• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2020 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #ifndef GrThreadSafeCache_DEFINED
9 #define GrThreadSafeCache_DEFINED
10 
11 #include "include/core/SkRefCnt.h"
12 #include "include/private/SkSpinlock.h"
13 #include "src/base/SkArenaAlloc.h"
14 #include "src/base/SkTInternalLList.h"
15 #include "src/core/SkTDynamicHash.h"
16 #include "src/gpu/ganesh/GrGpuBuffer.h"
17 #include "src/gpu/ganesh/GrSurfaceProxy.h"
18 #include "src/gpu/ganesh/GrSurfaceProxyView.h"
19 
20 // Ganesh creates a lot of utility textures (e.g., blurred-rrect masks) that need to be shared
21 // between the direct context and all the DDL recording contexts. This thread-safe cache
22 // allows this sharing.
23 //
24 // In operation, each thread will first check if the threaded cache possesses the required texture.
25 //
26 // If a DDL thread doesn't find a needed texture it will go off and create it on the cpu and then
27 // attempt to add it to the cache. If another thread had added it in the interim, the losing thread
28 // will discard its work and use the texture the winning thread had created.
29 //
30 // If the thread in possession of the direct context doesn't find the needed texture it should
31 // add a place holder view and then queue up the draw calls to complete it. In this way the
32 // gpu-thread has precedence over the recording threads.
33 //
34 // The invariants for this cache differ a bit from those of the proxy and resource caches.
35 // For this cache:
36 //
37 //   only this cache knows the unique key - neither the proxy nor backing resource should
38 //              be discoverable in any other cache by the unique key
39 //   if a backing resource resides in the resource cache then there should be an entry in this
40 //              cache
41 //   an entry in this cache, however, doesn't guarantee that there is a corresponding entry in
42 //              the resource cache - although the entry here should be able to generate that entry
43 //              (i.e., be a lazy proxy)
44 //
45 // Wrt interactions w/ GrContext/GrResourceCache purging, we have:
46 //
47 //    Both GrContext::abandonContext and GrContext::releaseResourcesAndAbandonContext will cause
48 //    all the refs held in this cache to be dropped prior to clearing out the resource cache.
49 //
50 //    For the size_t-variant of GrContext::purgeUnlockedResources, after an initial attempt
51 //    to purge the requested amount of resources fails, uniquely held resources in this cache
52 //    will be dropped in LRU to MRU order until the cache is under budget. Note that this
53 //    prioritizes the survival of resources in this cache over those just in the resource cache.
54 //
55 //    For the 'scratchResourcesOnly' variant of GrContext::purgeUnlockedResources, this cache
56 //    won't be modified in the scratch-only case unless the resource cache is over budget (in
57 //    which case it will purge uniquely-held resources in LRU to MRU order to get
58 //    back under budget). In the non-scratch-only case, all uniquely held resources in this cache
59 //    will be released prior to the resource cache being cleared out.
60 //
61 //    For GrContext::setResourceCacheLimit, if an initial pass through the resource cache doesn't
62 //    reach the budget, uniquely held resources in this cache will be released in LRU to MRU order.
63 //
64 //    For GrContext::performDeferredCleanup, any uniquely held resources that haven't been accessed
65 //    w/in 'msNotUsed' will be released from this cache prior to the resource cache being cleaned.
66 class GrThreadSafeCache {
67 public:
68     GrThreadSafeCache();
69     ~GrThreadSafeCache();
70 
71 #if GR_TEST_UTILS
72     int numEntries() const  SK_EXCLUDES(fSpinLock);
73 
74     size_t approxBytesUsedForHash() const  SK_EXCLUDES(fSpinLock);
75 #endif
76 
77     void dropAllRefs()  SK_EXCLUDES(fSpinLock);
78 
79     // Drop uniquely held refs until under the resource cache's budget.
80     // A null parameter means drop all uniquely held refs.
