1 // Protocol Buffers - Google's data interchange format
2 // Copyright 2008 Google Inc. All rights reserved.
3 // https://developers.google.com/protocol-buffers/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are
7 // met:
8 //
9 // * Redistributions of source code must retain the above copyright
10 // notice, this list of conditions and the following disclaimer.
11 // * Redistributions in binary form must reproduce the above
12 // copyright notice, this list of conditions and the following disclaimer
13 // in the documentation and/or other materials provided with the
14 // distribution.
15 // * Neither the name of Google Inc. nor the names of its
16 // contributors may be used to endorse or promote products derived from
17 // this software without specific prior written permission.
18 //
19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30
31 // Author: kenton@google.com (Kenton Varda)
32 // Based on original Protocol Buffers design by
33 // Sanjay Ghemawat, Jeff Dean, and others.
34 //
35 // Defines Message, the abstract interface implemented by non-lite
36 // protocol message objects. Although it's possible to implement this
37 // interface manually, most users will use the protocol compiler to
38 // generate implementations.
39 //
40 // Example usage:
41 //
42 // Say you have a message defined as:
43 //
44 // message Foo {
45 // optional string text = 1;
46 // repeated int32 numbers = 2;
47 // }
48 //
49 // Then, if you used the protocol compiler to generate a class from the above
50 // definition, you could use it like so:
51 //
52 // std::string data; // Will store a serialized version of the message.
53 //
54 // {
55 // // Create a message and serialize it.
56 // Foo foo;
57 // foo.set_text("Hello World!");
58 // foo.add_numbers(1);
59 // foo.add_numbers(5);
60 // foo.add_numbers(42);
61 //
62 // foo.SerializeToString(&data);
63 // }
64 //
65 // {
66 // // Parse the serialized message and check that it contains the
67 // // correct data.
68 // Foo foo;
69 // foo.ParseFromString(data);
70 //
71 // assert(foo.text() == "Hello World!");
72 // assert(foo.numbers_size() == 3);
73 // assert(foo.numbers(0) == 1);
74 // assert(foo.numbers(1) == 5);
75 // assert(foo.numbers(2) == 42);
76 // }
77 //
78 // {
79 // // Same as the last block, but do it dynamically via the Message
80 // // reflection interface.
81 // Message* foo = new Foo;
82 // const Descriptor* descriptor = foo->GetDescriptor();
83 //
84 // // Get the descriptors for the fields we're interested in and verify
85 // // their types.
86 // const FieldDescriptor* text_field = descriptor->FindFieldByName("text");
87 // assert(text_field != nullptr);
88 // assert(text_field->type() == FieldDescriptor::TYPE_STRING);
89 // assert(text_field->label() == FieldDescriptor::LABEL_OPTIONAL);
90 // const FieldDescriptor* numbers_field = descriptor->
91 // FindFieldByName("numbers");
92 // assert(numbers_field != nullptr);
93 // assert(numbers_field->type() == FieldDescriptor::TYPE_INT32);
94 // assert(numbers_field->label() == FieldDescriptor::LABEL_REPEATED);
95 //
96 // // Parse the message.
97 // foo->ParseFromString(data);
98 //
99 // // Use the reflection interface to examine the contents.
100 // const Reflection* reflection = foo->GetReflection();
101 // assert(reflection->GetString(*foo, text_field) == "Hello World!");
102 // assert(reflection->FieldSize(*foo, numbers_field) == 3);
103 // assert(reflection->GetRepeatedInt32(*foo, numbers_field, 0) == 1);
104 // assert(reflection->GetRepeatedInt32(*foo, numbers_field, 1) == 5);
105 // assert(reflection->GetRepeatedInt32(*foo, numbers_field, 2) == 42);
106 //
107 // delete foo;
108 // }
109
110 #ifndef GOOGLE_PROTOBUF_MESSAGE_H__
111 #define GOOGLE_PROTOBUF_MESSAGE_H__
112
113
114 #include <iosfwd>
115 #include <string>
116 #include <type_traits>
117 #include <vector>
118
119 #include <google/protobuf/stubs/casts.h>
120 #include <google/protobuf/stubs/common.h>
121 #include <google/protobuf/arena.h>
122 #include <google/protobuf/port.h>
123 #include <google/protobuf/descriptor.h>
124 #include <google/protobuf/generated_message_reflection.h>
125 #include <google/protobuf/generated_message_util.h>
126 #include <google/protobuf/map.h> // TODO(b/211442718): cleanup
127 #include <google/protobuf/message_lite.h>
128
129
130 // Must be included last.
131 #include <google/protobuf/port_def.inc>
132
133 #ifdef SWIG
134 #error "You cannot SWIG proto headers"
135 #endif
136
137 namespace google {
138 namespace protobuf {
139
140 // Defined in this file.
141 class Message;
142 class Reflection;
143 class MessageFactory;
144
145 // Defined in other files.
146 class AssignDescriptorsHelper;
147 class DynamicMessageFactory;
148 class GeneratedMessageReflectionTestHelper;
149 class MapKey;
150 class MapValueConstRef;
151 class MapValueRef;
152 class MapIterator;
153 class MapReflectionTester;
154
155 namespace internal {
156 struct DescriptorTable;
157 class MapFieldBase;
158 class SwapFieldHelper;
159 class CachedSize;
160 } // namespace internal
161 class UnknownFieldSet; // unknown_field_set.h
162 namespace io {
163 class ZeroCopyInputStream; // zero_copy_stream.h
164 class ZeroCopyOutputStream; // zero_copy_stream.h
165 class CodedInputStream; // coded_stream.h
166 class CodedOutputStream; // coded_stream.h
167 } // namespace io
168 namespace python {
169 class MapReflectionFriend; // scalar_map_container.h
170 class MessageReflectionFriend;
171 } // namespace python
172 namespace expr {
173 class CelMapReflectionFriend; // field_backed_map_impl.cc
174 }
175
176 namespace internal {
177 class MapFieldPrinterHelper; // text_format.cc
178 }
179 namespace util {
180 class MessageDifferencer;
181 }
182
183
184 namespace internal {
185 class ReflectionAccessor; // message.cc
186 class ReflectionOps; // reflection_ops.h
187 class MapKeySorter; // wire_format.cc
188 class WireFormat; // wire_format.h
189 class MapFieldReflectionTest; // map_test.cc
190 } // namespace internal
191
192 template <typename T>
193 class RepeatedField; // repeated_field.h
194
195 template <typename T>
196 class RepeatedPtrField; // repeated_field.h
197
198 // A container to hold message metadata.
199 struct Metadata {
200 const Descriptor* descriptor;
201 const Reflection* reflection;
202 };
203
204 namespace internal {
205 template <class To>
GetPointerAtOffset(Message * message,uint32_t offset)206 inline To* GetPointerAtOffset(Message* message, uint32_t offset) {
207 return reinterpret_cast<To*>(reinterpret_cast<char*>(message) + offset);
208 }
209
210 template <class To>
GetConstPointerAtOffset(const Message * message,uint32_t offset)211 const To* GetConstPointerAtOffset(const Message* message, uint32_t offset) {
212 return reinterpret_cast<const To*>(reinterpret_cast<const char*>(message) +
213 offset);
214 }
215
216 template <class To>
GetConstRefAtOffset(const Message & message,uint32_t offset)217 const To& GetConstRefAtOffset(const Message& message, uint32_t offset) {
218 return *GetConstPointerAtOffset<To>(&message, offset);
219 }
220
221 bool CreateUnknownEnumValues(const FieldDescriptor* field);
222 } // namespace internal
223
224 // Abstract interface for protocol messages.
225 //
226 // See also MessageLite, which contains most every-day operations. Message
227 // adds descriptors and reflection on top of that.
228 //
229 // The methods of this class that are virtual but not pure-virtual have
230 // default implementations based on reflection. Message classes which are
231 // optimized for speed will want to override these with faster implementations,
232 // but classes optimized for code size may be happy with keeping them. See
233 // the optimize_for option in descriptor.proto.
234 //
235 // Users must not derive from this class. Only the protocol compiler and
236 // the internal library are allowed to create subclasses.
237 class PROTOBUF_EXPORT Message : public MessageLite {
238 public:
Message()239 constexpr Message() {}
240
241 // Basic Operations ------------------------------------------------
242
243 // Construct a new instance of the same type. Ownership is passed to the
244 // caller. (This is also defined in MessageLite, but is defined again here
245 // for return-type covariance.)
