• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* ====================================================================
2  * Copyright (c) 2001-2011 The OpenSSL Project.  All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  *
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  *
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in
13  *    the documentation and/or other materials provided with the
14  *    distribution.
15  *
16  * 3. All advertising materials mentioning features or use of this
17  *    software must display the following acknowledgment:
18  *    "This product includes software developed by the OpenSSL Project
19  *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
20  *
21  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
22  *    endorse or promote products derived from this software without
23  *    prior written permission. For written permission, please contact
24  *    openssl-core@openssl.org.
25  *
26  * 5. Products derived from this software may not be called "OpenSSL"
27  *    nor may "OpenSSL" appear in their names without prior written
28  *    permission of the OpenSSL Project.
29  *
30  * 6. Redistributions of any form whatsoever must retain the following
31  *    acknowledgment:
32  *    "This product includes software developed by the OpenSSL Project
33  *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
34  *
35  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
36  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
37  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
38  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
39  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
40  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
41  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
42  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
43  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
44  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
45  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
46  * OF THE POSSIBILITY OF SUCH DAMAGE.
47  * ==================================================================== */
48 
49 #include <assert.h>
50 #include <limits.h>
51 #include <string.h>
52 
53 #include <openssl/aead.h>
54 #include <openssl/aes.h>
55 #include <openssl/cipher.h>
56 #include <openssl/err.h>
57 #include <openssl/mem.h>
58 #include <openssl/nid.h>
59 #include <openssl/rand.h>
60 
61 #include "internal.h"
62 #include "../../internal.h"
63 #include "../aes/internal.h"
64 #include "../modes/internal.h"
65 #include "../service_indicator/internal.h"
66 #include "../delocate.h"
67 
68 
69 OPENSSL_MSVC_PRAGMA(warning(push))
70 OPENSSL_MSVC_PRAGMA(warning(disable: 4702))  // Unreachable code.
71 
72 #define AES_GCM_NONCE_LENGTH 12
73 
74 #if defined(BSAES)
vpaes_ctr32_encrypt_blocks_with_bsaes(const uint8_t * in,uint8_t * out,size_t blocks,const AES_KEY * key,const uint8_t ivec[16])75 static void vpaes_ctr32_encrypt_blocks_with_bsaes(const uint8_t *in,
76                                                   uint8_t *out, size_t blocks,
77                                                   const AES_KEY *key,
78                                                   const uint8_t ivec[16]) {
79   // |bsaes_ctr32_encrypt_blocks| is faster than |vpaes_ctr32_encrypt_blocks|,
80   // but it takes at least one full 8-block batch to amortize the conversion.
81   if (blocks < 8) {
82     vpaes_ctr32_encrypt_blocks(in, out, blocks, key, ivec);
83     return;
84   }
85 
86   size_t bsaes_blocks = blocks;
87   if (bsaes_blocks % 8 < 6) {
88     // |bsaes_ctr32_encrypt_blocks| internally works in 8-block batches. If the
89     // final batch is too small (under six blocks), it is faster to loop over
90     // |vpaes_encrypt|. Round |bsaes_blocks| down to a multiple of 8.
91     bsaes_blocks -= bsaes_blocks % 8;
92   }
93 
94   AES_KEY bsaes;
95   vpaes_encrypt_key_to_bsaes(&bsaes, key);
96   bsaes_ctr32_encrypt_blocks(in, out, bsaes_blocks, &bsaes, ivec);
97   OPENSSL_cleanse(&bsaes, sizeof(bsaes));
98 
99   in += 16 * bsaes_blocks;
100   out += 16 * bsaes_blocks;
101   blocks -= bsaes_blocks;
102 
103   uint8_t new_ivec[16];
104   memcpy(new_ivec, ivec, 12);
105   uint32_t ctr = CRYPTO_load_u32_be(ivec + 12) + bsaes_blocks;
106   CRYPTO_store_u32_be(new_ivec + 12, ctr);
107 
108   // Finish any remaining blocks with |vpaes_ctr32_encrypt_blocks|.
109   vpaes_ctr32_encrypt_blocks(in, out, blocks, key, new_ivec);
110 }
111 #endif  // BSAES
112 
113 typedef struct {
114   union {
115     double align;
116     AES_KEY ks;
117   } ks;
118   block128_f block;
119   union {
120     cbc128_f cbc;
121     ctr128_f ctr;
122   } stream;
123 } EVP_AES_KEY;
124 
125 typedef struct {
126   GCM128_CONTEXT gcm;
127   union {
128     double align;
129     AES_KEY ks;
130   } ks;         // AES key schedule to use
131   int key_set;  // Set if key initialised
132   int iv_set;   // Set if an iv is set
133   uint8_t *iv;  // Temporary IV store
134   int ivlen;         // IV length
135   int taglen;
136   int iv_gen;      // It is OK to generate IVs
137   ctr128_f ctr;
138 } EVP_AES_GCM_CTX;
139 
aes_init_key(EVP_CIPHER_CTX * ctx,const uint8_t * key,const uint8_t * iv,int enc)140 static int aes_init_key(EVP_CIPHER_CTX *ctx, const uint8_t *key,
141                         const uint8_t *iv, int enc) {
142   int ret;
143   EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data;
144   const int mode = ctx->cipher->flags & EVP_CIPH_MODE_MASK;
145 
146   if (mode == EVP_CIPH_CTR_MODE) {
147     switch (ctx->key_len) {
148       case 16:
149         boringssl_fips_inc_counter(fips_counter_evp_aes_128_ctr);
150         break;
151 
152       case 32:
153         boringssl_fips_inc_counter(fips_counter_evp_aes_256_ctr);
154         break;
155     }
156   }
157 
158   if ((mode == EVP_CIPH_ECB_MODE || mode == EVP_CIPH_CBC_MODE) && !enc) {
159     if (hwaes_capable()) {
160       ret = aes_hw_set_decrypt_key(key, ctx->key_len * 8, &dat->ks.ks);
161       dat->block = aes_hw_decrypt;
162       dat->stream.cbc = NULL;
163       if (mode == EVP_CIPH_CBC_MODE) {
164         dat->stream.cbc = aes_hw_cbc_encrypt;
165       }
166     } else if (bsaes_capable() && mode == EVP_CIPH_CBC_MODE) {
167       assert(vpaes_capable());
168       ret = vpaes_set_decrypt_key(key, ctx->key_len * 8, &dat->ks.ks);
169       if (ret == 0) {
170         vpaes_decrypt_key_to_bsaes(&dat->ks.ks, &dat->ks.ks);
171       }
172       // If |dat->stream.cbc| is provided, |dat->block| is never used.
