• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
2  * All rights reserved.
3  *
4  * This package is an SSL implementation written
5  * by Eric Young (eay@cryptsoft.com).
6  * The implementation was written so as to conform with Netscapes SSL.
7  *
8  * This library is free for commercial and non-commercial use as long as
9  * the following conditions are aheared to.  The following conditions
10  * apply to all code found in this distribution, be it the RC4, RSA,
11  * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
12  * included with this distribution is covered by the same copyright terms
13  * except that the holder is Tim Hudson (tjh@cryptsoft.com).
14  *
15  * Copyright remains Eric Young's, and as such any Copyright notices in
16  * the code are not to be removed.
17  * If this package is used in a product, Eric Young should be given attribution
18  * as the author of the parts of the library used.
19  * This can be in the form of a textual message at program startup or
20  * in documentation (online or textual) provided with the package.
21  *
22  * Redistribution and use in source and binary forms, with or without
23  * modification, are permitted provided that the following conditions
24  * are met:
25  * 1. Redistributions of source code must retain the copyright
26  *    notice, this list of conditions and the following disclaimer.
27  * 2. Redistributions in binary form must reproduce the above copyright
28  *    notice, this list of conditions and the following disclaimer in the
29  *    documentation and/or other materials provided with the distribution.
30  * 3. All advertising materials mentioning features or use of this software
31  *    must display the following acknowledgement:
32  *    "This product includes cryptographic software written by
33  *     Eric Young (eay@cryptsoft.com)"
34  *    The word 'cryptographic' can be left out if the rouines from the library
35  *    being used are not cryptographic related :-).
36  * 4. If you include any Windows specific code (or a derivative thereof) from
37  *    the apps directory (application code) you must include an acknowledgement:
38  *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
39  *
40  * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
41  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
44  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50  * SUCH DAMAGE.
51  *
52  * The licence and distribution terms for any publically available version or
53  * derivative of this code cannot be changed.  i.e. this code cannot simply be
54  * copied and put under another distribution licence
55  * [including the GNU Public Licence.] */
56 
57 #include <openssl/base64.h>
58 
59 #include <assert.h>
60 #include <limits.h>
61 #include <string.h>
62 
63 #include "../internal.h"
64 
65 
66 // constant_time_lt_args_8 behaves like |constant_time_lt_8| but takes |uint8_t|
67 // arguments for a slightly simpler implementation.
constant_time_lt_args_8(uint8_t a,uint8_t b)68 static inline uint8_t constant_time_lt_args_8(uint8_t a, uint8_t b) {
69   crypto_word_t aw = a;
70   crypto_word_t bw = b;
71   // |crypto_word_t| is larger than |uint8_t|, so |aw| and |bw| have the same
72   // MSB. |aw| < |bw| iff MSB(|aw| - |bw|) is 1.
73   return constant_time_msb_w(aw - bw);
74 }
75 
76 // constant_time_in_range_8 returns |CONSTTIME_TRUE_8| if |min| <= |a| <= |max|
77 // and |CONSTTIME_FALSE_8| otherwise.
constant_time_in_range_8(uint8_t a,uint8_t min,uint8_t max)78 static inline uint8_t constant_time_in_range_8(uint8_t a, uint8_t min,
79                                                uint8_t max) {
80   a -= min;
81   return constant_time_lt_args_8(a, max - min + 1);
82 }
83 
84 // Encoding.
85 
conv_bin2ascii(uint8_t a)86 static uint8_t conv_bin2ascii(uint8_t a) {
87   // Since PEM is sometimes used to carry private keys, we encode base64 data
88   // itself in constant-time.