New()246 Message* New() const { return New(nullptr); }
247
248 // Construct a new instance on the arena. Ownership is passed to the caller
249 // if arena is a nullptr.
250 Message* New(Arena* arena) const override = 0;
251
252 // Make this message into a copy of the given message. The given message
253 // must have the same descriptor, but need not necessarily be the same class.
254 // By default this is just implemented as "Clear(); MergeFrom(from);".
255 virtual void CopyFrom(const Message& from);
256
257 // Merge the fields from the given message into this message. Singular
258 // fields will be overwritten, if specified in from, except for embedded
259 // messages which will be merged. Repeated fields will be concatenated.
260 // The given message must be of the same type as this message (i.e. the
261 // exact same class).
262 virtual void MergeFrom(const Message& from);
263
264 // Verifies that IsInitialized() returns true. GOOGLE_CHECK-fails otherwise, with
265 // a nice error message.
266 void CheckInitialized() const;
267
268 // Slowly build a list of all required fields that are not set.
269 // This is much, much slower than IsInitialized() as it is implemented
270 // purely via reflection. Generally, you should not call this unless you
271 // have already determined that an error exists by calling IsInitialized().
272 void FindInitializationErrors(std::vector<std::string>* errors) const;
273
274 // Like FindInitializationErrors, but joins all the strings, delimited by
275 // commas, and returns them.
276 std::string InitializationErrorString() const override;
277
278 // Clears all unknown fields from this message and all embedded messages.
279 // Normally, if unknown tag numbers are encountered when parsing a message,
280 // the tag and value are stored in the message's UnknownFieldSet and
281 // then written back out when the message is serialized. This allows servers
282 // which simply route messages to other servers to pass through messages
283 // that have new field definitions which they don't yet know about. However,
284 // this behavior can have security implications. To avoid it, call this
285 // method after parsing.
286 //
287 // See Reflection::GetUnknownFields() for more on unknown fields.
288 void DiscardUnknownFields();
289
290 // Computes (an estimate of) the total number of bytes currently used for
291 // storing the message in memory. The default implementation calls the
292 // Reflection object's SpaceUsed() method.
293 //
294 // SpaceUsed() is noticeably slower than ByteSize(), as it is implemented
295 // using reflection (rather than the generated code implementation for
296 // ByteSize()). Like ByteSize(), its CPU time is linear in the number of
297 // fields defined for the proto.
298 virtual size_t SpaceUsedLong() const;
299
300 PROTOBUF_DEPRECATED_MSG("Please use SpaceUsedLong() instead")
SpaceUsed()301 int SpaceUsed() const { return internal::ToIntSize(SpaceUsedLong()); }
302
303 // Debugging & Testing----------------------------------------------
304
305 // Generates a human readable form of this message, useful for debugging
306 // and other purposes.
307 std::string DebugString() const;
308 // Like DebugString(), but with less whitespace.
309 std::string ShortDebugString() const;
310 // Like DebugString(), but do not escape UTF-8 byte sequences.
311 std::string Utf8DebugString() const;
312 // Convenience function useful in GDB. Prints DebugString() to stdout.
313 void PrintDebugString() const;
314
315 // Reflection-based methods ----------------------------------------
316 // These methods are pure-virtual in MessageLite, but Message provides
317 // reflection-based default implementations.
318
319 std::string GetTypeName() const override;
320 void Clear() override;
321
322 // Returns whether all required fields have been set. Note that required
323 // fields no longer exist starting in proto3.
324 bool IsInitialized() const override;
325
326 void CheckTypeAndMergeFrom(const MessageLite& other) override;
327 // Reflective parser
328 const char* _InternalParse(const char* ptr,
329 internal::ParseContext* ctx) override;
330 size_t ByteSizeLong() const override;
331 uint8_t* _InternalSerialize(uint8_t* target,
332 io::EpsCopyOutputStream* stream) const override;
333
334 private:
335 // This is called only by the default implementation of ByteSize(), to
336 // update the cached size. If you override ByteSize(), you do not need
337 // to override this. If you do not override ByteSize(), you MUST override
338 // this; the default implementation will crash.
339 //
340 // The method is private because subclasses should never call it; only
341 // override it. Yes, C++ lets you do that. Crazy, huh?
342 virtual void SetCachedSize(int size) const;
343
344 public:
345 // Introspection ---------------------------------------------------
346
347
348 // Get a non-owning pointer to a Descriptor for this message's type. This
349 // describes what fields the message contains, the types of those fields, etc.
350 // This object remains property of the Message.
GetDescriptor()351 const Descriptor* GetDescriptor() const { return GetMetadata().descriptor; }
352
353 // Get a non-owning pointer to the Reflection interface for this Message,
354 // which can be used to read and modify the fields of the Message dynamically
355 // (in other words, without knowing the message type at compile time). This
356 // object remains property of the Message.
GetReflection()357 const Reflection* GetReflection() const { return GetMetadata().reflection; }
358
359 protected:
360 // Get a struct containing the metadata for the Message, which is used in turn
361 // to implement GetDescriptor() and GetReflection() above.
362 virtual Metadata GetMetadata() const = 0;
363
364 struct ClassData {
365 // Note: The order of arguments (to, then from) is chosen so that the ABI
366 // of this function is the same as the CopyFrom method. That is, the
367 // hidden "this" parameter comes first.
368 void (*copy_to_from)(Message* to, const Message& from_msg);
369 void (*merge_to_from)(Message* to, const Message& from_msg);
370 };
371 // GetClassData() returns a pointer to a ClassData struct which
372 // exists in global memory and is unique to each subclass. This uniqueness
373 // property is used in order to quickly determine whether two messages are
374 // of the same type.
375 // TODO(jorg): change to pure virtual
GetClassData()376 virtual const ClassData* GetClassData() const { return nullptr; }
377
378 // CopyWithSizeCheck calls Clear() and then MergeFrom(), and in debug
379 // builds, checks that calling Clear() on the destination message doesn't
380 // alter the size of the source. It assumes the messages are known to be
381 // of the same type, and thus uses GetClassData().
382 static void CopyWithSizeCheck(Message* to, const Message& from);
383
384 inline explicit Message(Arena* arena, bool is_message_owned = false)
MessageLite(arena,is_message_owned)385 : MessageLite(arena, is_message_owned) {}
386 size_t ComputeUnknownFieldsSize(size_t total_size,
387 internal::CachedSize* cached_size) const;
388 size_t MaybeComputeUnknownFieldsSize(size_t total_size,
389 internal::CachedSize* cached_size) const;
390
391
392 protected:
393 static uint64_t GetInvariantPerBuild(uint64_t salt);
394
395 private:
396 GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(Message);
397 };
398
399 namespace internal {
400 // Forward-declare interfaces used to implement RepeatedFieldRef.
401 // These are protobuf internals that users shouldn't care about.
402 class RepeatedFieldAccessor;
403 } // namespace internal
404
405 // Forward-declare RepeatedFieldRef templates. The second type parameter is
406 // used for SFINAE tricks. Users should ignore it.
407 template <typename T, typename Enable = void>
408 class RepeatedFieldRef;
409
410 template <typename T, typename Enable = void>
411 class MutableRepeatedFieldRef;
412
413 // This interface contains methods that can be used to dynamically access
414 // and modify the fields of a protocol message. Their semantics are
415 // similar to the accessors the protocol compiler generates.
416 //
417 // To get the Reflection for a given Message, call Message::GetReflection().
418 //
419 // This interface is separate from Message only for efficiency reasons;
420 // the vast majority of implementations of Message will share the same
421 // implementation of Reflection (GeneratedMessageReflection,
422 // defined in generated_message.h), and all Messages of a particular class
423 // should share the same Reflection object (though you should not rely on
424 // the latter fact).
425 //
426 // There are several ways that these methods can be used incorrectly. For
427 // example, any of the following conditions will lead to undefined
428 // results (probably assertion failures):
429 // - The FieldDescriptor is not a field of this message type.
430 // - The method called is not appropriate for the field's type. For
431 // each field type in FieldDescriptor::TYPE_*, there is only one
432 // Get*() method, one Set*() method, and one Add*() method that is
433 // valid for that type. It should be obvious which (except maybe
434 // for TYPE_BYTES, which are represented using strings in C++).
435 // - A Get*() or Set*() method for singular fields is called on a repeated
436 // field.
437 // - GetRepeated*(), SetRepeated*(), or Add*() is called on a non-repeated
438 // field.
439 // - The Message object passed to any method is not of the right type for
440 // this Reflection object (i.e. message.GetReflection() != reflection).
