1 /* Originally written by Bodo Moeller and Nils Larsch for the OpenSSL project.
2 * ====================================================================
3 * Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in
14 * the documentation and/or other materials provided with the
15 * distribution.
16 *
17 * 3. All advertising materials mentioning features or use of this
18 * software must display the following acknowledgment:
19 * "This product includes software developed by the OpenSSL Project
20 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
21 *
22 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
23 * endorse or promote products derived from this software without
24 * prior written permission. For written permission, please contact
25 * openssl-core@openssl.org.
26 *
27 * 5. Products derived from this software may not be called "OpenSSL"
28 * nor may "OpenSSL" appear in their names without prior written
29 * permission of the OpenSSL Project.
30 *
31 * 6. Redistributions of any form whatsoever must retain the following
32 * acknowledgment:
33 * "This product includes software developed by the OpenSSL Project
34 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
35 *
36 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
37 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
39 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
40 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
41 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
42 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
43 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
44 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
45 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
46 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
47 * OF THE POSSIBILITY OF SUCH DAMAGE.
48 * ====================================================================
49 *
50 * This product includes cryptographic software written by Eric Young
51 * (eay@cryptsoft.com). This product includes software written by Tim
52 * Hudson (tjh@cryptsoft.com).
53 *
54 */
55 /* ====================================================================
56 * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
57 *
58 * Portions of the attached software ("Contribution") are developed by
59 * SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project.
60 *
61 * The Contribution is licensed pursuant to the OpenSSL open source
62 * license provided above.
63 *
64 * The elliptic curve binary polynomial software is originally written by
65 * Sheueling Chang Shantz and Douglas Stebila of Sun Microsystems
66 * Laboratories. */
67
68 #include <openssl/ec.h>
69
70 #include <openssl/bn.h>
71 #include <openssl/err.h>
72 #include <openssl/mem.h>
73
74 #include "../bn/internal.h"
75 #include "../delocate.h"
76 #include "internal.h"
77
78
ec_GFp_mont_group_init(EC_GROUP * group)79 int ec_GFp_mont_group_init(EC_GROUP *group) {
80 int ok;
81
82 ok = ec_GFp_simple_group_init(group);
83 group->mont = NULL;
84 return ok;
85 }
86
ec_GFp_mont_group_finish(EC_GROUP * group)87 void ec_GFp_mont_group_finish(EC_GROUP *group) {
88 BN_MONT_CTX_free(group->mont);
89 group->mont = NULL;
90 ec_GFp_simple_group_finish(group);
91 }
92
ec_GFp_mont_group_set_curve(EC_GROUP * group,const BIGNUM * p,const BIGNUM * a,const BIGNUM * b,BN_CTX * ctx)93 int ec_GFp_mont_group_set_curve(EC_GROUP *group, const BIGNUM *p,
94 const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) {
95 BN_MONT_CTX_free(group->mont);
96 group->mont = BN_MONT_CTX_new_for_modulus(p, ctx);
97 if (group->mont == NULL) {
98 OPENSSL_PUT_ERROR(EC, ERR_R_BN_LIB);
99 return 0;
100 }
101
102 if (!ec_GFp_simple_group_set_curve(group, p, a, b, ctx)) {
103 BN_MONT_CTX_free(group->mont);
104 group->mont = NULL;
105 return 0;
106 }
107