173       dat->block = NULL;
174       dat->stream.cbc = bsaes_cbc_encrypt;
175     } else if (vpaes_capable()) {
176       ret = vpaes_set_decrypt_key(key, ctx->key_len * 8, &dat->ks.ks);
177       dat->block = vpaes_decrypt;
178       dat->stream.cbc = NULL;
179 #if defined(VPAES_CBC)
180       if (mode == EVP_CIPH_CBC_MODE) {
181         dat->stream.cbc = vpaes_cbc_encrypt;
182       }
183 #endif
184     } else {
185       ret = aes_nohw_set_decrypt_key(key, ctx->key_len * 8, &dat->ks.ks);
186       dat->block = aes_nohw_decrypt;
187       dat->stream.cbc = NULL;
188       if (mode == EVP_CIPH_CBC_MODE) {
189         dat->stream.cbc = aes_nohw_cbc_encrypt;
190       }
191     }
192   } else if (hwaes_capable()) {
193     ret = aes_hw_set_encrypt_key(key, ctx->key_len * 8, &dat->ks.ks);
194     dat->block = aes_hw_encrypt;
195     dat->stream.cbc = NULL;
196     if (mode == EVP_CIPH_CBC_MODE) {
197       dat->stream.cbc = aes_hw_cbc_encrypt;
198     } else if (mode == EVP_CIPH_CTR_MODE) {
199       dat->stream.ctr = aes_hw_ctr32_encrypt_blocks;
200     }
201   } else if (vpaes_capable()) {
202     ret = vpaes_set_encrypt_key(key, ctx->key_len * 8, &dat->ks.ks);
203     dat->block = vpaes_encrypt;
204     dat->stream.cbc = NULL;
205 #if defined(VPAES_CBC)
206     if (mode == EVP_CIPH_CBC_MODE) {
207       dat->stream.cbc = vpaes_cbc_encrypt;
208     }
209 #endif
210     if (mode == EVP_CIPH_CTR_MODE) {
211 #if defined(BSAES)
212       assert(bsaes_capable());
213       dat->stream.ctr = vpaes_ctr32_encrypt_blocks_with_bsaes;
214 #elif defined(VPAES_CTR32)
215       dat->stream.ctr = vpaes_ctr32_encrypt_blocks;
216 #endif
217     }
218   } else {
219     ret = aes_nohw_set_encrypt_key(key, ctx->key_len * 8, &dat->ks.ks);
220     dat->block = aes_nohw_encrypt;
221     dat->stream.cbc = NULL;
222     if (mode == EVP_CIPH_CBC_MODE) {
223       dat->stream.cbc = aes_nohw_cbc_encrypt;
224     }
225   }
226 
227   if (ret < 0) {
228     OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_AES_KEY_SETUP_FAILED);
229     return 0;
230   }
231 
232   return 1;
233 }
234 
aes_cbc_cipher(EVP_CIPHER_CTX * ctx,uint8_t * out,const uint8_t * in,size_t len)235 static int aes_cbc_cipher(EVP_CIPHER_CTX *ctx, uint8_t *out, const uint8_t *in,
236                           size_t len) {
237   EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data;
238 
239   if (dat->stream.cbc) {
240     (*dat->stream.cbc)(in, out, len, &dat->ks.ks, ctx->iv, ctx->encrypt);
241   } else if (ctx->encrypt) {
242     CRYPTO_cbc128_encrypt(in, out, len, &dat->ks.ks, ctx->iv, dat->block);
243   } else {
244     CRYPTO_cbc128_decrypt(in, out, len, &dat->ks.ks, ctx->iv, dat->block);
245   }
246 
247   return 1;
248 }
249 
aes_ecb_cipher(EVP_CIPHER_CTX * ctx,uint8_t * out,const uint8_t * in,size_t len)250 static int aes_ecb_cipher(EVP_CIPHER_CTX *ctx, uint8_t *out, const uint8_t *in,
251                           size_t len) {
252   size_t bl = ctx->cipher->block_size;
253   EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data;
254 
255   if (len < bl) {
256     return 1;
257   }
258 
259   len -= bl;
260   for (size_t i = 0; i <= len; i += bl) {
261     (*dat->block)(in + i, out + i, &dat->ks.ks);
262   }
263 
264   return 1;
265 }
266 
aes_ctr_cipher(EVP_CIPHER_CTX * ctx,uint8_t * out,const uint8_t * in,size_t len)267 static int aes_ctr_cipher(EVP_CIPHER_CTX *ctx, uint8_t *out, const uint8_t *in,
268                           size_t len) {
269   EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data;
270 
271   if (dat->stream.ctr) {
272     CRYPTO_ctr128_encrypt_ctr32(in, out, len, &dat->ks.ks, ctx->iv, ctx->buf,
273                                 &ctx->num, dat->stream.ctr);
274   } else {
275     CRYPTO_ctr128_encrypt(in, out, len, &dat->ks.ks, ctx->iv, ctx->buf,
276                           &ctx->num, dat->block);
277   }
278   return 1;
279 }
280 
aes_ofb_cipher(EVP_CIPHER_CTX * ctx,uint8_t * out,const uint8_t * in,size_t len)281 static int aes_ofb_cipher(EVP_CIPHER_CTX *ctx, uint8_t *out, const uint8_t *in,
282                           size_t len) {
283   EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data;
284 
285   CRYPTO_ofb128_encrypt(in, out, len, &dat->ks.ks, ctx->iv, &ctx->num,
286                         dat->block);
287   return 1;
288 }
289 
aes_ctr_set_key(AES_KEY * aes_key,GCM128_KEY * gcm_key,block128_f * out_block,const uint8_t * key,size_t key_bytes)290 ctr128_f aes_ctr_set_key(AES_KEY *aes_key, GCM128_KEY *gcm_key,
291                          block128_f *out_block, const uint8_t *key,
292                          size_t key_bytes) {
293   // This function assumes the key length was previously validated.
294   assert(key_bytes == 128 / 8 || key_bytes == 192 / 8 || key_bytes == 256 / 8);
295   if (hwaes_capable()) {
296     aes_hw_set_encrypt_key(key, (int)key_bytes * 8, aes_key);
297     if (gcm_key != NULL) {
298       CRYPTO_gcm128_init_key(gcm_key, aes_key, aes_hw_encrypt, 1);
299     }
300     if (out_block) {
301       *out_block = aes_hw_encrypt;
302     }
303     return aes_hw_ctr32_encrypt_blocks;
304   }
305 
306   if (vpaes_capable()) {
307     vpaes_set_encrypt_key(key, (int)key_bytes * 8, aes_key);
308     if (out_block) {
309       *out_block = vpaes_encrypt;
310     }
311     if (gcm_key != NULL) {
312       CRYPTO_gcm128_init_key(gcm_key, aes_key, vpaes_encrypt, 0);
313     }
314 #if defined(BSAES)
315     assert(bsaes_capable());
316     return vpaes_ctr32_encrypt_blocks_with_bsaes;
317 #elif defined(VPAES_CTR32)
318     return vpaes_ctr32_encrypt_blocks;
319 #else
320     return NULL;
321 #endif
322   }
323 
324   aes_nohw_set_encrypt_key(key, (int)key_bytes * 8, aes_key);
325   if (gcm_key != NULL) {
326     CRYPTO_gcm128_init_key(gcm_key, aes_key, aes_nohw_encrypt, 0);
327   }
328   if (out_block) {
329     *out_block = aes_nohw_encrypt;
330   }
331   return aes_nohw_ctr32_encrypt_blocks;
332 }
333 
334 #if defined(OPENSSL_32_BIT)
335 #define EVP_AES_GCM_CTX_PADDING (4+8)
336 #else
337 #define EVP_AES_GCM_CTX_PADDING 8
338 #endif
339 
aes_gcm_from_cipher_ctx(EVP_CIPHER_CTX * ctx)340 static EVP_AES_GCM_CTX *aes_gcm_from_cipher_ctx(EVP_CIPHER_CTX *ctx) {
341   static_assert(
342       alignof(EVP_AES_GCM_CTX) <= 16,
343       "EVP_AES_GCM_CTX needs more alignment than this function provides");
344 
345   // |malloc| guarantees up to 4-byte alignment on 32-bit and 8-byte alignment
346   // on 64-bit systems, so we need to adjust to reach 16-byte alignment.
347   assert(ctx->cipher->ctx_size ==
348          sizeof(EVP_AES_GCM_CTX) + EVP_AES_GCM_CTX_PADDING);
349 
350   char *ptr = ctx->cipher_data;
351 #if defined(OPENSSL_32_BIT)
352   assert((uintptr_t)ptr % 4 == 0);
353   ptr += (uintptr_t)ptr & 4;
354 #endif
355   assert((uintptr_t)ptr % 8 == 0);
356   ptr += (uintptr_t)ptr & 8;
357   return (EVP_AES_GCM_CTX *)ptr;
358 }
359 
aes_gcm_init_key(EVP_CIPHER_CTX * ctx,const uint8_t * key,const uint8_t * iv,int enc)360 static int aes_gcm_init_key(EVP_CIPHER_CTX *ctx, const uint8_t *key,
361                             const uint8_t *iv, int enc) {
362   EVP_AES_GCM_CTX *gctx = aes_gcm_from_cipher_ctx(ctx);
363   if (!iv && !key) {
364     return 1;
365   }
366 
367   switch (ctx->key_len) {
368     case 16:
369       boringssl_fips_inc_counter(fips_counter_evp_aes_128_gcm);
370       break;
371 
372     case 32:
373       boringssl_fips_inc_counter(fips_counter_evp_aes_256_gcm);
374       break;
375   }
376 
377   if (key) {
378     OPENSSL_memset(&gctx->gcm, 0, sizeof(gctx->gcm));
379     gctx->ctr = aes_ctr_set_key(&gctx->ks.ks, &gctx->gcm.gcm_key, NULL, key,
380                                 ctx->key_len);
381     // If we have an iv can set it directly, otherwise use saved IV.