441 //
442 // You might wonder why there is not any abstract representation for a field
443 // of arbitrary type. E.g., why isn't there just a "GetField()" method that
444 // returns "const Field&", where "Field" is some class with accessors like
445 // "GetInt32Value()". The problem is that someone would have to deal with
446 // allocating these Field objects. For generated message classes, having to
447 // allocate space for an additional object to wrap every field would at least
448 // double the message's memory footprint, probably worse. Allocating the
449 // objects on-demand, on the other hand, would be expensive and prone to
450 // memory leaks. So, instead we ended up with this flat interface.
451 class PROTOBUF_EXPORT Reflection final {
452 public:
453 // Get the UnknownFieldSet for the message. This contains fields which
454 // were seen when the Message was parsed but were not recognized according
455 // to the Message's definition.
456 const UnknownFieldSet& GetUnknownFields(const Message& message) const;
457 // Get a mutable pointer to the UnknownFieldSet for the message. This
458 // contains fields which were seen when the Message was parsed but were not
459 // recognized according to the Message's definition.
460 UnknownFieldSet* MutableUnknownFields(Message* message) const;
461
462 // Estimate the amount of memory used by the message object.
463 size_t SpaceUsedLong(const Message& message) const;
464
465 PROTOBUF_DEPRECATED_MSG("Please use SpaceUsedLong() instead")
SpaceUsed(const Message & message)466 int SpaceUsed(const Message& message) const {
467 return internal::ToIntSize(SpaceUsedLong(message));
468 }
469
470 // Check if the given non-repeated field is set.
471 bool HasField(const Message& message, const FieldDescriptor* field) const;
472
473 // Get the number of elements of a repeated field.
474 int FieldSize(const Message& message, const FieldDescriptor* field) const;
475
476 // Clear the value of a field, so that HasField() returns false or
477 // FieldSize() returns zero.
478 void ClearField(Message* message, const FieldDescriptor* field) const;
479
480 // Check if the oneof is set. Returns true if any field in oneof
481 // is set, false otherwise.
482 bool HasOneof(const Message& message,
483 const OneofDescriptor* oneof_descriptor) const;
484
485 void ClearOneof(Message* message,
486 const OneofDescriptor* oneof_descriptor) const;
487
488 // Returns the field descriptor if the oneof is set. nullptr otherwise.
489 const FieldDescriptor* GetOneofFieldDescriptor(
490 const Message& message, const OneofDescriptor* oneof_descriptor) const;
491
492 // Removes the last element of a repeated field.
493 // We don't provide a way to remove any element other than the last
494 // because it invites inefficient use, such as O(n^2) filtering loops
495 // that should have been O(n). If you want to remove an element other
496 // than the last, the best way to do it is to re-arrange the elements
497 // (using Swap()) so that the one you want removed is at the end, then
498 // call RemoveLast().
499 void RemoveLast(Message* message, const FieldDescriptor* field) const;
500 // Removes the last element of a repeated message field, and returns the
501 // pointer to the caller. Caller takes ownership of the returned pointer.
502 PROTOBUF_NODISCARD Message* ReleaseLast(Message* message,
503 const FieldDescriptor* field) const;
504
505 // Similar to ReleaseLast() without internal safety and ownershp checks. This
506 // method should only be used when the objects are on the same arena or paired
507 // with a call to `UnsafeArenaAddAllocatedMessage`.
508 Message* UnsafeArenaReleaseLast(Message* message,
509 const FieldDescriptor* field) const;
510
511 // Swap the complete contents of two messages.
512 void Swap(Message* message1, Message* message2) const;
513
514 // Swap fields listed in fields vector of two messages.
515 void SwapFields(Message* message1, Message* message2,
516 const std::vector<const FieldDescriptor*>& fields) const;
517
518 // Swap two elements of a repeated field.
519 void SwapElements(Message* message, const FieldDescriptor* field, int index1,
520 int index2) const;
521
522 // Swap without internal safety and ownership checks. This method should only
523 // be used when the objects are on the same arena.
524 void UnsafeArenaSwap(Message* lhs, Message* rhs) const;
525
526 // SwapFields without internal safety and ownership checks. This method should
527 // only be used when the objects are on the same arena.
528 void UnsafeArenaSwapFields(
529 Message* lhs, Message* rhs,
530 const std::vector<const FieldDescriptor*>& fields) const;
531
532 // List all fields of the message which are currently set, except for unknown
533 // fields, but including extension known to the parser (i.e. compiled in).
534 // Singular fields will only be listed if HasField(field) would return true
535 // and repeated fields will only be listed if FieldSize(field) would return
536 // non-zero. Fields (both normal fields and extension fields) will be listed
537 // ordered by field number.
538 // Use Reflection::GetUnknownFields() or message.unknown_fields() to also get
539 // access to fields/extensions unknown to the parser.
540 void ListFields(const Message& message,
541 std::vector<const FieldDescriptor*>* output) const;
542
543 // Singular field getters ------------------------------------------
544 // These get the value of a non-repeated field. They return the default
545 // value for fields that aren't set.
546
547 int32_t GetInt32(const Message& message, const FieldDescriptor* field) const;
548 int64_t GetInt64(const Message& message, const FieldDescriptor* field) const;
549 uint32_t GetUInt32(const Message& message,
550 const FieldDescriptor* field) const;
551 uint64_t GetUInt64(const Message& message,
552 const FieldDescriptor* field) const;
553 float GetFloat(const Message& message, const FieldDescriptor* field) const;
554 double GetDouble(const Message& message, const FieldDescriptor* field) const;
555 bool GetBool(const Message& message, const FieldDescriptor* field) const;
556 std::string GetString(const Message& message,
557 const FieldDescriptor* field) const;
558 const EnumValueDescriptor* GetEnum(const Message& message,
559 const FieldDescriptor* field) const;
560
561 // GetEnumValue() returns an enum field's value as an integer rather than
562 // an EnumValueDescriptor*. If the integer value does not correspond to a
563 // known value descriptor, a new value descriptor is created. (Such a value
564 // will only be present when the new unknown-enum-value semantics are enabled
565 // for a message.)
566 int GetEnumValue(const Message& message, const FieldDescriptor* field) const;
567
568 // See MutableMessage() for the meaning of the "factory" parameter.
569 const Message& GetMessage(const Message& message,
570 const FieldDescriptor* field,
571 MessageFactory* factory = nullptr) const;
572
573 // Get a string value without copying, if possible.
574 //
575 // GetString() necessarily returns a copy of the string. This can be
576 // inefficient when the std::string is already stored in a std::string object
577 // in the underlying message. GetStringReference() will return a reference to
578 // the underlying std::string in this case. Otherwise, it will copy the
579 // string into *scratch and return that.
580 //
581 // Note: It is perfectly reasonable and useful to write code like:
582 // str = reflection->GetStringReference(message, field, &str);
583 // This line would ensure that only one copy of the string is made
584 // regardless of the field's underlying representation. When initializing
585 // a newly-constructed string, though, it's just as fast and more
586 // readable to use code like:
587 // std::string str = reflection->GetString(message, field);
588 const std::string& GetStringReference(const Message& message,
589 const FieldDescriptor* field,
590 std::string* scratch) const;
591
592
593 // Singular field mutators -----------------------------------------
594 // These mutate the value of a non-repeated field.
595
596 void SetInt32(Message* message, const FieldDescriptor* field,
597 int32_t value) const;
598 void SetInt64(Message* message, const FieldDescriptor* field,
599 int64_t value) const;
600 void SetUInt32(Message* message, const FieldDescriptor* field,
601 uint32_t value) const;
602 void SetUInt64(Message* message, const FieldDescriptor* field,
603 uint64_t value) const;
604 void SetFloat(Message* message, const FieldDescriptor* field,
605 float value) const;
606 void SetDouble(Message* message, const FieldDescriptor* field,
607 double value) const;
608 void SetBool(Message* message, const FieldDescriptor* field,
609 bool value) const;
610 void SetString(Message* message, const FieldDescriptor* field,
611 std::string value) const;
612 void SetEnum(Message* message, const FieldDescriptor* field,
613 const EnumValueDescriptor* value) const;
614 // Set an enum field's value with an integer rather than EnumValueDescriptor.
615 // For proto3 this is just setting the enum field to the value specified, for
616 // proto2 it's more complicated. If value is a known enum value the field is
617 // set as usual. If the value is unknown then it is added to the unknown field
618 // set. Note this matches the behavior of parsing unknown enum values.
