/external/rust/crates/grpcio-sys/grpc/third_party/abseil-cpp/absl/base/internal/ |
D | exponential_biased_test.cc | 95 double AndersonDarlingStatistic(const std::vector<double>& random_sample) { in AndersonDarlingStatistic() argument 96 int n = random_sample.size(); in AndersonDarlingStatistic() 100 std::log(random_sample[i] * (1 - random_sample[n - 1 - i])); in AndersonDarlingStatistic() 111 double AndersonDarlingTest(const std::vector<double>& random_sample) { in AndersonDarlingTest() argument 112 double ad_statistic = AndersonDarlingStatistic(random_sample); in AndersonDarlingTest() 113 double p = AndersonDarlingPValue(random_sample.size(), ad_statistic); in AndersonDarlingTest() 169 std::vector<double> random_sample(n); in TEST() local 172 random_sample[i] = in TEST() 176 double ad_pvalue = AndersonDarlingTest(random_sample); in TEST()
|
/external/abseil-cpp/absl/profiling/internal/ |
D | exponential_biased_test.cc | 96 double AndersonDarlingStatistic(const std::vector<double>& random_sample) { in AndersonDarlingStatistic() argument 97 int n = random_sample.size(); in AndersonDarlingStatistic() 101 std::log(random_sample[i] * (1 - random_sample[n - 1 - i])); in AndersonDarlingStatistic() 112 double AndersonDarlingTest(const std::vector<double>& random_sample) { in AndersonDarlingTest() argument 113 double ad_statistic = AndersonDarlingStatistic(random_sample); in AndersonDarlingTest() 114 double p = AndersonDarlingPValue(random_sample.size(), ad_statistic); in AndersonDarlingTest() 170 std::vector<double> random_sample(n); in TEST() local 173 random_sample[i] = in TEST() 177 double ad_pvalue = AndersonDarlingTest(random_sample); in TEST()
|
/external/tensorflow/third_party/absl/abseil-cpp/absl/profiling/internal/ |
D | exponential_biased_test.cc | 96 double AndersonDarlingStatistic(const std::vector<double>& random_sample) { in AndersonDarlingStatistic() argument 97 int n = random_sample.size(); in AndersonDarlingStatistic() 101 std::log(random_sample[i] * (1 - random_sample[n - 1 - i])); in AndersonDarlingStatistic() 112 double AndersonDarlingTest(const std::vector<double>& random_sample) { in AndersonDarlingTest() argument 113 double ad_statistic = AndersonDarlingStatistic(random_sample); in AndersonDarlingTest() 114 double p = AndersonDarlingPValue(random_sample.size(), ad_statistic); in AndersonDarlingTest() 170 std::vector<double> random_sample(n); in TEST() local 173 random_sample[i] = in TEST() 177 double ad_pvalue = AndersonDarlingTest(random_sample); in TEST()
|
/external/openscreen/third_party/abseil/src/absl/base/internal/ |
D | exponential_biased_test.cc | 95 double AndersonDarlingStatistic(const std::vector<double>& random_sample) { in AndersonDarlingStatistic() argument 96 int n = random_sample.size(); in AndersonDarlingStatistic() 100 std::log(random_sample[i] * (1 - random_sample[n - 1 - i])); in AndersonDarlingStatistic() 111 double AndersonDarlingTest(const std::vector<double>& random_sample) { in AndersonDarlingTest() argument 112 double ad_statistic = AndersonDarlingStatistic(random_sample); in AndersonDarlingTest() 113 double p = AndersonDarlingPValue(random_sample.size(), ad_statistic); in AndersonDarlingTest() 169 std::vector<double> random_sample(n); in TEST() local 172 random_sample[i] = in TEST() 176 double ad_pvalue = AndersonDarlingTest(random_sample); in TEST()
|
/external/libtextclassifier/abseil-cpp/absl/base/internal/ |