89   a &= 0x3f;
90   uint8_t ret = constant_time_select_8(constant_time_eq_8(a, 62), '+', '/');
91   ret =
92       constant_time_select_8(constant_time_lt_args_8(a, 62), a - 52 + '0', ret);
93   ret =
94       constant_time_select_8(constant_time_lt_args_8(a, 52), a - 26 + 'a', ret);
95   ret = constant_time_select_8(constant_time_lt_args_8(a, 26), a + 'A', ret);
96   return ret;
97 }
98 
99 static_assert(sizeof(((EVP_ENCODE_CTX *)(NULL))->data) % 3 == 0,
100               "data length must be a multiple of base64 chunk size");
101 
EVP_EncodedLength(size_t * out_len,size_t len)102 int EVP_EncodedLength(size_t *out_len, size_t len) {
103   if (len + 2 < len) {
104     return 0;
105   }
106   len += 2;
107   len /= 3;
108 
109   if (((len << 2) >> 2) != len) {
110     return 0;
111   }
112   len <<= 2;
113 
114   if (len + 1 < len) {
115     return 0;
116   }
117   len++;
118 
119   *out_len = len;
120   return 1;
121 }
122 
EVP_ENCODE_CTX_new(void)123 EVP_ENCODE_CTX *EVP_ENCODE_CTX_new(void) {
124   EVP_ENCODE_CTX *ret = OPENSSL_malloc(sizeof(EVP_ENCODE_CTX));
125   if (ret == NULL) {
126     return NULL;
127   }
128   OPENSSL_memset(ret, 0, sizeof(EVP_ENCODE_CTX));
129   return ret;
130 }
131 
EVP_ENCODE_CTX_free(EVP_ENCODE_CTX * ctx)132 void EVP_ENCODE_CTX_free(EVP_ENCODE_CTX *ctx) {
133   OPENSSL_free(ctx);
134 }
135 
EVP_EncodeInit(EVP_ENCODE_CTX * ctx)136 void EVP_EncodeInit(EVP_ENCODE_CTX *ctx) {
137   OPENSSL_memset(ctx, 0, sizeof(EVP_ENCODE_CTX));
138 }
139 
EVP_EncodeUpdate(EVP_ENCODE_CTX * ctx,uint8_t * out,int * out_len,const uint8_t * in,size_t in_len)140 void EVP_EncodeUpdate(EVP_ENCODE_CTX *ctx, uint8_t *out, int *out_len,
141                       const uint8_t *in, size_t in_len) {
142   size_t total = 0;
143 
144   *out_len = 0;
145   if (in_len == 0) {
146     return;
147   }
148 
149   assert(ctx->data_used < sizeof(ctx->data));
150 
151   if (sizeof(ctx->data) - ctx->data_used > in_len) {
152     OPENSSL_memcpy(&ctx->data[ctx->data_used], in, in_len);
153     ctx->data_used += (unsigned)in_len;
154     return;
155   }
156 
157   if (ctx->data_used != 0) {
158     const size_t todo = sizeof(ctx->data) - ctx->data_used;
159     OPENSSL_memcpy(&ctx->data[ctx->data_used], in, todo);
160     in += todo;
161     in_len -= todo;
162 
163     size_t encoded = EVP_EncodeBlock(out, ctx->data, sizeof(ctx->data));
164     ctx->data_used = 0;
165 
166     out += encoded;
167     *(out++) = '\n';
168     *out = '\0';
169 
170     total = encoded + 1;
171   }
172 
173   while (in_len >= sizeof(ctx->data)) {
174     size_t encoded = EVP_EncodeBlock(out, in, sizeof(ctx->data));
175     in += sizeof(ctx->data);
176     in_len -= sizeof(ctx->data);
177 
178     out += encoded;
179     *(out++) = '\n';
180     *out = '\0';
181 
182     if (total + encoded + 1 < total) {
183       *out_len = 0;
184       return;
185     }
186 
187     total += encoded + 1;
188   }
189 
190   if (in_len != 0) {
191     OPENSSL_memcpy(ctx->data, in, in_len);
192   }
193 
194   ctx->data_used = (unsigned)in_len;
195 
196   if (total > INT_MAX) {
197     // We cannot signal an error, but we can at least avoid making *out_len
198     // negative.
199     total = 0;
200   }
201   *out_len = (int)total;
202 }
203 
EVP_EncodeFinal(EVP_ENCODE_CTX * ctx,uint8_t * out,int * out_len)204 void EVP_EncodeFinal(EVP_ENCODE_CTX *ctx, uint8_t *out, int *out_len) {
205   if (ctx->data_used == 0) {
206     *out_len = 0;
207     return;
208   }
209 
210   size_t encoded = EVP_EncodeBlock(out, ctx->data, ctx->data_used);
211   out[encoded++] = '\n';
212   out[encoded] = '\0';
213   ctx->data_used = 0;
214 
215   // ctx->data_used is bounded by sizeof(ctx->data), so this does not
216   // overflow.