619 // If multiple calls with unknown values happen than they are all added to the
620 // unknown field set in order of the calls.
621 void SetEnumValue(Message* message, const FieldDescriptor* field,
622 int value) const;
623
624 // Get a mutable pointer to a field with a message type. If a MessageFactory
625 // is provided, it will be used to construct instances of the sub-message;
626 // otherwise, the default factory is used. If the field is an extension that
627 // does not live in the same pool as the containing message's descriptor (e.g.
628 // it lives in an overlay pool), then a MessageFactory must be provided.
629 // If you have no idea what that meant, then you probably don't need to worry
630 // about it (don't provide a MessageFactory). WARNING: If the
631 // FieldDescriptor is for a compiled-in extension, then
632 // factory->GetPrototype(field->message_type()) MUST return an instance of
633 // the compiled-in class for this type, NOT DynamicMessage.
634 Message* MutableMessage(Message* message, const FieldDescriptor* field,
635 MessageFactory* factory = nullptr) const;
636
637 // Replaces the message specified by 'field' with the already-allocated object
638 // sub_message, passing ownership to the message. If the field contained a
639 // message, that message is deleted. If sub_message is nullptr, the field is
640 // cleared.
641 void SetAllocatedMessage(Message* message, Message* sub_message,
642 const FieldDescriptor* field) const;
643
644 // Similar to `SetAllocatedMessage`, but omits all internal safety and
645 // ownership checks. This method should only be used when the objects are on
646 // the same arena or paired with a call to `UnsafeArenaReleaseMessage`.
647 void UnsafeArenaSetAllocatedMessage(Message* message, Message* sub_message,
648 const FieldDescriptor* field) const;
649
650 // Releases the message specified by 'field' and returns the pointer,
651 // ReleaseMessage() will return the message the message object if it exists.
652 // Otherwise, it may or may not return nullptr. In any case, if the return
653 // value is non-null, the caller takes ownership of the pointer.
654 // If the field existed (HasField() is true), then the returned pointer will
655 // be the same as the pointer returned by MutableMessage().
656 // This function has the same effect as ClearField().
657 PROTOBUF_NODISCARD Message* ReleaseMessage(
658 Message* message, const FieldDescriptor* field,
659 MessageFactory* factory = nullptr) const;
660
661 // Similar to `ReleaseMessage`, but omits all internal safety and ownership
662 // checks. This method should only be used when the objects are on the same
663 // arena or paired with a call to `UnsafeArenaSetAllocatedMessage`.
664 Message* UnsafeArenaReleaseMessage(Message* message,
665 const FieldDescriptor* field,
666 MessageFactory* factory = nullptr) const;
667
668
669 // Repeated field getters ------------------------------------------
670 // These get the value of one element of a repeated field.
671
672 int32_t GetRepeatedInt32(const Message& message, const FieldDescriptor* field,
673 int index) const;
674 int64_t GetRepeatedInt64(const Message& message, const FieldDescriptor* field,
675 int index) const;
676 uint32_t GetRepeatedUInt32(const Message& message,
677 const FieldDescriptor* field, int index) const;
678 uint64_t GetRepeatedUInt64(const Message& message,
679 const FieldDescriptor* field, int index) const;
680 float GetRepeatedFloat(const Message& message, const FieldDescriptor* field,
681 int index) const;
682 double GetRepeatedDouble(const Message& message, const FieldDescriptor* field,
683 int index) const;
684 bool GetRepeatedBool(const Message& message, const FieldDescriptor* field,
685 int index) const;
686 std::string GetRepeatedString(const Message& message,
687 const FieldDescriptor* field, int index) const;
688 const EnumValueDescriptor* GetRepeatedEnum(const Message& message,
689 const FieldDescriptor* field,
690 int index) const;
691 // GetRepeatedEnumValue() returns an enum field's value as an integer rather
692 // than an EnumValueDescriptor*. If the integer value does not correspond to a
693 // known value descriptor, a new value descriptor is created. (Such a value
694 // will only be present when the new unknown-enum-value semantics are enabled
695 // for a message.)
696 int GetRepeatedEnumValue(const Message& message, const FieldDescriptor* field,
697 int index) const;
698 const Message& GetRepeatedMessage(const Message& message,
699 const FieldDescriptor* field,
700 int index) const;
701
702 // See GetStringReference(), above.
703 const std::string& GetRepeatedStringReference(const Message& message,
704 const FieldDescriptor* field,
705 int index,
706 std::string* scratch) const;
707
708
709 // Repeated field mutators -----------------------------------------
710 // These mutate the value of one element of a repeated field.
711
712 void SetRepeatedInt32(Message* message, const FieldDescriptor* field,
713 int index, int32_t value) const;
714 void SetRepeatedInt64(Message* message, const FieldDescriptor* field,
715 int index, int64_t value) const;
716 void SetRepeatedUInt32(Message* message, const FieldDescriptor* field,
717 int index, uint32_t value) const;
718 void SetRepeatedUInt64(Message* message, const FieldDescriptor* field,
719 int index, uint64_t value) const;
720 void SetRepeatedFloat(Message* message, const FieldDescriptor* field,
721 int index, float value) const;
722 void SetRepeatedDouble(Message* message, const FieldDescriptor* field,
723 int index, double value) const;
724 void SetRepeatedBool(Message* message, const FieldDescriptor* field,
725 int index, bool value) const;
726 void SetRepeatedString(Message* message, const FieldDescriptor* field,
727 int index, std::string value) const;
728 void SetRepeatedEnum(Message* message, const FieldDescriptor* field,
729 int index, const EnumValueDescriptor* value) const;
730 // Set an enum field's value with an integer rather than EnumValueDescriptor.
731 // For proto3 this is just setting the enum field to the value specified, for
732 // proto2 it's more complicated. If value is a known enum value the field is
733 // set as usual. If the value is unknown then it is added to the unknown field
734 // set. Note this matches the behavior of parsing unknown enum values.
735 // If multiple calls with unknown values happen than they are all added to the
736 // unknown field set in order of the calls.
737 void SetRepeatedEnumValue(Message* message, const FieldDescriptor* field,
738 int index, int value) const;
739 // Get a mutable pointer to an element of a repeated field with a message
740 // type.
741 Message* MutableRepeatedMessage(Message* message,
742 const FieldDescriptor* field,
743 int index) const;
744
745
746 // Repeated field adders -------------------------------------------
747 // These add an element to a repeated field.
748
749 void AddInt32(Message* message, const FieldDescriptor* field,
750 int32_t value) const;
751 void AddInt64(Message* message, const FieldDescriptor* field,
752 int64_t value) const;
753 void AddUInt32(Message* message, const FieldDescriptor* field,
754 uint32_t value) const;
755 void AddUInt64(Message* message, const FieldDescriptor* field,
756 uint64_t value) const;
757 void AddFloat(Message* message, const FieldDescriptor* field,
758 float value) const;
759 void AddDouble(Message* message, const FieldDescriptor* field,
760 double value) const;
761 void AddBool(Message* message, const FieldDescriptor* field,
762 bool value) const;
763 void AddString(Message* message, const FieldDescriptor* field,
764 std::string value) const;
765 void AddEnum(Message* message, const FieldDescriptor* field,
766 const EnumValueDescriptor* value) const;
767 // Add an integer value to a repeated enum field rather than
768 // EnumValueDescriptor. For proto3 this is just setting the enum field to the
769 // value specified, for proto2 it's more complicated. If value is a known enum
770 // value the field is set as usual. If the value is unknown then it is added
771 // to the unknown field set. Note this matches the behavior of parsing unknown
772 // enum values. If multiple calls with unknown values happen than they are all
773 // added to the unknown field set in order of the calls.
774 void AddEnumValue(Message* message, const FieldDescriptor* field,
775 int value) const;
776 // See MutableMessage() for comments on the "factory" parameter.
777 Message* AddMessage(Message* message, const FieldDescriptor* field,
778 MessageFactory* factory = nullptr) const;
779
780 // Appends an already-allocated object 'new_entry' to the repeated field
781 // specified by 'field' passing ownership to the message.
782 void AddAllocatedMessage(Message* message, const FieldDescriptor* field,
783 Message* new_entry) const;
784
785 // Similar to AddAllocatedMessage() without internal safety and ownership
786 // checks. This method should only be used when the objects are on the same
787 // arena or paired with a call to `UnsafeArenaReleaseLast`.
