• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2019 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #ifndef SkZip_DEFINED
9 #define SkZip_DEFINED
10 
11 #include "include/private/base/SkAssert.h"
12 #include "include/private/base/SkDebug.h"
13 #include "include/private/base/SkSpan_impl.h"
14 
15 #include <algorithm>
16 #include <cstddef>
17 #include <cstdint>
18 #include <iterator>
19 #include <tuple>
20 #include <utility>
21 
22 // Take a list of things that can be pointers, and use them all in parallel. The iterators and
23 // accessor operator[] for the class produce a tuple of the items.
24 template<typename... Ts>
25 class SkZip {
26     using ReturnTuple = std::tuple<Ts&...>;
27 
28     class Iterator {
29     public:
30         using value_type = ReturnTuple;
31         using difference_type = ptrdiff_t;
32         using pointer = value_type*;
33         using reference = value_type;
34         using iterator_category = std::input_iterator_tag;
Iterator(const SkZip * zip,size_t index)35         constexpr Iterator(const SkZip* zip, size_t index) : fZip{zip}, fIndex{index} { }
Iterator(const Iterator & that)36         constexpr Iterator(const Iterator& that) : Iterator{ that.fZip, that.fIndex } { }
37         constexpr Iterator& operator++() { ++fIndex; return *this; }
38         constexpr Iterator operator++(int) { Iterator tmp(*this); operator++(); return tmp; }
39         constexpr bool operator==(const Iterator& rhs) const { return fIndex == rhs.fIndex; }
40         constexpr bool operator!=(const Iterator& rhs) const { return fIndex != rhs.fIndex; }
41         constexpr reference operator*() { return (*fZip)[fIndex]; }
42         friend constexpr difference_type operator-(Iterator lhs, Iterator rhs) {
43             return lhs.fIndex - rhs.fIndex;
44         }
45 
46     private:
47         const SkZip* const fZip = nullptr;
48         size_t fIndex = 0;
49     };
50 
51     template<typename T>
52     inline static constexpr T* nullify = nullptr;
53 
54 public:
SkZip()55     constexpr SkZip() : fPointers{nullify<Ts>...}, fSize{0} {}
56     constexpr SkZip(size_t) = delete;
SkZip(size_t size,Ts * ...ts)57     constexpr SkZip(size_t size, Ts*... ts)
58             : fPointers{ts...}
59             , fSize{size} {}
60     constexpr SkZip(const SkZip& that) = default;
61     constexpr SkZip& operator=(const SkZip &that) = default;
62 
63     // Check to see if U can be used for const T or is the same as T
64     template <typename U, typename T>
65     using CanConvertToConst = typename std::integral_constant<bool,
66                     std::is_convertible<U*, T*>::value && sizeof(U) == sizeof(T)>::type;
67 
68     // Allow SkZip<const T> to be constructed from SkZip<T>.
69     template<typename... Us,
70             typename = std::enable_if<std::conjunction<CanConvertToConst<Us, Ts>...>::value>>
SkZip(const SkZip<Us...> & that)71     constexpr SkZip(const SkZip<Us...>& that)
72         : fPointers(that.data())
73         , fSize{that.size()} { }
74 
75     constexpr ReturnTuple operator[](size_t i) const { return this->index(i);}
size()76     constexpr size_t size() const { return fSize; }
empty()77     constexpr bool empty() const { return this->size() == 0; }
front()78     constexpr ReturnTuple front() const { return this->index(0); }
back()79     constexpr ReturnTuple back() const { return this->index(this->size() - 1); }
begin()80     constexpr Iterator begin() const { return Iterator{this, 0}; }
end()81     constexpr Iterator end() const { return Iterator{this, this->size()}; }
get()82     template<size_t I> constexpr auto get() const {
83         return SkSpan(std::get<I>(fPointers), fSize);
84     }
data()85     constexpr std::tuple<Ts*...> data() const { return fPointers; }
first(size_t n)86     constexpr SkZip first(size_t n) const {
87         SkASSERT(n <= this->size());
88         if (n == 0) { return SkZip(); }
89         return SkZip{n, fPointers};
90     }
last(size_t n)91     constexpr SkZip last(size_t n) const {
92         SkASSERT(n <= this->size());
93         if (n == 0) { return SkZip(); }
94         return SkZip{n, this->pointersAt(fSize - n)};
95     }
subspan(size_t offset,size_t count)96     constexpr SkZip subspan(size_t offset, size_t count) const {
97         SkASSERT(offset < this->size());
98         SkASSERT(count <= this->size() - offset);
99         if (count == 0) { return SkZip(); }
100         return SkZip(count, pointersAt(offset));
101     }
102 
103 private:
SkZip(size_t n,const std::tuple<Ts * ...> & pointers)104     constexpr SkZip(size_t n, const std::tuple<Ts*...>& pointers)
105         : fPointers{pointers}
106         , fSize{n} {}
107 
index(size_t i)108     constexpr ReturnTuple index(size_t i) const {
109         SkASSERT(this->size() > 0);
