1 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
2 * All rights reserved.
3 *
4 * This package is an SSL implementation written
5 * by Eric Young (eay@cryptsoft.com).
6 * The implementation was written so as to conform with Netscapes SSL.
7 *
8 * This library is free for commercial and non-commercial use as long as
9 * the following conditions are aheared to. The following conditions
10 * apply to all code found in this distribution, be it the RC4, RSA,
11 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
12 * included with this distribution is covered by the same copyright terms
13 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
14 *
15 * Copyright remains Eric Young's, and as such any Copyright notices in
16 * the code are not to be removed.
17 * If this package is used in a product, Eric Young should be given attribution
18 * as the author of the parts of the library used.
19 * This can be in the form of a textual message at program startup or
20 * in documentation (online or textual) provided with the package.
21 *
22 * Redistribution and use in source and binary forms, with or without
23 * modification, are permitted provided that the following conditions
24 * are met:
25 * 1. Redistributions of source code must retain the copyright
26 * notice, this list of conditions and the following disclaimer.
27 * 2. Redistributions in binary form must reproduce the above copyright
28 * notice, this list of conditions and the following disclaimer in the
29 * documentation and/or other materials provided with the distribution.
30 * 3. All advertising materials mentioning features or use of this software
31 * must display the following acknowledgement:
32 * "This product includes cryptographic software written by
33 * Eric Young (eay@cryptsoft.com)"
34 * The word 'cryptographic' can be left out if the rouines from the library
35 * being used are not cryptographic related :-).
36 * 4. If you include any Windows specific code (or a derivative thereof) from
37 * the apps directory (application code) you must include an acknowledgement:
38 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
39 *
40 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
41 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
44 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50 * SUCH DAMAGE.
51 *
52 * The licence and distribution terms for any publically available version or
53 * derivative of this code cannot be changed. i.e. this code cannot simply be
54 * copied and put under another distribution licence
55 * [including the GNU Public Licence.]
56 *
57 * The DSS routines are based on patches supplied by
58 * Steven Schoch <schoch@sheba.arc.nasa.gov>. */
59
60 #include <openssl/dsa.h>
61
62 #include <stdio.h>
63 #include <string.h>
64
65 #include <vector>
66
67 #include <gtest/gtest.h>
68
69 #include <openssl/bn.h>