788 void UnsafeArenaAddAllocatedMessage(Message* message,
789 const FieldDescriptor* field,
790 Message* new_entry) const;
791
792
793 // Get a RepeatedFieldRef object that can be used to read the underlying
794 // repeated field. The type parameter T must be set according to the
795 // field's cpp type. The following table shows the mapping from cpp type
796 // to acceptable T.
797 //
798 // field->cpp_type() T
799 // CPPTYPE_INT32 int32_t
800 // CPPTYPE_UINT32 uint32_t
801 // CPPTYPE_INT64 int64_t
802 // CPPTYPE_UINT64 uint64_t
803 // CPPTYPE_DOUBLE double
804 // CPPTYPE_FLOAT float
805 // CPPTYPE_BOOL bool
806 // CPPTYPE_ENUM generated enum type or int32_t
807 // CPPTYPE_STRING std::string
808 // CPPTYPE_MESSAGE generated message type or google::protobuf::Message
809 //
810 // A RepeatedFieldRef object can be copied and the resulted object will point
811 // to the same repeated field in the same message. The object can be used as
812 // long as the message is not destroyed.
813 //
814 // Note that to use this method users need to include the header file
815 // "reflection.h" (which defines the RepeatedFieldRef class templates).
816 template <typename T>
817 RepeatedFieldRef<T> GetRepeatedFieldRef(const Message& message,
818 const FieldDescriptor* field) const;
819
820 // Like GetRepeatedFieldRef() but return an object that can also be used
821 // manipulate the underlying repeated field.
822 template <typename T>
823 MutableRepeatedFieldRef<T> GetMutableRepeatedFieldRef(
824 Message* message, const FieldDescriptor* field) const;
825
826 // DEPRECATED. Please use Get(Mutable)RepeatedFieldRef() for repeated field
827 // access. The following repeated field accessors will be removed in the
828 // future.
829 //
830 // Repeated field accessors -------------------------------------------------
831 // The methods above, e.g. GetRepeatedInt32(msg, fd, index), provide singular
832 // access to the data in a RepeatedField. The methods below provide aggregate
833 // access by exposing the RepeatedField object itself with the Message.
834 // Applying these templates to inappropriate types will lead to an undefined
835 // reference at link time (e.g. GetRepeatedField<***double>), or possibly a
836 // template matching error at compile time (e.g. GetRepeatedPtrField<File>).
837 //
838 // Usage example: my_doubs = refl->GetRepeatedField<double>(msg, fd);
839
840 // DEPRECATED. Please use GetRepeatedFieldRef().
841 //
842 // for T = Cord and all protobuf scalar types except enums.
843 template <typename T>
844 PROTOBUF_DEPRECATED_MSG("Please use GetRepeatedFieldRef() instead")
GetRepeatedField(const Message & msg,const FieldDescriptor * d)845 const RepeatedField<T>& GetRepeatedField(const Message& msg,
846 const FieldDescriptor* d) const {
847 return GetRepeatedFieldInternal<T>(msg, d);
848 }
849
850 // DEPRECATED. Please use GetMutableRepeatedFieldRef().
851 //
852 // for T = Cord and all protobuf scalar types except enums.
853 template <typename T>
854 PROTOBUF_DEPRECATED_MSG("Please use GetMutableRepeatedFieldRef() instead")
MutableRepeatedField(Message * msg,const FieldDescriptor * d)855 RepeatedField<T>* MutableRepeatedField(Message* msg,
856 const FieldDescriptor* d) const {
857 return MutableRepeatedFieldInternal<T>(msg, d);
858 }
859
860 // DEPRECATED. Please use GetRepeatedFieldRef().
861 //
862 // for T = std::string, google::protobuf::internal::StringPieceField
863 // google::protobuf::Message & descendants.
864 template <typename T>
865 PROTOBUF_DEPRECATED_MSG("Please use GetRepeatedFieldRef() instead")
GetRepeatedPtrField(const Message & msg,const FieldDescriptor * d)866 const RepeatedPtrField<T>& GetRepeatedPtrField(
867 const Message& msg, const FieldDescriptor* d) const {
868 return GetRepeatedPtrFieldInternal<T>(msg, d);
869 }
870
871 // DEPRECATED. Please use GetMutableRepeatedFieldRef().
872 //
873 // for T = std::string, google::protobuf::internal::StringPieceField
874 // google::protobuf::Message & descendants.
875 template <typename T>
876 PROTOBUF_DEPRECATED_MSG("Please use GetMutableRepeatedFieldRef() instead")
MutableRepeatedPtrField(Message * msg,const FieldDescriptor * d)877 RepeatedPtrField<T>* MutableRepeatedPtrField(Message* msg,
878 const FieldDescriptor* d) const {
879 return MutableRepeatedPtrFieldInternal<T>(msg, d);
880 }
881
882 // Extensions ----------------------------------------------------------------
883
884 // Try to find an extension of this message type by fully-qualified field
885 // name. Returns nullptr if no extension is known for this name or number.
886 const FieldDescriptor* FindKnownExtensionByName(
887 const std::string& name) const;
888
889 // Try to find an extension of this message type by field number.
890 // Returns nullptr if no extension is known for this name or number.
891 const FieldDescriptor* FindKnownExtensionByNumber(int number) const;
892
893 // Feature Flags -------------------------------------------------------------
894
895 // Does this message support storing arbitrary integer values in enum fields?
896 // If |true|, GetEnumValue/SetEnumValue and associated repeated-field versions
897 // take arbitrary integer values, and the legacy GetEnum() getter will
898 // dynamically create an EnumValueDescriptor for any integer value without
899 // one. If |false|, setting an unknown enum value via the integer-based
900 // setters results in undefined behavior (in practice, GOOGLE_DCHECK-fails).
901 //
902 // Generic code that uses reflection to handle messages with enum fields
903 // should check this flag before using the integer-based setter, and either
904 // downgrade to a compatible value or use the UnknownFieldSet if not. For
905 // example:
906 //
907 // int new_value = GetValueFromApplicationLogic();
908 // if (reflection->SupportsUnknownEnumValues()) {
909 // reflection->SetEnumValue(message, field, new_value);
910 // } else {
911 // if (field_descriptor->enum_type()->
912 // FindValueByNumber(new_value) != nullptr) {
913 // reflection->SetEnumValue(message, field, new_value);
914 // } else if (emit_unknown_enum_values) {
915 // reflection->MutableUnknownFields(message)->AddVarint(
916 // field->number(), new_value);
917 // } else {
918 // // convert value to a compatible/default value.
919 // new_value = CompatibleDowngrade(new_value);
920 // reflection->SetEnumValue(message, field, new_value);
921 // }
922 // }
923 bool SupportsUnknownEnumValues() const;
924
925 // Returns the MessageFactory associated with this message. This can be
926 // useful for determining if a message is a generated message or not, for
927 // example:
928 // if (message->GetReflection()->GetMessageFactory() ==
929 // google::protobuf::MessageFactory::generated_factory()) {
930 // // This is a generated message.
931 // }
932 // It can also be used to create more messages of this type, though
933 // Message::New() is an easier way to accomplish this.
934 MessageFactory* GetMessageFactory() const;
935
936 private:
937 template <typename T>
938 const RepeatedField<T>& GetRepeatedFieldInternal(
939 const Message& message, const FieldDescriptor* field) const;
940 template <typename T>
941 RepeatedField<T>* MutableRepeatedFieldInternal(
942 Message* message, const FieldDescriptor* field) const;
943 template <typename T>
944 const RepeatedPtrField<T>& GetRepeatedPtrFieldInternal(
945 const Message& message, const FieldDescriptor* field) const;
946 template <typename T>
947 RepeatedPtrField<T>* MutableRepeatedPtrFieldInternal(
948 Message* message, const FieldDescriptor* field) const;
949 // Obtain a pointer to a Repeated Field Structure and do some type checking:
950 // on field->cpp_type(),
951 // on field->field_option().ctype() (if ctype >= 0)
952 // of field->message_type() (if message_type != nullptr).
953 // We use 2 routine rather than 4 (const vs mutable) x (scalar vs pointer).
954 void* MutableRawRepeatedField(Message* message, const FieldDescriptor* field,
955 FieldDescriptor::CppType, int ctype,
956 const Descriptor* message_type) const;
957
958 const void* GetRawRepeatedField(const Message& message,
959 const FieldDescriptor* field,
960 FieldDescriptor::CppType cpptype, int ctype,
961 const Descriptor* message_type) const;
962
963 // The following methods are used to implement (Mutable)RepeatedFieldRef.