108 return 1;
109 }
110
ec_GFp_mont_felem_to_montgomery(const EC_GROUP * group,EC_FELEM * out,const EC_FELEM * in)111 static void ec_GFp_mont_felem_to_montgomery(const EC_GROUP *group,
112 EC_FELEM *out, const EC_FELEM *in) {
113 bn_to_montgomery_small(out->words, in->words, group->field.width,
114 group->mont);
115 }
116
ec_GFp_mont_felem_from_montgomery(const EC_GROUP * group,EC_FELEM * out,const EC_FELEM * in)117 static void ec_GFp_mont_felem_from_montgomery(const EC_GROUP *group,
118 EC_FELEM *out,
119 const EC_FELEM *in) {
120 bn_from_montgomery_small(out->words, group->field.width, in->words,
121 group->field.width, group->mont);
122 }
123
ec_GFp_mont_felem_inv0(const EC_GROUP * group,EC_FELEM * out,const EC_FELEM * a)124 static void ec_GFp_mont_felem_inv0(const EC_GROUP *group, EC_FELEM *out,
125 const EC_FELEM *a) {
126 bn_mod_inverse0_prime_mont_small(out->words, a->words, group->field.width,
127 group->mont);
128 }
129
ec_GFp_mont_felem_mul(const EC_GROUP * group,EC_FELEM * r,const EC_FELEM * a,const EC_FELEM * b)130 void ec_GFp_mont_felem_mul(const EC_GROUP *group, EC_FELEM *r,
131 const EC_FELEM *a, const EC_FELEM *b) {
132 bn_mod_mul_montgomery_small(r->words, a->words, b->words, group->field.width,
133 group->mont);
134 }
135
ec_GFp_mont_felem_sqr(const EC_GROUP * group,EC_FELEM * r,const EC_FELEM * a)136 void ec_GFp_mont_felem_sqr(const EC_GROUP *group, EC_FELEM *r,
137 const EC_FELEM *a) {
138 bn_mod_mul_montgomery_small(r->words, a->words, a->words, group->field.width,
139 group->mont);
140 }
141
ec_GFp_mont_felem_to_bytes(const EC_GROUP * group,uint8_t * out,size_t * out_len,const EC_FELEM * in)142 void ec_GFp_mont_felem_to_bytes(const EC_GROUP *group, uint8_t *out,
143 size_t *out_len, const EC_FELEM *in) {
144 EC_FELEM tmp;
145 ec_GFp_mont_felem_from_montgomery(group, &tmp, in);
146 ec_GFp_simple_felem_to_bytes(group, out, out_len, &tmp);
147 }
148
ec_GFp_mont_felem_from_bytes(const EC_GROUP * group,EC_FELEM * out,const uint8_t * in,size_t len)149 int ec_GFp_mont_felem_from_bytes(const EC_GROUP *group, EC_FELEM *out,
150 const uint8_t *in, size_t len) {
151 if (!ec_GFp_simple_felem_from_bytes(group, out, in, len)) {
152 return 0;
153 }
154
155 ec_GFp_mont_felem_to_montgomery(group, out, out);
156 return 1;
157 }
158
ec_GFp_mont_felem_reduce(const EC_GROUP * group,EC_FELEM * out,const BN_ULONG * words,size_t num)159 void ec_GFp_mont_felem_reduce(const EC_GROUP *group, EC_FELEM *out,
160 const BN_ULONG *words, size_t num) {
161 // Convert "from" Montgomery form so the value is reduced mod p.
162 bn_from_montgomery_small(out->words, group->field.width, words, num,
163 group->mont);
164 // Convert "to" Montgomery form to remove the R^-1 factor added.
165 ec_GFp_mont_felem_to_montgomery(group, out, out);
166 // Convert to Montgomery form to match this implementation's representation.
167 ec_GFp_mont_felem_to_montgomery(group, out, out);
168 }
169
ec_GFp_mont_felem_exp(const EC_GROUP * group,EC_FELEM * out,const EC_FELEM * a,const BN_ULONG * exp,size_t num_exp)170 void ec_GFp_mont_felem_exp(const EC_GROUP *group, EC_FELEM *out,
171 const EC_FELEM *a, const BN_ULONG *exp,
172 size_t num_exp) {
173 bn_mod_exp_mont_small(out->words, a->words, group->field.width, exp, num_exp,
174 group->mont);
175 }
176
ec_GFp_mont_point_get_affine_coordinates(const EC_GROUP * group,const EC_RAW_POINT * point,EC_FELEM * x,EC_FELEM * y)177 static int ec_GFp_mont_point_get_affine_coordinates(const EC_GROUP *group,
178 const EC_RAW_POINT *point,
179 EC_FELEM *x, EC_FELEM *y) {
180 if (ec_GFp_simple_is_at_infinity(group, point)) {
181 OPENSSL_PUT_ERROR(EC, EC_R_POINT_AT_INFINITY);
182 return 0;
183 }
184
185 // Transform (X, Y, Z) into (x, y) := (X/Z^2, Y/Z^3). Note the check above
186 // ensures |point->Z| is non-zero, so the inverse always exists.
