1 //===-- ARMAddressingModes.h - ARM Addressing Modes -------------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the ARM addressing mode implementation stuff.
11 //
12 //===----------------------------------------------------------------------===//
13
14 /* Capstone Disassembly Engine */
15 /* By Nguyen Anh Quynh <aquynh@gmail.com>, 2013-2015 */
16
17 #ifndef CS_LLVM_TARGET_ARM_ARMADDRESSINGMODES_H
18 #define CS_LLVM_TARGET_ARM_ARMADDRESSINGMODES_H
19
20 #include "capstone/platform.h"
21 #include "../../MathExtras.h"
22
23 /// ARM_AM - ARM Addressing Mode Stuff
24 typedef enum ARM_AM_ShiftOpc {
25 ARM_AM_no_shift = 0,
26 ARM_AM_asr,
27 ARM_AM_lsl,
28 ARM_AM_lsr,
29 ARM_AM_ror,
30 ARM_AM_rrx
31 } ARM_AM_ShiftOpc;
32
33 typedef enum ARM_AM_AddrOpc {
34 ARM_AM_sub = 0,
35 ARM_AM_add
36 } ARM_AM_AddrOpc;
37
ARM_AM_getAddrOpcStr(ARM_AM_AddrOpc Op)38 static inline const char *ARM_AM_getAddrOpcStr(ARM_AM_AddrOpc Op)
39 {
40 return Op == ARM_AM_sub ? "-" : "";
41 }
42
ARM_AM_getShiftOpcStr(ARM_AM_ShiftOpc Op)43 static inline const char *ARM_AM_getShiftOpcStr(ARM_AM_ShiftOpc Op)
44 {
45 switch (Op) {
46 default: return ""; //llvm_unreachable("Unknown shift opc!");
47 case ARM_AM_asr: return "asr";
48 case ARM_AM_lsl: return "lsl";
49 case ARM_AM_lsr: return "lsr";
50 case ARM_AM_ror: return "ror";
51 case ARM_AM_rrx: return "rrx";
52 }
53 }
54
ARM_AM_getShiftOpcEncoding(ARM_AM_ShiftOpc Op)55 static inline unsigned ARM_AM_getShiftOpcEncoding(ARM_AM_ShiftOpc Op)
56 {
57 switch (Op) {
58 default: return (unsigned int)-1; //llvm_unreachable("Unknown shift opc!");
59 case ARM_AM_asr: return 2;
60 case ARM_AM_lsl: return 0;
61 case ARM_AM_lsr: return 1;
62 case ARM_AM_ror: return 3;
63 }
64 }
65
66 typedef enum ARM_AM_AMSubMode {
67 ARM_AM_bad_am_submode = 0,
68 ARM_AM_ia,
69 ARM_AM_ib,
70 ARM_AM_da,
71 ARM_AM_db
72 } ARM_AM_AMSubMode;
73
ARM_AM_getAMSubModeStr(ARM_AM_AMSubMode Mode)74 static inline const char *ARM_AM_getAMSubModeStr(ARM_AM_AMSubMode Mode)
75 {
76 switch (Mode) {
77 default: return "";
78 case ARM_AM_ia: return "ia";
79 case ARM_AM_ib: return "ib";
80 case ARM_AM_da: return "da";
81 case ARM_AM_db: return "db";
82 }
83 }
84
85 /// rotr32 - Rotate a 32-bit unsigned value right by a specified # bits.
86 ///
rotr32(unsigned Val,unsigned Amt)87 static inline unsigned rotr32(unsigned Val, unsigned Amt)
88 {
89 //assert(Amt < 32 && "Invalid rotate amount");
90 return (Val >> Amt) | (Val << ((32-Amt)&31));
91 }
92
93 /// rotl32 - Rotate a 32-bit unsigned value left by a specified # bits.
94 ///
rotl32(unsigned Val,unsigned Amt)95 static inline unsigned rotl32(unsigned Val, unsigned Amt)
96 {
97 //assert(Amt < 32 && "Invalid rotate amount");
98 return (Val << Amt) | (Val >> ((32-Amt)&31));
99 }
100
101 //===--------------------------------------------------------------------===//
102 // Addressing Mode #1: shift_operand with registers
103 //===--------------------------------------------------------------------===//
104 //
105 // This 'addressing mode' is used for arithmetic instructions. It can
106 // represent things like:
107 // reg
108 // reg [asr|lsl|lsr|ror|rrx] reg
109 // reg [asr|lsl|lsr|ror|rrx] imm
110 //
111 // This is stored three operands [rega, regb, opc]. The first is the base
112 // reg, the second is the shift amount (or reg0 if not present or imm). The
113 // third operand encodes the shift opcode and the imm if a reg isn't present.