70 #include <openssl/crypto.h>
71 #include <openssl/err.h>
72 #include <openssl/pem.h>
73 #include <openssl/span.h>
74
75 #include "../test/test_util.h"
76
77
78 // The following values are taken from the updated Appendix 5 to FIPS PUB 186
79 // and also appear in Appendix 5 to FIPS PUB 186-1.
80
81 static const uint8_t seed[20] = {
82 0xd5, 0x01, 0x4e, 0x4b, 0x60, 0xef, 0x2b, 0xa8, 0xb6, 0x21, 0x1b,
83 0x40, 0x62, 0xba, 0x32, 0x24, 0xe0, 0x42, 0x7d, 0xd3,
84 };
85
86 static const uint8_t fips_p[] = {
87 0x8d, 0xf2, 0xa4, 0x94, 0x49, 0x22, 0x76, 0xaa, 0x3d, 0x25, 0x75,
88 0x9b, 0xb0, 0x68, 0x69, 0xcb, 0xea, 0xc0, 0xd8, 0x3a, 0xfb, 0x8d,
89 0x0c, 0xf7, 0xcb, 0xb8, 0x32, 0x4f, 0x0d, 0x78, 0x82, 0xe5, 0xd0,
90 0x76, 0x2f, 0xc5, 0xb7, 0x21, 0x0e, 0xaf, 0xc2, 0xe9, 0xad, 0xac,
91 0x32, 0xab, 0x7a, 0xac, 0x49, 0x69, 0x3d, 0xfb, 0xf8, 0x37, 0x24,
92 0xc2, 0xec, 0x07, 0x36, 0xee, 0x31, 0xc8, 0x02, 0x91,
93 };
94
95 static const uint8_t fips_q[] = {
96 0xc7, 0x73, 0x21, 0x8c, 0x73, 0x7e, 0xc8, 0xee, 0x99, 0x3b, 0x4f,
97 0x2d, 0xed, 0x30, 0xf4, 0x8e, 0xda, 0xce, 0x91, 0x5f,
98 };
99
100 static const uint8_t fips_g[] = {
101 0x62, 0x6d, 0x02, 0x78, 0x39, 0xea, 0x0a, 0x13, 0x41, 0x31, 0x63,
102 0xa5, 0x5b, 0x4c, 0xb5, 0x00, 0x29, 0x9d, 0x55, 0x22, 0x95, 0x6c,
103 0xef, 0xcb, 0x3b, 0xff, 0x10, 0xf3, 0x99, 0xce, 0x2c, 0x2e, 0x71,
104 0xcb, 0x9d, 0xe5, 0xfa, 0x24, 0xba, 0xbf, 0x58, 0xe5, 0xb7, 0x95,
105 0x21, 0x92, 0x5c, 0x9c, 0xc4, 0x2e, 0x9f, 0x6f, 0x46, 0x4b, 0x08,
106 0x8c, 0xc5, 0x72, 0xaf, 0x53, 0xe6, 0xd7, 0x88, 0x02,
107 };
108
109 static const uint8_t fips_x[] = {
110 0x20, 0x70, 0xb3, 0x22, 0x3d, 0xba, 0x37, 0x2f, 0xde, 0x1c, 0x0f,
111 0xfc, 0x7b, 0x2e, 0x3b, 0x49, 0x8b, 0x26, 0x06, 0x14,
112 };
113
114 static const uint8_t fips_y[] = {
115 0x19, 0x13, 0x18, 0x71, 0xd7, 0x5b, 0x16, 0x12, 0xa8, 0x19, 0xf2,
116 0x9d, 0x78, 0xd1, 0xb0, 0xd7, 0x34, 0x6f, 0x7a, 0xa7, 0x7b, 0xb6,
117 0x2a, 0x85, 0x9b, 0xfd, 0x6c, 0x56, 0x75, 0xda, 0x9d, 0x21, 0x2d,
118 0x3a, 0x36, 0xef, 0x16, 0x72, 0xef, 0x66, 0x0b, 0x8c, 0x7c, 0x25,
119 0x5c, 0xc0, 0xec, 0x74, 0x85, 0x8f, 0xba, 0x33, 0xf4, 0x4c, 0x06,
120 0x69, 0x96, 0x30, 0xa7, 0x6b, 0x03, 0x0e, 0xe3, 0x33,
121 };
122
123 static const uint8_t fips_digest[] = {
124 0xa9, 0x99, 0x3e, 0x36, 0x47, 0x06, 0x81, 0x6a, 0xba, 0x3e, 0x25,
125 0x71, 0x78, 0x50, 0xc2, 0x6c, 0x9c, 0xd0, 0xd8, 0x9d,
126 };
127
128 // fips_sig is a DER-encoded version of the r and s values in FIPS PUB 186-1.
129 static const uint8_t fips_sig[] = {
130 0x30, 0x2d, 0x02, 0x15, 0x00, 0x8b, 0xac, 0x1a, 0xb6, 0x64, 0x10,
131 0x43, 0x5c, 0xb7, 0x18, 0x1f, 0x95, 0xb1, 0x6a, 0xb9, 0x7c, 0x92,
132 0xb3, 0x41, 0xc0, 0x02, 0x14, 0x41, 0xe2, 0x34, 0x5f, 0x1f, 0x56,
133 0xdf, 0x24, 0x58, 0xf4, 0x26, 0xd1, 0x55, 0xb4, 0xba, 0x2d, 0xb6,
134 0xdc, 0xd8, 0xc8,
135 };
136
137 // fips_sig_negative is fips_sig with r encoded as a negative number.
