/external/tensorflow/tensorflow/lite/kernels/internal/ |
D | kernel_utils.cc | 26 int input_size, int num_units, int batch_size, in RnnBatchStep() argument 33 bias_ptr, input_size, /*aux_input_size=*/0, num_units, in RnnBatchStep() 42 int input_size, int aux_input_size, int num_units, in RnnBatchStep() argument 48 if (output_batch_leading_dim == num_units) { in RnnBatchStep() 50 tensor_utils::VectorBatchVectorAssign(bias_ptr, num_units, batch_size, in RnnBatchStep() 55 input_weights_ptr, num_units, input_size, input_ptr_batch, batch_size, in RnnBatchStep() 61 aux_input_weights_ptr, num_units, aux_input_size, aux_input_ptr_batch, in RnnBatchStep() 67 recurrent_weights_ptr, num_units, num_units, hidden_state_ptr_batch, in RnnBatchStep() 72 output_ptr_batch, num_units * batch_size, activation, output_ptr_batch); in RnnBatchStep() 73 std::copy_n(output_ptr_batch, num_units * batch_size, in RnnBatchStep() [all …]
|
D | kernel_utils.h | 41 int input_size, int num_units, int batch_size, 51 int input_size, int aux_input_size, int num_units, 70 int num_units, int batch_size, int output_batch_leading_dim, 82 const float* bias_ptr, int input_size, int aux_input_size, int num_units,
|
/external/tensorflow/tensorflow/core/ops/ |
D | cudnn_rnn_ops_test.cc | 44 int num_units = 4; in TEST() local 47 std::vector<int> input_shape = {seq_length, batch_size, num_units}; in TEST() 49 num_units}; in TEST() 51 num_units * dir_count}; in TEST() 81 int num_units = 4; in TEST() local 84 std::vector<int> input_shape = {seq_length, batch_size, num_units}; in TEST() 86 num_units}; in TEST() 88 num_units * dir_count}; in TEST() 118 int num_units = 4; in TEST() local 121 std::vector<int> input_shape = {max_seq_length, batch_size, num_units}; in TEST() [all …]
|
D | cudnn_rnn_ops.cc | 93 auto num_units = c->Dim(input_h_shape, 2); in __anon20e2ac3d0302() local 101 TF_RETURN_IF_ERROR(c->Multiply(num_units, dir_count, &output_size)); in __anon20e2ac3d0302() 142 auto num_units = c->Dim(input_h_shape, 2); in __anon20e2ac3d0402() local 149 TF_RETURN_IF_ERROR(c->Multiply(num_units, dir_count, &output_size)); in __anon20e2ac3d0402() 196 auto num_units = c->Dim(input_h_shape, 2); in __anon20e2ac3d0502() local 207 TF_RETURN_IF_ERROR(c->Multiply(num_units, dir_count, &output_size)); in __anon20e2ac3d0502()
|
/external/tensorflow/tensorflow/lite/kernels/ |
D | unidirectional_sequence_rnn.cc | 87 const int num_units = input_weights->dims->data[0]; in Prepare() local 100 TF_LITE_ENSURE_EQ(context, hidden_state->dims->data[1], num_units); in Prepare() 110 output_size_array->data[2] = num_units; in Prepare() 167 int accum_scratch_dims[2] = {num_units, batch_size}; in Prepare() 195 int row_sums_dims[2] = {2, num_units}; in Prepare() 221 const int num_units = input_weights->dims->data[0]; in EvalFloat() local 237 GetTensorData<float>(output) + s * num_units * batch_size; in EvalFloat() 241 input_size, num_units, batch_size, num_units, params->activation, in EvalFloat() 249 GetTensorData<float>(hidden_state) + b * num_units; in EvalFloat() 256 b * num_units * max_time + s * num_units; in EvalFloat() [all …]
|
D | unidirectional_sequence_rnn_test.cc | 230 int num_units() { return units_; } in num_units() function in tflite::__anona0a7fc2c0111::UnidirectionalRNNOpModel 295 float* golden_end = golden_start + rnn.num_units() * rnn.sequence_len(); in TEST() 324 float* golden_end = golden_start + rnn.num_units() * rnn.sequence_len(); in TEST_P() 351 float* golden_end = golden_start + rnn.num_units() * rnn.sequence_len(); in TEST_P() 380 float* golden_batch_start = rnn_golden_output + i * rnn.num_units(); in TEST() 381 float* golden_batch_end = golden_batch_start + rnn.num_units(); in TEST() 410 float* golden_batch_start = rnn_golden_output + i * rnn.num_units(); in TEST_P() 411 float* golden_batch_end = golden_batch_start + rnn.num_units(); in TEST_P() 441 float* golden_batch_start = rnn_golden_output + i * rnn.num_units(); in TEST_P() 442 float* golden_batch_end = golden_batch_start + rnn.num_units(); in TEST_P()