382     if (iv == NULL && gctx->iv_set) {
383       iv = gctx->iv;
384     }
385     if (iv) {
386       CRYPTO_gcm128_setiv(&gctx->gcm, &gctx->ks.ks, iv, gctx->ivlen);
387       gctx->iv_set = 1;
388     }
389     gctx->key_set = 1;
390   } else {
391     // If key set use IV, otherwise copy
392     if (gctx->key_set) {
393       CRYPTO_gcm128_setiv(&gctx->gcm, &gctx->ks.ks, iv, gctx->ivlen);
394     } else {
395       OPENSSL_memcpy(gctx->iv, iv, gctx->ivlen);
396     }
397     gctx->iv_set = 1;
398     gctx->iv_gen = 0;
399   }
400   return 1;
401 }
402 
aes_gcm_cleanup(EVP_CIPHER_CTX * c)403 static void aes_gcm_cleanup(EVP_CIPHER_CTX *c) {
404   EVP_AES_GCM_CTX *gctx = aes_gcm_from_cipher_ctx(c);
405   OPENSSL_cleanse(&gctx->gcm, sizeof(gctx->gcm));
406   if (gctx->iv != c->iv) {
407     OPENSSL_free(gctx->iv);
408   }
409 }
410 
411 // increment counter (64-bit int) by 1
ctr64_inc(uint8_t * counter)412 static void ctr64_inc(uint8_t *counter) {
413   int n = 8;
414   uint8_t c;
415 
416   do {
417     --n;
418     c = counter[n];
419     ++c;
420     counter[n] = c;
421     if (c) {
422       return;
423     }
424   } while (n);
425 }
426 
aes_gcm_ctrl(EVP_CIPHER_CTX * c,int type,int arg,void * ptr)427 static int aes_gcm_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr) {
428   EVP_AES_GCM_CTX *gctx = aes_gcm_from_cipher_ctx(c);
429   switch (type) {
430     case EVP_CTRL_INIT:
431       gctx->key_set = 0;
432       gctx->iv_set = 0;
433       gctx->ivlen = c->cipher->iv_len;
434       gctx->iv = c->iv;
435       gctx->taglen = -1;
436       gctx->iv_gen = 0;
437       return 1;
438 
439     case EVP_CTRL_AEAD_SET_IVLEN:
440       if (arg <= 0) {
441         return 0;
442       }
443 
444       // Allocate memory for IV if needed
445       if (arg > EVP_MAX_IV_LENGTH && arg > gctx->ivlen) {
446         if (gctx->iv != c->iv) {
447           OPENSSL_free(gctx->iv);
448         }
449         gctx->iv = OPENSSL_malloc(arg);
450         if (!gctx->iv) {
451           return 0;
452         }
453       }
454       gctx->ivlen = arg;
455       return 1;
456 
457     case EVP_CTRL_AEAD_SET_TAG:
458       if (arg <= 0 || arg > 16 || c->encrypt) {
459         return 0;
460       }
461       OPENSSL_memcpy(c->buf, ptr, arg);
462       gctx->taglen = arg;
463       return 1;
464 
465     case EVP_CTRL_AEAD_GET_TAG:
466       if (arg <= 0 || arg > 16 || !c->encrypt || gctx->taglen < 0) {
467         return 0;
468       }
469       OPENSSL_memcpy(ptr, c->buf, arg);
470       return 1;
471 
472     case EVP_CTRL_AEAD_SET_IV_FIXED:
473       // Special case: -1 length restores whole IV
474       if (arg == -1) {
475         OPENSSL_memcpy(gctx->iv, ptr, gctx->ivlen);
476         gctx->iv_gen = 1;
477         return 1;
478       }
479       // Fixed field must be at least 4 bytes and invocation field
480       // at least 8.
481       if (arg < 4 || (gctx->ivlen - arg) < 8) {
482         return 0;
483       }
484       if (arg) {
485         OPENSSL_memcpy(gctx->iv, ptr, arg);
486       }
487       if (c->encrypt) {
488         // |RAND_bytes| calls within the fipsmodule should be wrapped with state
489         // lock functions to avoid updating the service indicator with the DRBG
490         // functions.
491         FIPS_service_indicator_lock_state();
492         RAND_bytes(gctx->iv + arg, gctx->ivlen - arg);
493         FIPS_service_indicator_unlock_state();
494       }
495       gctx->iv_gen = 1;
496       return 1;
497 
498     case EVP_CTRL_GCM_IV_GEN:
499       if (gctx->iv_gen == 0 || gctx->key_set == 0) {
500         return 0;
501       }
502       CRYPTO_gcm128_setiv(&gctx->gcm, &gctx->ks.ks, gctx->iv, gctx->ivlen);
503       if (arg <= 0 || arg > gctx->ivlen) {
504         arg = gctx->ivlen;
505       }
506       OPENSSL_memcpy(ptr, gctx->iv + gctx->ivlen - arg, arg);
507       // Invocation field will be at least 8 bytes in size and
508       // so no need to check wrap around or increment more than
509       // last 8 bytes.
510       ctr64_inc(gctx->iv + gctx->ivlen - 8);
511       gctx->iv_set = 1;
512       return 1;
513 
514     case EVP_CTRL_GCM_SET_IV_INV:
515       if (gctx->iv_gen == 0 || gctx->key_set == 0 || c->encrypt) {
516         return 0;
517       }
518       OPENSSL_memcpy(gctx->iv + gctx->ivlen - arg, ptr, arg);
519       CRYPTO_gcm128_setiv(&gctx->gcm, &gctx->ks.ks, gctx->iv, gctx->ivlen);
520       gctx->iv_set = 1;
521       return 1;
522 
523     case EVP_CTRL_COPY: {
524       EVP_CIPHER_CTX *out = ptr;
525       EVP_AES_GCM_CTX *gctx_out = aes_gcm_from_cipher_ctx(out);
526       // |EVP_CIPHER_CTX_copy| copies this generically, but we must redo it in
527       // case |out->cipher_data| and |in->cipher_data| are differently aligned.
528       OPENSSL_memcpy(gctx_out, gctx, sizeof(EVP_AES_GCM_CTX));
529       if (gctx->iv == c->iv) {
530         gctx_out->iv = out->iv;
531       } else {
532         gctx_out->iv = OPENSSL_memdup(gctx->iv, gctx->ivlen);
533         if (!gctx_out->iv) {
534           return 0;
535         }
536       }
537       return 1;
538     }
539 
540     default:
541       return -1;
542   }
543 }
544 
aes_gcm_cipher(EVP_CIPHER_CTX * ctx,uint8_t * out,const uint8_t * in,size_t len)545 static int aes_gcm_cipher(EVP_CIPHER_CTX *ctx, uint8_t *out, const uint8_t *in,
546                           size_t len) {
547   EVP_AES_GCM_CTX *gctx = aes_gcm_from_cipher_ctx(ctx);
548 
549   // If not set up, return error
550   if (!gctx->key_set) {
551     return -1;
552   }
553   if (!gctx->iv_set) {
554     return -1;
555   }
556 
557   if (len > INT_MAX) {
558     // This function signature can only express up to |INT_MAX| bytes encrypted.
559     //
560     // TODO(https://crbug.com/boringssl/494): Make the internal |EVP_CIPHER|
561     // calling convention |size_t|-clean.
562     return -1;
563   }
564 
565   if (in) {
566     if (out == NULL) {
567       if (!CRYPTO_gcm128_aad(&gctx->gcm, in, len)) {
568         return -1;
569       }
570     } else if (ctx->encrypt) {
571       if (gctx->ctr) {
572         if (!CRYPTO_gcm128_encrypt_ctr32(&gctx->gcm, &gctx->ks.ks, in, out, len,
573                                          gctx->ctr)) {
574           return -1;
575         }
576       } else {
577         if (!CRYPTO_gcm128_encrypt(&gctx->gcm, &gctx->ks.ks, in, out, len)) {
578           return -1;
579         }
580       }
581     } else {
582       if (gctx->ctr) {
583         if (!CRYPTO_gcm128_decrypt_ctr32(&gctx->gcm, &gctx->ks.ks, in, out, len,
584                                          gctx->ctr)) {
585           return -1;
586         }
587       } else {
588         if (!CRYPTO_gcm128_decrypt(&gctx->gcm, &gctx->ks.ks, in, out, len)) {
589           return -1;
590         }
591       }
592     }
593     return (int)len;
594   } else {
595     if (!ctx->encrypt) {
596       if (gctx->taglen < 0 ||
597           !CRYPTO_gcm128_finish(&gctx->gcm, ctx->buf, gctx->taglen)) {
598         return -1;
599       }
600       gctx->iv_set = 0;
601       return 0;
602     }
603     CRYPTO_gcm128_tag(&gctx->gcm, ctx->buf, 16);
604     gctx->taglen = 16;
605     // Don't reuse the IV
606     gctx->iv_set = 0;
607     return 0;
608   }
609 }
610 
DEFINE_METHOD_FUNCTION(EVP_CIPHER,EVP_aes_128_cbc)611 DEFINE_METHOD_FUNCTION(EVP_CIPHER, EVP_aes_128_cbc) {
612   memset(out, 0, sizeof(EVP_CIPHER));
613 
614   out->nid = NID_aes_128_cbc;
615   out->block_size = 16;