138 static const uint8_t fips_sig_negative[] = {
139 0x30, 0x2c, 0x02, 0x14, 0x8b, 0xac, 0x1a, 0xb6, 0x64, 0x10, 0x43,
140 0x5c, 0xb7, 0x18, 0x1f, 0x95, 0xb1, 0x6a, 0xb9, 0x7c, 0x92, 0xb3,
141 0x41, 0xc0, 0x02, 0x14, 0x41, 0xe2, 0x34, 0x5f, 0x1f, 0x56, 0xdf,
142 0x24, 0x58, 0xf4, 0x26, 0xd1, 0x55, 0xb4, 0xba, 0x2d, 0xb6, 0xdc,
143 0xd8, 0xc8,
144 };
145
146 // fip_sig_extra is fips_sig with trailing data.
147 static const uint8_t fips_sig_extra[] = {
148 0x30, 0x2d, 0x02, 0x15, 0x00, 0x8b, 0xac, 0x1a, 0xb6, 0x64, 0x10,
149 0x43, 0x5c, 0xb7, 0x18, 0x1f, 0x95, 0xb1, 0x6a, 0xb9, 0x7c, 0x92,
150 0xb3, 0x41, 0xc0, 0x02, 0x14, 0x41, 0xe2, 0x34, 0x5f, 0x1f, 0x56,
151 0xdf, 0x24, 0x58, 0xf4, 0x26, 0xd1, 0x55, 0xb4, 0xba, 0x2d, 0xb6,
152 0xdc, 0xd8, 0xc8, 0x00,
153 };
154
155 // fips_sig_lengths is fips_sig with a non-minimally encoded length.
156 static const uint8_t fips_sig_bad_length[] = {
157 0x30, 0x81, 0x2d, 0x02, 0x15, 0x00, 0x8b, 0xac, 0x1a, 0xb6, 0x64,
158 0x10, 0x43, 0x5c, 0xb7, 0x18, 0x1f, 0x95, 0xb1, 0x6a, 0xb9, 0x7c,
159 0x92, 0xb3, 0x41, 0xc0, 0x02, 0x14, 0x41, 0xe2, 0x34, 0x5f, 0x1f,
160 0x56, 0xdf, 0x24, 0x58, 0xf4, 0x26, 0xd1, 0x55, 0xb4, 0xba, 0x2d,
161 0xb6, 0xdc, 0xd8, 0xc8, 0x00,
162 };
163
164 // fips_sig_bad_r is fips_sig with a bad r value.
165 static const uint8_t fips_sig_bad_r[] = {
166 0x30, 0x2d, 0x02, 0x15, 0x00, 0x8c, 0xac, 0x1a, 0xb6, 0x64, 0x10,
167 0x43, 0x5c, 0xb7, 0x18, 0x1f, 0x95, 0xb1, 0x6a, 0xb9, 0x7c, 0x92,
168 0xb3, 0x41, 0xc0, 0x02, 0x14, 0x41, 0xe2, 0x34, 0x5f, 0x1f, 0x56,
169 0xdf, 0x24, 0x58, 0xf4, 0x26, 0xd1, 0x55, 0xb4, 0xba, 0x2d, 0xb6,
170 0xdc, 0xd8, 0xc8,
171 };
172
GetFIPSDSAGroup(void)173 static bssl::UniquePtr<DSA> GetFIPSDSAGroup(void) {
174 bssl::UniquePtr<DSA> dsa(DSA_new());
175 if (!dsa) {
176 return nullptr;
177 }
178 bssl::UniquePtr<BIGNUM> p(BN_bin2bn(fips_p, sizeof(fips_p), nullptr));
179 bssl::UniquePtr<BIGNUM> q(BN_bin2bn(fips_q, sizeof(fips_q), nullptr));
180 bssl::UniquePtr<BIGNUM> g(BN_bin2bn(fips_g, sizeof(fips_g), nullptr));
181 if (!p || !q || !g || !DSA_set0_pqg(dsa.get(), p.get(), q.get(), g.get())) {
182 return nullptr;
183 }
184 // |DSA_set0_pqg| takes ownership.