187 EC_FELEM z1, z2;
188 ec_GFp_mont_felem_inv0(group, &z2, &point->Z);
189 ec_GFp_mont_felem_sqr(group, &z1, &z2);
190
191 if (x != NULL) {
192 ec_GFp_mont_felem_mul(group, x, &point->X, &z1);
193 }
194
195 if (y != NULL) {
196 ec_GFp_mont_felem_mul(group, &z1, &z1, &z2);
197 ec_GFp_mont_felem_mul(group, y, &point->Y, &z1);
198 }
199
200 return 1;
201 }
202
ec_GFp_mont_jacobian_to_affine_batch(const EC_GROUP * group,EC_AFFINE * out,const EC_RAW_POINT * in,size_t num)203 static int ec_GFp_mont_jacobian_to_affine_batch(const EC_GROUP *group,
204 EC_AFFINE *out,
205 const EC_RAW_POINT *in,
206 size_t num) {
207 if (num == 0) {
208 return 1;
209 }
210
211 // Compute prefix products of all Zs. Use |out[i].X| as scratch space
212 // to store these values.
213 out[0].X = in[0].Z;
214 for (size_t i = 1; i < num; i++) {
215 ec_GFp_mont_felem_mul(group, &out[i].X, &out[i - 1].X, &in[i].Z);
216 }
217
218 // Some input was infinity iff the product of all Zs is zero.
219 if (ec_felem_non_zero_mask(group, &out[num - 1].X) == 0) {
220 OPENSSL_PUT_ERROR(EC, EC_R_POINT_AT_INFINITY);
221 return 0;
222 }
223
224 // Invert the product of all Zs.
225 EC_FELEM zinvprod;
226 ec_GFp_mont_felem_inv0(group, &zinvprod, &out[num - 1].X);
227 for (size_t i = num - 1; i < num; i--) {
228 // Our loop invariant is that |zinvprod| is Z0^-1 * Z1^-1 * ... * Zi^-1.
229 // Recover Zi^-1 by multiplying by the previous product.
230 EC_FELEM zinv, zinv2;
231 if (i == 0) {
232 zinv = zinvprod;
233 } else {
234 ec_GFp_mont_felem_mul(group, &zinv, &zinvprod, &out[i - 1].X);
235 // Maintain the loop invariant for the next iteration.
236 ec_GFp_mont_felem_mul(group, &zinvprod, &zinvprod, &in[i].Z);
237 }
238
239 // Compute affine coordinates: x = X * Z^-2 and y = Y * Z^-3.
