/external/tensorflow/tensorflow/python/ops/ragged/ |
D | ragged_util_test.py | 49 axis=0, 54 axis=0, 59 axis=1, 66 axis=0, 71 axis=0, 76 axis=1, 81 dict(data=3, repeats=4, axis=0, expected=[3, 3, 3, 3]), 82 dict(data=[3], repeats=4, axis=0, expected=[3, 3, 3, 3]), 83 dict(data=3, repeats=[4], axis=0, expected=[3, 3, 3, 3]), 84 dict(data=[3], repeats=[4], axis=0, expected=[3, 3, 3, 3]), [all …]
|
D | ragged_reduce_op_test.py | 61 axis=0, 68 axis=-2, 75 axis=1, 82 axis=-1, 89 axis=0, 96 axis=1, 103 axis=0, 110 axis=1, 117 axis=0, 124 axis=1, [all …]
|
D | ragged_tensor_shape.py | 112 for axis, dimension_size in enumerate(partitioned_dim_sizes): 115 'rank of partitioned_dim_sizes[%d] is unknown' % axis) 191 def dimension_size(self, axis): argument 193 if not isinstance(axis, int): 196 if axis < partitioned_ndims: 197 return self._partitioned_dim_sizes[axis] 199 return self._inner_dim_sizes[axis - partitioned_ndims] 201 def is_ragged(self, axis): argument 203 if not isinstance(axis, int): 206 if axis < 0: [all …]
|
D | ragged_stack_op_test.py | 35 axis=0, 41 axis=1, 50 axis=2, 58 axis=-3, 64 axis=-2, 73 axis=-1, 82 axis=0, 90 axis=1, 100 axis=2, 109 axis=-3, [all …]
|
D | ragged_one_hot_op_test.py | 44 axis=-1, 49 axis=2, 76 axis=2, 87 axis=None, argument 98 axis=axis, 104 dict(indices=[[1]], depth=4, axis=0, # axis < ragged_rank 106 dict(indices=[[1]], depth=4, axis=1, # axis == ragged_rank 108 dict(indices=[[1]], depth=4, axis=-2, 121 axis=None, argument 134 axis=axis, [all …]
|
D | ragged_row_lengths_op_test.py | 37 axis=2, 46 axis=0, 61 axis=0, 68 axis=0, 73 axis=1, 78 axis=2, 85 axis=0, 89 axis=-3, 93 axis=1, 97 axis=-2, [all …]
|
D | ragged_gather_op_test.py | 148 axis=1, 154 axis=1, 161 axis=1, 167 axis=1, 175 axis=2, 182 axis=2, 191 axis=None, argument 199 params, indices, axis=axis, batch_dims=batch_dims) 352 dict(params_shape=[3, 4], indices_shape=[], axis=0), 353 dict(params_shape=[3, 4], indices_shape=[5], axis=0), [all …]
|
D | ragged_concat_op_test.py | 47 axis=1, 54 axis=0, 62 axis=1, 72 axis=-2, 80 axis=-1, 92 axis=0, 101 axis=1, 113 axis=0, 129 axis=1, 141 axis=2, [all …]
|
D | ragged_math_ops.py | 245 axis=0) 479 axis, argument 523 return reduce_op(rt_input, axis, keepdims=keepdims, name=name) 528 rt_input, axis, keepdims=keepdims, name=name, separator=separator) 530 if isinstance(axis, ops.Tensor): 531 axis = tensor_util.constant_value(axis) 532 if axis is None: 534 if isinstance(axis, np.ndarray): 535 axis = axis.tolist() 538 if axis is None: [all …]
|
/external/tensorflow/tensorflow/python/kernel_tests/control_flow/ |
D | scan_ops_test.py | 29 def numpy_reverse(x, axis): argument 31 if axis < 0: 32 axis = length + axis 35 slice(None, None, -1) if i == axis else slice(None) for i in range(length) 40 def handle_options(func, x, axis, exclusive, reverse): argument 43 if axis < 0: 44 axis = length + axis 47 x = numpy_reverse(x, axis) 50 ix_head = [slice(0, 1) if i == axis else slice(None) for i in range(length)] 52 slice(0, -1) if i == axis else slice(None) for i in range(length) [all …]
|
/external/tensorflow/tensorflow/python/kernel_tests/array_ops/ |
D | gather_op_test.py | 82 for axis in range(data.ndim): 83 with self.subTest(dtype=dtype, axis=axis): 87 gather_t = array_ops.gather(params, indices, axis=axis) 89 self.assertAllEqual(np.take(params_np, 2, axis=axis), gather_val) 90 expected_shape = data.shape[:axis] + data.shape[axis + 1:] 98 for axis in range(data.ndim): 99 with self.subTest(dtype=dtype, axis=axis): 104 gather_t = array_ops.gather(params, indices, axis=axis) 106 self.assertAllEqual(np.take(params_np, [0, 1, 0, 2], axis=axis), 108 expected_shape = data.shape[:axis] + (4,) + data.shape[axis + 1:] [all …]
|