81     void dropUniqueRefs(GrResourceCache* resourceCache)  SK_EXCLUDES(fSpinLock);
82 
83     // Drop uniquely held refs that were last accessed before 'purgeTime'
84     void dropUniqueRefsOlderThan(GrStdSteadyClock::time_point purgeTime)  SK_EXCLUDES(fSpinLock);
85 
86     SkDEBUGCODE(bool has(const skgpu::UniqueKey&)  SK_EXCLUDES(fSpinLock);)
87 
88     GrSurfaceProxyView find(const skgpu::UniqueKey&)  SK_EXCLUDES(fSpinLock);
89     std::tuple<GrSurfaceProxyView, sk_sp<SkData>> findWithData(
90             const skgpu::UniqueKey&)  SK_EXCLUDES(fSpinLock);
91 
92     GrSurfaceProxyView add(
93             const skgpu::UniqueKey&, const GrSurfaceProxyView&)  SK_EXCLUDES(fSpinLock);
94     std::tuple<GrSurfaceProxyView, sk_sp<SkData>> addWithData(
95             const skgpu::UniqueKey&, const GrSurfaceProxyView&)  SK_EXCLUDES(fSpinLock);
96 
97     GrSurfaceProxyView findOrAdd(const skgpu::UniqueKey&,
98                                  const GrSurfaceProxyView&)  SK_EXCLUDES(fSpinLock);
99     std::tuple<GrSurfaceProxyView, sk_sp<SkData>> findOrAddWithData(
100             const skgpu::UniqueKey&, const GrSurfaceProxyView&)  SK_EXCLUDES(fSpinLock);
101 
102     // To hold vertex data in the cache and have it transparently transition from cpu-side to
103     // gpu-side while being shared between all the threads we need a ref counted object that
104     // keeps hold of the cpu-side data but allows deferred filling in of the mirroring gpu buffer.
105     class VertexData : public SkNVRefCnt<VertexData> {
106     public:
107         ~VertexData();
108 
vertices()109         const void* vertices() const { return fVertices; }
size()110         size_t size() const { return fNumVertices * fVertexSize; }
111 
numVertices()112         int numVertices() const { return fNumVertices; }
vertexSize()113         size_t vertexSize() const { return fVertexSize; }
114 
115         // TODO: make these return const GrGpuBuffers?
gpuBuffer()116         GrGpuBuffer* gpuBuffer() { return fGpuBuffer.get(); }
refGpuBuffer()117         sk_sp<GrGpuBuffer> refGpuBuffer() { return fGpuBuffer; }
118 
setGpuBuffer(sk_sp<GrGpuBuffer> gpuBuffer)119         void setGpuBuffer(sk_sp<GrGpuBuffer> gpuBuffer) {
120             // TODO: once we add the gpuBuffer we could free 'fVertices'. Deinstantiable
121             // DDLs could throw a monkey wrench into that plan though.
122             SkASSERT(!fGpuBuffer);
123             fGpuBuffer = gpuBuffer;
124         }
125 
reset()126         void reset() {
127             sk_free(const_cast<void*>(fVertices));
128             fVertices = nullptr;
129             fNumVertices = 0;
130             fVertexSize = 0;
131             fGpuBuffer.reset();
132         }
133 
134     private:
135         friend class GrThreadSafeCache;  // for access to ctor
136 
VertexData(const void * vertices,int numVertices,size_t vertexSize)137         VertexData(const void* vertices, int numVertices, size_t vertexSize)
138                 : fVertices(vertices)
139                 , fNumVertices(numVertices)
140                 , fVertexSize(vertexSize) {
141         }
142 
VertexData(sk_sp<GrGpuBuffer> gpuBuffer,int numVertices,size_t vertexSize)143         VertexData(sk_sp<GrGpuBuffer> gpuBuffer, int numVertices, size_t vertexSize)
144                 : fVertices(nullptr)
145                 , fNumVertices(numVertices)
146                 , fVertexSize(vertexSize)
147                 , fGpuBuffer(std::move(gpuBuffer)) {
148         }
149 
150         const void*        fVertices;
151         int                fNumVertices;
152         size_t             fVertexSize;
153 
154         sk_sp<GrGpuBuffer> fGpuBuffer;
155     };
156 
157     // The returned VertexData object takes ownership of 'vertices' which had better have been
158     // allocated with malloc!