217   assert(encoded <= INT_MAX);
218   *out_len = (int)encoded;
219 }
220 
EVP_EncodeBlock(uint8_t * dst,const uint8_t * src,size_t src_len)221 size_t EVP_EncodeBlock(uint8_t *dst, const uint8_t *src, size_t src_len) {
222   uint32_t l;
223   size_t remaining = src_len, ret = 0;
224 
225   while (remaining) {
226     if (remaining >= 3) {
227       l = (((uint32_t)src[0]) << 16L) | (((uint32_t)src[1]) << 8L) | src[2];
228       *(dst++) = conv_bin2ascii(l >> 18L);
229       *(dst++) = conv_bin2ascii(l >> 12L);
230       *(dst++) = conv_bin2ascii(l >> 6L);
231       *(dst++) = conv_bin2ascii(l);
232       remaining -= 3;
233     } else {
234       l = ((uint32_t)src[0]) << 16L;
235       if (remaining == 2) {
236         l |= ((uint32_t)src[1] << 8L);
237       }
238 
239       *(dst++) = conv_bin2ascii(l >> 18L);
240       *(dst++) = conv_bin2ascii(l >> 12L);
241       *(dst++) = (remaining == 1) ? '=' : conv_bin2ascii(l >> 6L);
242       *(dst++) = '=';
243       remaining = 0;
244     }
245     ret += 4;
246     src += 3;
247   }
248 
249   *dst = '\0';
250   return ret;
251 }
252 
253 
254 // Decoding.
255 
EVP_DecodedLength(size_t * out_len,size_t len)256 int EVP_DecodedLength(size_t *out_len, size_t len) {
257   if (len % 4 != 0) {
258     return 0;
259   }
260 
261   *out_len = (len / 4) * 3;
262   return 1;
263 }
264 
EVP_DecodeInit(EVP_ENCODE_CTX * ctx)265 void EVP_DecodeInit(EVP_ENCODE_CTX *ctx) {
266   OPENSSL_memset(ctx, 0, sizeof(EVP_ENCODE_CTX));
267 }
268 
base64_ascii_to_bin(uint8_t a)269 static uint8_t base64_ascii_to_bin(uint8_t a) {
270   // Since PEM is sometimes used to carry private keys, we decode base64 data
271   // itself in constant-time.
272   const uint8_t is_upper = constant_time_in_range_8(a, 'A', 'Z');
273   const uint8_t is_lower = constant_time_in_range_8(a, 'a', 'z');
274   const uint8_t is_digit = constant_time_in_range_8(a, '0', '9');
275   const uint8_t is_plus = constant_time_eq_8(a, '+');
276   const uint8_t is_slash = constant_time_eq_8(a, '/');
277   const uint8_t is_equals = constant_time_eq_8(a, '=');
278 
279   uint8_t ret = 0;
280   ret |= is_upper & (a - 'A');       // [0,26)
281   ret |= is_lower & (a - 'a' + 26);  // [26,52)
282   ret |= is_digit & (a - '0' + 52);  // [52,62)
283   ret |= is_plus & 62;
284   ret |= is_slash & 63;
285   // Invalid inputs, 'A', and '=' have all been mapped to zero. Map invalid
286   // inputs to 0xff. Note '=' is padding and handled separately by the caller.
287   const uint8_t is_valid =
288       is_upper | is_lower | is_digit | is_plus | is_slash | is_equals;
289   ret |= ~is_valid;
290   return ret;
291 }
292 
293 // base64_decode_quad decodes a single “quad” (i.e. four characters) of base64
294 // data and writes up to three bytes to |out|. It sets |*out_num_bytes| to the
295 // number of bytes written, which will be less than three if the quad ended
296 // with padding.  It returns one on success or zero on error.
base64_decode_quad(uint8_t * out,size_t * out_num_bytes,const uint8_t * in)297 static int base64_decode_quad(uint8_t *out, size_t *out_num_bytes,
298                               const uint8_t *in) {
299   const uint8_t a = base64_ascii_to_bin(in[0]);
300   const uint8_t b = base64_ascii_to_bin(in[1]);
301   const uint8_t c = base64_ascii_to_bin(in[2]);
302   const uint8_t d = base64_ascii_to_bin(in[3]);
303   if (a == 0xff || b == 0xff || c == 0xff || d == 0xff) {
304     return 0;
305   }
306 
307   const uint32_t v = ((uint32_t)a) << 18 | ((uint32_t)b) << 12 |
308                      ((uint32_t)c) << 6 | (uint32_t)d;
309 
310   const unsigned padding_pattern = (in[0] == '=') << 3 |
311                                    (in[1] == '=') << 2 |
312                                    (in[2] == '=') << 1 |
313                                    (in[3] == '=');
314 
315   switch (padding_pattern) {
316     case 0:
317       // The common case of no padding.