D | unstack_op_test.py | 27 def np_split_squeeze(array, axis): argument 28 axis_len = array.shape[axis] 31 arr, axis=(axis,)) for arr in np.split( 32 array, axis_len, axis=axis) 45 def unstackReference(self, data, axis): argument 49 axis = axis + rank if axis < 0 else axis 50 for k in range(data.shape[axis]): 51 axis = rank + axis if axis < 0 else axis 56 slice(None) if i != axis else k for i in range(rank)) 64 for axis in range(-rank, rank): [all …]
|
/external/tensorflow/tensorflow/compiler/tests/ |
D | scan_ops_test.py | 30 def numpy_reverse(x, axis): argument 32 if axis < 0: 33 axis = length + axis 36 slice(None, None, -1) if i == axis else slice(None) for i in range(length) 41 def handle_options(func, x, axis, exclusive, reverse): argument 44 if axis < 0: 45 axis = length + axis 48 x = numpy_reverse(x, axis) 51 ix_head = tuple(slice(0, 1) if i == axis else slice(None) 54 slice(0, -1) if i == axis else slice(None) for i in range(length) [all …]
|
D | gather_test.py | 58 for axis in 0, 1, -1: 62 gather_t = array_ops.gather(params, indices, axis=axis) 65 np.take(params_np, 2, axis=axis), dtype) 73 for axis in 0, 1, -1: 78 gather_t = array_ops.gather(params, indices, axis=axis) 81 np.take(params_np, [0, 1, 0, 2], axis=axis), dtype) 94 for axis in 0, 1, -1: 98 gather_t = array_ops.gather(params, indices, axis=axis) 105 np.take(params_np, [0, 1, 0, 2], axis=axis), dtype) 113 for axis in 0, 1, 2, 3, -1, -2: [all …]
|
/external/s2-geometry-library-java/src/com/google/common/geometry/ |
D | S2Cap.java | 42 private final S2Point axis; field in S2Cap 48 axis = new S2Point(); in S2Cap() 52 private S2Cap(S2Point axis, double height) { in S2Cap() argument 53 this.axis = axis; in S2Cap() 63 public static S2Cap fromAxisHeight(S2Point axis, double height) { in fromAxisHeight() argument 65 return new S2Cap(axis, height); in fromAxisHeight() 73 public static S2Cap fromAxisAngle(S2Point axis, S1Angle angle) { in fromAxisAngle() argument 80 return new S2Cap(axis, 2 * d * d); in fromAxisAngle() 88 public static S2Cap fromAxisArea(S2Point axis, double area) { in fromAxisArea() argument 90 return new S2Cap(axis, area / (2 * S2.M_PI)); in fromAxisArea() [all …]
|
/external/tensorflow/tensorflow/python/ops/ |
D | sort_ops.py | 31 def sort(values, axis=-1, direction='ASCENDING', name=None): argument 83 return _sort_or_argsort(values, axis, direction, return_argsort=False) 88 def argsort(values, axis=-1, direction='ASCENDING', stable=False, name=None): argument 150 return _sort_or_argsort(values, axis, direction, return_argsort=True) 153 def _sort_or_argsort(values, axis, direction, return_argsort): argument 174 axis = framework_ops.convert_to_tensor(axis, name='axis') 175 axis_static = tensor_util.constant_value(axis) 176 if axis.shape.ndims not in (None, 0) or axis_static is None: 186 def _descending_sort(values, axis, return_argsort=False): argument 199 k = array_ops.shape(values)[axis] [all …]
|
D | array_ops.py | 305 def expand_dims(input, axis=None, name=None, dim=None): argument 369 axis = deprecation.deprecated_argument_lookup("axis", axis, "dim", dim) 370 if axis is None: 372 return expand_dims_v2(input, axis, name) 377 def expand_dims_v2(input, axis, name=None): argument 442 return gen_array_ops.expand_dims(input, axis, name) 1418 def stack(values, axis=0, name="stack"): argument 1463 if axis == 0: 1473 if axis < -expanded_num_dims or axis >= expanded_num_dims: 1477 return gen_array_ops.pack(values, axis=axis, name=name) [all …]
|
/external/tensorflow/tensorflow/python/keras/layers/normalization/ |
D | layer_normalization.py | 153 axis=-1, argument 165 if isinstance(axis, (list, tuple)): 166 self.axis = axis[:] 167 elif isinstance(axis, int): 168 self.axis = axis 171 'argument \'axis\', but received: %r' % axis) 195 axis = sorted(self.axis) 198 if axis[-1] == ndims - 1 and axis[-1] - axis[0] == len(axis) - 1: 216 if isinstance(self.axis, int): 217 self.axis = [self.axis] [all …]