114 //
getSORegOpc(ARM_AM_ShiftOpc ShOp,unsigned Imm)115 static inline unsigned getSORegOpc(ARM_AM_ShiftOpc ShOp, unsigned Imm)
116 {
117 return ShOp | (Imm << 3);
118 }
119
getSORegOffset(unsigned Op)120 static inline unsigned getSORegOffset(unsigned Op)
121 {
122 return Op >> 3;
123 }
124
ARM_AM_getSORegShOp(unsigned Op)125 static inline ARM_AM_ShiftOpc ARM_AM_getSORegShOp(unsigned Op)
126 {
127 return (ARM_AM_ShiftOpc)(Op & 7);
128 }
129
130 /// getSOImmValImm - Given an encoded imm field for the reg/imm form, return
131 /// the 8-bit imm value.
getSOImmValImm(unsigned Imm)132 static inline unsigned getSOImmValImm(unsigned Imm)
133 {
134 return Imm & 0xFF;
135 }
136
137 /// getSOImmValRot - Given an encoded imm field for the reg/imm form, return
138 /// the rotate amount.
getSOImmValRot(unsigned Imm)139 static inline unsigned getSOImmValRot(unsigned Imm)
140 {
141 return (Imm >> 8) * 2;
142 }
143
144 /// getSOImmValRotate - Try to handle Imm with an immediate shifter operand,
145 /// computing the rotate amount to use. If this immediate value cannot be
146 /// handled with a single shifter-op, determine a good rotate amount that will
147 /// take a maximal chunk of bits out of the immediate.
getSOImmValRotate(unsigned Imm)148 static inline unsigned getSOImmValRotate(unsigned Imm)
149 {
150 unsigned TZ, RotAmt;
151 // 8-bit (or less) immediates are trivially shifter_operands with a rotate
152 // of zero.
153 if ((Imm & ~255U) == 0) return 0;
154
155 // Use CTZ to compute the rotate amount.
156 TZ = CountTrailingZeros_32(Imm);
157
158 // Rotate amount must be even. Something like 0x200 must be rotated 8 bits,
159 // not 9.
160 RotAmt = TZ & ~1;
161
162 // If we can handle this spread, return it.
163 if ((rotr32(Imm, RotAmt) & ~255U) == 0)
164 return (32-RotAmt)&31; // HW rotates right, not left.
165
166 // For values like 0xF000000F, we should ignore the low 6 bits, then
167 // retry the hunt.
168 if (Imm & 63U) {
169 unsigned TZ2 = CountTrailingZeros_32(Imm & ~63U);
170 unsigned RotAmt2 = TZ2 & ~1;
171 if ((rotr32(Imm, RotAmt2) & ~255U) == 0)
172 return (32-RotAmt2)&31; // HW rotates right, not left.
173 }
174
175 // Otherwise, we have no way to cover this span of bits with a single
176 // shifter_op immediate. Return a chunk of bits that will be useful to
177 // handle.
178 return (32-RotAmt)&31; // HW rotates right, not left.
179 }
180
181 /// getSOImmVal - Given a 32-bit immediate, if it is something that can fit
182 /// into an shifter_operand immediate operand, return the 12-bit encoding for
183 /// it. If not, return -1.
getSOImmVal(unsigned Arg)184 static inline int getSOImmVal(unsigned Arg)
185 {
186 unsigned RotAmt;
187 // 8-bit (or less) immediates are trivially shifter_operands with a rotate
188 // of zero.
189 if ((Arg & ~255U) == 0) return Arg;
190
191 RotAmt = getSOImmValRotate(Arg);
192
193 // If this cannot be handled with a single shifter_op, bail out.
194 if (rotr32(~255U, RotAmt) & Arg)
195 return -1;
196
197 // Encode this correctly.