159     static sk_sp<VertexData> MakeVertexData(const void* vertices,
160                                             int vertexCount,
161                                             size_t vertexSize);
162     static sk_sp<VertexData> MakeVertexData(sk_sp<GrGpuBuffer> buffer,
163                                             int vertexCount,
164                                             size_t vertexSize);
165 
166     std::tuple<sk_sp<VertexData>, sk_sp<SkData>> findVertsWithData(
167             const skgpu::UniqueKey&)  SK_EXCLUDES(fSpinLock);
168 
169     typedef bool (*IsNewerBetter)(SkData* incumbent, SkData* challenger);
170 
171     std::tuple<sk_sp<VertexData>, sk_sp<SkData>> addVertsWithData(
172                                                         const skgpu::UniqueKey&,
173                                                         sk_sp<VertexData>,
174                                                         IsNewerBetter)  SK_EXCLUDES(fSpinLock);
175 
176     void remove(const skgpu::UniqueKey&)  SK_EXCLUDES(fSpinLock);
177 
178     // To allow gpu-created resources to have priority, we pre-emptively place a lazy proxy
179     // in the thread-safe cache (with findOrAdd). The Trampoline object allows that lazy proxy to
180     // be instantiated with some later generated rendering result.
181     class Trampoline : public SkRefCnt {
182     public:
183         sk_sp<GrTextureProxy> fProxy;
184     };
185 
186     static std::tuple<GrSurfaceProxyView, sk_sp<Trampoline>> CreateLazyView(GrDirectContext*,
187                                                                             GrColorType,
188                                                                             SkISize dimensions,
189                                                                             GrSurfaceOrigin,
190                                                                             SkBackingFit);
191 private:
192     struct Entry {
EntryEntry193         Entry(const skgpu::UniqueKey& key, const GrSurfaceProxyView& view)
194                 : fKey(key)
195                 , fView(view)
196                 , fTag(Entry::kView) {
197         }
198 
EntryEntry199         Entry(const skgpu::UniqueKey& key, sk_sp<VertexData> vertData)
200                 : fKey(key)
201                 , fVertData(std::move(vertData))
202                 , fTag(Entry::kVertData) {
203         }
204 
~EntryEntry205         ~Entry() {
206             this->makeEmpty();
207         }
208 
uniquelyHeldEntry209         bool uniquelyHeld() const {
210             SkASSERT(fTag != kEmpty);
211 
212             if (fTag == kView && fView.proxy()->unique()) {
213                 return true;
214             } else if (fTag == kVertData && fVertData->unique()) {
215                 return true;
216             }
217 
218             return false;
219         }
220 
keyEntry221         const skgpu::UniqueKey& key() const {
222             SkASSERT(fTag != kEmpty);
223             return fKey;
224         }
225 
getCustomDataEntry226         SkData* getCustomData() const {
227             SkASSERT(fTag != kEmpty);
228             return fKey.getCustomData();
229         }
230 
refCustomDataEntry231         sk_sp<SkData> refCustomData() const {
232             SkASSERT(fTag != kEmpty);
233             return fKey.refCustomData();
234         }
235 
viewEntry236         GrSurfaceProxyView view() {
237             SkASSERT(fTag == kView);
238             return fView;
239         }
240 
vertexDataEntry241         sk_sp<VertexData> vertexData() {