D | exponential_biased_test.cc | 95 double AndersonDarlingStatistic(const std::vector<double>& random_sample) { in AndersonDarlingStatistic() argument 96 int n = random_sample.size(); in AndersonDarlingStatistic() 100 std::log(random_sample[i] * (1 - random_sample[n - 1 - i])); in AndersonDarlingStatistic() 111 double AndersonDarlingTest(const std::vector<double>& random_sample) { in AndersonDarlingTest() argument 112 double ad_statistic = AndersonDarlingStatistic(random_sample); in AndersonDarlingTest() 113 double p = AndersonDarlingPValue(random_sample.size(), ad_statistic); in AndersonDarlingTest() 169 std::vector<double> random_sample(n); in TEST() local 172 random_sample[i] = in TEST() 176 double ad_pvalue = AndersonDarlingTest(random_sample); in TEST()
|
/external/webrtc/third_party/abseil-cpp/absl/profiling/internal/ |
D | exponential_biased_test.cc | 96 double AndersonDarlingStatistic(const std::vector<double>& random_sample) { in AndersonDarlingStatistic() argument 97 size_t n = random_sample.size(); in AndersonDarlingStatistic() 101 std::log(random_sample[i] * (1 - random_sample[n - 1 - i])); in AndersonDarlingStatistic() 113 double AndersonDarlingTest(const std::vector<double>& random_sample) { in AndersonDarlingTest() argument 114 double ad_statistic = AndersonDarlingStatistic(random_sample); in AndersonDarlingTest() 115 double p = AndersonDarlingPValue(static_cast<int>(random_sample.size()), in AndersonDarlingTest() 172 std::vector<double> random_sample(n); in TEST() local 175 random_sample[i] = in TEST() 179 double ad_pvalue = AndersonDarlingTest(random_sample); in TEST()
|
/external/angle/third_party/abseil-cpp/absl/profiling/internal/ |
D | exponential_biased_test.cc | 96 double AndersonDarlingStatistic(const std::vector<double>& random_sample) { in AndersonDarlingStatistic() argument 97 size_t n = random_sample.size(); in AndersonDarlingStatistic() 101 std::log(random_sample[i] * (1 - random_sample[n - 1 - i])); in AndersonDarlingStatistic() 113 double AndersonDarlingTest(const std::vector<double>& random_sample) { in AndersonDarlingTest() argument 114 double ad_statistic = AndersonDarlingStatistic(random_sample); in AndersonDarlingTest() 115 double p = AndersonDarlingPValue(static_cast<int>(random_sample.size()), in AndersonDarlingTest() 172 std::vector<double> random_sample(n); in TEST() local 175 random_sample[i] = in TEST() 179 double ad_pvalue = AndersonDarlingTest(random_sample); in TEST()
|
/external/cronet/third_party/abseil-cpp/absl/profiling/internal/ |
D | exponential_biased_test.cc | 96 double AndersonDarlingStatistic(const std::vector<double>& random_sample) { in AndersonDarlingStatistic() argument 97 size_t n = random_sample.size(); in AndersonDarlingStatistic() 101 std::log(random_sample[i] * (1 - random_sample[n - 1 - i])); in AndersonDarlingStatistic() 113 double AndersonDarlingTest(const std::vector<double>& random_sample) { in AndersonDarlingTest() argument 114 double ad_statistic = AndersonDarlingStatistic(random_sample); in AndersonDarlingTest() 115 double p = AndersonDarlingPValue(static_cast<int>(random_sample.size()), in AndersonDarlingTest() 172 std::vector<double> random_sample(n); in TEST() local 175 random_sample[i] = in TEST() 179 double ad_pvalue = AndersonDarlingTest(random_sample); in TEST()
|
/external/tensorflow/tensorflow/compiler/tests/ |
D | fused_batchnorm_test.py | 90 x_val = np.random.random_sample(x_shape).astype(np.float32) 91 scale_val = np.random.random_sample(scale_shape).astype(np.float32) 92 offset_val = np.random.random_sample(scale_shape).astype(np.float32) 134 x_val = np.random.random_sample(x_shape).astype(np.float32) 135 scale_val = np.random.random_sample(scale_shape).astype(np.float32) 136 offset_val = np.random.random_sample(scale_shape).astype(np.float32) 137 mean_val = np.random.random_sample(scale_shape).astype(np.float32) 138 var_val_corr = np.random.random_sample(scale_shape).astype(np.float32) 228 grad_val = np.random.random_sample(x_shape).astype(np.float32) 229 x_val = np.random.random_sample(x_shape).astype(np.float32) [all …]
