1 // 2 // Copyright 2013 Francisco Jerez 3 // 4 // Permission is hereby granted, free of charge, to any person obtaining a 5 // copy of this software and associated documentation files (the "Software"), 6 // to deal in the Software without restriction, including without limitation 7 // the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 // and/or sell copies of the Software, and to permit persons to whom the 9 // Software is furnished to do so, subject to the following conditions: 10 // 11 // The above copyright notice and this permission notice shall be included in 12 // all copies or substantial portions of the Software. 13 // 14 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 // THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 // OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 // ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 // OTHER DEALINGS IN THE SOFTWARE. 21 // 22 23 #ifndef CLOVER_UTIL_ALGEBRA_HPP 24 #define CLOVER_UTIL_ALGEBRA_HPP 25 26 #include <type_traits> 27 28 #include "util/range.hpp" 29 #include "util/functional.hpp" 30 31 namespace clover { 32 /// 33 /// Class that identifies vectors (in the linear-algebraic sense). 34 /// 35 /// There should be a definition of this class for each type that 36 /// makes sense as vector arithmetic operand. 37 /// 38 template<typename V, typename = void> 39 struct vector_traits; 40 41 /// 42 /// References of vectors are vectors. 43 /// 44 template<typename T> 45 struct vector_traits<T &, typename vector_traits<T>::enable> { 46 typedef void enable; 47 }; 48 49 /// 50 /// Constant vectors are vectors. 51 /// 52 template<typename T> 53 struct vector_traits<const T, typename vector_traits<T>::enable> { 54 typedef void enable; 55 }; 56 57 /// 58 /// Arrays of arithmetic types are vectors. 59 /// 60 template<typename T, std::size_t N> 61 struct vector_traits<std::array<T, N>, 62 typename std::enable_if< 63 std::is_arithmetic<T>::value>::type> { 64 typedef void enable; 65 }; 66 67 namespace detail { 68 template<typename... Ts> 69 struct are_defined { 70 typedef void enable; 71 }; 72 } 73 74 /// 75 /// The result of mapping a vector is a vector. 76 /// 77 template<typename F, typename... Vs> 78 struct vector_traits<adaptor_range<F, Vs...>, 79 typename detail::are_defined< 80 typename vector_traits<Vs>::enable...>::enable> { 81 typedef void enable; 82 }; 83 84 /// 85 /// Vector sum. 86 /// 87 template<typename U, typename V, 88 typename = typename vector_traits<U>::enable, 89 typename = typename vector_traits<V>::enable> 90 adaptor_range<plus, U, V> operator +(U && u,V && v)91 operator+(U &&u, V &&v) { 92 return map(plus(), std::forward<U>(u), std::forward<V>(v)); 93 } 94 95 /// 96 /// Vector difference. 97 /// 98 template<typename U, typename V, 99 typename = typename vector_traits<U>::enable, 100 typename = typename vector_traits<V>::enable> 101 adaptor_range<minus, U, V> operator -(U && u,V && v)102 operator-(U &&u, V &&v) { 103 return map(minus(), std::forward<U>(u), std::forward<V>(v)); 104 } 105 106 /// 107 /// Scalar multiplication. 108 /// 109 template<typename U, typename T, 110 typename = typename vector_traits<U>::enable> 111 adaptor_range<multiplies_by_t<T>, U> operator *(U && u,T && a)112 operator*(U &&u, T &&a) { 113 return map(multiplies_by<T>(std::forward<T>(a)), std::forward<U>(u)); 114 } 115 116 /// 117 /// Scalar multiplication. 118 /// 119 template<typename U, typename T, 120 typename = typename vector_traits<U>::enable> 121 adaptor_range<multiplies_by_t<T>, U> operator *(T && a,U && u)122 operator*(T &&a, U &&u) { 123 return map(multiplies_by<T>(std::forward<T>(a)), std::forward<U>(u)); 124 } 125 126 /// 127 /// Additive inverse. 128 /// 129 template<typename U, 130 typename = typename vector_traits<U>::enable> 131 adaptor_range<negate, U> operator -(U && u)132 operator-(U &&u) { 133 return map(negate(), std::forward<U>(u)); 134 } 135 136 namespace detail { 137 template<typename U, typename V> 138 using dot_type = typename std::common_type< 139 typename std::remove_reference<U>::type::value_type, 140 typename std::remove_reference<V>::type::value_type 141 >::type; 142 } 143 144 /// 145 /// Dot product of two vectors. 146 /// 147 /// It can also do matrix multiplication if \a u or \a v is a 148 /// vector of vectors. 149 /// 150 template<typename U, typename V, 151 typename = typename vector_traits<U>::enable, 152 typename = typename vector_traits<V>::enable> 153 detail::dot_type<U, V> dot(U && u,V && v)154 dot(U &&u, V &&v) { 155 return fold(plus(), detail::dot_type<U, V>(), 156 map(multiplies(), u, v)); 157 } 158 } 159 160 #endif 161