|
D | basic_rnn_test.cc | 216 int num_units() { return units_; } in num_units() function in tflite::__anon2c82b85c0111::RNNOpModel 276 float* golden_start = rnn_golden_output + i * rnn.num_units(); in TEST() 277 float* golden_end = golden_start + rnn.num_units(); in TEST() 305 float* golden_start = rnn_golden_output + i * rnn.num_units(); in TEST_P() 306 float* golden_end = golden_start + rnn.num_units(); in TEST_P() 333 float* golden_start = rnn_golden_output + i * rnn.num_units(); in TEST_P() 334 float* golden_end = golden_start + rnn.num_units(); in TEST_P()
|
D | basic_rnn.cc | 81 const int num_units = input_weights->dims->data[0]; in Prepare() local 94 TF_LITE_ENSURE_EQ(context, hidden_state->dims->data[1], num_units); in Prepare() 103 output_size_array->data[1] = num_units; in Prepare() 160 int accum_scratch_dims[2] = {num_units, batch_size}; in Prepare() 189 int row_sums_dims[2] = {2, num_units}; in Prepare() 207 const int num_units = input_weights->dims->data[0]; in EvalFloat() local 224 input_size, num_units, batch_size, output_batch_leading_dim, in EvalFloat() 240 const int num_units = input_weights->dims->data[0]; in EvalHybrid() local 273 num_units, batch_size, output_batch_leading_dim, params->activation, in EvalHybrid()
|
/external/tensorflow/tensorflow/python/kernel_tests/nn_ops/ |
D | rnn_test.py | 361 num_units=input_size, 383 num_units=input_size, 404 num_units = 512 410 np.random.randn(batch_size, num_units).astype(np.float32) 450 def static_vs_dynamic_rnn_benchmark(batch_size, max_time, num_units, use_gpu): argument 458 np.random.randn(batch_size, num_units).astype(np.float32) 484 (batch_size, max_time, num_units, use_gpu, delta_static, delta_dynamic, 494 num_units=input_size, 512 def half_seq_len_vs_unroll_half_rnn_benchmark(batch_size, max_time, num_units, argument 521 np.random.randn(batch_size, num_units).astype(np.float32) [all …]
|
D | rnn_cell_test.py | 383 num_units = 3 391 num_units, initializer=initializer, state_is_tuple=False) 398 self.assertEqual(out.get_shape().as_list(), [batch_size, num_units]) 406 num_units = 3 414 num_units, 425 self.assertEqual(out.get_shape().as_list(), [batch_size, num_units]) 433 self.assertAllEqual(value, np.zeros((batch_size, num_units))) 437 num_units = 3 444 state_saver = TestStateSaver(batch_size, 2 * num_units) 446 num_units, [all …]
|
/external/mesa3d/src/gallium/drivers/lima/ir/gp/ |
D | disasm.c | 37 num_units enumerator 40 static const gpir_codegen_store_src gp_unit_to_store_src[num_units] = { 170 printf("^%d", cur_dest_index - 1 * num_units + unit_acc_0); in print_src() 174 printf("^%d", cur_dest_index - 1 * num_units + unit_acc_1); in print_src() 178 printf("^%d", cur_dest_index - 1 * num_units + unit_mul_0); in print_src() 182 printf("^%d", cur_dest_index - 1 * num_units + unit_mul_1); in print_src() 186 printf("^%d", cur_dest_index - 1 * num_units + unit_pass); in print_src() 212 printf("^%d", cur_dest_index - 1 * num_units + unit_complex); in print_src() 216 printf("^%d", cur_dest_index - 2 * num_units + unit_pass); in print_src() 220 printf("^%d", cur_dest_index - 2 * num_units + unit_acc_0); in print_src() [all …]
|
/external/ComputeLibrary/src/runtime/NEON/functions/ |