240 ec_GFp_mont_felem_sqr(group, &zinv2, &zinv);
241 ec_GFp_mont_felem_mul(group, &out[i].X, &in[i].X, &zinv2);
242 ec_GFp_mont_felem_mul(group, &out[i].Y, &in[i].Y, &zinv2);
243 ec_GFp_mont_felem_mul(group, &out[i].Y, &out[i].Y, &zinv);
244 }
245
246 return 1;
247 }
248
ec_GFp_mont_add(const EC_GROUP * group,EC_RAW_POINT * out,const EC_RAW_POINT * a,const EC_RAW_POINT * b)249 void ec_GFp_mont_add(const EC_GROUP *group, EC_RAW_POINT *out,
250 const EC_RAW_POINT *a, const EC_RAW_POINT *b) {
251 if (a == b) {
252 ec_GFp_mont_dbl(group, out, a);
253 return;
254 }
255
256 // The method is taken from:
257 // http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html#addition-add-2007-bl
258 //
259 // Coq transcription and correctness proof:
260 // <https://github.com/davidben/fiat-crypto/blob/c7b95f62b2a54b559522573310e9b487327d219a/src/Curves/Weierstrass/Jacobian.v#L467>
261 // <https://github.com/davidben/fiat-crypto/blob/c7b95f62b2a54b559522573310e9b487327d219a/src/Curves/Weierstrass/Jacobian.v#L544>
262 EC_FELEM x_out, y_out, z_out;
263 BN_ULONG z1nz = ec_felem_non_zero_mask(group, &a->Z);
264 BN_ULONG z2nz = ec_felem_non_zero_mask(group, &b->Z);
265
266 // z1z1 = z1z1 = z1**2
267 EC_FELEM z1z1;
268 ec_GFp_mont_felem_sqr(group, &z1z1, &a->Z);
269
270 // z2z2 = z2**2
271 EC_FELEM z2z2;
272 ec_GFp_mont_felem_sqr(group, &z2z2, &b->Z);
273
274 // u1 = x1*z2z2
275 EC_FELEM u1;
276 ec_GFp_mont_felem_mul(group, &u1, &a->X, &z2z2);
277
278 // two_z1z2 = (z1 + z2)**2 - (z1z1 + z2z2) = 2z1z2
279 EC_FELEM two_z1z2;
280 ec_felem_add(group, &two_z1z2, &a->Z, &b->Z);
281 ec_GFp_mont_felem_sqr(group, &two_z1z2, &two_z1z2);
282 ec_felem_sub(group, &two_z1z2, &two_z1z2, &z1z1);
283 ec_felem_sub(group, &two_z1z2, &two_z1z2, &z2z2);
284
285 // s1 = y1 * z2**3
286 EC_FELEM s1;
287 ec_GFp_mont_felem_mul(group, &s1, &b->Z, &z2z2);
288 ec_GFp_mont_felem_mul(group, &s1, &s1, &a->Y);
289
290 // u2 = x2*z1z1
291 EC_FELEM u2;
292 ec_GFp_mont_felem_mul(group, &u2, &b->X, &z1z1);
293
294 // h = u2 - u1
295 EC_FELEM h;
296 ec_felem_sub(group, &h, &u2, &u1);
297
298 BN_ULONG xneq = ec_felem_non_zero_mask(group, &h);
299
300 // z_out = two_z1z2 * h
301 ec_GFp_mont_felem_mul(group, &z_out, &h, &two_z1z2);
302
303 // z1z1z1 = z1 * z1z1
304 EC_FELEM z1z1z1;
305 ec_GFp_mont_felem_mul(group, &z1z1z1, &a->Z, &z1z1);
306
307 // s2 = y2 * z1**3
308 EC_FELEM s2;
309 ec_GFp_mont_felem_mul(group, &s2, &b->Y, &z1z1z1);
310
311 // r = (s2 - s1)*2
312 EC_FELEM r;
313 ec_felem_sub(group, &r, &s2, &s1);
314 ec_felem_add(group, &r, &r, &r);
315
316 BN_ULONG yneq = ec_felem_non_zero_mask(group, &r);
317
318 // This case will never occur in the constant-time |ec_GFp_mont_mul|.