|
/external/oboe/samples/RhythmGame/third_party/glm/gtx/ |
D | matrix_interpolation.inl | 10 tvec3<T, P> & axis, argument 22 axis.x = (T)1.0; 23 axis.y = (T)0.0; 24 axis.z = (T)0.0; 37 axis.x = (T)0.0; 38 axis.y = (T)0.7071; 39 axis.z = (T)0.7071; 41 axis.x = sqrt(xx); 42 axis.y = xy / axis.x; 43 axis.z = xz / axis.x; [all …]
|
/external/tensorflow/tensorflow/python/distribute/ |
D | strategy_gather_test.py | 70 def _gather_same_shape_and_verify(self, value_on_replica, axis, pure_eager, argument 76 return strategy.gather(distributed_values, axis=axis) 84 expected_result = array_ops.concat(all_results, axis=axis) 90 axis = 0 91 self._gather_same_shape_and_verify(single_value, axis, pure_eager, strategy) 96 axis = 0 97 self._gather_same_shape_and_verify(single_value, axis, pure_eager, strategy) 102 axis = 1 103 self._gather_same_shape_and_verify(single_value, axis, pure_eager, strategy) 108 axis = 0 [all …]
|
/external/fonttools/Tests/ttLib/tables/ |
D | _f_v_a_r_test.py | 53 axis = Axis() 54 axis.axisTag = tag 55 axis.defaultValue = defaultValue 56 axis.minValue, axis.maxValue = minValue, maxValue 57 axis.axisNameID = AddName(font, name).nameID 58 fvarTable.axes.append(axis) 111 axis = Axis() 112 axis.axisTag, axis.axisNameID = ('opsz', 345) 113 axis.minValue, axis.defaultValue, axis.maxValue = (-0.5, 1.3, 1.5) 114 self.assertEqual(FVAR_AXIS_DATA, axis.compile()) [all …]
|
/external/tensorflow/tensorflow/python/kernel_tests/strings_ops/ |
D | reduce_join_op_test.py | 100 axis, argument 116 axis=axis, 124 def _testMultipleReduceJoin(self, input_array, axis, separator=" "): argument 138 inputs=input_array, axis=axis, keep_dims=False, separator=separator) 140 inputs=input_array, axis=axis, keep_dims=True, separator=separator) 143 for index in axis: 145 inputs=truth, axis=index, keep_dims=True, separator=separator) 146 if not axis: 148 truth_squeezed = array_ops.squeeze(truth, axis=axis) 162 self._testReduceJoin(input_array, truth, truth_shape, axis=0) [all …]
|
/external/tensorflow/tensorflow/lite/kernels/ |
D | expand_dims.cc | 34 int axis, TfLiteTensor* output) { in ExpandTensorDim() argument 36 if (axis < 0) { in ExpandTensorDim() 37 axis = input_dims.size + 1 + axis; in ExpandTensorDim() 39 TF_LITE_ENSURE(context, axis <= input_dims.size); in ExpandTensorDim() 40 TF_LITE_ENSURE(context, axis >= 0); in ExpandTensorDim() 44 if (i < axis) { in ExpandTensorDim() 46 } else if (i == axis) { in ExpandTensorDim() 57 const TfLiteTensor& axis, int* axis_value) { in GetAxisValueFromTensor() argument 58 TF_LITE_ENSURE_EQ(context, NumElements(&axis), 1); in GetAxisValueFromTensor() 59 switch (axis.type) { in GetAxisValueFromTensor() [all …]
|
/external/tensorflow/tensorflow/python/ops/signal/ |
D | shape_ops.py | 29 def _infer_frame_shape(signal, frame_length, frame_step, pad_end, axis): argument 33 axis = tensor_util.constant_value(axis) 36 if axis is None: 41 frame_axis = signal_shape[axis] 42 outer_dimensions = signal_shape[:axis] 43 inner_dimensions = signal_shape[axis:][1:] 57 def frame(signal, frame_length, frame_step, pad_end=False, pad_value=0, axis=-1, argument 119 axis = ops.convert_to_tensor(axis, name="axis") 124 axis.shape.assert_has_rank(0) 127 axis) [all …]
|
/external/fonttools/Lib/fontTools/designspaceLib/ |
D | types.py | 94 axis = doc.getAxis(name) 95 if axis is None: 100 designRegion[name] = axis.map_forward(value) 103 axis.map_forward(value.minimum), 104 axis.map_forward(value.maximum), 105 axis.map_forward(value.default), 116 axis = doc.getAxis(axisSubset.name) 117 if axis is None: 126 if not hasattr(axis, "minimum"): 131 axis = cast(AxisDescriptor, axis) [all …]
|