• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Copyright 2015 The TensorFlow Authors. All Rights Reserved.
2 
3 Licensed under the Apache License, Version 2.0 (the "License");
4 you may not use this file except in compliance with the License.
5 You may obtain a copy of the License at
6 
7     http://www.apache.org/licenses/LICENSE-2.0
8 
9 Unless required by applicable law or agreed to in writing, software
10 distributed under the License is distributed on an "AS IS" BASIS,
11 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 See the License for the specific language governing permissions and
13 limitations under the License.
14 ==============================================================================*/
15 
16 // The utility to write checkpoints for google brain tensor ops and v3
17 // checkpoints for dist_belief.
18 
19 #ifndef TENSORFLOW_CORE_UTIL_TENSOR_SLICE_WRITER_H_
20 #define TENSORFLOW_CORE_UTIL_TENSOR_SLICE_WRITER_H_
21 
22 #include <unordered_map>
23 
24 #include "tensorflow/core/framework/tensor_shape.h"
25 #include "tensorflow/core/framework/tensor_slice.h"
26 #include "tensorflow/core/framework/types.h"
27 #include "tensorflow/core/lib/core/errors.h"
28 #include "tensorflow/core/lib/core/status.h"
29 #include "tensorflow/core/lib/core/stringpiece.h"
30 #include "tensorflow/core/lib/gtl/map_util.h"
31 #include "tensorflow/core/lib/strings/stringprintf.h"
32 #include "tensorflow/core/platform/logging.h"
33 #include "tensorflow/core/platform/macros.h"
34 #include "tensorflow/core/platform/types.h"
35 #include "tensorflow/core/util/saved_tensor_slice.pb.h"
36 #include "tensorflow/core/util/saved_tensor_slice_util.h"
37 
38 namespace tensorflow {
39 
40 namespace checkpoint {
41 
42 class TensorSliceWriter {
43  public:
44   // Abstract interface that TensorSliceWriter uses for building
45   class Builder {
46    public:
~Builder()47     virtual ~Builder() {}
48     virtual void Add(StringPiece key, StringPiece value) = 0;
49     virtual Status Finish(int64_t* file_size) = 0;
50   };
51   typedef std::function<Status(const string&, Builder**)> CreateBuilderFunction;
52 
53   TensorSliceWriter(const string& filename,
54                     CreateBuilderFunction create_builder);
~TensorSliceWriter()55   virtual ~TensorSliceWriter() {}
56   // Adds a slice. We support float and int32 for now.
57   // TODO(yangke): add more supports
58   template <typename T>
59   Status Add(const string& name, const TensorShape& shape,
60              const TensorSlice& slice, const T* data);
61   Status Finish();
62 
63   // Allocate "num_elements" elements in "ss" and save the data in "data"
64   // there.
65   template <typename T>
66   static Status SaveData(const T* data, int64_t num_elements, SavedSlice* ss);
67 
68   static size_t MaxBytesPerElement(DataType dt);
69 
70  private:
71   static size_t MaxBytesPerElementOrZero(DataType dt);
72 
73   static constexpr size_t kMaxMessageBytes = 1LL << 31;
74   // Filling in the TensorProto in a SavedSlice will add the following
75   // header bytes, in addition to the data:
76   // - 1 byte: TensorProto tag and wire format
77   // - <= 5 bytes: TensorProto length
78   // - 1 byte: Repeated *_val tag and wire format
79   // - <= 5 bytes: *_val length
80   // However, we add 1KB of slack, to be conservative and guard
81   // against other additions to the TensorProto.
82   static constexpr size_t kTensorProtoHeaderBytes = 1 << 10;
83 
84   const string filename_;
85   const CreateBuilderFunction create_builder_;
86   const string tmpname_;
87 
88   // A mapping from the tensor names to their index in meta_.saved_slice_meta()
89   std::unordered_map<string, int> name_to_index_;
90   // The metadata that holds all the saved tensor slices.
91   SavedTensorSlices sts_;
92   // The data to be written to the builder
93   std::map<string, string> data_;
94   // Total number of slices written
95   int slices_;
96   TF_DISALLOW_COPY_AND_ASSIGN(TensorSliceWriter);
97 };
98 
99 template <typename T>
Add(const string & name,const TensorShape & shape,const TensorSlice & slice,const T * data)100 Status TensorSliceWriter::Add(const string& name, const TensorShape& shape,
101                               const TensorSlice& slice, const T* data) {
102   // The tensor and the slice have to be compatible
103   if (shape.dims() != slice.dims()) {
104     return errors::Internal("Incompatible tensor shape and slice: ", "shape = ",
105                             shape.DebugString(),
106                             ", slice = ", slice.DebugString());
107   }
108   DataType dt = DataTypeToEnum<T>::value;
109   // We need to add an entry for "name" if there isn't an entry already.
