/external/apache-commons-math/src/main/java/org/apache/commons/math/random/ |
D | CorrelatedRandomVectorGenerator.java | 98 RealMatrix covariance, double small, in CorrelatedRandomVectorGenerator() argument 102 int order = covariance.getRowDimension(); in CorrelatedRandomVectorGenerator() 108 decompose(covariance, small); in CorrelatedRandomVectorGenerator() 126 public CorrelatedRandomVectorGenerator(RealMatrix covariance, double small, in CorrelatedRandomVectorGenerator() argument 130 int order = covariance.getRowDimension(); in CorrelatedRandomVectorGenerator() 136 decompose(covariance, small); in CorrelatedRandomVectorGenerator() 188 private void decompose(RealMatrix covariance, double small) in decompose() argument 191 int order = covariance.getRowDimension(); in decompose() 192 double[][] c = covariance.getData(); in decompose()
|
/external/apache-commons-math/src/main/java/org/apache/commons/math/stat/regression/ |
D | AbstractMultipleLinearRegression.java | 231 protected void validateCovarianceData(double[][] x, double[][] covariance) { in validateCovarianceData() argument 232 if (x.length != covariance.length) { in validateCovarianceData() 234 LocalizedFormats.DIMENSIONS_MISMATCH_SIMPLE, x.length, covariance.length); in validateCovarianceData() 236 if (covariance.length > 0 && covariance.length != covariance[0].length) { in validateCovarianceData() 239 covariance.length, covariance[0].length); in validateCovarianceData()
|
D | GLSMultipleLinearRegression.java | 56 public void newSampleData(double[] y, double[][] x, double[][] covariance) { in newSampleData() argument 60 validateCovarianceData(x, covariance); in newSampleData() 61 newCovarianceData(covariance); in newSampleData()
|
/external/fonttools/Lib/fontTools/pens/ |
D | statisticsPen.py | 36 self.covariance = 0 60 self.covariance = covariance = self.momentXY / area - meanX*meanY 67 correlation = covariance / (stddevX * stddevY) 70 slant = covariance / varianceY if varianceY != 0 else float("NaN")
|
/external/tensorflow/tensorflow/python/kernel_tests/distributions/ |
D | dirichlet_multinomial_test.py | 258 dist.covariance(), 296 covariance = dist.covariance() 299 self.assertEqual([2, 2], covariance.get_shape()) 300 self.assertAllClose(expected_covariance, self.evaluate(covariance)) 333 covariance = dist.covariance() 337 self.assertEqual([4, 3, 3], covariance.get_shape()) 338 self.assertAllClose(expected_covariance, self.evaluate(covariance)) 351 covariance = dist.covariance() 352 covariance2 = dist2.covariance() 353 self.assertEqual([3, 5, 4, 4], covariance.get_shape()) [all …]
|
D | multinomial_test.py | 223 self.assertEqual((3, 3), dist.covariance().get_shape()) 224 self.assertAllClose(expected_covariances, dist.covariance()) 238 self.assertEqual((4, 2, 2, 2), dist.covariance().get_shape()) 239 self.assertAllClose(expected_covariances, dist.covariance()) 254 covariance = dist.covariance() 255 covariance2 = dist2.covariance() 256 self.assertEqual((3, 5, 4, 4), covariance.get_shape()) 293 dist.covariance(), 324 dist.covariance(), 353 dist.covariance(),
|
/external/webrtc/modules/audio_processing/ns/ |
D | signal_model_estimator.cc | 41 float covariance = 0.f; in ComputeSpectralDiff() local 47 covariance += signal_diff * noise_diff; in ComputeSpectralDiff() 51 covariance *= kOneByFftSizeBy2Plus1; in ComputeSpectralDiff() 57 signal_variance - (covariance * covariance) / (noise_variance + 0.0001f); in ComputeSpectralDiff()
|
/external/apache-commons-math/src/main/java/org/apache/commons/math/stat/correlation/ |
D | Covariance.java | 166 double cov = covariance(matrix.getColumn(i), matrix.getColumn(j), biasCorrected); in computeCovarianceMatrix() 220 public double covariance(final double[] xArray, final double[] yArray, boolean biasCorrected) in covariance() method in Covariance 255 public double covariance(final double[] xArray, final double[] yArray) in covariance() method in Covariance 257 return covariance(xArray, yArray, true); in covariance()
