• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
2  * All rights reserved.
3  *
4  * This package is an SSL implementation written
5  * by Eric Young (eay@cryptsoft.com).
6  * The implementation was written so as to conform with Netscapes SSL.
7  *
8  * This library is free for commercial and non-commercial use as long as
9  * the following conditions are aheared to.  The following conditions
10  * apply to all code found in this distribution, be it the RC4, RSA,
11  * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
12  * included with this distribution is covered by the same copyright terms
13  * except that the holder is Tim Hudson (tjh@cryptsoft.com).
14  *
15  * Copyright remains Eric Young's, and as such any Copyright notices in
16  * the code are not to be removed.
17  * If this package is used in a product, Eric Young should be given attribution
18  * as the author of the parts of the library used.
19  * This can be in the form of a textual message at program startup or
20  * in documentation (online or textual) provided with the package.
21  *
22  * Redistribution and use in source and binary forms, with or without
23  * modification, are permitted provided that the following conditions
24  * are met:
25  * 1. Redistributions of source code must retain the copyright
26  *    notice, this list of conditions and the following disclaimer.
27  * 2. Redistributions in binary form must reproduce the above copyright
28  *    notice, this list of conditions and the following disclaimer in the
29  *    documentation and/or other materials provided with the distribution.
30  * 3. All advertising materials mentioning features or use of this software
31  *    must display the following acknowledgement:
32  *    "This product includes cryptographic software written by
33  *     Eric Young (eay@cryptsoft.com)"
34  *    The word 'cryptographic' can be left out if the rouines from the library
35  *    being used are not cryptographic related :-).
36  * 4. If you include any Windows specific code (or a derivative thereof) from
37  *    the apps directory (application code) you must include an acknowledgement:
38  *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
39  *
40  * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
41  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
44  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50  * SUCH DAMAGE.
51  *
52  * The licence and distribution terms for any publically available version or
53  * derivative of this code cannot be changed.  i.e. this code cannot simply be
54  * copied and put under another distribution licence
55  * [including the GNU Public Licence.] */
56 
57 #include <openssl/bn.h>
58 
59 #include <assert.h>
60 #include <stdlib.h>
61 #include <string.h>
62 
63 #include <openssl/err.h>
64 #include <openssl/mem.h>
65 
66 #include "internal.h"
67 #include "../../internal.h"
68 
69 
70 #define BN_MUL_RECURSIVE_SIZE_NORMAL 16
71 #define BN_SQR_RECURSIVE_SIZE_NORMAL BN_MUL_RECURSIVE_SIZE_NORMAL
72 
73 
bn_abs_sub_words(BN_ULONG * r,const BN_ULONG * a,const BN_ULONG * b,size_t num,BN_ULONG * tmp)74 static void bn_abs_sub_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b,
75                              size_t num, BN_ULONG *tmp) {
76   BN_ULONG borrow = bn_sub_words(tmp, a, b, num);
77   bn_sub_words(r, b, a, num);
78   bn_select_words(r, 0 - borrow, r /* tmp < 0 */, tmp /* tmp >= 0 */, num);
79 }
80 
bn_mul_normal(BN_ULONG * r,const BN_ULONG * a,size_t na,const BN_ULONG * b,size_t nb)81 static void bn_mul_normal(BN_ULONG *r, const BN_ULONG *a, size_t na,
82                           const BN_ULONG *b, size_t nb) {
83   if (na < nb) {
84     size_t itmp = na;
85     na = nb;
86     nb = itmp;
87     const BN_ULONG *ltmp = a;
88     a = b;
89     b = ltmp;
90   }
91   BN_ULONG *rr = &(r[na]);
92   if (nb == 0) {
93     OPENSSL_memset(r, 0, na * sizeof(BN_ULONG));
94     return;
95   }
96   rr[0] = bn_mul_words(r, a, na, b[0]);
97 
98   for (;;) {
99     if (--nb == 0) {
100       return;
101     }
102     rr[1] = bn_mul_add_words(&(r[1]), a, na, b[1]);
103     if (--nb == 0) {
104       return;
105     }
106     rr[2] = bn_mul_add_words(&(r[2]), a, na, b[2]);
107     if (--nb == 0) {
108       return;
109     }
110     rr[3] = bn_mul_add_words(&(r[3]), a, na, b[3]);
111     if (--nb == 0) {
112       return;
113     }
114     rr[4] = bn_mul_add_words(&(r[4]), a, na, b[4]);
115     rr += 4;
116     r += 4;
117     b += 4;
118   }
119 }
120 
121 // bn_sub_part_words sets |r| to |a| - |b|. It returns the borrow bit, which is
122 // one if the operation underflowed and zero otherwise. |cl| is the common
123 // length, that is, the shorter of len(a) or len(b). |dl| is the delta length,
124 // that is, len(a) - len(b). |r|'s length matches the larger of |a| and |b|, or
125 // cl + abs(dl).