964 // A Ref object will store a raw pointer to the repeated field data (obtained
965 // from RepeatedFieldData()) and a pointer to a Accessor (obtained from
966 // RepeatedFieldAccessor) which will be used to access the raw data.
967
968 // Returns a raw pointer to the repeated field
969 //
970 // "cpp_type" and "message_type" are deduced from the type parameter T passed
971 // to Get(Mutable)RepeatedFieldRef. If T is a generated message type,
972 // "message_type" should be set to its descriptor. Otherwise "message_type"
973 // should be set to nullptr. Implementations of this method should check
974 // whether "cpp_type"/"message_type" is consistent with the actual type of the
975 // field. We use 1 routine rather than 2 (const vs mutable) because it is
976 // protected and it doesn't change the message.
977 void* RepeatedFieldData(Message* message, const FieldDescriptor* field,
978 FieldDescriptor::CppType cpp_type,
979 const Descriptor* message_type) const;
980
981 // The returned pointer should point to a singleton instance which implements
982 // the RepeatedFieldAccessor interface.
983 const internal::RepeatedFieldAccessor* RepeatedFieldAccessor(
984 const FieldDescriptor* field) const;
985
986 // Lists all fields of the message which are currently set, except for unknown
987 // fields and stripped fields. See ListFields for details.
988 void ListFieldsOmitStripped(
989 const Message& message,
990 std::vector<const FieldDescriptor*>* output) const;
991
IsMessageStripped(const Descriptor * descriptor)992 bool IsMessageStripped(const Descriptor* descriptor) const {
993 return schema_.IsMessageStripped(descriptor);
994 }
995
996 friend class TextFormat;
997
998 void ListFieldsMayFailOnStripped(
999 const Message& message, bool should_fail,
1000 std::vector<const FieldDescriptor*>* output) const;
1001
1002 // Returns true if the message field is backed by a LazyField.
1003 //
1004 // A message field may be backed by a LazyField without the user annotation
1005 // ([lazy = true]). While the user-annotated LazyField is lazily verified on
1006 // first touch (i.e. failure on access rather than parsing if the LazyField is
1007 // not initialized), the inferred LazyField is eagerly verified to avoid lazy
1008 // parsing error at the cost of lower efficiency. When reflecting a message
1009 // field, use this API instead of checking field->options().lazy().
IsLazyField(const FieldDescriptor * field)1010 bool IsLazyField(const FieldDescriptor* field) const {
1011 return IsLazilyVerifiedLazyField(field) ||
1012 IsEagerlyVerifiedLazyField(field);
1013 }
1014
1015 // Returns true if the field is lazy extension. It is meant to allow python
1016 // reparse lazy field until b/157559327 is fixed.
1017 bool IsLazyExtension(const Message& message,
1018 const FieldDescriptor* field) const;
1019
1020 bool IsLazilyVerifiedLazyField(const FieldDescriptor* field) const;
1021 bool IsEagerlyVerifiedLazyField(const FieldDescriptor* field) const;
1022
1023 friend class FastReflectionMessageMutator;
1024
1025 const Descriptor* const descriptor_;
1026 const internal::ReflectionSchema schema_;
1027 const DescriptorPool* const descriptor_pool_;
1028 MessageFactory* const message_factory_;
1029
1030 // Last non weak field index. This is an optimization when most weak fields
1031 // are at the end of the containing message. If a message proto doesn't
1032 // contain weak fields, then this field equals descriptor_->field_count().
1033 int last_non_weak_field_index_;
1034
1035 template <typename T, typename Enable>
1036 friend class RepeatedFieldRef;
1037 template <typename T, typename Enable>
1038 friend class MutableRepeatedFieldRef;
1039 friend class ::PROTOBUF_NAMESPACE_ID::MessageLayoutInspector;
1040 friend class ::PROTOBUF_NAMESPACE_ID::AssignDescriptorsHelper;
1041 friend class DynamicMessageFactory;
1042 friend class GeneratedMessageReflectionTestHelper;
1043 friend class python::MapReflectionFriend;
1044 friend class python::MessageReflectionFriend;
1045 friend class util::MessageDifferencer;
1046 #define GOOGLE_PROTOBUF_HAS_CEL_MAP_REFLECTION_FRIEND
1047 friend class expr::CelMapReflectionFriend;
1048 friend class internal::MapFieldReflectionTest;
1049 friend class internal::MapKeySorter;
1050 friend class internal::WireFormat;
1051 friend class internal::ReflectionOps;
1052 friend class internal::SwapFieldHelper;
1053 // Needed for implementing text format for map.
1054 friend class internal::MapFieldPrinterHelper;
1055
1056 Reflection(const Descriptor* descriptor,
1057 const internal::ReflectionSchema& schema,
1058 const DescriptorPool* pool, MessageFactory* factory);
1059
1060 // Special version for specialized implementations of string. We can't
1061 // call MutableRawRepeatedField directly here because we don't have access to
1062 // FieldOptions::* which are defined in descriptor.pb.h. Including that
1063 // file here is not possible because it would cause a circular include cycle.
1064 // We use 1 routine rather than 2 (const vs mutable) because it is private
1065 // and mutable a repeated string field doesn't change the message.
1066 void* MutableRawRepeatedString(Message* message, const FieldDescriptor* field,
1067 bool is_string) const;
1068
1069 friend class MapReflectionTester;
1070 // Returns true if key is in map. Returns false if key is not in map field.
1071 bool ContainsMapKey(const Message& message, const FieldDescriptor* field,
1072 const MapKey& key) const;
1073
1074 // If key is in map field: Saves the value pointer to val and returns
1075 // false. If key in not in map field: Insert the key into map, saves
1076 // value pointer to val and returns true. Users are able to modify the
1077 // map value by MapValueRef.
1078 bool InsertOrLookupMapValue(Message* message, const FieldDescriptor* field,
1079 const MapKey& key, MapValueRef* val) const;
1080
1081 // If key is in map field: Saves the value pointer to val and returns true.
1082 // Returns false if key is not in map field. Users are NOT able to modify
1083 // the value by MapValueConstRef.
1084 bool LookupMapValue(const Message& message, const FieldDescriptor* field,
1085 const MapKey& key, MapValueConstRef* val) const;
1086 bool LookupMapValue(const Message&, const FieldDescriptor*, const MapKey&,
1087 MapValueRef*) const = delete;
1088
1089 // Delete and returns true if key is in the map field. Returns false
1090 // otherwise.
1091 bool DeleteMapValue(Message* message, const FieldDescriptor* field,
1092 const MapKey& key) const;
1093
1094 // Returns a MapIterator referring to the first element in the map field.
1095 // If the map field is empty, this function returns the same as
1096 // reflection::MapEnd. Mutation to the field may invalidate the iterator.
1097 MapIterator MapBegin(Message* message, const FieldDescriptor* field) const;
1098
1099 // Returns a MapIterator referring to the theoretical element that would
1100 // follow the last element in the map field. It does not point to any
1101 // real element. Mutation to the field may invalidate the iterator.
1102 MapIterator MapEnd(Message* message, const FieldDescriptor* field) const;
1103
1104 // Get the number of <key, value> pair of a map field. The result may be
1105 // different from FieldSize which can have duplicate keys.
1106 int MapSize(const Message& message, const FieldDescriptor* field) const;
1107
1108 // Help method for MapIterator.