198 return rotl32(Arg, RotAmt) | ((RotAmt>>1) << 8);
199 }
200
201 /// isSOImmTwoPartVal - Return true if the specified value can be obtained by
202 /// or'ing together two SOImmVal's.
isSOImmTwoPartVal(unsigned V)203 static inline bool isSOImmTwoPartVal(unsigned V)
204 {
205 // If this can be handled with a single shifter_op, bail out.
206 V = rotr32(~255U, getSOImmValRotate(V)) & V;
207 if (V == 0)
208 return false;
209
210 // If this can be handled with two shifter_op's, accept.
211 V = rotr32(~255U, getSOImmValRotate(V)) & V;
212 return V == 0;
213 }
214
215 /// getSOImmTwoPartFirst - If V is a value that satisfies isSOImmTwoPartVal,
216 /// return the first chunk of it.
getSOImmTwoPartFirst(unsigned V)217 static inline unsigned getSOImmTwoPartFirst(unsigned V)
218 {
219 return rotr32(255U, getSOImmValRotate(V)) & V;
220 }
221
222 /// getSOImmTwoPartSecond - If V is a value that satisfies isSOImmTwoPartVal,
223 /// return the second chunk of it.
getSOImmTwoPartSecond(unsigned V)224 static inline unsigned getSOImmTwoPartSecond(unsigned V)
225 {
226 // Mask out the first hunk.
227 V = rotr32(~255U, getSOImmValRotate(V)) & V;
228
229 // Take what's left.
230 //assert(V == (rotr32(255U, getSOImmValRotate(V)) & V));
231 return V;
232 }
233
234 /// getThumbImmValShift - Try to handle Imm with a 8-bit immediate followed
235 /// by a left shift. Returns the shift amount to use.
getThumbImmValShift(unsigned Imm)236 static inline unsigned getThumbImmValShift(unsigned Imm)
237 {
238 // 8-bit (or less) immediates are trivially immediate operand with a shift
239 // of zero.
240 if ((Imm & ~255U) == 0) return 0;
241
242 // Use CTZ to compute the shift amount.
243 return CountTrailingZeros_32(Imm);
244 }
245
246 /// isThumbImmShiftedVal - Return true if the specified value can be obtained
247 /// by left shifting a 8-bit immediate.
isThumbImmShiftedVal(unsigned V)248 static inline bool isThumbImmShiftedVal(unsigned V)
249 {
250 // If this can be handled with
251 V = (~255U << getThumbImmValShift(V)) & V;
252 return V == 0;
253 }
254
255 /// getThumbImm16ValShift - Try to handle Imm with a 16-bit immediate followed
256 /// by a left shift. Returns the shift amount to use.
getThumbImm16ValShift(unsigned Imm)257 static inline unsigned getThumbImm16ValShift(unsigned Imm)
258 {
259 // 16-bit (or less) immediates are trivially immediate operand with a shift
260 // of zero.
261 if ((Imm & ~65535U) == 0) return 0;
262
263 // Use CTZ to compute the shift amount.
264 return CountTrailingZeros_32(Imm);
265 }
266
267 /// isThumbImm16ShiftedVal - Return true if the specified value can be
268 /// obtained by left shifting a 16-bit immediate.
isThumbImm16ShiftedVal(unsigned V)269 static inline bool isThumbImm16ShiftedVal(unsigned V)
270 {
271 // If this can be handled with
272 V = (~65535U << getThumbImm16ValShift(V)) & V;
273 return V == 0;
274 }
275
276 /// getThumbImmNonShiftedVal - If V is a value that satisfies
277 /// isThumbImmShiftedVal, return the non-shiftd value.
getThumbImmNonShiftedVal(unsigned V)278 static inline unsigned getThumbImmNonShiftedVal(unsigned V)
279 {
280 return V >> getThumbImmValShift(V);
281 }
282
283
284 /// getT2SOImmValSplat - Return the 12-bit encoded representation
285 /// if the specified value can be obtained by splatting the low 8 bits
286 /// into every other byte or every byte of a 32-bit value. i.e.,
287 /// 00000000 00000000 00000000 abcdefgh control = 0
288 /// 00000000 abcdefgh 00000000 abcdefgh control = 1
289 /// abcdefgh 00000000 abcdefgh 00000000 control = 2
290 /// abcdefgh abcdefgh abcdefgh abcdefgh control = 3
291 /// Return -1 if none of the above apply.
