953 #undef IMPL_LOAD4_TRANSPOSED 954 955 #elif SKVX_USE_SIMD && defined(__SSE__) 956 957 SI void strided_load4(const float* v, 958 Vec<4,float>& a, 959 Vec<4,float>& b, 960 Vec<4,float>& c, 961 Vec<4,float>& d) { 962 __m128 a_ = _mm_loadu_ps(v); 963 __m128 b_ = _mm_loadu_ps(v+4); 964 __m128 c_ = _mm_loadu_ps(v+8); 965 __m128 d_ = _mm_loadu_ps(v+12); 966 _MM_TRANSPOSE4_PS(a_, b_, c_, d_); 967 a = bit_pun<Vec<4,float>>(a_); 968 b = bit_pun<Vec<4,float>>(b_); 969 c = bit_pun<Vec<4,float>>(c_); 970 d = bit_pun<Vec<4,float>>(d_); 971 } 972 #endif 973 974 // De-interleaving load of 2 vectors. 975 // 976 // WARNING: These are really only supported well on NEON. Consider restructuring your data before 977 // resorting to these methods. 978 SIT void strided_load2(const T* v, Vec<1,T>& a, Vec<1,T>& b) { 979 a.val = v[0]; 980 b.val = v[1]; 981 } 982 SINT void strided_load2(const T* v, Vec<N,T>& a, Vec<N,T>& b) { 983 strided_load2(v, a.lo, b.lo); 984 strided_load2(v + 2*(N/2), a.hi, b.hi); 985 } 986 #if SKVX_USE_SIMD && defined(__ARM_NEON) 987 #define IMPL_LOAD2_TRANSPOSED(N, T, VLD) \ 988 SI void strided_load2(const T* v, Vec<N,T>& a, Vec<N,T>& b) { \ 989 auto mat = VLD(v); \ 990 a = bit_pun<Vec<N,T>>(mat.val[0]); \ 991 b = bit_pun<Vec<N,T>>(mat.val[1]); \ 992 } 993 IMPL_LOAD2_TRANSPOSED(2, uint32_t, vld2_u32) 994 IMPL_LOAD2_TRANSPOSED(4, uint16_t, vld2_u16) 995 IMPL_LOAD2_TRANSPOSED(8, uint8_t, vld2_u8) 996 IMPL_LOAD2_TRANSPOSED(2, int32_t, vld2_s32) 997 IMPL_LOAD2_TRANSPOSED(4, int16_t, vld2_s16) 998 IMPL_LOAD2_TRANSPOSED(8, int8_t, vld2_s8) 999 IMPL_LOAD2_TRANSPOSED(2, float, vld2_f32) 1000 IMPL_LOAD2_TRANSPOSED(4, uint32_t, vld2q_u32) 1001 IMPL_LOAD2_TRANSPOSED(8, uint16_t, vld2q_u16) 1002 IMPL_LOAD2_TRANSPOSED(16, uint8_t, vld2q_u8) 1003 IMPL_LOAD2_TRANSPOSED(4, int32_t, vld2q_s32) 1004 IMPL_LOAD2_TRANSPOSED(8, int16_t, vld2q_s16) 1005 IMPL_LOAD2_TRANSPOSED(16, int8_t, vld2q_s8) 1006 IMPL_LOAD2_TRANSPOSED(4, float, vld2q_f32) 1007 #undef IMPL_LOAD2_TRANSPOSED 1008 #endif 1009 1010 // Define commonly used aliases 1011 using float2 = Vec< 2, float>; 1012 using float4 = Vec< 4, float>; 1013 using float8 = Vec< 8, float>; 1014 1015 using double2 = Vec< 2, double>; 1016 using double4 = Vec< 4, double>; 1017 using double8 = Vec< 8, double>; 1018 1019 using byte2 = Vec< 2, uint8_t>; 1020 using byte4 = Vec< 4, uint8_t>; 1021 using byte8 = Vec< 8, uint8_t>; 1022 using byte16 = Vec<16, uint8_t>; 1023 1024 using int2 = Vec< 2, int32_t>; 1025 using int4 = Vec< 4, int32_t>; 1026 using int8 = Vec< 8, int32_t>; 1027 1028 using uint2 = Vec< 2, uint32_t>; 1029 using uint4 = Vec< 4, uint32_t>; 1030 using uint8 = Vec< 8, uint32_t>; 1031 1032 using long2 = Vec< 2, int64_t>; 1033 using long4 = Vec< 4, int64_t>; 1034 using long8 = Vec< 8, int64_t>; 1035 1036 // Use with from_half and to_half to convert between floatX, and use these for storage. 1037 using half2 = Vec< 2, uint16_t>; 1038 using half4 = Vec< 4, uint16_t>; 1039 using half8 = Vec< 8, uint16_t>; 1040 1041 } // namespace skvx 1042 1043 #undef SINTU 1044 #undef SINT 1045 #undef SIN 1046 #undef SIT 1047 #undef SI 1048 #undef SKVX_ALWAYS_INLINE 1049 #undef SKVX_USE_SIMD 1050 1051 #endif//SKVX_DEFINED 1052