126 //
127 // TODO(davidben): Make this take |size_t|. The |cl| + |dl| calling convention
128 // is confusing.
bn_sub_part_words(BN_ULONG * r,const BN_ULONG * a,const BN_ULONG * b,int cl,int dl)129 static BN_ULONG bn_sub_part_words(BN_ULONG *r, const BN_ULONG *a,
130                                   const BN_ULONG *b, int cl, int dl) {
131   assert(cl >= 0);
132   BN_ULONG borrow = bn_sub_words(r, a, b, cl);
133   if (dl == 0) {
134     return borrow;
135   }
136 
137   r += cl;
138   a += cl;
139   b += cl;
140 
141   if (dl < 0) {
142     // |a| is shorter than |b|. Complete the subtraction as if the excess words
143     // in |a| were zeros.
144     dl = -dl;
145     for (int i = 0; i < dl; i++) {
146       r[i] = 0u - b[i] - borrow;
147       borrow |= r[i] != 0;
148     }
149   } else {
150     // |b| is shorter than |a|. Complete the subtraction as if the excess words
151     // in |b| were zeros.
152     for (int i = 0; i < dl; i++) {
153       // |r| and |a| may alias, so use a temporary.
154       BN_ULONG tmp = a[i];
155       r[i] = a[i] - borrow;
156       borrow = tmp < r[i];
157     }
158   }
159 
160   return borrow;
161 }
162 
163 // bn_abs_sub_part_words computes |r| = |a| - |b|, storing the absolute value
164 // and returning a mask of all ones if the result was negative and all zeros if
165 // the result was positive. |cl| and |dl| follow the |bn_sub_part_words| calling
166 // convention.
167 //
168 // TODO(davidben): Make this take |size_t|. The |cl| + |dl| calling convention
169 // is confusing.
bn_abs_sub_part_words(BN_ULONG * r,const BN_ULONG * a,const BN_ULONG * b,int cl,int dl,BN_ULONG * tmp)170 static BN_ULONG bn_abs_sub_part_words(BN_ULONG *r, const BN_ULONG *a,
171                                       const BN_ULONG *b, int cl, int dl,
172                                       BN_ULONG *tmp) {
173   BN_ULONG borrow = bn_sub_part_words(tmp, a, b, cl, dl);
174   bn_sub_part_words(r, b, a, cl, -dl);
175   int r_len = cl + (dl < 0 ? -dl : dl);
176   borrow = 0 - borrow;
177   bn_select_words(r, borrow, r /* tmp < 0 */, tmp /* tmp >= 0 */, r_len);
178   return borrow;
179 }
180 
bn_abs_sub_consttime(BIGNUM * r,const BIGNUM * a,const BIGNUM * b,BN_CTX * ctx)181 int bn_abs_sub_consttime(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
182                          BN_CTX *ctx) {
183   int cl = a->width < b->width ? a->width : b->width;
184   int dl = a->width - b->width;
185   int r_len = a->width < b->width ? b->width : a->width;
186   BN_CTX_start(ctx);
187   BIGNUM *tmp = BN_CTX_get(ctx);
188   int ok = tmp != NULL &&
189            bn_wexpand(r, r_len) &&
190            bn_wexpand(tmp, r_len);
191   if (ok) {
192     bn_abs_sub_part_words(r->d, a->d, b->d, cl, dl, tmp->d);
193     r->width = r_len;
194   }
195   BN_CTX_end(ctx);
196   return ok;
197 }
198 
199 // Karatsuba recursive multiplication algorithm
200 // (cf. Knuth, The Art of Computer Programming, Vol. 2)
201 
202 // bn_mul_recursive sets |r| to |a| * |b|, using |t| as scratch space. |r| has
203 // length 2*|n2|, |a| has length |n2| + |dna|, |b| has length |n2| + |dnb|, and
204 // |t| has length 4*|n2|. |n2| must be a power of two. Finally, we must have
205 // -|BN_MUL_RECURSIVE_SIZE_NORMAL|/2 <= |dna| <= 0 and
206 // -|BN_MUL_RECURSIVE_SIZE_NORMAL|/2 <= |dnb| <= 0.