318       *out_num_bytes = 3;
319       out[0] = v >> 16;
320       out[1] = v >> 8;
321       out[2] = v;
322       break;
323 
324     case 1:  // xxx=
325       *out_num_bytes = 2;
326       out[0] = v >> 16;
327       out[1] = v >> 8;
328       break;
329 
330     case 3:  // xx==
331       *out_num_bytes = 1;
332       out[0] = v >> 16;
333       break;
334 
335     default:
336       return 0;
337   }
338 
339   return 1;
340 }
341 
EVP_DecodeUpdate(EVP_ENCODE_CTX * ctx,uint8_t * out,int * out_len,const uint8_t * in,size_t in_len)342 int EVP_DecodeUpdate(EVP_ENCODE_CTX *ctx, uint8_t *out, int *out_len,
343                      const uint8_t *in, size_t in_len) {
344   *out_len = 0;
345 
346   if (ctx->error_encountered) {
347     return -1;
348   }
349 
350   size_t bytes_out = 0, i;
351   for (i = 0; i < in_len; i++) {
352     const char c = in[i];
353     switch (c) {
354       case ' ':
355       case '\t':
356       case '\r':
357       case '\n':
358         continue;
359     }
360 
361     if (ctx->eof_seen) {
362       ctx->error_encountered = 1;
363       return -1;
364     }
365 
366     ctx->data[ctx->data_used++] = c;
367     if (ctx->data_used == 4) {
368       size_t num_bytes_resulting;
369       if (!base64_decode_quad(out, &num_bytes_resulting, ctx->data)) {
370         ctx->error_encountered = 1;
371         return -1;
372       }
373 
374       ctx->data_used = 0;
375       bytes_out += num_bytes_resulting;
376       out += num_bytes_resulting;
377 
378       if (num_bytes_resulting < 3) {
379         ctx->eof_seen = 1;
380       }
381     }
382   }
383 
384   if (bytes_out > INT_MAX) {
385     ctx->error_encountered = 1;
386     *out_len = 0;
387     return -1;
388   }
389   *out_len = (int)bytes_out;
390 
391   if (ctx->eof_seen) {
392     return 0;
393   }
394 
395   return 1;
396 }
397 
EVP_DecodeFinal(EVP_ENCODE_CTX * ctx,uint8_t * out,int * out_len)398 int EVP_DecodeFinal(EVP_ENCODE_CTX *ctx, uint8_t *out, int *out_len) {
399   *out_len = 0;
400   if (ctx->error_encountered || ctx->data_used != 0) {
401     return -1;
402   }
403 
404   return 1;
405 }
406 
EVP_DecodeBase64(uint8_t * out,size_t * out_len,size_t max_out,const uint8_t * in,size_t in_len)407 int EVP_DecodeBase64(uint8_t *out, size_t *out_len, size_t max_out,
408                      const uint8_t *in, size_t in_len) {
409   *out_len = 0;
410 
411   if (in_len % 4 != 0) {
412     return 0;
413   }
414 
415   size_t max_len;
416   if (!EVP_DecodedLength(&max_len, in_len) ||
417       max_out < max_len) {
418     return 0;
419   }
420 
421   size_t i, bytes_out = 0;
422   for (i = 0; i < in_len; i += 4) {
423     size_t num_bytes_resulting;
424 
425     if (!base64_decode_quad(out, &num_bytes_resulting, &in[i])) {
426       return 0;
427     }
428 
429     bytes_out += num_bytes_resulting;
430     out += num_bytes_resulting;
431     if (num_bytes_resulting != 3 && i != in_len - 4) {
432       return 0;
433     }
434   }
435 
436   *out_len = bytes_out;
437   return 1;
438 }
439 
EVP_DecodeBlock(uint8_t * dst,const uint8_t * src,size_t src_len)440 int EVP_DecodeBlock(uint8_t *dst, const uint8_t *src, size_t src_len) {
441   // Trim spaces and tabs from the beginning of the input.
442   while (src_len > 0) {
443     if (src[0] != ' ' && src[0] != '\t') {
444       break;
445     }
446 
447     src++;
448     src_len--;
449   }
450 
451   // Trim newlines, spaces and tabs from the end of the line.
452   while (src_len > 0) {
453     switch (src[src_len-1]) {
454       case ' ':
455       case '\t':
456       case '\r':
457       case '\n':
458         src_len--;
459         continue;
460     }
461 
462     break;
463   }
464 
465   size_t dst_len;
466   if (!EVP_DecodedLength(&dst_len, src_len) ||
467       dst_len > INT_MAX ||
468       !EVP_DecodeBase64(dst, &dst_len, dst_len, src, src_len)) {
469     return -1;
470   }
471 
472   // EVP_DecodeBlock does not take padding into account, so put the
473   // NULs back in... so the caller can strip them back out.
474   while (dst_len % 3 != 0) {
475     dst[dst_len++] = '\0';
476   }
477   assert(dst_len <= INT_MAX);
478 
479   return (int)dst_len;
480 }
481