D | NEQLSTMLayer.cpp | 272 const int num_units = input_to_output_weights->info()->dimension(1); in configure() local 326 …s->info(), _input_to_input_eff_bias.info(), GEMMLowpReductionKernelInfo(num_units, false, -qinput.… in configure() 327 …nfo(), _recurrent_to_input_eff_bias.info(), GEMMLowpReductionKernelInfo(num_units, false, -qoutput… in configure() 337 …->info(), _input_to_forget_eff_bias.info(), GEMMLowpReductionKernelInfo(num_units, false, -qinput.… in configure() 338 …fo(), _recurrent_to_forget_eff_bias.info(), GEMMLowpReductionKernelInfo(num_units, false, -qoutput… in configure() 339 …ts->info(), _input_to_cell_eff_bias.info(), GEMMLowpReductionKernelInfo(num_units, false, -qinput.… in configure() 340 …info(), _recurrent_to_cell_eff_bias.info(), GEMMLowpReductionKernelInfo(num_units, false, -qoutput… in configure() 341 …->info(), _input_to_output_eff_bias.info(), GEMMLowpReductionKernelInfo(num_units, false, -qinput.… in configure() 342 …fo(), _recurrent_to_output_eff_bias.info(), GEMMLowpReductionKernelInfo(num_units, false, -qoutput… in configure() 376 const TensorInfo mm_out_info(TensorShape(num_units, batch_size), 1, DataType::S32); in configure() [all …]
|
/external/ComputeLibrary/src/runtime/CL/functions/ |
D | CLQLSTMLayer.cpp | 201 const int num_units = input_to_output_weights->info()->dimension(1); in configure() local 253 …s->info(), _input_to_input_eff_bias.info(), GEMMLowpReductionKernelInfo(num_units, false, -qinput.… in configure() 254 …weights->info(), _recurrent_to_input_eff_bias.info(), GEMMLowpReductionKernelInfo(num_units, false, in configure() 257 …->info(), _input_to_forget_eff_bias.info(), GEMMLowpReductionKernelInfo(num_units, false, -qinput.… in configure() 258 …eights->info(), _recurrent_to_forget_eff_bias.info(), GEMMLowpReductionKernelInfo(num_units, false, in configure() 260 …ts->info(), _input_to_cell_eff_bias.info(), GEMMLowpReductionKernelInfo(num_units, false, -qinput.… in configure() 261 …info(), _recurrent_to_cell_eff_bias.info(), GEMMLowpReductionKernelInfo(num_units, false, -qoutput… in configure() 263 …->info(), _input_to_output_eff_bias.info(), GEMMLowpReductionKernelInfo(num_units, false, -qinput.… in configure() 264 …eights->info(), _recurrent_to_output_eff_bias.info(), GEMMLowpReductionKernelInfo(num_units, false, in configure() 298 const TensorInfo mm_out_info(TensorShape(num_units, batch_size), 1, DataType::S32); in configure() [all …]
|
/external/tensorflow/tensorflow/core/api_def/base_api/ |
D | api_def_CudnnRNNV3.pbtxt | 12 when input_size == num_units; 'auto_select' implies 'skip_input' when 13 input_size == num_units; otherwise, it implies 'linear_input'. 23 [num_layer * dir, batch_size, num_units]. If time_major is false, the shape 24 is [batch_size, num_layer * dir, num_units]. 26 [num_layer * dir, batch, num_units]. For other models, it is ignored. 33 [seq_length, batch_size, dir * num_units]. If time_major is false, the 34 shape is [batch_size, seq_length, dir * num_units].
|
D | api_def_CudnnRNNBackpropV3.pbtxt | 12 when input_size == num_units; 'auto_select' implies 'skip_input' when 13 input_size == num_units; otherwise, it implies 'linear_input'. 23 [num_layer * dir, batch_size, num_units]. If time_major is false, the shape 24 is [batch_size, num_layer * dir, num_units]. 26 [num_layer * dir, batch, num_units]. For other models, it is ignored. 33 [seq_length, batch_size, dir * num_units]. If time_major is false, the 34 shape is [batch_size, seq_length, dir * num_units].
|
D | api_def_CudnnRNN.pbtxt | 11 when input_size == num_units; 'auto_select' implies 'skip_input' when 12 input_size == num_units; otherwise, it implies 'linear_input'. 20 num_units]. 22 [num_layer * dir, batch, num_units]. For other models, it is ignored. 28 dir * num_units].