110   int index = gtl::FindWithDefault(name_to_index_, name, -1);
111   if (index >= 0) {
112     // The same tensor has been registered -- we verify that the shapes and the
113     // type agree.
114     const SavedSliceMeta& ssm = sts_.meta().tensor(index);
115     CHECK_EQ(name, ssm.name()) << ssm.ShortDebugString();
116     TensorShape ssm_shape(ssm.shape());
117     if (!shape.IsSameSize(ssm_shape)) {
118       return errors::Internal(
119           "Mismatching shapes: existing tensor = ", ssm_shape.DebugString(),
120           ", trying to add name ", name, ", shape = ", shape.DebugString());
121     }
122     if (dt != ssm.type()) {
123       return errors::Internal(
124           "Mismatching types: existing type = ", DataTypeString(ssm.type()),
125           ", trying to add name ", name, ", type = ", DataTypeString(dt));
126     }
127   } else {
128     // Insert the new tensor name with the shape information
129     index = sts_.meta().tensor_size();
130     name_to_index_.insert(std::make_pair(name, index));
131     SavedSliceMeta* ssm = sts_.mutable_meta()->add_tensor();
132     ssm->set_name(name);
133     shape.AsProto(ssm->mutable_shape());
134     ssm->set_type(dt);
135   }
136   // Now we need to add the slice info the list of slices.
137   SavedSliceMeta* ssm = sts_.mutable_meta()->mutable_tensor(index);
138   slice.AsProto(ssm->add_slice());
139 
140   // Now we need to add the real data.
141   {
142     SavedTensorSlices sts;
143     SavedSlice* ss = sts.mutable_data();
144     ss->set_name(name);
145     slice.AsProto(ss->mutable_slice());
146     TensorShape saved_shape(ssm->shape());
147     TensorShape sliced_shape;
148     TF_RETURN_IF_ERROR(slice.SliceTensorShape(saved_shape, &sliced_shape));
149     TF_RETURN_IF_ERROR(SaveData(data, sliced_shape.num_elements(), ss));
150     string key = EncodeTensorNameSlice(name, slice);
151     // TODO(yangke): consider doing a two-pass thing where the first pass just
152     // list the tensor slices we want to save and then another pass to actually
153     // set the data. Need to figure out if the interface works well.
154     std::pair<string, string> key_value(key, "");
155     if (!sts.AppendToString(&key_value.second)) {
156       return errors::Internal("Error writing Tensor. Possible size overflow.");
157     }
158     data_.insert(key_value);
159   }
160   ++slices_;
161   return OkStatus();
162 }
163 
164 template <typename T>
SaveData(const T * data,int64_t num_elements,SavedSlice * ss)165 Status TensorSliceWriter::SaveData(const T* data, int64_t num_elements,
166                                    SavedSlice* ss) {
167   size_t max_bytes_per_element =
168       MaxBytesPerElementOrZero(DataTypeToEnum<T>::value);
169   if (max_bytes_per_element == 0) {
170     return errors::InvalidArgument(
171         "Tensor slice serialization not implemented for dtype ",
172         DataTypeToEnum<T>::value);
173   }
174   size_t size_bound = ss->ByteSize() + kTensorProtoHeaderBytes +
175                       (max_bytes_per_element * num_elements);
176   if (size_bound > kMaxMessageBytes) {
177     return errors::InvalidArgument(
178         "Tensor slice is too large to serialize (conservative estimate: ",
179         size_bound, " bytes)");
180   }
181   Fill(data, num_elements, ss->mutable_data());
182   DCHECK_GE(ss->ByteSize(), 0);
183   DCHECK_LE(ss->ByteSize(), size_bound);
184   return OkStatus();
185 }
186 
187 template <>
188 Status TensorSliceWriter::SaveData(const tstring* data, int64_t num_elements,
189                                    SavedSlice* ss);
190 
191 // Create a table builder that will write to "filename" in
192 // tensorflow::io::Table format.  If successful, return OK
193 // and set "*builder" to the allocated builder.  Otherwise, return a
194 // non-OK status.
195 Status CreateTableTensorSliceBuilder(const string& filename,
196                                      TensorSliceWriter::Builder** builder);
197 
198 }  // namespace checkpoint
199 
200 }  // namespace tensorflow
201 
202 #endif  // TENSORFLOW_CORE_UTIL_TENSOR_SLICE_WRITER_H_
203