616   out->key_len = 16;
617   out->iv_len = 16;
618   out->ctx_size = sizeof(EVP_AES_KEY);
619   out->flags = EVP_CIPH_CBC_MODE;
620   out->init = aes_init_key;
621   out->cipher = aes_cbc_cipher;
622 }
623 
DEFINE_METHOD_FUNCTION(EVP_CIPHER,EVP_aes_128_ctr)624 DEFINE_METHOD_FUNCTION(EVP_CIPHER, EVP_aes_128_ctr) {
625   memset(out, 0, sizeof(EVP_CIPHER));
626 
627   out->nid = NID_aes_128_ctr;
628   out->block_size = 1;
629   out->key_len = 16;
630   out->iv_len = 16;
631   out->ctx_size = sizeof(EVP_AES_KEY);
632   out->flags = EVP_CIPH_CTR_MODE;
633   out->init = aes_init_key;
634   out->cipher = aes_ctr_cipher;
635 }
636 
DEFINE_LOCAL_DATA(EVP_CIPHER,aes_128_ecb_generic)637 DEFINE_LOCAL_DATA(EVP_CIPHER, aes_128_ecb_generic) {
638   memset(out, 0, sizeof(EVP_CIPHER));
639 
640   out->nid = NID_aes_128_ecb;
641   out->block_size = 16;
642   out->key_len = 16;
643   out->ctx_size = sizeof(EVP_AES_KEY);
644   out->flags = EVP_CIPH_ECB_MODE;
645   out->init = aes_init_key;
646   out->cipher = aes_ecb_cipher;
647 }
648 
DEFINE_METHOD_FUNCTION(EVP_CIPHER,EVP_aes_128_ofb)649 DEFINE_METHOD_FUNCTION(EVP_CIPHER, EVP_aes_128_ofb) {
650   memset(out, 0, sizeof(EVP_CIPHER));
651 
652   out->nid = NID_aes_128_ofb128;
653   out->block_size = 1;
654   out->key_len = 16;
655   out->iv_len = 16;
656   out->ctx_size = sizeof(EVP_AES_KEY);
657   out->flags = EVP_CIPH_OFB_MODE;
658   out->init = aes_init_key;
659   out->cipher = aes_ofb_cipher;
660 }
661 
DEFINE_METHOD_FUNCTION(EVP_CIPHER,EVP_aes_128_gcm)662 DEFINE_METHOD_FUNCTION(EVP_CIPHER, EVP_aes_128_gcm) {
663   memset(out, 0, sizeof(EVP_CIPHER));
664 
665   out->nid = NID_aes_128_gcm;
666   out->block_size = 1;
667   out->key_len = 16;
668   out->iv_len = AES_GCM_NONCE_LENGTH;
669   out->ctx_size = sizeof(EVP_AES_GCM_CTX) + EVP_AES_GCM_CTX_PADDING;
670   out->flags = EVP_CIPH_GCM_MODE | EVP_CIPH_CUSTOM_IV | EVP_CIPH_CUSTOM_COPY |
671                EVP_CIPH_FLAG_CUSTOM_CIPHER | EVP_CIPH_ALWAYS_CALL_INIT |
672                EVP_CIPH_CTRL_INIT | EVP_CIPH_FLAG_AEAD_CIPHER;
673   out->init = aes_gcm_init_key;
674   out->cipher = aes_gcm_cipher;
675   out->cleanup = aes_gcm_cleanup;
676   out->ctrl = aes_gcm_ctrl;
677 }
678 
DEFINE_METHOD_FUNCTION(EVP_CIPHER,EVP_aes_192_cbc)679 DEFINE_METHOD_FUNCTION(EVP_CIPHER, EVP_aes_192_cbc) {
680   memset(out, 0, sizeof(EVP_CIPHER));
681 
682   out->nid = NID_aes_192_cbc;
683   out->block_size = 16;
684   out->key_len = 24;
685   out->iv_len = 16;
686   out->ctx_size = sizeof(EVP_AES_KEY);
687   out->flags = EVP_CIPH_CBC_MODE;
688   out->init = aes_init_key;
689   out->cipher = aes_cbc_cipher;
690 }
691 
DEFINE_METHOD_FUNCTION(EVP_CIPHER,EVP_aes_192_ctr)692 DEFINE_METHOD_FUNCTION(EVP_CIPHER, EVP_aes_192_ctr) {
693   memset(out, 0, sizeof(EVP_CIPHER));
694 
695   out->nid = NID_aes_192_ctr;
696   out->block_size = 1;
697   out->key_len = 24;
698   out->iv_len = 16;
699   out->ctx_size = sizeof(EVP_AES_KEY);
700   out->flags = EVP_CIPH_CTR_MODE;
701   out->init = aes_init_key;
702   out->cipher = aes_ctr_cipher;
703 }
704 
DEFINE_LOCAL_DATA(EVP_CIPHER,aes_192_ecb_generic)705 DEFINE_LOCAL_DATA(EVP_CIPHER, aes_192_ecb_generic) {
706   memset(out, 0, sizeof(EVP_CIPHER));
707 
708   out->nid = NID_aes_192_ecb;
709   out->block_size = 16;
710   out->key_len = 24;
711   out->ctx_size = sizeof(EVP_AES_KEY);
712   out->flags = EVP_CIPH_ECB_MODE;
713   out->init = aes_init_key;
714   out->cipher = aes_ecb_cipher;
715 }
716 
DEFINE_METHOD_FUNCTION(EVP_CIPHER,EVP_aes_192_ofb)717 DEFINE_METHOD_FUNCTION(EVP_CIPHER, EVP_aes_192_ofb) {
718   memset(out, 0, sizeof(EVP_CIPHER));
719 
720   out->nid = NID_aes_192_ofb128;
721   out->block_size = 1;
722   out->key_len = 24;
723   out->iv_len = 16;
724   out->ctx_size = sizeof(EVP_AES_KEY);
725   out->flags = EVP_CIPH_OFB_MODE;
726   out->init = aes_init_key;
727   out->cipher = aes_ofb_cipher;
728 }
729 
DEFINE_METHOD_FUNCTION(EVP_CIPHER,EVP_aes_192_gcm)730 DEFINE_METHOD_FUNCTION(EVP_CIPHER, EVP_aes_192_gcm) {
731   memset(out, 0, sizeof(EVP_CIPHER));
732 
733   out->nid = NID_aes_192_gcm;
734   out->block_size = 1;
735   out->key_len = 24;
736   out->iv_len = AES_GCM_NONCE_LENGTH;
737   out->ctx_size = sizeof(EVP_AES_GCM_CTX) + EVP_AES_GCM_CTX_PADDING;
738   out->flags = EVP_CIPH_GCM_MODE | EVP_CIPH_CUSTOM_IV | EVP_CIPH_CUSTOM_COPY |
739                EVP_CIPH_FLAG_CUSTOM_CIPHER | EVP_CIPH_ALWAYS_CALL_INIT |
740                EVP_CIPH_CTRL_INIT | EVP_CIPH_FLAG_AEAD_CIPHER;
741   out->init = aes_gcm_init_key;
742   out->cipher = aes_gcm_cipher;
743   out->cleanup = aes_gcm_cleanup;
744   out->ctrl = aes_gcm_ctrl;
745 }
746 
DEFINE_METHOD_FUNCTION(EVP_CIPHER,EVP_aes_256_cbc)747 DEFINE_METHOD_FUNCTION(EVP_CIPHER, EVP_aes_256_cbc) {
748   memset(out, 0, sizeof(EVP_CIPHER));
749 
750   out->nid = NID_aes_256_cbc;
751   out->block_size = 16;
752   out->key_len = 32;
753   out->iv_len = 16;
754   out->ctx_size = sizeof(EVP_AES_KEY);
755   out->flags = EVP_CIPH_CBC_MODE;
756   out->init = aes_init_key;
757   out->cipher = aes_cbc_cipher;
758 }
759 
DEFINE_METHOD_FUNCTION(EVP_CIPHER,EVP_aes_256_ctr)760 DEFINE_METHOD_FUNCTION(EVP_CIPHER, EVP_aes_256_ctr) {
761   memset(out, 0, sizeof(EVP_CIPHER));
762 
763   out->nid = NID_aes_256_ctr;
764   out->block_size = 1;
765   out->key_len = 32;
766   out->iv_len = 16;
767   out->ctx_size = sizeof(EVP_AES_KEY);
768   out->flags = EVP_CIPH_CTR_MODE;
769   out->init = aes_init_key;
770   out->cipher = aes_ctr_cipher;
771 }
772 
DEFINE_LOCAL_DATA(EVP_CIPHER,aes_256_ecb_generic)773 DEFINE_LOCAL_DATA(EVP_CIPHER, aes_256_ecb_generic) {
774   memset(out, 0, sizeof(EVP_CIPHER));
775 
776   out->nid = NID_aes_256_ecb;
777   out->block_size = 16;
778   out->key_len = 32;
779   out->ctx_size = sizeof(EVP_AES_KEY);
780   out->flags = EVP_CIPH_ECB_MODE;
781   out->init = aes_init_key;
782   out->cipher = aes_ecb_cipher;
783 }
784 
DEFINE_METHOD_FUNCTION(EVP_CIPHER,EVP_aes_256_ofb)785 DEFINE_METHOD_FUNCTION(EVP_CIPHER, EVP_aes_256_ofb) {
786   memset(out, 0, sizeof(EVP_CIPHER));
787 
788   out->nid = NID_aes_256_ofb128;
789   out->block_size = 1;
790   out->key_len = 32;
791   out->iv_len = 16;
792   out->ctx_size = sizeof(EVP_AES_KEY);
793   out->flags = EVP_CIPH_OFB_MODE;
794   out->init = aes_init_key;
795   out->cipher = aes_ofb_cipher;
796 }
797 
DEFINE_METHOD_FUNCTION(EVP_CIPHER,EVP_aes_256_gcm)798 DEFINE_METHOD_FUNCTION(EVP_CIPHER, EVP_aes_256_gcm) {
799   memset(out, 0, sizeof(EVP_CIPHER));
800 
801   out->nid = NID_aes_256_gcm;
802   out->block_size = 1;
803   out->key_len = 32;
804   out->iv_len = AES_GCM_NONCE_LENGTH;
805   out->ctx_size = sizeof(EVP_AES_GCM_CTX) + EVP_AES_GCM_CTX_PADDING;
806   out->flags = EVP_CIPH_GCM_MODE | EVP_CIPH_CUSTOM_IV | EVP_CIPH_CUSTOM_COPY |
807                EVP_CIPH_FLAG_CUSTOM_CIPHER | EVP_CIPH_ALWAYS_CALL_INIT |
808                EVP_CIPH_CTRL_INIT | EVP_CIPH_FLAG_AEAD_CIPHER;
809   out->init = aes_gcm_init_key;
810   out->cipher = aes_gcm_cipher;
811   out->cleanup = aes_gcm_cleanup;
812   out->ctrl = aes_gcm_ctrl;
813 }
814 
815 #if defined(HWAES_ECB)
816 
aes_hw_ecb_cipher(EVP_CIPHER_CTX * ctx,uint8_t * out,const uint8_t * in,size_t len)817 static int aes_hw_ecb_cipher(EVP_CIPHER_CTX *ctx, uint8_t *out,
818                              const uint8_t *in, size_t len) {
819   size_t bl = ctx->cipher->block_size;
820 
821   if (len < bl) {
822     return 1;
823   }
824 
825   aes_hw_ecb_encrypt(in, out, len, ctx->cipher_data, ctx->encrypt);