292 /// See ARM Reference Manual A6.3.2.
getT2SOImmValSplatVal(unsigned V)293 static inline int getT2SOImmValSplatVal(unsigned V)
294 {
295 unsigned u, Vs, Imm;
296 // control = 0
297 if ((V & 0xffffff00) == 0)
298 return V;
299
300 // If the value is zeroes in the first byte, just shift those off
301 Vs = ((V & 0xff) == 0) ? V >> 8 : V;
302 // Any passing value only has 8 bits of payload, splatted across the word
303 Imm = Vs & 0xff;
304 // Likewise, any passing values have the payload splatted into the 3rd byte
305 u = Imm | (Imm << 16);
306
307 // control = 1 or 2
308 if (Vs == u)
309 return (((Vs == V) ? 1 : 2) << 8) | Imm;
310
311 // control = 3
312 if (Vs == (u | (u << 8)))
313 return (3 << 8) | Imm;
314
315 return -1;
316 }
317
318 /// getT2SOImmValRotateVal - Return the 12-bit encoded representation if the
319 /// specified value is a rotated 8-bit value. Return -1 if no rotation
320 /// encoding is possible.
321 /// See ARM Reference Manual A6.3.2.
getT2SOImmValRotateVal(unsigned V)322 static inline int getT2SOImmValRotateVal(unsigned V)
323 {
324 unsigned RotAmt = CountLeadingZeros_32(V);
325 if (RotAmt >= 24)
326 return -1;
327
328 // If 'Arg' can be handled with a single shifter_op return the value.
329 if ((rotr32(0xff000000U, RotAmt) & V) == V)
330 return (rotr32(V, 24 - RotAmt) & 0x7f) | ((RotAmt + 8) << 7);
331
332 return -1;
333 }
334
335 /// getT2SOImmVal - Given a 32-bit immediate, if it is something that can fit
336 /// into a Thumb-2 shifter_operand immediate operand, return the 12-bit
337 /// encoding for it. If not, return -1.
338 /// See ARM Reference Manual A6.3.2.
getT2SOImmVal(unsigned Arg)339 static inline int getT2SOImmVal(unsigned Arg)
340 {
341 int Rot;
342 // If 'Arg' is an 8-bit splat, then get the encoded value.
343 int Splat = getT2SOImmValSplatVal(Arg);
344 if (Splat != -1)
345 return Splat;
346
347 // If 'Arg' can be handled with a single shifter_op return the value.
348 Rot = getT2SOImmValRotateVal(Arg);
349 if (Rot != -1)
350 return Rot;
351
352 return -1;
353 }
354
getT2SOImmValRotate(unsigned V)355 static inline unsigned getT2SOImmValRotate(unsigned V)
356 {
357 unsigned RotAmt;
358
359 if ((V & ~255U) == 0)
360 return 0;
361
362 // Use CTZ to compute the rotate amount.
363 RotAmt = CountTrailingZeros_32(V);
364 return (32 - RotAmt) & 31;
365 }
366
isT2SOImmTwoPartVal(unsigned Imm)367 static inline bool isT2SOImmTwoPartVal (unsigned Imm)
368 {
369 unsigned V = Imm;
370 // Passing values can be any combination of splat values and shifter
371 // values. If this can be handled with a single shifter or splat, bail
372 // out. Those should be handled directly, not with a two-part val.
373 if (getT2SOImmValSplatVal(V) != -1)
374 return false;
375 V = rotr32 (~255U, getT2SOImmValRotate(V)) & V;
376 if (V == 0)
377 return false;
378
379 // If this can be handled as an immediate, accept.
380 if (getT2SOImmVal(V) != -1) return true;
381
382 // Likewise, try masking out a splat value first.
383 V = Imm;
384 if (getT2SOImmValSplatVal(V & 0xff00ff00U) != -1)
385 V &= ~0xff00ff00U;
386 else if (getT2SOImmValSplatVal(V & 0x00ff00ffU) != -1)
387 V &= ~0x00ff00ffU;
388 // If what's left can be handled as an immediate, accept.
389 if (getT2SOImmVal(V) != -1) return true;
390
391 // Otherwise, do not accept.