1109 friend class MapIterator;
1110 friend class WireFormatForMapFieldTest;
1111 internal::MapFieldBase* MutableMapData(Message* message,
1112 const FieldDescriptor* field) const;
1113
1114 const internal::MapFieldBase* GetMapData(const Message& message,
1115 const FieldDescriptor* field) const;
1116
1117 template <class T>
1118 const T& GetRawNonOneof(const Message& message,
1119 const FieldDescriptor* field) const;
1120 template <class T>
1121 T* MutableRawNonOneof(Message* message, const FieldDescriptor* field) const;
1122
1123 template <typename Type>
1124 const Type& GetRaw(const Message& message,
1125 const FieldDescriptor* field) const;
1126 template <typename Type>
1127 inline Type* MutableRaw(Message* message, const FieldDescriptor* field) const;
1128 template <typename Type>
1129 const Type& DefaultRaw(const FieldDescriptor* field) const;
1130
1131 const Message* GetDefaultMessageInstance(const FieldDescriptor* field) const;
1132
1133 inline const uint32_t* GetHasBits(const Message& message) const;
1134 inline uint32_t* MutableHasBits(Message* message) const;
1135 inline uint32_t GetOneofCase(const Message& message,
1136 const OneofDescriptor* oneof_descriptor) const;
1137 inline uint32_t* MutableOneofCase(
1138 Message* message, const OneofDescriptor* oneof_descriptor) const;
HasExtensionSet(const Message &)1139 inline bool HasExtensionSet(const Message& /* message */) const {
1140 return schema_.HasExtensionSet();
1141 }
1142 const internal::ExtensionSet& GetExtensionSet(const Message& message) const;
1143 internal::ExtensionSet* MutableExtensionSet(Message* message) const;
1144
1145 const internal::InternalMetadata& GetInternalMetadata(
1146 const Message& message) const;
1147
1148 internal::InternalMetadata* MutableInternalMetadata(Message* message) const;
1149
1150 inline bool IsInlined(const FieldDescriptor* field) const;
1151
1152 inline bool HasBit(const Message& message,
1153 const FieldDescriptor* field) const;
1154 inline void SetBit(Message* message, const FieldDescriptor* field) const;
1155 inline void ClearBit(Message* message, const FieldDescriptor* field) const;
1156 inline void SwapBit(Message* message1, Message* message2,
1157 const FieldDescriptor* field) const;
1158
1159 inline const uint32_t* GetInlinedStringDonatedArray(
1160 const Message& message) const;
1161 inline uint32_t* MutableInlinedStringDonatedArray(Message* message) const;
1162 inline bool IsInlinedStringDonated(const Message& message,
1163 const FieldDescriptor* field) const;
1164 inline void SwapInlinedStringDonated(Message* lhs, Message* rhs,
1165 const FieldDescriptor* field) const;
1166
1167 // Shallow-swap fields listed in fields vector of two messages. It is the
1168 // caller's responsibility to make sure shallow swap is safe.
1169 void UnsafeShallowSwapFields(
1170 Message* message1, Message* message2,
1171 const std::vector<const FieldDescriptor*>& fields) const;
1172
1173 // This function only swaps the field. Should swap corresponding has_bit
1174 // before or after using this function.
1175 void SwapField(Message* message1, Message* message2,
1176 const FieldDescriptor* field) const;
1177
1178 // Unsafe but shallow version of SwapField.
1179 void UnsafeShallowSwapField(Message* message1, Message* message2,
1180 const FieldDescriptor* field) const;
1181
1182 template <bool unsafe_shallow_swap>
1183 void SwapFieldsImpl(Message* message1, Message* message2,
1184 const std::vector<const FieldDescriptor*>& fields) const;
1185
1186 template <bool unsafe_shallow_swap>
1187 void SwapOneofField(Message* lhs, Message* rhs,
1188 const OneofDescriptor* oneof_descriptor) const;
1189
1190 inline bool HasOneofField(const Message& message,
1191 const FieldDescriptor* field) const;
1192 inline void SetOneofCase(Message* message,
1193 const FieldDescriptor* field) const;
1194 inline void ClearOneofField(Message* message,
1195 const FieldDescriptor* field) const;
1196
1197 template <typename Type>
1198 inline const Type& GetField(const Message& message,
1199 const FieldDescriptor* field) const;
1200 template <typename Type>
1201 inline void SetField(Message* message, const FieldDescriptor* field,
1202 const Type& value) const;
1203 template <typename Type>
1204 inline Type* MutableField(Message* message,
1205 const FieldDescriptor* field) const;
1206 template <typename Type>
1207 inline const Type& GetRepeatedField(const Message& message,
1208 const FieldDescriptor* field,
1209 int index) const;
1210 template <typename Type>
1211 inline const Type& GetRepeatedPtrField(const Message& message,
1212 const FieldDescriptor* field,
1213 int index) const;
1214 template <typename Type>
1215 inline void SetRepeatedField(Message* message, const FieldDescriptor* field,
1216 int index, Type value) const;
1217 template <typename Type>
1218 inline Type* MutableRepeatedField(Message* message,
1219 const FieldDescriptor* field,
1220 int index) const;
1221 template <typename Type>
1222 inline void AddField(Message* message, const FieldDescriptor* field,
1223 const Type& value) const;
1224 template <typename Type>
1225 inline Type* AddField(Message* message, const FieldDescriptor* field) const;
1226
1227 int GetExtensionNumberOrDie(const Descriptor* type) const;
1228
1229 // Internal versions of EnumValue API perform no checking. Called after checks
1230 // by public methods.
1231 void SetEnumValueInternal(Message* message, const FieldDescriptor* field,
1232 int value) const;
1233 void SetRepeatedEnumValueInternal(Message* message,
1234 const FieldDescriptor* field, int index,
1235 int value) const;
1236 void AddEnumValueInternal(Message* message, const FieldDescriptor* field,
1237 int value) const;
1238
1239 friend inline // inline so nobody can call this function.
1240 void
1241 RegisterAllTypesInternal(const Metadata* file_level_metadata, int size);
1242 friend inline const char* ParseLenDelim(int field_number,
1243 const FieldDescriptor* field,
1244 Message* msg,
1245 const Reflection* reflection,
1246 const char* ptr,
1247 internal::ParseContext* ctx);
1248 friend inline const char* ParsePackedField(const FieldDescriptor* field,
1249 Message* msg,
1250 const Reflection* reflection,
1251 const char* ptr,
1252 internal::ParseContext* ctx);
1253
1254 GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(Reflection);
1255 };
1256
1257 // Abstract interface for a factory for message objects.
1258 class PROTOBUF_EXPORT MessageFactory {
1259 public:
MessageFactory()1260 inline MessageFactory() {}
1261 virtual ~MessageFactory();
1262
1263 // Given a Descriptor, gets or constructs the default (prototype) Message
1264 // of that type. You can then call that message's New() method to construct
1265 // a mutable message of that type.
1266 //
1267 // Calling this method twice with the same Descriptor returns the same
1268 // object. The returned object remains property of the factory. Also, any
1269 // objects created by calling the prototype's New() method share some data
1270 // with the prototype, so these must be destroyed before the MessageFactory
1271 // is destroyed.
1272 //
1273 // The given descriptor must outlive the returned message, and hence must
1274 // outlive the MessageFactory.
1275 //
1276 // Some implementations do not support all types. GetPrototype() will
1277 // return nullptr if the descriptor passed in is not supported.
1278 //
1279 // This method may or may not be thread-safe depending on the implementation.
1280 // Each implementation should document its own degree thread-safety.
1281 virtual const Message* GetPrototype(const Descriptor* type) = 0;
1282
1283 // Gets a MessageFactory which supports all generated, compiled-in messages.
1284 // In other words, for any compiled-in type FooMessage, the following is true:
1285 // MessageFactory::generated_factory()->GetPrototype(
1286 // FooMessage::descriptor()) == FooMessage::default_instance()
1287 // This factory supports all types which are found in
1288 // DescriptorPool::generated_pool(). If given a descriptor from any other
1289 // pool, GetPrototype() will return nullptr. (You can also check if a
1290 // descriptor is for a generated message by checking if
1291 // descriptor->file()->pool() == DescriptorPool::generated_pool().)
1292 //
1293 // This factory is 100% thread-safe; calling GetPrototype() does not modify
1294 // any shared data.
1295 //
1296 // This factory is a singleton. The caller must not delete the object.
1297 static MessageFactory* generated_factory();
1298
1299 // For internal use only: Registers a .proto file at static initialization
1300 // time, to be placed in generated_factory. The first time GetPrototype()
1301 // is called with a descriptor from this file, |register_messages| will be
1302 // called, with the file name as the parameter. It must call
1303 // InternalRegisterGeneratedMessage() (below) to register each message type
1304 // in the file. This strange mechanism is necessary because descriptors are
1305 // built lazily, so we can't register types by their descriptor until we
1306 // know that the descriptor exists. |filename| must be a permanent string.
1307 static void InternalRegisterGeneratedFile(
1308 const google::protobuf::internal::DescriptorTable* table);
1309
1310 // For internal use only: Registers a message type. Called only by the
1311 // functions which are registered with InternalRegisterGeneratedFile(),
1312 // above.
