/external/tensorflow/tensorflow/lite/tools/optimize/ |
D | quantize_model.cc | 149 const TensorType& activations_type, bool disable_per_channel = false) { in GetOperatorProperty() argument 156 if (activations_type == TensorType_INT16 && !property.quantizable_int16) { in GetOperatorProperty() 214 const TensorType& activations_type) { in PopulateRealValueOpSet() argument 231 operator_name, activations_type); in PopulateRealValueOpSet() 412 const TensorType& activations_type) { in SetInputType() argument 419 activations_type == TensorType_INT16 ? "int16" : "int8"; in SetInputType() 476 const TensorType& activations_type) { in SetOutputType() argument 483 activations_type == TensorType_INT16 ? "int16" : "int8"; in SetOutputType() 539 const TensorType& activations_type, in SetInputAndOutputTypes() argument 563 model, subgraph, subgraph->inputs[i], input_type, activations_type); in SetInputAndOutputTypes() [all …]
|
D | quantize_model.h | 76 const TensorType& activations_type, 86 bool allow_float, const TensorType& activations_type, 95 bool allow_float, const TensorType& activations_type, 108 const TensorType& activations_type,
|
D | quantization_utils.h | 151 TfLiteStatus GetQuantizationParams(TensorT* tensor, TensorType activations_type, 156 TfLiteStatus QuantizeActivation(TensorT* tensor, TensorType activations_type,
|
D | quantization_utils.cc | 106 TfLiteStatus GetQuantizationParams(TensorT* tensor, TensorType activations_type, in GetQuantizationParams() argument 109 if (activations_type == TensorType_INT8) { in GetQuantizationParams() 114 } else if (activations_type == TensorType_INT16) { in GetQuantizationParams() 123 activations_type); in GetQuantizationParams() 752 TfLiteStatus QuantizeActivation(TensorT* tensor, TensorType activations_type, in QuantizeActivation() argument 755 tensor, activations_type, tensor->quantization.get(), error_reporter)); in QuantizeActivation() 756 tensor->type = activations_type; in QuantizeActivation()
|
/external/tensorflow/tensorflow/lite/python/optimize/ |
D | calibrator_test.py | 34 def test_calibration_with_quantization(self, activations_type): argument 49 activations_type) 57 def test_calibration_with_quantization_allow_float(self, activations_type): argument 72 activations_type) 111 self, activations_type): argument 128 activations_type) 168 activations_type=dtypes.int8,
|
D | calibrator.py | 147 activations_type=dtypes.int8, argument 179 np.dtype(activations_type.as_numpy_dtype()).num,
|
D | calibration_wrapper.cc | 578 TfLiteType activations_type = in QuantizeModel() local 595 TfLiteTypeToSchemaType(activations_type), in QuantizeModel()
|
/external/tensorflow/tensorflow/lite/python/ |
D | lite.py | 338 def activations_type(self): member in QuantizationMode 351 if self.activations_type() == _dtypes.int16: 353 elif self.activations_type() == _dtypes.int8: 365 self.activations_type()), 446 if self.activations_type() == _dtypes.float32: 451 if self.activations_type() == _dtypes.int8 and bias_type != _dtypes.int32: 456 if self.activations_type( 590 def _quantize(self, result, input_type, output_type, activations_type, argument 619 activations_type != _dtypes.int16): 633 activations_type, [all …]
|
/external/tensorflow/tensorflow/compiler/mlir/lite/quantization/lite/ |
D | quantize_model_test.cc | 50 const TensorType& activations_type, ErrorReporter* error_reporter, in QuantizeModel() argument 54 TensorType inference_tensor_type = activations_type; 99 bool allow_float, const TensorType& activations_type, in QuantizeModelAllOperators() argument 102 /*operator_names=*/{}, activations_type, error_reporter, in QuantizeModelAllOperators() 111 const TensorType& activations_type, in QuantizeModelAllOperators() argument 114 /*operator_names=*/{}, activations_type, error_reporter); in QuantizeModelAllOperators()
|