207 //
208 // TODO(davidben): Simplify and |size_t| the calling convention around lengths
209 // here.
bn_mul_recursive(BN_ULONG * r,const BN_ULONG * a,const BN_ULONG * b,int n2,int dna,int dnb,BN_ULONG * t)210 static void bn_mul_recursive(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b,
211                              int n2, int dna, int dnb, BN_ULONG *t) {
212   // |n2| is a power of two.
213   assert(n2 != 0 && (n2 & (n2 - 1)) == 0);
214   // Check |dna| and |dnb| are in range.
215   assert(-BN_MUL_RECURSIVE_SIZE_NORMAL/2 <= dna && dna <= 0);
216   assert(-BN_MUL_RECURSIVE_SIZE_NORMAL/2 <= dnb && dnb <= 0);
217 
218   // Only call bn_mul_comba 8 if n2 == 8 and the
219   // two arrays are complete [steve]
220   if (n2 == 8 && dna == 0 && dnb == 0) {
221     bn_mul_comba8(r, a, b);
222     return;
223   }
224 
225   // Else do normal multiply
226   if (n2 < BN_MUL_RECURSIVE_SIZE_NORMAL) {
227     bn_mul_normal(r, a, n2 + dna, b, n2 + dnb);
228     if (dna + dnb < 0) {
229       OPENSSL_memset(&r[2 * n2 + dna + dnb], 0,
230                      sizeof(BN_ULONG) * -(dna + dnb));
231     }
232     return;
233   }
234 
235   // Split |a| and |b| into a0,a1 and b0,b1, where a0 and b0 have size |n|.
236   // Split |t| into t0,t1,t2,t3, each of size |n|, with the remaining 4*|n| used
237   // for recursive calls.
238   // Split |r| into r0,r1,r2,r3. We must contribute a0*b0 to r0,r1, a0*a1+b0*b1
239   // to r1,r2, and a1*b1 to r2,r3. The middle term we will compute as:
240   //
241   //   a0*a1 + b0*b1 = (a0 - a1)*(b1 - b0) + a1*b1 + a0*b0
242   //
243   // Note that we know |n| >= |BN_MUL_RECURSIVE_SIZE_NORMAL|/2 above, so
244   // |tna| and |tnb| are non-negative.
245   int n = n2 / 2, tna = n + dna, tnb = n + dnb;
246 
247   // t0 = a0 - a1 and t1 = b1 - b0. The result will be multiplied, so we XOR
248   // their sign masks, giving the sign of (a0 - a1)*(b1 - b0). t0 and t1
249   // themselves store the absolute value.
250   BN_ULONG neg = bn_abs_sub_part_words(t, a, &a[n], tna, n - tna, &t[n2]);
251   neg ^= bn_abs_sub_part_words(&t[n], &b[n], b, tnb, tnb - n, &t[n2]);
252 
253   // Compute:
254   // t2,t3 = t0 * t1 = |(a0 - a1)*(b1 - b0)|
255   // r0,r1 = a0 * b0
256   // r2,r3 = a1 * b1
257   if (n == 4 && dna == 0 && dnb == 0) {
258     bn_mul_comba4(&t[n2], t, &t[n]);
259 
260     bn_mul_comba4(r, a, b);
261     bn_mul_comba4(&r[n2], &a[n], &b[n]);
262   } else if (n == 8 && dna == 0 && dnb == 0) {
263     bn_mul_comba8(&t[n2], t, &t[n]);
264 
265     bn_mul_comba8(r, a, b);
266     bn_mul_comba8(&r[n2], &a[n], &b[n]);
267   } else {
268     BN_ULONG *p = &t[n2 * 2];
269     bn_mul_recursive(&t[n2], t, &t[n], n, 0, 0, p);
270     bn_mul_recursive(r, a, b, n, 0, 0, p);
271     bn_mul_recursive(&r[n2], &a[n], &b[n], n, dna, dnb, p);
272   }
273 
274   // t0,t1,c = r0,r1 + r2,r3 = a0*b0 + a1*b1
275   BN_ULONG c = bn_add_words(t, r, &r[n2], n2);
276 
277   // t2,t3,c = t0,t1,c + neg*t2,t3 = (a0 - a1)*(b1 - b0) + a1*b1 + a0*b0.