319 BN_ULONG is_nontrivial_double = ~xneq & ~yneq & z1nz & z2nz;
320 if (is_nontrivial_double) {
321 ec_GFp_mont_dbl(group, out, a);
322 return;
323 }
324
325 // I = (2h)**2
326 EC_FELEM i;
327 ec_felem_add(group, &i, &h, &h);
328 ec_GFp_mont_felem_sqr(group, &i, &i);
329
330 // J = h * I
331 EC_FELEM j;
332 ec_GFp_mont_felem_mul(group, &j, &h, &i);
333
334 // V = U1 * I
335 EC_FELEM v;
336 ec_GFp_mont_felem_mul(group, &v, &u1, &i);
337
338 // x_out = r**2 - J - 2V
339 ec_GFp_mont_felem_sqr(group, &x_out, &r);
340 ec_felem_sub(group, &x_out, &x_out, &j);
341 ec_felem_sub(group, &x_out, &x_out, &v);
342 ec_felem_sub(group, &x_out, &x_out, &v);
343
344 // y_out = r(V-x_out) - 2 * s1 * J
345 ec_felem_sub(group, &y_out, &v, &x_out);
346 ec_GFp_mont_felem_mul(group, &y_out, &y_out, &r);
347 EC_FELEM s1j;
348 ec_GFp_mont_felem_mul(group, &s1j, &s1, &j);
349 ec_felem_sub(group, &y_out, &y_out, &s1j);
350 ec_felem_sub(group, &y_out, &y_out, &s1j);
351
352 ec_felem_select(group, &x_out, z1nz, &x_out, &b->X);
353 ec_felem_select(group, &out->X, z2nz, &x_out, &a->X);
354 ec_felem_select(group, &y_out, z1nz, &y_out, &b->Y);
355 ec_felem_select(group, &out->Y, z2nz, &y_out, &a->Y);
356 ec_felem_select(group, &z_out, z1nz, &z_out, &b->Z);
357 ec_felem_select(group, &out->Z, z2nz, &z_out, &a->Z);
358 }
359
ec_GFp_mont_dbl(const EC_GROUP * group,EC_RAW_POINT * r,const EC_RAW_POINT * a)360 void ec_GFp_mont_dbl(const EC_GROUP *group, EC_RAW_POINT *r,
361 const EC_RAW_POINT *a) {
362 if (group->a_is_minus3) {
363 // The method is taken from:
364 // http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b
365 //
366 // Coq transcription and correctness proof:
367 // <https://github.com/mit-plv/fiat-crypto/blob/79f8b5f39ed609339f0233098dee1a3c4e6b3080/src/Curves/Weierstrass/Jacobian.v#L93>
368 // <https://github.com/mit-plv/fiat-crypto/blob/79f8b5f39ed609339f0233098dee1a3c4e6b3080/src/Curves/Weierstrass/Jacobian.v#L201>
369 EC_FELEM delta, gamma, beta, ftmp, ftmp2, tmptmp, alpha, fourbeta;
370 // delta = z^2
371 ec_GFp_mont_felem_sqr(group, &delta, &a->Z);
372 // gamma = y^2
373 ec_GFp_mont_felem_sqr(group, &gamma, &a->Y);
374 // beta = x*gamma
375 ec_GFp_mont_felem_mul(group, &beta, &a->X, &gamma);
376
377 // alpha = 3*(x-delta)*(x+delta)
378 ec_felem_sub(group, &ftmp, &a->X, &delta);
379 ec_felem_add(group, &ftmp2, &a->X, &delta);
380
381 ec_felem_add(group, &tmptmp, &ftmp2, &ftmp2);
382 ec_felem_add(group, &ftmp2, &ftmp2, &tmptmp);
383 ec_GFp_mont_felem_mul(group, &alpha, &ftmp, &ftmp2);
384
385 // x' = alpha^2 - 8*beta
386 ec_GFp_mont_felem_sqr(group, &r->X, &alpha);
387 ec_felem_add(group, &fourbeta, &beta, &beta);
388 ec_felem_add(group, &fourbeta, &fourbeta, &fourbeta);
389 ec_felem_add(group, &tmptmp, &fourbeta, &fourbeta);
390 ec_felem_sub(group, &r->X, &r->X, &tmptmp);
391
392 // z' = (y + z)^2 - gamma - delta