|
D | conv3d_test.py | 40 2 * np.random.random_sample(in_shape) - 1, dtype=dtypes.float32) 50 2 * np.random.random_sample(out_backprop_shape) - 1, 213 x_val = np.random.random_sample(x_shape).astype(np.float64) 214 f_val = np.random.random_sample(f_shape).astype(np.float64)
|
D | jit_test.py | 229 w = np.random.random_sample((image_size, num_classes)).astype(np.float32) 230 b = np.random.random_sample((num_classes)).astype(np.float32) 231 x = np.random.random_sample((batch_size, image_size)).astype(np.float32) 250 dw = np.random.random_sample((image_size, num_classes)).astype(np.float32) 251 db = np.random.random_sample((num_classes)).astype(np.float32) 252 dx = np.random.random_sample((batch_size, image_size)).astype(np.float32)
|
/external/tensorflow/tensorflow/python/ops/ |
D | nn_batchnorm_test.py | 73 x_val = np.random.random_sample(x_shape).astype(np.float32) 74 m_val = np.random.random_sample(param_shape).astype(np.float32) 75 v_val = np.random.random_sample(param_shape).astype(np.float32) 76 beta_val = np.random.random_sample(param_shape).astype(np.float32) 77 gamma_val = np.random.random_sample(param_shape).astype(np.float32) 123 x_val = np.random.random_sample(x_shape).astype(np.float64) 124 m_val = np.random.random_sample(param_shape).astype(np.float64) 125 v_val = np.random.random_sample(param_shape).astype(np.float64) 126 beta_val = np.random.random_sample(param_shape).astype(np.float64) 127 gamma_val = np.random.random_sample(param_shape).astype(np.float64) [all …]
|
D | nn_fused_batchnorm_test.py | 69 x_val = np.random.random_sample(x_shape).astype(x_dtype) 70 scale_val = np.random.random_sample(scale_shape).astype(scale_dtype) 71 offset_val = np.random.random_sample(scale_shape).astype(scale_dtype) 72 mean_val = np.random.random_sample(scale_shape).astype(scale_dtype) 73 var_val = np.random.random_sample(scale_shape).astype(scale_dtype) 150 x_val = np.random.random_sample(x_shape).astype(x_dtype) 151 scale_val = np.random.random_sample(scale_shape).astype(scale_dtype) 152 offset_val = np.random.random_sample(scale_shape).astype(scale_dtype) 157 old_mean_val = np.random.random_sample(scale_shape).astype(scale_dtype) 158 old_var_val = np.random.random_sample(scale_shape).astype(scale_dtype) [all …]
|
D | gradient_checker_v2_test.py | 38 data = np.random.random_sample(shape).astype(dtype.as_numpy_dtype) 40 data.imag = np.random.random_sample(shape) 191 np.random.random_sample((0, 3)), dtype=dtypes.float32) 204 np.random.random_sample((0, 3)), dtype=dtypes.float32) 206 np.random.random_sample((3, 4)), dtype=dtypes.float32) 231 np.random.random_sample((0, 3)), dtype=dtypes.float32) 253 np.random.random_sample((1, 1)), dtype=dtypes.float32) 290 inp_data = np.random.random_sample(inputs * batch) 292 hidden_bias_data = np.random.random_sample(features) 294 sm_bias_data = np.random.random_sample(classes)
|
D | nccl_ops_test.py | 79 random = (np.random.random_sample(shape) - .5) * 1024 141 nccl_ops.all_sum([array_ops.identity(np.random.random_sample((3, 4)))])
|
/external/tensorflow/tensorflow/python/kernel_tests/nn_ops/ |
D | conv2d_backprop_filter_grad_test.py | 46 2 * np.random.random_sample(in_shape) - 1, dtype=dtypes.float32) 57 2 * np.random.random_sample(out_backprop_shape) - 1, 89 2 * np.random.random_sample(in_shape) - 1, dtype=dtypes.float32) 101 2 * np.random.random_sample(out_backprop_shape) - 1,