278   // The second term is stored as the absolute value, so we do this with a
279   // constant-time select.
280   BN_ULONG c_neg = c - bn_sub_words(&t[n2 * 2], t, &t[n2], n2);
281   BN_ULONG c_pos = c + bn_add_words(&t[n2], t, &t[n2], n2);
282   bn_select_words(&t[n2], neg, &t[n2 * 2], &t[n2], n2);
283   static_assert(sizeof(BN_ULONG) <= sizeof(crypto_word_t),
284                 "crypto_word_t is too small");
285   c = constant_time_select_w(neg, c_neg, c_pos);
286 
287   // We now have our three components. Add them together.
288   // r1,r2,c = r1,r2 + t2,t3,c
289   c += bn_add_words(&r[n], &r[n], &t[n2], n2);
290 
291   // Propagate the carry bit to the end.
292   for (int i = n + n2; i < n2 + n2; i++) {
293     BN_ULONG old = r[i];
294     r[i] = old + c;
295     c = r[i] < old;
296   }
297 
298   // The product should fit without carries.
299   assert(c == 0);
300 }
301 
302 // bn_mul_part_recursive sets |r| to |a| * |b|, using |t| as scratch space. |r|
303 // has length 4*|n|, |a| has length |n| + |tna|, |b| has length |n| + |tnb|, and
304 // |t| has length 8*|n|. |n| must be a power of two. Additionally, we must have
305 // 0 <= tna < n and 0 <= tnb < n, and |tna| and |tnb| must differ by at most
306 // one.
307 //
308 // TODO(davidben): Make this take |size_t| and perhaps the actual lengths of |a|
309 // and |b|.
bn_mul_part_recursive(BN_ULONG * r,const BN_ULONG * a,const BN_ULONG * b,int n,int tna,int tnb,BN_ULONG * t)310 static void bn_mul_part_recursive(BN_ULONG *r, const BN_ULONG *a,
311                                   const BN_ULONG *b, int n, int tna, int tnb,
312                                   BN_ULONG *t) {
313   // |n| is a power of two.
314   assert(n != 0 && (n & (n - 1)) == 0);
315   // Check |tna| and |tnb| are in range.
316   assert(0 <= tna && tna < n);
317   assert(0 <= tnb && tnb < n);
318   assert(-1 <= tna - tnb && tna - tnb <= 1);
319 
320   int n2 = n * 2;
321   if (n < 8) {
322     bn_mul_normal(r, a, n + tna, b, n + tnb);
323     OPENSSL_memset(r + n2 + tna + tnb, 0, n2 - tna - tnb);
324     return;
325   }
326 
327   // Split |a| and |b| into a0,a1 and b0,b1, where a0 and b0 have size |n|. |a1|
328   // and |b1| have size |tna| and |tnb|, respectively.
329   // Split |t| into t0,t1,t2,t3, each of size |n|, with the remaining 4*|n| used
330   // for recursive calls.
331   // Split |r| into r0,r1,r2,r3. We must contribute a0*b0 to r0,r1, a0*a1+b0*b1
332   // to r1,r2, and a1*b1 to r2,r3. The middle term we will compute as:
333   //
334   //   a0*a1 + b0*b1 = (a0 - a1)*(b1 - b0) + a1*b1 + a0*b0
335 
336   // t0 = a0 - a1 and t1 = b1 - b0. The result will be multiplied, so we XOR
337   // their sign masks, giving the sign of (a0 - a1)*(b1 - b0). t0 and t1
338   // themselves store the absolute value.