110         SkASSERT(i < this->size());
111         return indexDetail(i, std::make_index_sequence<sizeof...(Ts)>{});
112     }
113 
114     template<std::size_t... Is>
indexDetail(size_t i,std::index_sequence<Is...>)115     constexpr ReturnTuple indexDetail(size_t i, std::index_sequence<Is...>) const {
116         return ReturnTuple((std::get<Is>(fPointers))[i]...);
117     }
118 
pointersAt(size_t i)119     std::tuple<Ts*...> pointersAt(size_t i) const {
120         SkASSERT(this->size() > 0);
121         SkASSERT(i < this->size());
122         return pointersAtDetail(i, std::make_index_sequence<sizeof...(Ts)>{});
123     }
124 
125     template<std::size_t... Is>
pointersAtDetail(size_t i,std::index_sequence<Is...>)126     constexpr std::tuple<Ts*...> pointersAtDetail(size_t i, std::index_sequence<Is...>) const {
127         return std::tuple<Ts*...>{&(std::get<Is>(fPointers))[i]...};
128     }
129 
130     std::tuple<Ts*...> fPointers;
131     size_t fSize;
132 };
133 
134 class SkMakeZipDetail {
135     template<typename T> struct DecayPointer{
136         using U = typename std::remove_cv<typename std::remove_reference<T>::type>::type;
137         using type = typename std::conditional<std::is_pointer<U>::value, U, T>::type;
138     };
139     template<typename T> using DecayPointerT = typename DecayPointer<T>::type;
140 
141     template<typename C> struct ContiguousMemory { };
142     template<typename T> struct ContiguousMemory<T*> {
143         using value_type = T;
144         static constexpr value_type* Data(T* t) { return t; }
145         static constexpr size_t Size(T* s) { return SIZE_MAX; }
146     };
147     template<typename T, size_t N> struct ContiguousMemory<T(&)[N]> {
148         using value_type = T;
149         static constexpr value_type* Data(T(&t)[N]) { return t; }
150         static constexpr size_t Size(T(&)[N]) { return N; }
151     };
152     // In general, we don't want r-value collections, but SkSpans are ok, because they are a view
153     // onto an actual container.
154     template<typename T> struct ContiguousMemory<SkSpan<T>> {
155         using value_type = T;
156         static constexpr value_type* Data(SkSpan<T> s) { return s.data(); }
157         static constexpr size_t Size(SkSpan<T> s) { return s.size(); }
158     };
159     // Only accept l-value references to collections.
160     template<typename C> struct ContiguousMemory<C&> {
161         using value_type = typename std::remove_pointer<decltype(std::declval<C>().data())>::type;
162         static constexpr value_type* Data(C& c) { return c.data(); }
163         static constexpr size_t Size(C& c) { return c.size(); }
164     };
165     template<typename C> using Span = ContiguousMemory<DecayPointerT<C>>;
166     template<typename C> using ValueType = typename Span<C>::value_type;
167 
168     template<typename C, typename... Ts> struct PickOneSize { };
169     template <typename T, typename... Ts> struct PickOneSize<T*, Ts...> {
170         static constexpr size_t Size(T* t, Ts... ts) {
171             return PickOneSize<Ts...>::Size(std::forward<Ts>(ts)...);
172         }
173     };
174     template <typename T, typename... Ts, size_t N> struct PickOneSize<T(&)[N], Ts...> {
175         static constexpr size_t Size(T(&)[N], Ts...) { return N; }
176     };
177     template<typename T, typename... Ts> struct PickOneSize<SkSpan<T>, Ts...> {
178         static constexpr size_t Size(SkSpan<T> s, Ts...) { return s.size(); }
179     };
180     template<typename C, typename... Ts> struct PickOneSize<C&, Ts...> {
181         static constexpr size_t Size(C& c, Ts...) { return c.size(); }
182     };
183 
184 public:
185     template<typename... Ts>
186     static constexpr auto MakeZip(Ts&& ... ts) {
187 
188         // Pick the first collection that has a size, and use that for the size.
189         size_t size = PickOneSize<DecayPointerT<Ts>...>::Size(std::forward<Ts>(ts)...);
190 
191 #ifdef SK_DEBUG
192         // Check that all sizes are the same.
193         size_t minSize = SIZE_MAX;
194         size_t maxSize = 0;
195         for (size_t s : {Span<Ts>::Size(std::forward<Ts>(ts))...}) {
196             if (s != SIZE_MAX) {
197                 minSize = std::min(minSize, s);
198                 maxSize = std::max(maxSize, s);
199             }
200         }
201         SkASSERT(minSize == maxSize);
202 #endif
203 
204         return SkZip<ValueType<Ts>...>{size, Span<Ts>::Data(std::forward<Ts>(ts))...};
205     }
206 };
207 
208 template<typename... Ts>
209 SkZip(size_t size, Ts*... ts) -> SkZip<Ts...>;
210 
211 template<typename... Ts>
212 inline constexpr auto SkMakeZip(Ts&& ... ts) {
213     return SkMakeZipDetail::MakeZip(std::forward<Ts>(ts)...);
214 }
215 #endif //SkZip_DEFINED
216