185 p.release();
186 q.release();
187 g.release();
188 return dsa;
189 }
190
GetFIPSDSA(void)191 static bssl::UniquePtr<DSA> GetFIPSDSA(void) {
192 bssl::UniquePtr<DSA> dsa = GetFIPSDSAGroup();
193 if (!dsa) {
194 return nullptr;
195 }
196 bssl::UniquePtr<BIGNUM> pub_key(BN_bin2bn(fips_y, sizeof(fips_y), nullptr));
197 bssl::UniquePtr<BIGNUM> priv_key(BN_bin2bn(fips_x, sizeof(fips_x), nullptr));
198 if (!pub_key || !priv_key ||
199 !DSA_set0_key(dsa.get(), pub_key.get(), priv_key.get())) {
200 return nullptr;
201 }
202 // |DSA_set0_key| takes ownership.
203 pub_key.release();
204 priv_key.release();
205 return dsa;
206 }
207
TEST(DSATest,Generate)208 TEST(DSATest, Generate) {
209 bssl::UniquePtr<DSA> dsa(DSA_new());
210 ASSERT_TRUE(dsa);
211 int counter;
212 unsigned long h;
213 ASSERT_TRUE(DSA_generate_parameters_ex(dsa.get(), 512, seed, 20, &counter, &h,
214 nullptr));
215 EXPECT_EQ(counter, 105);
216 EXPECT_EQ(h, 2u);
217
218 auto expect_bn_bytes = [](const char *msg, const BIGNUM *bn,
219 bssl::Span<const uint8_t> bytes) {
220 std::vector<uint8_t> buf(BN_num_bytes(bn));
221 BN_bn2bin(bn, buf.data());
222 EXPECT_EQ(Bytes(buf), Bytes(bytes)) << msg;
223 };
224 expect_bn_bytes("q value is wrong", DSA_get0_q(dsa.get()), fips_q);
225 expect_bn_bytes("p value is wrong", DSA_get0_p(dsa.get()), fips_p);
226 expect_bn_bytes("g value is wrong", DSA_get0_g(dsa.get()), fips_g);
227
228 ASSERT_TRUE(DSA_generate_key(dsa.get()));
229
230 std::vector<uint8_t> sig(DSA_size(dsa.get()));
231 unsigned sig_len;
232 ASSERT_TRUE(DSA_sign(0, fips_digest, sizeof(fips_digest), sig.data(),
233 &sig_len, dsa.get()));
234
235 EXPECT_EQ(1, DSA_verify(0, fips_digest, sizeof(fips_digest), sig.data(),
236 sig_len, dsa.get()));
237 }
238
TEST(DSATest,Verify)239 TEST(DSATest, Verify) {
240 bssl::UniquePtr<DSA> dsa = GetFIPSDSA();
241 ASSERT_TRUE(dsa);
242
243 EXPECT_EQ(1, DSA_verify(0, fips_digest, sizeof(fips_digest), fips_sig,
244 sizeof(fips_sig), dsa.get()));
245 EXPECT_EQ(-1,
246 DSA_verify(0, fips_digest, sizeof(fips_digest), fips_sig_negative,
247 sizeof(fips_sig_negative), dsa.get()));
248 EXPECT_EQ(-1, DSA_verify(0, fips_digest, sizeof(fips_digest), fips_sig_extra,
249 sizeof(fips_sig_extra), dsa.get()));
250 EXPECT_EQ(-1,
251 DSA_verify(0, fips_digest, sizeof(fips_digest), fips_sig_bad_length,
252 sizeof(fips_sig_bad_length), dsa.get()));
253 EXPECT_EQ(0, DSA_verify(0, fips_digest, sizeof(fips_digest), fips_sig_bad_r,
254 sizeof(fips_sig_bad_r), dsa.get()));
255 }
256
TEST(DSATest,InvalidGroup)257 TEST(DSATest, InvalidGroup) {
258 bssl::UniquePtr<DSA> dsa = GetFIPSDSA();
259 ASSERT_TRUE(dsa);
260 BN_zero(dsa->g);
261
262 std::vector<uint8_t> sig(DSA_size(dsa.get()));
263 unsigned sig_len;
264 static const uint8_t kDigest[32] = {0};
265 EXPECT_FALSE(
266 DSA_sign(0, kDigest, sizeof(kDigest), sig.data(), &sig_len, dsa.get()));
267 uint32_t err = ERR_get_error();
268 EXPECT_EQ(ERR_LIB_DSA, ERR_GET_LIB(err));
269 EXPECT_EQ(DSA_R_INVALID_PARAMETERS, ERR_GET_REASON(err));
270 }
271
272 // Signing and verifying should cleanly fail when the DSA object is empty.