392 return false;
393 }
394
getT2SOImmTwoPartFirst(unsigned Imm)395 static inline unsigned getT2SOImmTwoPartFirst(unsigned Imm)
396 {
397 //assert (isT2SOImmTwoPartVal(Imm) &&
398 // "Immedate cannot be encoded as two part immediate!");
399 // Try a shifter operand as one part
400 unsigned V = rotr32 (~(unsigned int)255, getT2SOImmValRotate(Imm)) & Imm;
401 // If the rest is encodable as an immediate, then return it.
402 if (getT2SOImmVal(V) != -1) return V;
403
404 // Try masking out a splat value first.
405 if (getT2SOImmValSplatVal(Imm & 0xff00ff00U) != -1)
406 return Imm & 0xff00ff00U;
407
408 // The other splat is all that's left as an option.
409 //assert (getT2SOImmValSplatVal(Imm & 0x00ff00ffU) != -1);
410 return Imm & 0x00ff00ffU;
411 }
412
getT2SOImmTwoPartSecond(unsigned Imm)413 static inline unsigned getT2SOImmTwoPartSecond(unsigned Imm)
414 {
415 // Mask out the first hunk
416 Imm ^= getT2SOImmTwoPartFirst(Imm);
417 // Return what's left
418 //assert (getT2SOImmVal(Imm) != -1 &&
419 // "Unable to encode second part of T2 two part SO immediate");
420 return Imm;
421 }
422
423
424 //===--------------------------------------------------------------------===//
425 // Addressing Mode #2
426 //===--------------------------------------------------------------------===//
427 //
428 // This is used for most simple load/store instructions.
429 //
430 // addrmode2 := reg +/- reg shop imm
431 // addrmode2 := reg +/- imm12
432 //
433 // The first operand is always a Reg. The second operand is a reg if in
434 // reg/reg form, otherwise it's reg#0. The third field encodes the operation
435 // in bit 12, the immediate in bits 0-11, and the shift op in 13-15. The
436 // fourth operand 16-17 encodes the index mode.
437 //
438 // If this addressing mode is a frame index (before prolog/epilog insertion
439 // and code rewriting), this operand will have the form: FI#, reg0, <offs>
440 // with no shift amount for the frame offset.
441 //
ARM_AM_getAM2Opc(ARM_AM_AddrOpc Opc,unsigned Imm12,ARM_AM_ShiftOpc SO,unsigned IdxMode)442 static inline unsigned ARM_AM_getAM2Opc(ARM_AM_AddrOpc Opc, unsigned Imm12, ARM_AM_ShiftOpc SO,
443 unsigned IdxMode)
444 {
445 //assert(Imm12 < (1 << 12) && "Imm too large!");
446 bool isSub = Opc == ARM_AM_sub;
447 return Imm12 | ((int)isSub << 12) | (SO << 13) | (IdxMode << 16) ;
448 }
449
getAM2Offset(unsigned AM2Opc)450 static inline unsigned getAM2Offset(unsigned AM2Opc)
451 {
452 return AM2Opc & ((1 << 12)-1);
453 }
454
getAM2Op(unsigned AM2Opc)455 static inline ARM_AM_AddrOpc getAM2Op(unsigned AM2Opc)
456 {
457 return ((AM2Opc >> 12) & 1) ? ARM_AM_sub : ARM_AM_add;
458 }
459
getAM2ShiftOpc(unsigned AM2Opc)460 static inline ARM_AM_ShiftOpc getAM2ShiftOpc(unsigned AM2Opc)
461 {
462 return (ARM_AM_ShiftOpc)((AM2Opc >> 13) & 7);
463 }
464
getAM2IdxMode(unsigned AM2Opc)465 static inline unsigned getAM2IdxMode(unsigned AM2Opc)
466 {
467 return (AM2Opc >> 16);
468 }
469
470 //===--------------------------------------------------------------------===//
471 // Addressing Mode #3
472 //===--------------------------------------------------------------------===//
473 //
474 // This is used for sign-extending loads, and load/store-pair instructions.
475 //
476 // addrmode3 := reg +/- reg
477 // addrmode3 := reg +/- imm8
478 //
479 // The first operand is always a Reg. The second operand is a reg if in
480 // reg/reg form, otherwise it's reg#0. The third field encodes the operation
481 // in bit 8, the immediate in bits 0-7. The fourth operand 9-10 encodes the
482 // index mode.