393 ec_felem_add(group, &delta, &gamma, &delta);
394 ec_felem_add(group, &ftmp, &a->Y, &a->Z);
395 ec_GFp_mont_felem_sqr(group, &r->Z, &ftmp);
396 ec_felem_sub(group, &r->Z, &r->Z, &delta);
397
398 // y' = alpha*(4*beta - x') - 8*gamma^2
399 ec_felem_sub(group, &r->Y, &fourbeta, &r->X);
400 ec_felem_add(group, &gamma, &gamma, &gamma);
401 ec_GFp_mont_felem_sqr(group, &gamma, &gamma);
402 ec_GFp_mont_felem_mul(group, &r->Y, &alpha, &r->Y);
403 ec_felem_add(group, &gamma, &gamma, &gamma);
404 ec_felem_sub(group, &r->Y, &r->Y, &gamma);
405 } else {
406 // The method is taken from:
407 // http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html#doubling-dbl-2007-bl
408 //
409 // Coq transcription and correctness proof:
410 // <https://github.com/davidben/fiat-crypto/blob/c7b95f62b2a54b559522573310e9b487327d219a/src/Curves/Weierstrass/Jacobian.v#L102>
411 // <https://github.com/davidben/fiat-crypto/blob/c7b95f62b2a54b559522573310e9b487327d219a/src/Curves/Weierstrass/Jacobian.v#L534>
412 EC_FELEM xx, yy, yyyy, zz;
413 ec_GFp_mont_felem_sqr(group, &xx, &a->X);
414 ec_GFp_mont_felem_sqr(group, &yy, &a->Y);
415 ec_GFp_mont_felem_sqr(group, &yyyy, &yy);
416 ec_GFp_mont_felem_sqr(group, &zz, &a->Z);
417
418 // s = 2*((x_in + yy)^2 - xx - yyyy)
419 EC_FELEM s;
420 ec_felem_add(group, &s, &a->X, &yy);
421 ec_GFp_mont_felem_sqr(group, &s, &s);
422 ec_felem_sub(group, &s, &s, &xx);
423 ec_felem_sub(group, &s, &s, &yyyy);
424 ec_felem_add(group, &s, &s, &s);
425
426 // m = 3*xx + a*zz^2
427 EC_FELEM m;
428 ec_GFp_mont_felem_sqr(group, &m, &zz);
429 ec_GFp_mont_felem_mul(group, &m, &group->a, &m);
430 ec_felem_add(group, &m, &m, &xx);
431 ec_felem_add(group, &m, &m, &xx);
432 ec_felem_add(group, &m, &m, &xx);
433
434 // x_out = m^2 - 2*s
435 ec_GFp_mont_felem_sqr(group, &r->X, &m);
436 ec_felem_sub(group, &r->X, &r->X, &s);
437 ec_felem_sub(group, &r->X, &r->X, &s);
438
439 // z_out = (y_in + z_in)^2 - yy - zz
440 ec_felem_add(group, &r->Z, &a->Y, &a->Z);
441 ec_GFp_mont_felem_sqr(group, &r->Z, &r->Z);
442 ec_felem_sub(group, &r->Z, &r->Z, &yy);
443 ec_felem_sub(group, &r->Z, &r->Z, &zz);
444
445 // y_out = m*(s-x_out) - 8*yyyy
446 ec_felem_add(group, &yyyy, &yyyy, &yyyy);
447 ec_felem_add(group, &yyyy, &yyyy, &yyyy);
448 ec_felem_add(group, &yyyy, &yyyy, &yyyy);
449 ec_felem_sub(group, &r->Y, &s, &r->X);
450 ec_GFp_mont_felem_mul(group, &r->Y, &r->Y, &m);
451 ec_felem_sub(group, &r->Y, &r->Y, &yyyy);
452 }
453 }
454
ec_GFp_mont_cmp_x_coordinate(const EC_GROUP * group,const EC_RAW_POINT * p,const EC_SCALAR * r)455 static int ec_GFp_mont_cmp_x_coordinate(const EC_GROUP *group,
456 const EC_RAW_POINT *p,
457 const EC_SCALAR *r) {
458 if (!group->field_greater_than_order ||
459 group->field.width != group->order.width) {
460 // Do not bother optimizing this case. p > order in all commonly-used
461 // curves.