826 
827   return 1;
828 }
829 
DEFINE_LOCAL_DATA(EVP_CIPHER,aes_hw_128_ecb)830 DEFINE_LOCAL_DATA(EVP_CIPHER, aes_hw_128_ecb) {
831   memset(out, 0, sizeof(EVP_CIPHER));
832 
833   out->nid = NID_aes_128_ecb;
834   out->block_size = 16;
835   out->key_len = 16;
836   out->ctx_size = sizeof(EVP_AES_KEY);
837   out->flags = EVP_CIPH_ECB_MODE;
838   out->init = aes_init_key;
839   out->cipher = aes_hw_ecb_cipher;
840 }
841 
DEFINE_LOCAL_DATA(EVP_CIPHER,aes_hw_192_ecb)842 DEFINE_LOCAL_DATA(EVP_CIPHER, aes_hw_192_ecb) {
843   memset(out, 0, sizeof(EVP_CIPHER));
844 
845   out->nid = NID_aes_192_ecb;
846   out->block_size = 16;
847   out->key_len = 24;
848   out->ctx_size = sizeof(EVP_AES_KEY);
849   out->flags = EVP_CIPH_ECB_MODE;
850   out->init = aes_init_key;
851   out->cipher = aes_hw_ecb_cipher;
852 }
853 
DEFINE_LOCAL_DATA(EVP_CIPHER,aes_hw_256_ecb)854 DEFINE_LOCAL_DATA(EVP_CIPHER, aes_hw_256_ecb) {
855   memset(out, 0, sizeof(EVP_CIPHER));
856 
857   out->nid = NID_aes_256_ecb;
858   out->block_size = 16;
859   out->key_len = 32;
860   out->ctx_size = sizeof(EVP_AES_KEY);
861   out->flags = EVP_CIPH_ECB_MODE;
862   out->init = aes_init_key;
863   out->cipher = aes_hw_ecb_cipher;
864 }
865 
866 #define EVP_ECB_CIPHER_FUNCTION(keybits)            \
867   const EVP_CIPHER *EVP_aes_##keybits##_ecb(void) { \
868     if (hwaes_capable()) {                          \
869       return aes_hw_##keybits##_ecb();              \
870     }                                               \
871     return aes_##keybits##_ecb_generic();           \
872   }
873 
874 #else
875 
876 #define EVP_ECB_CIPHER_FUNCTION(keybits)            \
877   const EVP_CIPHER *EVP_aes_##keybits##_ecb(void) { \
878     return aes_##keybits##_ecb_generic();           \
879   }
880 
881 #endif  // HWAES_ECB
882 
883 EVP_ECB_CIPHER_FUNCTION(128)
884 EVP_ECB_CIPHER_FUNCTION(192)
885 EVP_ECB_CIPHER_FUNCTION(256)
886 
887 
888 #define EVP_AEAD_AES_GCM_TAG_LEN 16
889 
890 struct aead_aes_gcm_ctx {
891   union {
892     double align;
893     AES_KEY ks;
894   } ks;
895   GCM128_KEY gcm_key;
896   ctr128_f ctr;
897 };
898 
aead_aes_gcm_init_impl(struct aead_aes_gcm_ctx * gcm_ctx,size_t * out_tag_len,const uint8_t * key,size_t key_len,size_t tag_len)899 static int aead_aes_gcm_init_impl(struct aead_aes_gcm_ctx *gcm_ctx,
900                                   size_t *out_tag_len, const uint8_t *key,
901                                   size_t key_len, size_t tag_len) {
902   const size_t key_bits = key_len * 8;
903 
904   switch (key_bits) {
905     case 128:
906       boringssl_fips_inc_counter(fips_counter_evp_aes_128_gcm);
907       break;
908 
909     case 256:
910       boringssl_fips_inc_counter(fips_counter_evp_aes_256_gcm);
911       break;
912   }
913 
914   if (key_bits != 128 && key_bits != 192 && key_bits != 256) {
915     OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_KEY_LENGTH);
916     return 0;  // EVP_AEAD_CTX_init should catch this.
917   }
918 
919   if (tag_len == EVP_AEAD_DEFAULT_TAG_LENGTH) {
920     tag_len = EVP_AEAD_AES_GCM_TAG_LEN;
921   }
922 
923   if (tag_len > EVP_AEAD_AES_GCM_TAG_LEN) {
924     OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TAG_TOO_LARGE);
925     return 0;
926   }
927 
928   gcm_ctx->ctr =
929       aes_ctr_set_key(&gcm_ctx->ks.ks, &gcm_ctx->gcm_key, NULL, key, key_len);
930   *out_tag_len = tag_len;
931   return 1;
932 }
933 
934 static_assert(sizeof(((EVP_AEAD_CTX *)NULL)->state) >=
935                   sizeof(struct aead_aes_gcm_ctx),
936               "AEAD state is too small");
937 static_assert(alignof(union evp_aead_ctx_st_state) >=
938                   alignof(struct aead_aes_gcm_ctx),
939               "AEAD state has insufficient alignment");
940 
aead_aes_gcm_init(EVP_AEAD_CTX * ctx,const uint8_t * key,size_t key_len,size_t requested_tag_len)941 static int aead_aes_gcm_init(EVP_AEAD_CTX *ctx, const uint8_t *key,
942                              size_t key_len, size_t requested_tag_len) {
943   struct aead_aes_gcm_ctx *gcm_ctx = (struct aead_aes_gcm_ctx *) &ctx->state;
944 
945   size_t actual_tag_len;
946   if (!aead_aes_gcm_init_impl(gcm_ctx, &actual_tag_len, key, key_len,
947                               requested_tag_len)) {
948     return 0;
949   }
950 
951   ctx->tag_len = actual_tag_len;
952   return 1;
953 }
954 
aead_aes_gcm_cleanup(EVP_AEAD_CTX * ctx)955 static void aead_aes_gcm_cleanup(EVP_AEAD_CTX *ctx) {}
956 
aead_aes_gcm_seal_scatter_impl(const struct aead_aes_gcm_ctx * gcm_ctx,uint8_t * out,uint8_t * out_tag,size_t * out_tag_len,size_t max_out_tag_len,const uint8_t * nonce,size_t nonce_len,const uint8_t * in,size_t in_len,const uint8_t * extra_in,size_t extra_in_len,const uint8_t * ad,size_t ad_len,size_t tag_len)957 static int aead_aes_gcm_seal_scatter_impl(
958     const struct aead_aes_gcm_ctx *gcm_ctx,
959     uint8_t *out, uint8_t *out_tag, size_t *out_tag_len, size_t max_out_tag_len,
960     const uint8_t *nonce, size_t nonce_len,
961     const uint8_t *in, size_t in_len,
962     const uint8_t *extra_in, size_t extra_in_len,
963     const uint8_t *ad, size_t ad_len,
964     size_t tag_len) {
965   if (extra_in_len + tag_len < tag_len) {
966     OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TOO_LARGE);
967     return 0;
968   }
969   if (max_out_tag_len < extra_in_len + tag_len) {
970     OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BUFFER_TOO_SMALL);
971     return 0;
972   }
973   if (nonce_len == 0) {
974     OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_NONCE_SIZE);
975     return 0;
976   }
977 
978   const AES_KEY *key = &gcm_ctx->ks.ks;
979 
980   GCM128_CONTEXT gcm;
981   OPENSSL_memset(&gcm, 0, sizeof(gcm));
982   OPENSSL_memcpy(&gcm.gcm_key, &gcm_ctx->gcm_key, sizeof(gcm.gcm_key));
983   CRYPTO_gcm128_setiv(&gcm, key, nonce, nonce_len);
984 
985   if (ad_len > 0 && !CRYPTO_gcm128_aad(&gcm, ad, ad_len)) {
986     return 0;
987   }
988 
989   if (gcm_ctx->ctr) {
990     if (!CRYPTO_gcm128_encrypt_ctr32(&gcm, key, in, out, in_len,
991                                      gcm_ctx->ctr)) {
992       return 0;
993     }
994   } else {
995     if (!CRYPTO_gcm128_encrypt(&gcm, key, in, out, in_len)) {
996       return 0;
997     }
998   }
999 
1000   if (extra_in_len) {
1001     if (gcm_ctx->ctr) {
1002       if (!CRYPTO_gcm128_encrypt_ctr32(&gcm, key, extra_in, out_tag,
1003                                        extra_in_len, gcm_ctx->ctr)) {
1004         return 0;
1005       }
1006     } else {
1007       if (!CRYPTO_gcm128_encrypt(&gcm, key, extra_in, out_tag, extra_in_len)) {
1008         return 0;
1009       }
1010     }
1011   }
1012 
1013   CRYPTO_gcm128_tag(&gcm, out_tag + extra_in_len, tag_len);
1014   *out_tag_len = tag_len + extra_in_len;
1015 
1016   return 1;
1017 }
1018 
aead_aes_gcm_seal_scatter(const EVP_AEAD_CTX * ctx,uint8_t * out,uint8_t * out_tag,size_t * out_tag_len,size_t max_out_tag_len,const uint8_t * nonce,size_t nonce_len,const uint8_t * in,size_t in_len,const uint8_t * extra_in,size_t extra_in_len,const uint8_t * ad,size_t ad_len)1019 static int aead_aes_gcm_seal_scatter(const EVP_AEAD_CTX *ctx, uint8_t *out,
1020                                      uint8_t *out_tag, size_t *out_tag_len,
1021                                      size_t max_out_tag_len,
1022                                      const uint8_t *nonce, size_t nonce_len,