483
484 /// getAM3Opc - This function encodes the addrmode3 opc field.
getAM3Opc(ARM_AM_AddrOpc Opc,unsigned char Offset,unsigned IdxMode)485 static inline unsigned getAM3Opc(ARM_AM_AddrOpc Opc, unsigned char Offset,
486 unsigned IdxMode)
487 {
488 bool isSub = Opc == ARM_AM_sub;
489 return ((int)isSub << 8) | Offset | (IdxMode << 9);
490 }
491
getAM3Offset(unsigned AM3Opc)492 static inline unsigned char getAM3Offset(unsigned AM3Opc)
493 {
494 return AM3Opc & 0xFF;
495 }
496
getAM3Op(unsigned AM3Opc)497 static inline ARM_AM_AddrOpc getAM3Op(unsigned AM3Opc)
498 {
499 return ((AM3Opc >> 8) & 1) ? ARM_AM_sub : ARM_AM_add;
500 }
501
getAM3IdxMode(unsigned AM3Opc)502 static inline unsigned getAM3IdxMode(unsigned AM3Opc)
503 {
504 return (AM3Opc >> 9);
505 }
506
507 //===--------------------------------------------------------------------===//
508 // Addressing Mode #4
509 //===--------------------------------------------------------------------===//
510 //
511 // This is used for load / store multiple instructions.
512 //
513 // addrmode4 := reg, <mode>
514 //
515 // The four modes are:
516 // IA - Increment after
517 // IB - Increment before
518 // DA - Decrement after
519 // DB - Decrement before
520 // For VFP instructions, only the IA and DB modes are valid.
521
getAM4SubMode(unsigned Mode)522 static inline ARM_AM_AMSubMode getAM4SubMode(unsigned Mode)
523 {
524 return (ARM_AM_AMSubMode)(Mode & 0x7);
525 }
526
getAM4ModeImm(ARM_AM_AMSubMode SubMode)527 static inline unsigned getAM4ModeImm(ARM_AM_AMSubMode SubMode)
528 {
529 return (int)SubMode;
530 }
531
532 //===--------------------------------------------------------------------===//
533 // Addressing Mode #5
534 //===--------------------------------------------------------------------===//
535 //
536 // This is used for coprocessor instructions, such as FP load/stores.
537 //
538 // addrmode5 := reg +/- imm8*4
539 //
540 // The first operand is always a Reg. The second operand encodes the
541 // operation in bit 8 and the immediate in bits 0-7.
542
543 /// getAM5Opc - This function encodes the addrmode5 opc field.
ARM_AM_getAM5Opc(ARM_AM_AddrOpc Opc,unsigned char Offset)544 static inline unsigned ARM_AM_getAM5Opc(ARM_AM_AddrOpc Opc, unsigned char Offset)
545 {
546 bool isSub = Opc == ARM_AM_sub;
547 return ((int)isSub << 8) | Offset;
548 }
ARM_AM_getAM5Offset(unsigned AM5Opc)549 static inline unsigned char ARM_AM_getAM5Offset(unsigned AM5Opc)
550 {
551 return AM5Opc & 0xFF;
552 }
ARM_AM_getAM5Op(unsigned AM5Opc)553 static inline ARM_AM_AddrOpc ARM_AM_getAM5Op(unsigned AM5Opc)
554 {
555 return ((AM5Opc >> 8) & 1) ? ARM_AM_sub : ARM_AM_add;
556 }
557
558 //===--------------------------------------------------------------------===//
559 // Addressing Mode #6
560 //===--------------------------------------------------------------------===//
561 //
562 // This is used for NEON load / store instructions.
563 //
564 // addrmode6 := reg with optional alignment
565 //
566 // This is stored in two operands [regaddr, align]. The first is the
567 // address register. The second operand is the value of the alignment
568 // specifier in bytes or zero if no explicit alignment.
569 // Valid alignments depend on the specific instruction.
570
571 //===--------------------------------------------------------------------===//
572 // NEON Modified Immediates
573 //===--------------------------------------------------------------------===//
574 //
575 // Several NEON instructions (e.g., VMOV) take a "modified immediate"
576 // vector operand, where a small immediate encoded in the instruction
577 // specifies a full NEON vector value. These modified immediates are
578 // represented here as encoded integers. The low 8 bits hold the immediate
579 // value; bit 12 holds the "Op" field of the instruction, and bits 11-8 hold
580 // the "Cmode" field of the instruction. The interfaces below treat the
581 // Op and Cmode values as a single 5-bit value.