339   BN_ULONG neg = bn_abs_sub_part_words(t, a, &a[n], tna, n - tna, &t[n2]);
340   neg ^= bn_abs_sub_part_words(&t[n], &b[n], b, tnb, tnb - n, &t[n2]);
341 
342   // Compute:
343   // t2,t3 = t0 * t1 = |(a0 - a1)*(b1 - b0)|
344   // r0,r1 = a0 * b0
345   // r2,r3 = a1 * b1
346   if (n == 8) {
347     bn_mul_comba8(&t[n2], t, &t[n]);
348     bn_mul_comba8(r, a, b);
349 
350     bn_mul_normal(&r[n2], &a[n], tna, &b[n], tnb);
351     // |bn_mul_normal| only writes |tna| + |tna| words. Zero the rest.
352     OPENSSL_memset(&r[n2 + tna + tnb], 0, sizeof(BN_ULONG) * (n2 - tna - tnb));
353   } else {
354     BN_ULONG *p = &t[n2 * 2];
355     bn_mul_recursive(&t[n2], t, &t[n], n, 0, 0, p);
356     bn_mul_recursive(r, a, b, n, 0, 0, p);
357 
358     OPENSSL_memset(&r[n2], 0, sizeof(BN_ULONG) * n2);
359     if (tna < BN_MUL_RECURSIVE_SIZE_NORMAL &&
360         tnb < BN_MUL_RECURSIVE_SIZE_NORMAL) {
361       bn_mul_normal(&r[n2], &a[n], tna, &b[n], tnb);
362     } else {
363       int i = n;
364       for (;;) {
365         i /= 2;
366         if (i < tna || i < tnb) {
367           // E.g., n == 16, i == 8 and tna == 11. |tna| and |tnb| are within one
368           // of each other, so if |tna| is larger and tna > i, then we know
369           // tnb >= i, and this call is valid.
370           bn_mul_part_recursive(&r[n2], &a[n], &b[n], i, tna - i, tnb - i, p);
371           break;
372         }
373         if (i == tna || i == tnb) {
374           // If there is only a bottom half to the number, just do it. We know
375           // the larger of |tna - i| and |tnb - i| is zero. The other is zero or
376           // -1 by because of |tna| and |tnb| differ by at most one.
377           bn_mul_recursive(&r[n2], &a[n], &b[n], i, tna - i, tnb - i, p);
378           break;
379         }
380 
381         // This loop will eventually terminate when |i| falls below
382         // |BN_MUL_RECURSIVE_SIZE_NORMAL| because we know one of |tna| and |tnb|
383         // exceeds that.
384       }
385     }
386   }
387 
388   // t0,t1,c = r0,r1 + r2,r3 = a0*b0 + a1*b1
389   BN_ULONG c = bn_add_words(t, r, &r[n2], n2);
390 
391   // t2,t3,c = t0,t1,c + neg*t2,t3 = (a0 - a1)*(b1 - b0) + a1*b1 + a0*b0.
392   // The second term is stored as the absolute value, so we do this with a
393   // constant-time select.
394   BN_ULONG c_neg = c - bn_sub_words(&t[n2 * 2], t, &t[n2], n2);
395   BN_ULONG c_pos = c + bn_add_words(&t[n2], t, &t[n2], n2);
396   bn_select_words(&t[n2], neg, &t[n2 * 2], &t[n2], n2);
397   static_assert(sizeof(BN_ULONG) <= sizeof(crypto_word_t),
398                 "crypto_word_t is too small");
399   c = constant_time_select_w(neg, c_neg, c_pos);
400 
401   // We now have our three components. Add them together.
402   // r1,r2,c = r1,r2 + t2,t3,c
403   c += bn_add_words(&r[n], &r[n], &t[n2], n2);
404 
405   // Propagate the carry bit to the end.
406   for (int i = n + n2; i < n2 + n2; i++) {
407     BN_ULONG old = r[i];
408     r[i] = old + c;
409     c = r[i] < old;
410   }
411 
412   // The product should fit without carries.