462 return ec_GFp_simple_cmp_x_coordinate(group, p, r);
463 }
464
465 if (ec_GFp_simple_is_at_infinity(group, p)) {
466 return 0;
467 }
468
469 // We wish to compare X/Z^2 with r. This is equivalent to comparing X with
470 // r*Z^2. Note that X and Z are represented in Montgomery form, while r is
471 // not.
472 EC_FELEM r_Z2, Z2_mont, X;
473 ec_GFp_mont_felem_mul(group, &Z2_mont, &p->Z, &p->Z);
474 // r < order < p, so this is valid.
475 OPENSSL_memcpy(r_Z2.words, r->words, group->field.width * sizeof(BN_ULONG));
476 ec_GFp_mont_felem_mul(group, &r_Z2, &r_Z2, &Z2_mont);
477 ec_GFp_mont_felem_from_montgomery(group, &X, &p->X);
478
479 if (ec_felem_equal(group, &r_Z2, &X)) {
480 return 1;
481 }
482
483 // During signing the x coefficient is reduced modulo the group order.
484 // Therefore there is a small possibility, less than 1/2^128, that group_order
485 // < p.x < P. in that case we need not only to compare against |r| but also to
486 // compare against r+group_order.
487 if (bn_less_than_words(r->words, group->field_minus_order.words,
488 group->field.width)) {
489 // We can ignore the carry because: r + group_order < p < 2^256.
490 bn_add_words(r_Z2.words, r->words, group->order.d, group->field.width);
491 ec_GFp_mont_felem_mul(group, &r_Z2, &r_Z2, &Z2_mont);
492 if (ec_felem_equal(group, &r_Z2, &X)) {
493 return 1;
494 }
495 }
496
497 return 0;
498 }
499
DEFINE_METHOD_FUNCTION(EC_METHOD,EC_GFp_mont_method)500 DEFINE_METHOD_FUNCTION(EC_METHOD, EC_GFp_mont_method) {
501 out->group_init = ec_GFp_mont_group_init;
502 out->group_finish = ec_GFp_mont_group_finish;
503 out->group_set_curve = ec_GFp_mont_group_set_curve;
504 out->point_get_affine_coordinates = ec_GFp_mont_point_get_affine_coordinates;
505 out->jacobian_to_affine_batch = ec_GFp_mont_jacobian_to_affine_batch;
506 out->add = ec_GFp_mont_add;
507 out->dbl = ec_GFp_mont_dbl;
508 out->mul = ec_GFp_mont_mul;
509 out->mul_base = ec_GFp_mont_mul_base;
510 out->mul_batch = ec_GFp_mont_mul_batch;
511 out->mul_public_batch = ec_GFp_mont_mul_public_batch;
512 out->init_precomp = ec_GFp_mont_init_precomp;
513 out->mul_precomp = ec_GFp_mont_mul_precomp;
514 out->felem_mul = ec_GFp_mont_felem_mul;
515 out->felem_sqr = ec_GFp_mont_felem_sqr;
516 out->felem_to_bytes = ec_GFp_mont_felem_to_bytes;
517 out->felem_from_bytes = ec_GFp_mont_felem_from_bytes;
518 out->felem_reduce = ec_GFp_mont_felem_reduce;
519 out->felem_exp = ec_GFp_mont_felem_exp;
520 out->scalar_inv0_montgomery = ec_simple_scalar_inv0_montgomery;
521 out->scalar_to_montgomery_inv_vartime =
522 ec_simple_scalar_to_montgomery_inv_vartime;
523 out->cmp_x_coordinate = ec_GFp_mont_cmp_x_coordinate;
524 }
525