1023                                      const uint8_t *in, size_t in_len,
1024                                      const uint8_t *extra_in,
1025                                      size_t extra_in_len,
1026                                      const uint8_t *ad, size_t ad_len) {
1027   const struct aead_aes_gcm_ctx *gcm_ctx =
1028       (const struct aead_aes_gcm_ctx *)&ctx->state;
1029   return aead_aes_gcm_seal_scatter_impl(
1030       gcm_ctx, out, out_tag, out_tag_len, max_out_tag_len, nonce, nonce_len, in,
1031       in_len, extra_in, extra_in_len, ad, ad_len, ctx->tag_len);
1032 }
1033 
aead_aes_gcm_open_gather_impl(const struct aead_aes_gcm_ctx * gcm_ctx,uint8_t * out,const uint8_t * nonce,size_t nonce_len,const uint8_t * in,size_t in_len,const uint8_t * in_tag,size_t in_tag_len,const uint8_t * ad,size_t ad_len,size_t tag_len)1034 static int aead_aes_gcm_open_gather_impl(const struct aead_aes_gcm_ctx *gcm_ctx,
1035                                          uint8_t *out,
1036                                          const uint8_t *nonce, size_t nonce_len,
1037                                          const uint8_t *in, size_t in_len,
1038                                          const uint8_t *in_tag,
1039                                          size_t in_tag_len,
1040                                          const uint8_t *ad, size_t ad_len,
1041                                          size_t tag_len) {
1042   uint8_t tag[EVP_AEAD_AES_GCM_TAG_LEN];
1043 
1044   if (nonce_len == 0) {
1045     OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_NONCE_SIZE);
1046     return 0;
1047   }
1048 
1049   if (in_tag_len != tag_len) {
1050     OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT);
1051     return 0;
1052   }
1053 
1054   const AES_KEY *key = &gcm_ctx->ks.ks;
1055 
1056   GCM128_CONTEXT gcm;
1057   OPENSSL_memset(&gcm, 0, sizeof(gcm));
1058   OPENSSL_memcpy(&gcm.gcm_key, &gcm_ctx->gcm_key, sizeof(gcm.gcm_key));
1059   CRYPTO_gcm128_setiv(&gcm, key, nonce, nonce_len);
1060 
1061   if (!CRYPTO_gcm128_aad(&gcm, ad, ad_len)) {
1062     return 0;
1063   }
1064 
1065   if (gcm_ctx->ctr) {
1066     if (!CRYPTO_gcm128_decrypt_ctr32(&gcm, key, in, out, in_len,
1067                                      gcm_ctx->ctr)) {
1068       return 0;
1069     }
1070   } else {
1071     if (!CRYPTO_gcm128_decrypt(&gcm, key, in, out, in_len)) {
1072       return 0;
1073     }
1074   }
1075 
1076   CRYPTO_gcm128_tag(&gcm, tag, tag_len);
1077   if (CRYPTO_memcmp(tag, in_tag, tag_len) != 0) {
1078     OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT);
1079     return 0;
1080   }
1081 
1082   return 1;
1083 }
1084 
aead_aes_gcm_open_gather(const EVP_AEAD_CTX * ctx,uint8_t * out,const uint8_t * nonce,size_t nonce_len,const uint8_t * in,size_t in_len,const uint8_t * in_tag,size_t in_tag_len,const uint8_t * ad,size_t ad_len)1085 static int aead_aes_gcm_open_gather(const EVP_AEAD_CTX *ctx, uint8_t *out,
1086                                     const uint8_t *nonce, size_t nonce_len,
1087                                     const uint8_t *in, size_t in_len,
1088                                     const uint8_t *in_tag, size_t in_tag_len,
1089                                     const uint8_t *ad, size_t ad_len) {
1090   struct aead_aes_gcm_ctx *gcm_ctx = (struct aead_aes_gcm_ctx *)&ctx->state;
1091   if (!aead_aes_gcm_open_gather_impl(gcm_ctx, out, nonce, nonce_len, in, in_len,
1092                                      in_tag, in_tag_len, ad, ad_len,
1093                                      ctx->tag_len)) {
1094     return 0;
1095   }
1096 
1097   AEAD_GCM_verify_service_indicator(ctx);
1098   return 1;
1099 }
1100 
DEFINE_METHOD_FUNCTION(EVP_AEAD,EVP_aead_aes_128_gcm)1101 DEFINE_METHOD_FUNCTION(EVP_AEAD, EVP_aead_aes_128_gcm) {
1102   memset(out, 0, sizeof(EVP_AEAD));
1103 
1104   out->key_len = 16;
1105   out->nonce_len = AES_GCM_NONCE_LENGTH;
1106   out->overhead = EVP_AEAD_AES_GCM_TAG_LEN;
1107   out->max_tag_len = EVP_AEAD_AES_GCM_TAG_LEN;
1108   out->seal_scatter_supports_extra_in = 1;
1109 
1110   out->init = aead_aes_gcm_init;
1111   out->cleanup = aead_aes_gcm_cleanup;
1112   out->seal_scatter = aead_aes_gcm_seal_scatter;
1113   out->open_gather = aead_aes_gcm_open_gather;
1114 }
1115 
DEFINE_METHOD_FUNCTION(EVP_AEAD,EVP_aead_aes_192_gcm)1116 DEFINE_METHOD_FUNCTION(EVP_AEAD, EVP_aead_aes_192_gcm) {
1117   memset(out, 0, sizeof(EVP_AEAD));
1118 
1119   out->key_len = 24;
1120   out->nonce_len = AES_GCM_NONCE_LENGTH;
1121   out->overhead = EVP_AEAD_AES_GCM_TAG_LEN;
1122   out->max_tag_len = EVP_AEAD_AES_GCM_TAG_LEN;
1123   out->seal_scatter_supports_extra_in = 1;
1124 
1125   out->init = aead_aes_gcm_init;
1126   out->cleanup = aead_aes_gcm_cleanup;
1127   out->seal_scatter = aead_aes_gcm_seal_scatter;
1128   out->open_gather = aead_aes_gcm_open_gather;
1129 }
1130 
DEFINE_METHOD_FUNCTION(EVP_AEAD,EVP_aead_aes_256_gcm)1131 DEFINE_METHOD_FUNCTION(EVP_AEAD, EVP_aead_aes_256_gcm) {
1132   memset(out, 0, sizeof(EVP_AEAD));
1133 
1134   out->key_len = 32;
1135   out->nonce_len = AES_GCM_NONCE_LENGTH;
1136   out->overhead = EVP_AEAD_AES_GCM_TAG_LEN;
1137   out->max_tag_len = EVP_AEAD_AES_GCM_TAG_LEN;
1138   out->seal_scatter_supports_extra_in = 1;
1139 
1140   out->init = aead_aes_gcm_init;
1141   out->cleanup = aead_aes_gcm_cleanup;
1142   out->seal_scatter = aead_aes_gcm_seal_scatter;
1143   out->open_gather = aead_aes_gcm_open_gather;
1144 }
1145 
aead_aes_gcm_init_randnonce(EVP_AEAD_CTX * ctx,const uint8_t * key,size_t key_len,size_t requested_tag_len)1146 static int aead_aes_gcm_init_randnonce(EVP_AEAD_CTX *ctx, const uint8_t *key,
1147                                        size_t key_len,
1148                                        size_t requested_tag_len) {
1149   if (requested_tag_len != EVP_AEAD_DEFAULT_TAG_LENGTH) {
1150     if (requested_tag_len < AES_GCM_NONCE_LENGTH) {
1151       OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BUFFER_TOO_SMALL);
1152       return 0;
1153     }
1154     requested_tag_len -= AES_GCM_NONCE_LENGTH;
1155   }
1156 
1157   if (!aead_aes_gcm_init(ctx, key, key_len, requested_tag_len)) {
1158     return 0;
1159   }
1160 
1161   ctx->tag_len += AES_GCM_NONCE_LENGTH;
1162   return 1;
1163 }
1164 
aead_aes_gcm_seal_scatter_randnonce(const EVP_AEAD_CTX * ctx,uint8_t * out,uint8_t * out_tag,size_t * out_tag_len,size_t max_out_tag_len,const uint8_t * external_nonce,size_t external_nonce_len,const uint8_t * in,size_t in_len,const uint8_t * extra_in,size_t extra_in_len,const uint8_t * ad,size_t ad_len)1165 static int aead_aes_gcm_seal_scatter_randnonce(
1166     const EVP_AEAD_CTX *ctx,
1167     uint8_t *out, uint8_t *out_tag, size_t *out_tag_len, size_t max_out_tag_len,
1168     const uint8_t *external_nonce, size_t external_nonce_len,
1169     const uint8_t *in, size_t in_len,
1170     const uint8_t *extra_in, size_t extra_in_len,
1171     const uint8_t *ad, size_t ad_len) {
1172   if (external_nonce_len != 0) {
1173     OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_NONCE_SIZE);
1174     return 0;
1175   }
1176 
1177   uint8_t nonce[AES_GCM_NONCE_LENGTH];
1178   if (max_out_tag_len < sizeof(nonce)) {
1179     OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BUFFER_TOO_SMALL);
1180     return 0;
1181   }
1182 
1183   // |RAND_bytes| calls within the fipsmodule should be wrapped with state lock
1184   // functions to avoid updating the service indicator with the DRBG functions.