|
D | PearsonsCorrelation.java | 95 public PearsonsCorrelation(Covariance covariance) { in PearsonsCorrelation() argument 96 RealMatrix covarianceMatrix = covariance.getCovarianceMatrix(); in PearsonsCorrelation() 100 nObs = covariance.getN(); in PearsonsCorrelation()
|
/external/ImageMagick/coders/ |
D | dds.c | 2800 static void ComputePrincipleComponent(const float *covariance, in ComputePrincipleComponent() argument 2812 row0.x = covariance[0]; in ComputePrincipleComponent() 2813 row0.y = covariance[1]; in ComputePrincipleComponent() 2814 row0.z = covariance[2]; in ComputePrincipleComponent() 2817 row1.x = covariance[1]; in ComputePrincipleComponent() 2818 row1.y = covariance[3]; in ComputePrincipleComponent() 2819 row1.z = covariance[4]; in ComputePrincipleComponent() 2822 row2.x = covariance[2]; in ComputePrincipleComponent() 2823 row2.y = covariance[4]; in ComputePrincipleComponent() 2824 row2.z = covariance[5]; in ComputePrincipleComponent() [all …]
|
/external/webrtc/modules/audio_processing/echo_detector/ |
D | normalized_covariance_estimator.h | 31 float covariance() const { return covariance_; } in covariance() function
|
/external/tensorflow/tensorflow/tools/api/golden/v1/ |
D | tensorflow.distributions.-distribution.pbtxt | 55 name: "covariance" 56 argspec: "args=[\'self\', \'name\'], varargs=None, keywords=None, defaults=[\'covariance\'], "
|
D | tensorflow.distributions.-student-t.pbtxt | 68 name: "covariance" 69 argspec: "args=[\'self\', \'name\'], varargs=None, keywords=None, defaults=[\'covariance\'], "
|
D | tensorflow.distributions.-exponential.pbtxt | 65 name: "covariance" 66 argspec: "args=[\'self\', \'name\'], varargs=None, keywords=None, defaults=[\'covariance\'], "
|
D | tensorflow.distributions.-normal.pbtxt | 64 name: "covariance" 65 argspec: "args=[\'self\', \'name\'], varargs=None, keywords=None, defaults=[\'covariance\'], "
|
D | tensorflow.distributions.-laplace.pbtxt | 64 name: "covariance" 65 argspec: "args=[\'self\', \'name\'], varargs=None, keywords=None, defaults=[\'covariance\'], "
|
D | tensorflow.distributions.-uniform.pbtxt | 64 name: "covariance" 65 argspec: "args=[\'self\', \'name\'], varargs=None, keywords=None, defaults=[\'covariance\'], "
|
D | tensorflow.distributions.-gamma.pbtxt | 64 name: "covariance" 65 argspec: "args=[\'self\', \'name\'], varargs=None, keywords=None, defaults=[\'covariance\'], "
|
D | tensorflow.distributions.-bernoulli.pbtxt | 64 name: "covariance" 65 argspec: "args=[\'self\', \'name\'], varargs=None, keywords=None, defaults=[\'covariance\'], "
|
D | tensorflow.distributions.-beta.pbtxt | 68 name: "covariance" 69 argspec: "args=[\'self\', \'name\'], varargs=None, keywords=None, defaults=[\'covariance\'], "
|
D | tensorflow.distributions.-multinomial.pbtxt | 68 name: "covariance" 69 argspec: "args=[\'self\', \'name\'], varargs=None, keywords=None, defaults=[\'covariance\'], "
|
D | tensorflow.distributions.-dirichlet.pbtxt | 64 name: "covariance" 65 argspec: "args=[\'self\', \'name\'], varargs=None, keywords=None, defaults=[\'covariance\'], "
|
D | tensorflow.distributions.-dirichlet-multinomial.pbtxt | 68 name: "covariance" 69 argspec: "args=[\'self\', \'name\'], varargs=None, keywords=None, defaults=[\'covariance\'], "
|
D | tensorflow.distributions.-categorical.pbtxt | 68 name: "covariance" 69 argspec: "args=[\'self\', \'name\'], varargs=None, keywords=None, defaults=[\'covariance\'], "
|
/external/eigen/doc/ |
D | DenseDecompositionBenchmark.dox | 12 …rices, the reported timmings include the cost to compute the symmetric covariance matrix \f$ A^T A… 30 …oblems, and the reported timing include the cost to form the symmetric covariance matrix \f$ A^T A… 34 …t of Cholesky/LU decompositions is dominated by the computation of the symmetric covariance matrix.
|