1313 static void InternalRegisterGeneratedMessage(const Descriptor* descriptor,
1314 const Message* prototype);
1315
1316
1317 private:
1318 GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(MessageFactory);
1319 };
1320
1321 #define DECLARE_GET_REPEATED_FIELD(TYPE) \
1322 template <> \
1323 PROTOBUF_EXPORT const RepeatedField<TYPE>& \
1324 Reflection::GetRepeatedFieldInternal<TYPE>( \
1325 const Message& message, const FieldDescriptor* field) const; \
1326 \
1327 template <> \
1328 PROTOBUF_EXPORT RepeatedField<TYPE>* \
1329 Reflection::MutableRepeatedFieldInternal<TYPE>( \
1330 Message * message, const FieldDescriptor* field) const;
1331
1332 DECLARE_GET_REPEATED_FIELD(int32_t)
DECLARE_GET_REPEATED_FIELD(int64_t)1333 DECLARE_GET_REPEATED_FIELD(int64_t)
1334 DECLARE_GET_REPEATED_FIELD(uint32_t)
1335 DECLARE_GET_REPEATED_FIELD(uint64_t)
1336 DECLARE_GET_REPEATED_FIELD(float)
1337 DECLARE_GET_REPEATED_FIELD(double)
1338 DECLARE_GET_REPEATED_FIELD(bool)
1339
1340 #undef DECLARE_GET_REPEATED_FIELD
1341
1342 // Tries to downcast this message to a generated message type. Returns nullptr
1343 // if this class is not an instance of T. This works even if RTTI is disabled.
1344 //
1345 // This also has the effect of creating a strong reference to T that will
1346 // prevent the linker from stripping it out at link time. This can be important
1347 // if you are using a DynamicMessageFactory that delegates to the generated
1348 // factory.
1349 template <typename T>
1350 const T* DynamicCastToGenerated(const Message* from) {
1351 // Compile-time assert that T is a generated type that has a
1352 // default_instance() accessor, but avoid actually calling it.
1353 const T& (*get_default_instance)() = &T::default_instance;
1354 (void)get_default_instance;
1355
1356 // Compile-time assert that T is a subclass of google::protobuf::Message.
1357 const Message* unused = static_cast<T*>(nullptr);
1358 (void)unused;
1359
1360 #if PROTOBUF_RTTI
1361 return dynamic_cast<const T*>(from);
1362 #else
1363 bool ok = from != nullptr &&
1364 T::default_instance().GetReflection() == from->GetReflection();
1365 return ok ? down_cast<const T*>(from) : nullptr;
1366 #endif
1367 }
1368
1369 template <typename T>
DynamicCastToGenerated(Message * from)1370 T* DynamicCastToGenerated(Message* from) {
1371 const Message* message_const = from;
1372 return const_cast<T*>(DynamicCastToGenerated<T>(message_const));
1373 }
1374
1375 // Call this function to ensure that this message's reflection is linked into
1376 // the binary:
1377 //
1378 // google::protobuf::LinkMessageReflection<pkg::FooMessage>();
1379 //
1380 // This will ensure that the following lookup will succeed:
1381 //
1382 // DescriptorPool::generated_pool()->FindMessageTypeByName("pkg.FooMessage");
1383 //
1384 // As a side-effect, it will also guarantee that anything else from the same
1385 // .proto file will also be available for lookup in the generated pool.
1386 //
1387 // This function does not actually register the message, so it does not need
1388 // to be called before the lookup. However it does need to occur in a function
1389 // that cannot be stripped from the binary (ie. it must be reachable from main).
1390 //
1391 // Best practice is to call this function as close as possible to where the
1392 // reflection is actually needed. This function is very cheap to call, so you
1393 // should not need to worry about its runtime overhead except in the tightest
1394 // of loops (on x86-64 it compiles into two "mov" instructions).
1395 template <typename T>
LinkMessageReflection()1396 void LinkMessageReflection() {
1397 internal::StrongReference(T::default_instance);
1398 }
1399
1400 // =============================================================================
1401 // Implementation details for {Get,Mutable}RawRepeatedPtrField. We provide
1402 // specializations for <std::string>, <StringPieceField> and <Message> and
1403 // handle everything else with the default template which will match any type
1404 // having a method with signature "static const google::protobuf::Descriptor*
1405 // descriptor()". Such a type presumably is a descendant of google::protobuf::Message.
1406
1407 template <>
1408 inline const RepeatedPtrField<std::string>&
1409 Reflection::GetRepeatedPtrFieldInternal<std::string>(
1410 const Message& message, const FieldDescriptor* field) const {
1411 return *static_cast<RepeatedPtrField<std::string>*>(
1412 MutableRawRepeatedString(const_cast<Message*>(&message), field, true));
1413 }
1414
1415 template <>
1416 inline RepeatedPtrField<std::string>*
1417 Reflection::MutableRepeatedPtrFieldInternal<std::string>(
1418 Message* message, const FieldDescriptor* field) const {
1419 return static_cast<RepeatedPtrField<std::string>*>(
1420 MutableRawRepeatedString(message, field, true));
1421 }
1422
1423
1424 // -----
1425
1426 template <>
GetRepeatedPtrFieldInternal(const Message & message,const FieldDescriptor * field)1427 inline const RepeatedPtrField<Message>& Reflection::GetRepeatedPtrFieldInternal(
1428 const Message& message, const FieldDescriptor* field) const {
1429 return *static_cast<const RepeatedPtrField<Message>*>(GetRawRepeatedField(
1430 message, field, FieldDescriptor::CPPTYPE_MESSAGE, -1, nullptr));
1431 }
1432
1433 template <>
MutableRepeatedPtrFieldInternal(Message * message,const FieldDescriptor * field)1434 inline RepeatedPtrField<Message>* Reflection::MutableRepeatedPtrFieldInternal(
1435 Message* message, const FieldDescriptor* field) const {
1436 return static_cast<RepeatedPtrField<Message>*>(MutableRawRepeatedField(
1437 message, field, FieldDescriptor::CPPTYPE_MESSAGE, -1, nullptr));
1438 }
1439
1440 template <typename PB>
GetRepeatedPtrFieldInternal(const Message & message,const FieldDescriptor * field)1441 inline const RepeatedPtrField<PB>& Reflection::GetRepeatedPtrFieldInternal(
1442 const Message& message, const FieldDescriptor* field) const {
1443 return *static_cast<const RepeatedPtrField<PB>*>(
1444 GetRawRepeatedField(message, field, FieldDescriptor::CPPTYPE_MESSAGE, -1,
1445 PB::default_instance().GetDescriptor()));
1446 }
1447
1448 template <typename PB>
MutableRepeatedPtrFieldInternal(Message * message,const FieldDescriptor * field)1449 inline RepeatedPtrField<PB>* Reflection::MutableRepeatedPtrFieldInternal(
1450 Message* message, const FieldDescriptor* field) const {
1451 return static_cast<RepeatedPtrField<PB>*>(
1452 MutableRawRepeatedField(message, field, FieldDescriptor::CPPTYPE_MESSAGE,
1453 -1, PB::default_instance().GetDescriptor()));
1454 }
1455
1456 template <typename Type>
DefaultRaw(const FieldDescriptor * field)1457 const Type& Reflection::DefaultRaw(const FieldDescriptor* field) const {
1458 return *reinterpret_cast<const Type*>(schema_.GetFieldDefault(field));
1459 }
1460
GetOneofCase(const Message & message,const OneofDescriptor * oneof_descriptor)1461 uint32_t Reflection::GetOneofCase(
1462 const Message& message, const OneofDescriptor* oneof_descriptor) const {
1463 GOOGLE_DCHECK(!oneof_descriptor->is_synthetic());
1464 return internal::GetConstRefAtOffset<uint32_t>(
1465 message, schema_.GetOneofCaseOffset(oneof_descriptor));
1466 }
1467
HasOneofField(const Message & message,const FieldDescriptor * field)1468 bool Reflection::HasOneofField(const Message& message,
1469 const FieldDescriptor* field) const {
1470 return (GetOneofCase(message, field->containing_oneof()) ==
1471 static_cast<uint32_t>(field->number()));
1472 }
1473
1474 template <typename Type>
GetRaw(const Message & message,const FieldDescriptor * field)1475 const Type& Reflection::GetRaw(const Message& message,
1476 const FieldDescriptor* field) const {
1477 GOOGLE_DCHECK(!schema_.InRealOneof(field) || HasOneofField(message, field))
1478 << "Field = " << field->full_name();
1479 return internal::GetConstRefAtOffset<Type>(message,
1480 schema_.GetFieldOffset(field));
1481 }
1482 } // namespace protobuf
1483 } // namespace google
1484
1485 #include <google/protobuf/port_undef.inc>
1486
1487 #endif // GOOGLE_PROTOBUF_MESSAGE_H__
1488