1185   FIPS_service_indicator_lock_state();
1186   RAND_bytes(nonce, sizeof(nonce));
1187   FIPS_service_indicator_unlock_state();
1188 
1189   const struct aead_aes_gcm_ctx *gcm_ctx =
1190       (const struct aead_aes_gcm_ctx *)&ctx->state;
1191   if (!aead_aes_gcm_seal_scatter_impl(gcm_ctx, out, out_tag, out_tag_len,
1192                                       max_out_tag_len - AES_GCM_NONCE_LENGTH,
1193                                       nonce, sizeof(nonce), in, in_len,
1194                                       extra_in, extra_in_len, ad, ad_len,
1195                                       ctx->tag_len - AES_GCM_NONCE_LENGTH)) {
1196     return 0;
1197   }
1198 
1199   assert(*out_tag_len + sizeof(nonce) <= max_out_tag_len);
1200   memcpy(out_tag + *out_tag_len, nonce, sizeof(nonce));
1201   *out_tag_len += sizeof(nonce);
1202 
1203   AEAD_GCM_verify_service_indicator(ctx);
1204   return 1;
1205 }
1206 
aead_aes_gcm_open_gather_randnonce(const EVP_AEAD_CTX * ctx,uint8_t * out,const uint8_t * external_nonce,size_t external_nonce_len,const uint8_t * in,size_t in_len,const uint8_t * in_tag,size_t in_tag_len,const uint8_t * ad,size_t ad_len)1207 static int aead_aes_gcm_open_gather_randnonce(
1208     const EVP_AEAD_CTX *ctx, uint8_t *out,
1209     const uint8_t *external_nonce, size_t external_nonce_len,
1210     const uint8_t *in, size_t in_len,
1211     const uint8_t *in_tag, size_t in_tag_len,
1212     const uint8_t *ad, size_t ad_len) {
1213   if (external_nonce_len != 0) {
1214     OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_NONCE_SIZE);
1215     return 0;
1216   }
1217 
1218   if (in_tag_len < AES_GCM_NONCE_LENGTH) {
1219     OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT);
1220     return 0;
1221   }
1222   const uint8_t *nonce = in_tag + in_tag_len - AES_GCM_NONCE_LENGTH;
1223 
1224   const struct aead_aes_gcm_ctx *gcm_ctx =
1225       (const struct aead_aes_gcm_ctx *)&ctx->state;
1226   if (!aead_aes_gcm_open_gather_impl(
1227       gcm_ctx, out, nonce, AES_GCM_NONCE_LENGTH, in, in_len, in_tag,
1228       in_tag_len - AES_GCM_NONCE_LENGTH, ad, ad_len,
1229       ctx->tag_len - AES_GCM_NONCE_LENGTH)) {
1230     return 0;
1231   }
1232 
1233   AEAD_GCM_verify_service_indicator(ctx);
1234   return 1;
1235 }
1236 
DEFINE_METHOD_FUNCTION(EVP_AEAD,EVP_aead_aes_128_gcm_randnonce)1237 DEFINE_METHOD_FUNCTION(EVP_AEAD, EVP_aead_aes_128_gcm_randnonce) {
1238   memset(out, 0, sizeof(EVP_AEAD));
1239 
1240   out->key_len = 16;
1241   out->nonce_len = 0;
1242   out->overhead = EVP_AEAD_AES_GCM_TAG_LEN + AES_GCM_NONCE_LENGTH;
1243   out->max_tag_len = EVP_AEAD_AES_GCM_TAG_LEN + AES_GCM_NONCE_LENGTH;
1244   out->seal_scatter_supports_extra_in = 1;
1245 
1246   out->init = aead_aes_gcm_init_randnonce;
1247   out->cleanup = aead_aes_gcm_cleanup;
1248   out->seal_scatter = aead_aes_gcm_seal_scatter_randnonce;
1249   out->open_gather = aead_aes_gcm_open_gather_randnonce;
1250 }
1251 
DEFINE_METHOD_FUNCTION(EVP_AEAD,EVP_aead_aes_256_gcm_randnonce)1252 DEFINE_METHOD_FUNCTION(EVP_AEAD, EVP_aead_aes_256_gcm_randnonce) {
1253   memset(out, 0, sizeof(EVP_AEAD));
1254 
1255   out->key_len = 32;
1256   out->nonce_len = 0;
1257   out->overhead = EVP_AEAD_AES_GCM_TAG_LEN + AES_GCM_NONCE_LENGTH;
1258   out->max_tag_len = EVP_AEAD_AES_GCM_TAG_LEN + AES_GCM_NONCE_LENGTH;
1259   out->seal_scatter_supports_extra_in = 1;
1260 
1261   out->init = aead_aes_gcm_init_randnonce;
1262   out->cleanup = aead_aes_gcm_cleanup;
1263   out->seal_scatter = aead_aes_gcm_seal_scatter_randnonce;
1264   out->open_gather = aead_aes_gcm_open_gather_randnonce;
1265 }
1266 
1267 struct aead_aes_gcm_tls12_ctx {
1268   struct aead_aes_gcm_ctx gcm_ctx;
1269   uint64_t min_next_nonce;
1270 };
1271 
1272 static_assert(sizeof(((EVP_AEAD_CTX *)NULL)->state) >=
1273                   sizeof(struct aead_aes_gcm_tls12_ctx),
1274               "AEAD state is too small");
1275 static_assert(alignof(union evp_aead_ctx_st_state) >=
1276                   alignof(struct aead_aes_gcm_tls12_ctx),
1277               "AEAD state has insufficient alignment");
1278 
aead_aes_gcm_tls12_init(EVP_AEAD_CTX * ctx,const uint8_t * key,size_t key_len,size_t requested_tag_len)1279 static int aead_aes_gcm_tls12_init(EVP_AEAD_CTX *ctx, const uint8_t *key,
1280                                    size_t key_len, size_t requested_tag_len) {
1281   struct aead_aes_gcm_tls12_ctx *gcm_ctx =
1282       (struct aead_aes_gcm_tls12_ctx *) &ctx->state;
1283 
1284   gcm_ctx->min_next_nonce = 0;
1285 
1286   size_t actual_tag_len;
1287   if (!aead_aes_gcm_init_impl(&gcm_ctx->gcm_ctx, &actual_tag_len, key, key_len,
1288                               requested_tag_len)) {
1289     return 0;
1290   }
1291 
1292   ctx->tag_len = actual_tag_len;
1293   return 1;
1294 }
1295 
aead_aes_gcm_tls12_seal_scatter(const EVP_AEAD_CTX * ctx,uint8_t * out,uint8_t * out_tag,size_t * out_tag_len,size_t max_out_tag_len,const uint8_t * nonce,size_t nonce_len,const uint8_t * in,size_t in_len,const uint8_t * extra_in,size_t extra_in_len,const uint8_t * ad,size_t ad_len)1296 static int aead_aes_gcm_tls12_seal_scatter(
1297     const EVP_AEAD_CTX *ctx, uint8_t *out, uint8_t *out_tag,
1298     size_t *out_tag_len, size_t max_out_tag_len, const uint8_t *nonce,
1299     size_t nonce_len, const uint8_t *in, size_t in_len, const uint8_t *extra_in,
1300     size_t extra_in_len, const uint8_t *ad, size_t ad_len) {
1301   struct aead_aes_gcm_tls12_ctx *gcm_ctx =
1302       (struct aead_aes_gcm_tls12_ctx *) &ctx->state;
1303 
1304   if (nonce_len != AES_GCM_NONCE_LENGTH) {
1305     OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_UNSUPPORTED_NONCE_SIZE);
1306     return 0;
1307   }
1308 
1309   // The given nonces must be strictly monotonically increasing.