242             SkASSERT(fTag == kVertData);
243             return fVertData;
244         }
245 
setEntry246         void set(const skgpu::UniqueKey& key, const GrSurfaceProxyView& view) {
247             SkASSERT(fTag == kEmpty);
248             fKey = key;
249             fView = view;
250             fTag = kView;
251         }
252 
makeEmptyEntry253         void makeEmpty() {
254             fKey.reset();
255             if (fTag == kView) {
256                 fView.reset();
257             } else if (fTag == kVertData) {
258                 fVertData.reset();
259             }
260             fTag = kEmpty;
261         }
262 
setEntry263         void set(const skgpu::UniqueKey& key, sk_sp<VertexData> vertData) {
264             SkASSERT(fTag == kEmpty || fTag == kVertData);
265             fKey = key;
266             fVertData = vertData;
267             fTag = kVertData;
268         }
269 
270         // The thread-safe cache gets to directly manipulate the llist and last-access members
271         GrStdSteadyClock::time_point fLastAccess;
272         SK_DECLARE_INTERNAL_LLIST_INTERFACE(Entry);
273 
274         // for SkTDynamicHash
GetKeyEntry275         static const skgpu::UniqueKey& GetKey(const Entry& e) {
276             SkASSERT(e.fTag != kEmpty);
277             return e.fKey;
278         }
HashEntry279         static uint32_t Hash(const skgpu::UniqueKey& key) { return key.hash(); }
280 
281     private:
282         // Note: the unique key is stored here bc it is never attached to a proxy or a GrTexture
283         skgpu::UniqueKey             fKey;
284         union {
285             GrSurfaceProxyView  fView;
286             sk_sp<VertexData>   fVertData;
287         };
288 
289         enum {
290             kEmpty,
291             kView,
292             kVertData,
293         } fTag { kEmpty };
294     };
295 
296     void makeExistingEntryMRU(Entry*)  SK_REQUIRES(fSpinLock);
297     Entry* makeNewEntryMRU(Entry*)  SK_REQUIRES(fSpinLock);
298 
299     Entry* getEntry(const skgpu::UniqueKey&, const GrSurfaceProxyView&)  SK_REQUIRES(fSpinLock);
300     Entry* getEntry(const skgpu::UniqueKey&, sk_sp<VertexData>)  SK_REQUIRES(fSpinLock);
301 
302     void recycleEntry(Entry*)  SK_REQUIRES(fSpinLock);
303 
304     std::tuple<GrSurfaceProxyView, sk_sp<SkData>> internalFind(
305             const skgpu::UniqueKey&)  SK_REQUIRES(fSpinLock);
306     std::tuple<GrSurfaceProxyView, sk_sp<SkData>> internalAdd(
307             const skgpu::UniqueKey&, const GrSurfaceProxyView&)  SK_REQUIRES(fSpinLock);
308 
309     std::tuple<sk_sp<VertexData>, sk_sp<SkData>> internalFindVerts(
310             const skgpu::UniqueKey&)  SK_REQUIRES(fSpinLock);
311     std::tuple<sk_sp<VertexData>, sk_sp<SkData>> internalAddVerts(
312             const skgpu::UniqueKey&, sk_sp<VertexData>, IsNewerBetter)  SK_REQUIRES(fSpinLock);
313 
314     mutable SkSpinlock fSpinLock;
315 
316     SkTDynamicHash<Entry, skgpu::UniqueKey> fUniquelyKeyedEntryMap  SK_GUARDED_BY(fSpinLock);
317     // The head of this list is the MRU
318     SkTInternalLList<Entry>            fUniquelyKeyedEntryList  SK_GUARDED_BY(fSpinLock);
319 
320     // TODO: empirically determine this from the skps
321     static const int kInitialArenaSize = 64 * sizeof(Entry);
322 
323     char                         fStorage[kInitialArenaSize];
324     SkArenaAlloc                 fEntryAllocator{fStorage, kInitialArenaSize, kInitialArenaSize};
325     Entry*                       fFreeEntryList  SK_GUARDED_BY(fSpinLock);
326 };
327 
328 #endif // GrThreadSafeCache_DEFINED
329