|
D | api_def_CudnnRNNV2.pbtxt | 12 when input_size == num_units; 'auto_select' implies 'skip_input' when 13 input_size == num_units; otherwise, it implies 'linear_input'. 21 num_units]. 23 [num_layer * dir, batch, num_units]. For other models, it is ignored. 29 dir * num_units].
|
D | api_def_CudnnRNNBackprop.pbtxt | 10 when input_size == num_units; 'auto_select' implies 'skip_input' when 11 input_size == num_units; otherwise, it implies 'linear_input'. 19 num_units]. 21 [num_layer * dir, batch, num_units]. For other models, it is ignored. 27 dir * num_units].
|
D | api_def_CudnnRNNBackpropV2.pbtxt | 13 when input_size == num_units; 'auto_select' implies 'skip_input' when 14 input_size == num_units; otherwise, it implies 'linear_input'. 22 num_units]. 24 [num_layer * dir, batch, num_units]. For other models, it is ignored. 30 dir * num_units].
|
D | api_def_CudnnRNNParamsSize.pbtxt | 9 num_units: Specifies the size of the hidden state. 14 when input_size == num_units; 'auto_select' implies 'skip_input' when 15 input_size == num_units; otherwise, it implies 'linear_input'.
|
D | api_def_CudnnRNNCanonicalToParams.pbtxt | 13 num_units: Specifies the size of the hidden state. 27 when input_size == num_units; 'auto_select' implies 'skip_input' when 28 input_size == num_units; otherwise, it implies 'linear_input'.
|
/external/tensorflow/tensorflow/lite/kernels/internal/reference/ |
D | svdf.h | 38 int batch_size, int memory_size, int num_filters, int num_units, int rank, in ApplyTimeWeightsBiasAndActivation() argument 54 batch_size * num_units, rank); in ApplyTimeWeightsBiasAndActivation() 57 tensor_utils::VectorBatchVectorAdd(bias_ptr, num_units, batch_size, in ApplyTimeWeightsBiasAndActivation() 62 tensor_utils::ApplyActivationToVector(output_ptr, batch_size * num_units, in ApplyTimeWeightsBiasAndActivation() 163 const int num_units = num_filters / rank; in EvalFloatSVDF() local 187 batch_size, memory_size, num_filters, num_units, rank, weights_time_data, in EvalFloatSVDF() 204 const int num_units = num_filters / rank; in EvalHybridSVDF() local 242 batch_size, memory_size, num_filters, num_units, rank, weights_time_data, in EvalHybridSVDF()
|
/external/marisa-trie/lib/marisa/grimoire/vector/ |
D | flat-vector.h | 105 std::size_t num_units = values.empty() ? 0 : (64 / MARISA_WORD_SIZE); in build_() local 107 num_units = (std::size_t)( in build_() 110 num_units += num_units % (64 / MARISA_WORD_SIZE); in build_() 113 units_.resize(num_units); in build_() 114 if (num_units > 0) { in build_()
|
/external/tensorflow/tensorflow/core/kernels/ |
D | cudnn_rnn_ops.cc | 153 CudnnRnnParameters(int num_layers, int input_size, int num_units, in CudnnRnnParameters() argument 159 num_units_(num_units), in CudnnRnnParameters() 169 HashList({num_layers, input_size, num_units, max_seq_length, batch_size, in CudnnRnnParameters() 274 Status ToRNNInputMode(TFRNNInputMode tf_input_mode, int num_units, in ToRNNInputMode() argument 284 *input_mode = (input_size == num_units) ? RnnInputMode::kRnnSkipInput in ToRNNInputMode() 501 int num_units; member 516 num_units == rhs.num_units && dir_count == rhs.dir_count && in IsCompatibleWith() 524 num_layers, input_size, num_units, dir_count, max_seq_length, in DebugString() 539 HashList({shapes.num_layers, shapes.input_size, shapes.num_units, in operator ()() 608 model_shapes->num_units = (*input_h)->dim_size(2); in ExtractForwardInput() [all …]
|
/external/tensorflow/tensorflow/python/keras/layers/legacy_rnn/ |
D | rnn_cell_impl.py | 421 num_units, argument 443 self._num_units = num_units 528 num_units, argument 552 self._num_units = num_units 680 num_units, argument 731 self._num_units = num_units 859 num_units, argument 938 self._num_units = num_units 955 LSTMStateTuple(num_units, num_proj) if state_is_tuple else num_units + 960 LSTMStateTuple(num_units, num_units) if state_is_tuple else 2 * [all …]
|