413   assert(c == 0);
414 }
415 
416 // bn_mul_impl implements |BN_mul| and |bn_mul_consttime|. Note this function
417 // breaks |BIGNUM| invariants and may return a negative zero. This is handled by
418 // the callers.
bn_mul_impl(BIGNUM * r,const BIGNUM * a,const BIGNUM * b,BN_CTX * ctx)419 static int bn_mul_impl(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
420                        BN_CTX *ctx) {
421   int al = a->width;
422   int bl = b->width;
423   if (al == 0 || bl == 0) {
424     BN_zero(r);
425     return 1;
426   }
427 
428   int ret = 0;
429   BIGNUM *rr;
430   BN_CTX_start(ctx);
431   if (r == a || r == b) {
432     rr = BN_CTX_get(ctx);
433     if (rr == NULL) {
434       goto err;
435     }
436   } else {
437     rr = r;
438   }
439   rr->neg = a->neg ^ b->neg;
440 
441   int i = al - bl;
442   if (i == 0) {
443     if (al == 8) {
444       if (!bn_wexpand(rr, 16)) {
445         goto err;
446       }
447       rr->width = 16;
448       bn_mul_comba8(rr->d, a->d, b->d);
449       goto end;
450     }
451   }
452 
453   int top = al + bl;
454   static const int kMulNormalSize = 16;
455   if (al >= kMulNormalSize && bl >= kMulNormalSize) {
456     if (-1 <= i && i <= 1) {
457       // Find the largest power of two less than or equal to the larger length.
458       int j;
459       if (i >= 0) {
460         j = BN_num_bits_word((BN_ULONG)al);
461       } else {
462         j = BN_num_bits_word((BN_ULONG)bl);
463       }
464       j = 1 << (j - 1);
465       assert(j <= al || j <= bl);
466       BIGNUM *t = BN_CTX_get(ctx);
467       if (t == NULL) {
468         goto err;
469       }
470       if (al > j || bl > j) {
471         // We know |al| and |bl| are at most one from each other, so if al > j,
472         // bl >= j, and vice versa. Thus we can use |bn_mul_part_recursive|.
473         //
474         // TODO(davidben): This codepath is almost unused in standard
475         // algorithms. Is this optimization necessary? See notes in
476         // https://boringssl-review.googlesource.com/q/I0bd604e2cd6a75c266f64476c23a730ca1721ea6
477         assert(al >= j && bl >= j);
478         if (!bn_wexpand(t, j * 8) ||
479             !bn_wexpand(rr, j * 4)) {
480           goto err;
481         }
482         bn_mul_part_recursive(rr->d, a->d, b->d, j, al - j, bl - j, t->d);
483       } else {
484         // al <= j && bl <= j. Additionally, we know j <= al or j <= bl, so one
485         // of al - j or bl - j is zero. The other, by the bound on |i| above, is
486         // zero or -1. Thus, we can use |bn_mul_recursive|.
487         if (!bn_wexpand(t, j * 4) ||
488             !bn_wexpand(rr, j * 2)) {
489           goto err;
490         }
491         bn_mul_recursive(rr->d, a->d, b->d, j, al - j, bl - j, t->d);
492       }
493       rr->width = top;
494       goto end;
495     }
496   }
497 
498   if (!bn_wexpand(rr, top)) {
499     goto err;
500   }
501   rr->width = top;
502   bn_mul_normal(rr->d, a->d, al, b->d, bl);
503 
504 end:
505   if (r != rr && !BN_copy(r, rr)) {
506     goto err;
507   }
508   ret = 1;
509 
510 err:
511   BN_CTX_end(ctx);
512   return ret;
513 }
514 
BN_mul(BIGNUM * r,const BIGNUM * a,const BIGNUM * b,BN_CTX * ctx)515 int BN_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) {
516   if (!bn_mul_impl(r, a, b, ctx)) {
517     return 0;
518   }
519 
520   // This additionally fixes any negative zeros created by |bn_mul_impl|.
521   bn_set_minimal_width(r);
522   return 1;
523 }
524 
bn_mul_consttime(BIGNUM * r,const BIGNUM * a,const BIGNUM * b,BN_CTX * ctx)525 int bn_mul_consttime(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) {
526   // Prevent negative zeros.
527   if (a->neg || b->neg) {
528     OPENSSL_PUT_ERROR(BN, BN_R_NEGATIVE_NUMBER);
529     return 0;
530   }
531 
532   return bn_mul_impl(r, a, b, ctx);
533 }
534 
bn_mul_small(BN_ULONG * r,size_t num_r,const BN_ULONG * a,size_t num_a,const BN_ULONG * b,size_t num_b)535 void bn_mul_small(BN_ULONG *r, size_t num_r, const BN_ULONG *a, size_t num_a,
536                   const BN_ULONG *b, size_t num_b) {
537   if (num_r != num_a + num_b) {
538     abort();
539   }
540   // TODO(davidben): Should this call |bn_mul_comba4| too? |BN_mul| does not
541   // hit that code.