TEST(DSATest,MissingParameters)273 TEST(DSATest, MissingParameters) {
274 bssl::UniquePtr<DSA> dsa(DSA_new());
275 ASSERT_TRUE(dsa);
276 EXPECT_EQ(-1, DSA_verify(0, fips_digest, sizeof(fips_digest), fips_sig,
277 sizeof(fips_sig), dsa.get()));
278
279 std::vector<uint8_t> sig(DSA_size(dsa.get()));
280 unsigned sig_len;
281 EXPECT_FALSE(DSA_sign(0, fips_digest, sizeof(fips_digest), sig.data(),
282 &sig_len, dsa.get()));
283 }
284
285 // Verifying should cleanly fail when the public key is missing.
TEST(DSATest,MissingPublic)286 TEST(DSATest, MissingPublic) {
287 bssl::UniquePtr<DSA> dsa = GetFIPSDSAGroup();
288 ASSERT_TRUE(dsa);
289 EXPECT_EQ(-1, DSA_verify(0, fips_digest, sizeof(fips_digest), fips_sig,
290 sizeof(fips_sig), dsa.get()));
291 }
292
293 // Signing should cleanly fail when the private key is missing.
TEST(DSATest,MissingPrivate)294 TEST(DSATest, MissingPrivate) {
295 bssl::UniquePtr<DSA> dsa = GetFIPSDSAGroup();
296 ASSERT_TRUE(dsa);
297
298 std::vector<uint8_t> sig(DSA_size(dsa.get()));
299 unsigned sig_len;
300 EXPECT_FALSE(DSA_sign(0, fips_digest, sizeof(fips_digest), sig.data(),
301 &sig_len, dsa.get()));
302 }
303
304 // A zero private key is invalid and can cause signing to loop forever.
TEST(DSATest,ZeroPrivateKey)305 TEST(DSATest, ZeroPrivateKey) {
306 bssl::UniquePtr<DSA> dsa = GetFIPSDSA();
307 ASSERT_TRUE(dsa);
308 BN_zero(dsa->priv_key);
309
310 static const uint8_t kZeroDigest[32] = {0};
311 std::vector<uint8_t> sig(DSA_size(dsa.get()));
312 unsigned sig_len;
313 EXPECT_FALSE(DSA_sign(0, kZeroDigest, sizeof(kZeroDigest), sig.data(),
314 &sig_len, dsa.get()));
315 }
316
317 // If the "field" is actually a ring and the "generator" of the multiplicative
318 // subgroup is actually nilpotent with low degree, DSA signing never completes.
319 // Test that we give up in the infinite loop.
TEST(DSATest,NilpotentGenerator)320 TEST(DSATest, NilpotentGenerator) {
321 static const char kPEM[] = R"(
322 -----BEGIN DSA PRIVATE KEY-----
323 MGECAQACFQHH+MnFXh4NNlZiV/zUVb5a5ib3kwIVAOP8ZOKvDwabKzEr/moq3y1z
324 E3vJAhUAl/2Ylx9fWbzHdh1URsc/c6IM/TECAQECFCsjU4AZRcuks45g1NMOUeCB
325 Epvg
326 -----END DSA PRIVATE KEY-----
327 )";
328 bssl::UniquePtr<BIO> bio(BIO_new_mem_buf(kPEM, sizeof(kPEM)));
329 ASSERT_TRUE(bio);
330 bssl::UniquePtr<DSA> dsa(
331 PEM_read_bio_DSAPrivateKey(bio.get(), nullptr, nullptr, nullptr));
332 ASSERT_TRUE(dsa);
333
334 std::vector<uint8_t> sig(DSA_size(dsa.get()));
335 unsigned sig_len;
336 EXPECT_FALSE(DSA_sign(0, fips_digest, sizeof(fips_digest), sig.data(),
337 &sig_len, dsa.get()));
338 }
339