582
createNEONModImm(unsigned OpCmode,unsigned Val)583 static inline unsigned createNEONModImm(unsigned OpCmode, unsigned Val)
584 {
585 return (OpCmode << 8) | Val;
586 }
getNEONModImmOpCmode(unsigned ModImm)587 static inline unsigned getNEONModImmOpCmode(unsigned ModImm)
588 {
589 return (ModImm >> 8) & 0x1f;
590 }
getNEONModImmVal(unsigned ModImm)591 static inline unsigned getNEONModImmVal(unsigned ModImm)
592 {
593 return ModImm & 0xff;
594 }
595
596 /// decodeNEONModImm - Decode a NEON modified immediate value into the
597 /// element value and the element size in bits. (If the element size is
598 /// smaller than the vector, it is splatted into all the elements.)
ARM_AM_decodeNEONModImm(unsigned ModImm,unsigned * EltBits)599 static inline uint64_t ARM_AM_decodeNEONModImm(unsigned ModImm, unsigned *EltBits)
600 {
601 unsigned OpCmode = getNEONModImmOpCmode(ModImm);
602 unsigned Imm8 = getNEONModImmVal(ModImm);
603 uint64_t Val = 0;
604 unsigned ByteNum;
605
606 if (OpCmode == 0xe) {
607 // 8-bit vector elements
608 Val = Imm8;
609 *EltBits = 8;
610 } else if ((OpCmode & 0xc) == 0x8) {
611 // 16-bit vector elements
612 ByteNum = (OpCmode & 0x6) >> 1;
613 Val = (uint64_t)Imm8 << (8 * ByteNum);
614 *EltBits = 16;
615 } else if ((OpCmode & 0x8) == 0) {
616 // 32-bit vector elements, zero with one byte set
617 ByteNum = (OpCmode & 0x6) >> 1;
618 Val = (uint64_t)Imm8 << (8 * ByteNum);
619 *EltBits = 32;
620 } else if ((OpCmode & 0xe) == 0xc) {
621 // 32-bit vector elements, one byte with low bits set
622 ByteNum = 1 + (OpCmode & 0x1);
623 Val = (Imm8 << (8 * ByteNum)) | (0xffff >> (8 * (2 - ByteNum)));
624 *EltBits = 32;
625 } else if (OpCmode == 0x1e) {
626 // 64-bit vector elements
627 for (ByteNum = 0; ByteNum < 8; ++ByteNum) {
628 if ((ModImm >> ByteNum) & 1)
629 Val |= (uint64_t)0xff << (8 * ByteNum);
630 }
631 *EltBits = 64;
632 } else {
633 //llvm_unreachable("Unsupported NEON immediate");
634 }
635 return Val;
636 }
637
638 ARM_AM_AMSubMode getLoadStoreMultipleSubMode(int Opcode);
639
640 //===--------------------------------------------------------------------===//
641 // Floating-point Immediates
642 //
getFPImmFloat(unsigned Imm)643 static inline float getFPImmFloat(unsigned Imm)
644 {
645 // We expect an 8-bit binary encoding of a floating-point number here.
646 union {
647 uint32_t I;
648 float F;
649 } FPUnion;
650
651 uint8_t Sign = (Imm >> 7) & 0x1;
652 uint8_t Exp = (Imm >> 4) & 0x7;
653 uint8_t Mantissa = Imm & 0xf;
654
655 // 8-bit FP iEEEE Float Encoding
656 // abcd efgh aBbbbbbc defgh000 00000000 00000000
657 //
658 // where B = NOT(b);
659
660 FPUnion.I = 0;
661 FPUnion.I |= ((uint32_t) Sign) << 31;
662 FPUnion.I |= ((Exp & 0x4) != 0 ? 0 : 1) << 30;
663 FPUnion.I |= ((Exp & 0x4) != 0 ? 0x1f : 0) << 25;
664 FPUnion.I |= (Exp & 0x3) << 23;
665 FPUnion.I |= Mantissa << 19;
666 return FPUnion.F;
667 }
668
669 #endif
670
671