542   if (num_a == 8 && num_b == 8) {
543     bn_mul_comba8(r, a, b);
544   } else {
545     bn_mul_normal(r, a, num_a, b, num_b);
546   }
547 }
548 
549 // tmp must have 2*n words
bn_sqr_normal(BN_ULONG * r,const BN_ULONG * a,size_t n,BN_ULONG * tmp)550 static void bn_sqr_normal(BN_ULONG *r, const BN_ULONG *a, size_t n,
551                           BN_ULONG *tmp) {
552   if (n == 0) {
553     return;
554   }
555 
556   size_t max = n * 2;
557   const BN_ULONG *ap = a;
558   BN_ULONG *rp = r;
559   rp[0] = rp[max - 1] = 0;
560   rp++;
561 
562   // Compute the contribution of a[i] * a[j] for all i < j.
563   if (n > 1) {
564     ap++;
565     rp[n - 1] = bn_mul_words(rp, ap, n - 1, ap[-1]);
566     rp += 2;
567   }
568   if (n > 2) {
569     for (size_t i = n - 2; i > 0; i--) {
570       ap++;
571       rp[i] = bn_mul_add_words(rp, ap, i, ap[-1]);
572       rp += 2;
573     }
574   }
575 
576   // The final result fits in |max| words, so none of the following operations
577   // will overflow.
578 
579   // Double |r|, giving the contribution of a[i] * a[j] for all i != j.
580   bn_add_words(r, r, r, max);
581 
582   // Add in the contribution of a[i] * a[i] for all i.
583   bn_sqr_words(tmp, a, n);
584   bn_add_words(r, r, tmp, max);
585 }
586 
587 // bn_sqr_recursive sets |r| to |a|^2, using |t| as scratch space. |r| has
588 // length 2*|n2|, |a| has length |n2|, and |t| has length 4*|n2|. |n2| must be
589 // a power of two.
bn_sqr_recursive(BN_ULONG * r,const BN_ULONG * a,size_t n2,BN_ULONG * t)590 static void bn_sqr_recursive(BN_ULONG *r, const BN_ULONG *a, size_t n2,
591                              BN_ULONG *t) {
592   // |n2| is a power of two.
593   assert(n2 != 0 && (n2 & (n2 - 1)) == 0);
594 
595   if (n2 == 4) {
596     bn_sqr_comba4(r, a);
597     return;
598   }
599   if (n2 == 8) {
600     bn_sqr_comba8(r, a);
601     return;
602   }
603   if (n2 < BN_SQR_RECURSIVE_SIZE_NORMAL) {
604     bn_sqr_normal(r, a, n2, t);
605     return;
606   }
607 
608   // Split |a| into a0,a1, each of size |n|.
609   // Split |t| into t0,t1,t2,t3, each of size |n|, with the remaining 4*|n| used
610   // for recursive calls.
611   // Split |r| into r0,r1,r2,r3. We must contribute a0^2 to r0,r1, 2*a0*a1 to
612   // r1,r2, and a1^2 to r2,r3.
613   size_t n = n2 / 2;
614   BN_ULONG *t_recursive = &t[n2 * 2];
615 
616   // t0 = |a0 - a1|.
617   bn_abs_sub_words(t, a, &a[n], n, &t[n]);
618   // t2,t3 = t0^2 = |a0 - a1|^2 = a0^2 - 2*a0*a1 + a1^2
619   bn_sqr_recursive(&t[n2], t, n, t_recursive);
620 
621   // r0,r1 = a0^2
622   bn_sqr_recursive(r, a, n, t_recursive);
623 
624   // r2,r3 = a1^2
625   bn_sqr_recursive(&r[n2], &a[n], n, t_recursive);
626 
627   // t0,t1,c = r0,r1 + r2,r3 = a0^2 + a1^2
628   BN_ULONG c = bn_add_words(t, r, &r[n2], n2);
629   // t2,t3,c = t0,t1,c - t2,t3 = 2*a0*a1
630   c -= bn_sub_words(&t[n2], t, &t[n2], n2);
631 
632   // We now have our three components. Add them together.