1310   uint64_t given_counter =
1311       CRYPTO_load_u64_be(nonce + nonce_len - sizeof(uint64_t));
1312   if (given_counter == UINT64_MAX || given_counter < gcm_ctx->min_next_nonce) {
1313     OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_NONCE);
1314     return 0;
1315   }
1316 
1317   gcm_ctx->min_next_nonce = given_counter + 1;
1318 
1319   if (!aead_aes_gcm_seal_scatter(ctx, out, out_tag, out_tag_len,
1320                                  max_out_tag_len, nonce, nonce_len, in, in_len,
1321                                  extra_in, extra_in_len, ad, ad_len)) {
1322     return 0;
1323   }
1324 
1325   AEAD_GCM_verify_service_indicator(ctx);
1326   return 1;
1327 }
1328 
DEFINE_METHOD_FUNCTION(EVP_AEAD,EVP_aead_aes_128_gcm_tls12)1329 DEFINE_METHOD_FUNCTION(EVP_AEAD, EVP_aead_aes_128_gcm_tls12) {
1330   memset(out, 0, sizeof(EVP_AEAD));
1331 
1332   out->key_len = 16;
1333   out->nonce_len = AES_GCM_NONCE_LENGTH;
1334   out->overhead = EVP_AEAD_AES_GCM_TAG_LEN;
1335   out->max_tag_len = EVP_AEAD_AES_GCM_TAG_LEN;
1336   out->seal_scatter_supports_extra_in = 1;
1337 
1338   out->init = aead_aes_gcm_tls12_init;
1339   out->cleanup = aead_aes_gcm_cleanup;
1340   out->seal_scatter = aead_aes_gcm_tls12_seal_scatter;
1341   out->open_gather = aead_aes_gcm_open_gather;
1342 }
1343 
DEFINE_METHOD_FUNCTION(EVP_AEAD,EVP_aead_aes_256_gcm_tls12)1344 DEFINE_METHOD_FUNCTION(EVP_AEAD, EVP_aead_aes_256_gcm_tls12) {
1345   memset(out, 0, sizeof(EVP_AEAD));
1346 
1347   out->key_len = 32;
1348   out->nonce_len = AES_GCM_NONCE_LENGTH;
1349   out->overhead = EVP_AEAD_AES_GCM_TAG_LEN;
1350   out->max_tag_len = EVP_AEAD_AES_GCM_TAG_LEN;
1351   out->seal_scatter_supports_extra_in = 1;
1352 
1353   out->init = aead_aes_gcm_tls12_init;
1354   out->cleanup = aead_aes_gcm_cleanup;
1355   out->seal_scatter = aead_aes_gcm_tls12_seal_scatter;
1356   out->open_gather = aead_aes_gcm_open_gather;
1357 }
1358 
1359 struct aead_aes_gcm_tls13_ctx {
1360   struct aead_aes_gcm_ctx gcm_ctx;
1361   uint64_t min_next_nonce;
1362   uint64_t mask;
1363   uint8_t first;
1364 };
1365 
1366 static_assert(sizeof(((EVP_AEAD_CTX *)NULL)->state) >=
1367                   sizeof(struct aead_aes_gcm_tls13_ctx),
1368               "AEAD state is too small");
1369 static_assert(alignof(union evp_aead_ctx_st_state) >=
1370                   alignof(struct aead_aes_gcm_tls13_ctx),
1371               "AEAD state has insufficient alignment");
1372 
aead_aes_gcm_tls13_init(EVP_AEAD_CTX * ctx,const uint8_t * key,size_t key_len,size_t requested_tag_len)1373 static int aead_aes_gcm_tls13_init(EVP_AEAD_CTX *ctx, const uint8_t *key,
1374                                    size_t key_len, size_t requested_tag_len) {
1375   struct aead_aes_gcm_tls13_ctx *gcm_ctx =
1376       (struct aead_aes_gcm_tls13_ctx *) &ctx->state;
1377 
1378   gcm_ctx->min_next_nonce = 0;
1379   gcm_ctx->first = 1;
1380 
1381   size_t actual_tag_len;
1382   if (!aead_aes_gcm_init_impl(&gcm_ctx->gcm_ctx, &actual_tag_len, key, key_len,
1383                               requested_tag_len)) {
1384     return 0;
1385   }
1386 
1387   ctx->tag_len = actual_tag_len;
1388   return 1;
1389 }
1390 
aead_aes_gcm_tls13_seal_scatter(const EVP_AEAD_CTX * ctx,uint8_t * out,uint8_t * out_tag,size_t * out_tag_len,size_t max_out_tag_len,const uint8_t * nonce,size_t nonce_len,const uint8_t * in,size_t in_len,const uint8_t * extra_in,size_t extra_in_len,const uint8_t * ad,size_t ad_len)1391 static int aead_aes_gcm_tls13_seal_scatter(
1392     const EVP_AEAD_CTX *ctx, uint8_t *out, uint8_t *out_tag,
1393     size_t *out_tag_len, size_t max_out_tag_len, const uint8_t *nonce,
1394     size_t nonce_len, const uint8_t *in, size_t in_len, const uint8_t *extra_in,
1395     size_t extra_in_len, const uint8_t *ad, size_t ad_len) {
1396   struct aead_aes_gcm_tls13_ctx *gcm_ctx =
1397       (struct aead_aes_gcm_tls13_ctx *) &ctx->state;
1398 
1399   if (nonce_len != AES_GCM_NONCE_LENGTH) {
1400     OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_UNSUPPORTED_NONCE_SIZE);
1401     return 0;
1402   }
1403 
1404   // The given nonces must be strictly monotonically increasing. See
1405   // https://tools.ietf.org/html/rfc8446#section-5.3 for details of the TLS 1.3
1406   // nonce construction.
1407   uint64_t given_counter =
1408       CRYPTO_load_u64_be(nonce + nonce_len - sizeof(uint64_t));
1409 
1410   if (gcm_ctx->first) {
1411     // In the first call the sequence number will be zero and therefore the
1412     // given nonce will be 0 ^ mask = mask.
1413     gcm_ctx->mask = given_counter;
1414     gcm_ctx->first = 0;
1415   }
1416   given_counter ^= gcm_ctx->mask;
1417 
1418   if (given_counter == UINT64_MAX ||
1419       given_counter < gcm_ctx->min_next_nonce) {
1420     OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_NONCE);
1421     return 0;
1422   }
1423 
1424   gcm_ctx->min_next_nonce = given_counter + 1;
1425 
1426   if (!aead_aes_gcm_seal_scatter(ctx, out, out_tag, out_tag_len,
1427                                  max_out_tag_len, nonce, nonce_len, in, in_len,
1428                                  extra_in, extra_in_len, ad, ad_len)) {
1429     return 0;
1430   }
1431 
1432   AEAD_GCM_verify_service_indicator(ctx);
1433   return 1;
1434 }
1435 
DEFINE_METHOD_FUNCTION(EVP_AEAD,EVP_aead_aes_128_gcm_tls13)1436 DEFINE_METHOD_FUNCTION(EVP_AEAD, EVP_aead_aes_128_gcm_tls13) {
1437   memset(out, 0, sizeof(EVP_AEAD));
1438 
1439   out->key_len = 16;
1440   out->nonce_len = AES_GCM_NONCE_LENGTH;
1441   out->overhead = EVP_AEAD_AES_GCM_TAG_LEN;
1442   out->max_tag_len = EVP_AEAD_AES_GCM_TAG_LEN;
1443   out->seal_scatter_supports_extra_in = 1;
1444 
1445   out->init = aead_aes_gcm_tls13_init;
1446   out->cleanup = aead_aes_gcm_cleanup;
1447   out->seal_scatter = aead_aes_gcm_tls13_seal_scatter;
1448   out->open_gather = aead_aes_gcm_open_gather;
1449 }
1450 
DEFINE_METHOD_FUNCTION(EVP_AEAD,EVP_aead_aes_256_gcm_tls13)1451 DEFINE_METHOD_FUNCTION(EVP_AEAD, EVP_aead_aes_256_gcm_tls13) {
1452   memset(out, 0, sizeof(EVP_AEAD));
1453 
1454   out->key_len = 32;
1455   out->nonce_len = AES_GCM_NONCE_LENGTH;
1456   out->overhead = EVP_AEAD_AES_GCM_TAG_LEN;
1457   out->max_tag_len = EVP_AEAD_AES_GCM_TAG_LEN;
1458   out->seal_scatter_supports_extra_in = 1;
1459 
1460   out->init = aead_aes_gcm_tls13_init;
1461   out->cleanup = aead_aes_gcm_cleanup;
1462   out->seal_scatter = aead_aes_gcm_tls13_seal_scatter;
1463   out->open_gather = aead_aes_gcm_open_gather;
1464 }
1465 
EVP_has_aes_hardware(void)1466 int EVP_has_aes_hardware(void) {
1467 #if defined(OPENSSL_X86) || defined(OPENSSL_X86_64)
1468   return hwaes_capable() && crypto_gcm_clmul_enabled();
1469 #elif defined(OPENSSL_ARM) || defined(OPENSSL_AARCH64)
1470   return hwaes_capable() && CRYPTO_is_ARMv8_PMULL_capable();
1471 #else
1472   return 0;
1473 #endif
1474 }
1475 
1476 OPENSSL_MSVC_PRAGMA(warning(pop))
1477