|
D | atrous_convolution_test.py | 209 x = np.random.random_sample(x_shape).astype(np.float32) 214 f1 = 1e-2 * np.random.random_sample(f_shape).astype(np.float32) 215 f2 = 1e-2 * np.random.random_sample(f_shape).astype(np.float32) 251 x_val = np.random.random_sample(x_shape).astype(np.float32) 252 f_val = np.random.random_sample(f_shape).astype(np.float32)
|
D | fractional_max_pool_op_test.py | 205 rand_mat = self._PRNG.random_sample(tensor_shape) * 1000 - 500 238 rand_mat = self._PRNG.random_sample(tensor_shape) * 1000 - 500 256 rand_mat = self._PRNG.random_sample(tensor_shape) * 1000 - 500 275 rand_mat = self._PRNG.random_sample(tensor_shape) * 1000 - 500 309 rand_mat = self._PRNG.random_sample(tensor_shape) * 1000 - 500 471 input_data += self._PRNG.random_sample(input_shape) 509 input_data += self._PRNG.random_sample(input_shape) 536 input_data += self._PRNG.random_sample(input_shape)
|
D | atrous_conv2d_test.py | 112 x = np.random.random_sample(x_shape).astype(np.float32) 117 f = 1e-2 * np.random.random_sample(f_shape).astype(np.float32) 146 x_val = np.random.random_sample(x_shape).astype(np.float32) 147 f_val = np.random.random_sample(f_shape).astype(np.float32)
|
D | conv3d_transpose_test.py | 126 x_value = np.random.random_sample(x_shape).astype(np.float64) 127 f_value = np.random.random_sample(f_shape).astype(np.float64) 208 x_val = np.random.random_sample(x_shape).astype(np.float64) 209 f_val = np.random.random_sample(f_shape).astype(np.float64)
|
D | conv3d_backprop_filter_v2_grad_test.py | 40 2 * np.random.random_sample(in_shape) - 1, dtype=dtypes.float32) 50 2 * np.random.random_sample(out_backprop_shape) - 1,
|
D | morphological_ops_test.py | 198 image = np.random.random_sample(image_shape).astype(np.float32) 199 kernel = np.random.random_sample(kernel_shape).astype(np.float32) 504 image = np.random.random_sample(image_shape).astype(np.float32) 505 kernel = np.random.random_sample(kernel_shape).astype(np.float32)
|
/external/tensorflow/tensorflow/python/kernel_tests/ |
D | numerics_test.py | 34 x = np.random.random_sample(x_shape).astype(np.float32) 43 x = np.random.random_sample(x_shape).astype(np.float32)
|
/external/tensorflow/tensorflow/python/kernel_tests/array_ops/ |
D | concat_op_test.py | 411 np.random.random_sample(x_shape).astype(np.float64) 426 np.random.random_sample(x_shape).astype(np.float64) 441 np.random.random_sample(x_shape).astype(np.float64) 457 np.random.random_sample(x_shape).astype(np.float64) 473 np.random.random_sample(x_shape).astype(np.float64) 497 x_1: np.random.random_sample(x_shapes[0]).astype(np.float64), 498 x_2: np.random.random_sample(x_shapes[1]).astype(np.float64), 499 x_3: np.random.random_sample(x_shapes[2]).astype(np.float64)
|
/external/tensorflow/tensorflow/python/framework/ |
D | convert_to_constants_test.py | 414 np.array(np.random.random_sample((3, 10)), dtype=np.float32)) 479 np.random.random_sample((3, 10, 10)), dtype=np.float32)) 500 np.asarray(np.random.random_sample((10, 3)), dtype=np.float32)), 503 w0 = variables.Variable(np.random.random_sample((3, 4)), dtype=np.float32) 504 w1 = variables.Variable(np.random.random_sample((3, 4)), dtype=np.float32) 505 w2 = variables.Variable(np.random.random_sample((4,)), dtype=np.float32) 783 np.random.random_sample((3, 10)), dtype=np.float32)) 852 np.random.random_sample((3, 10, 10)), dtype=np.float32)) 877 np.random.random_sample((10, 3)), dtype=np.float32)), 881 np.random.random_sample((3, 4)), dtype=np.float32) [all …]
|