633   // r1,r2,c = r1,r2 + t2,t3,c
634   c += bn_add_words(&r[n], &r[n], &t[n2], n2);
635 
636   // Propagate the carry bit to the end.
637   for (size_t i = n + n2; i < n2 + n2; i++) {
638     BN_ULONG old = r[i];
639     r[i] = old + c;
640     c = r[i] < old;
641   }
642 
643   // The square should fit without carries.
644   assert(c == 0);
645 }
646 
BN_mul_word(BIGNUM * bn,BN_ULONG w)647 int BN_mul_word(BIGNUM *bn, BN_ULONG w) {
648   if (!bn->width) {
649     return 1;
650   }
651 
652   if (w == 0) {
653     BN_zero(bn);
654     return 1;
655   }
656 
657   BN_ULONG ll = bn_mul_words(bn->d, bn->d, bn->width, w);
658   if (ll) {
659     if (!bn_wexpand(bn, bn->width + 1)) {
660       return 0;
661     }
662     bn->d[bn->width++] = ll;
663   }
664 
665   return 1;
666 }
667 
bn_sqr_consttime(BIGNUM * r,const BIGNUM * a,BN_CTX * ctx)668 int bn_sqr_consttime(BIGNUM *r, const BIGNUM *a, BN_CTX *ctx) {
669   int al = a->width;
670   if (al <= 0) {
671     r->width = 0;
672     r->neg = 0;
673     return 1;
674   }
675 
676   int ret = 0;
677   BN_CTX_start(ctx);
678   BIGNUM *rr = (a != r) ? r : BN_CTX_get(ctx);
679   BIGNUM *tmp = BN_CTX_get(ctx);
680   if (!rr || !tmp) {
681     goto err;
682   }
683 
684   int max = 2 * al;  // Non-zero (from above)
685   if (!bn_wexpand(rr, max)) {
686     goto err;
687   }
688 
689   if (al == 4) {
690     bn_sqr_comba4(rr->d, a->d);
691   } else if (al == 8) {
692     bn_sqr_comba8(rr->d, a->d);
693   } else {
694     if (al < BN_SQR_RECURSIVE_SIZE_NORMAL) {
695       BN_ULONG t[BN_SQR_RECURSIVE_SIZE_NORMAL * 2];
696       bn_sqr_normal(rr->d, a->d, al, t);
697     } else {
698       // If |al| is a power of two, we can use |bn_sqr_recursive|.
699       if (al != 0 && (al & (al - 1)) == 0) {
700         if (!bn_wexpand(tmp, al * 4)) {
701           goto err;
702         }
703         bn_sqr_recursive(rr->d, a->d, al, tmp->d);
704       } else {
705         if (!bn_wexpand(tmp, max)) {
706           goto err;
707         }
708         bn_sqr_normal(rr->d, a->d, al, tmp->d);
709       }
710     }
711   }
712 
713   rr->neg = 0;
714   rr->width = max;
715 
716   if (rr != r && !BN_copy(r, rr)) {
717     goto err;
718   }
719   ret = 1;
720 
721 err:
722   BN_CTX_end(ctx);
723   return ret;
724 }
725 
BN_sqr(BIGNUM * r,const BIGNUM * a,BN_CTX * ctx)726 int BN_sqr(BIGNUM *r, const BIGNUM *a, BN_CTX *ctx) {
727   if (!bn_sqr_consttime(r, a, ctx)) {
728     return 0;
729   }
730 
731   bn_set_minimal_width(r);
732   return 1;
733 }
734 
bn_sqr_small(BN_ULONG * r,size_t num_r,const BN_ULONG * a,size_t num_a)735 void bn_sqr_small(BN_ULONG *r, size_t num_r, const BN_ULONG *a, size_t num_a) {
736   if (num_r != 2 * num_a || num_a > BN_SMALL_MAX_WORDS) {
737     abort();
738   }
739   if (num_a == 4) {
740     bn_sqr_comba4(r, a);
741   } else if (num_a == 8) {
742     bn_sqr_comba8(r, a);
743   } else {
744     BN_ULONG tmp[2 * BN_SMALL_MAX_WORDS];
745     bn_sqr_normal(r, a, num_a, tmp);
746     OPENSSL_cleanse(tmp, 2 * num_a * sizeof(BN_ULONG));
747   }
748 }
749