/external/tensorflow/tensorflow/python/ops/ragged/ |
D | ragged_reduce_op_test.py | 60 rt_input=[[3, 1, 4], [1, 5], [9], [2, 6]], 67 rt_input=[[3, 1, 4], [1, 5], [9], [2, 6]], 74 rt_input=[[3, 1, 4], [1, 5], [9], [2, 6]], 81 rt_input=[[3, 1, 4], [1, 5], [9], [2, 6]], 88 rt_input=[[3, 1, 4], [1, 5], [9], [2, 6]], 95 rt_input=[[3, 1, 4], [1, 5], [9], [2, 6]], 102 rt_input=[[3, 1, 4], [1, 5], [9], [2, 6]], 109 rt_input=[[3, 1, 4], [1, 5], [9], [2, 6]], 116 rt_input=[[3, 1, 4], [1, 5], [9], [2, 6]], 123 rt_input=[[3, 1, 4], [1, 5], [9], [2, 6]], [all …]
|
D | ragged_row_lengths_op_test.py | 33 rt_input=[[[3, 1, 4], [1]], [], [[5, 9], [2]], [[6]], []], 36 rt_input=[[[3, 1, 4], [1]], [], [[5, 9], [2]], [[6]], []], 42 rt_input=[['a'], ['b', 'c', 'd'], ['e'], [], ['f']], 45 rt_input=[['a'], ['b', 'c', 'd'], ['e'], [], ['f']], 49 rt_input=[['a', 'b', 'c', 'd', 'e', 'f', 'g']], 52 rt_input=[[], ['a', 'b', 'c', 'd', 'e', 'f', 'g'], []], 55 rt_input=[], 59 rt_input=[], 66 rt_input=[[[1, 2], [3, 4], [5, 6]], [[7, 8], [9, 10]]], 71 rt_input=[[[1, 2], [3, 4], [5, 6]], [[7, 8], [9, 10]]], [all …]
|
D | ragged_tensor_shape.py | 177 def from_tensor(cls, rt_input, dim_size_dtype=None): argument 179 with ops.name_scope(None, 'RaggedTensorDynamicShapeFromTensor', [rt_input]): 180 rt_input = ragged_tensor.convert_to_tensor_or_ragged_tensor(rt_input) 181 if not ragged_tensor.is_ragged(rt_input): 182 return cls([], array_ops.shape(rt_input), dim_size_dtype=dim_size_dtype) 185 (rt_input.nrows(),) + rt_input.nested_row_lengths()) 188 array_ops.shape(rt_input.flat_values)[1:], 475 def broadcast_to(rt_input, shape, broadcast_inner_dimensions=True): argument 494 rt_input = ragged_tensor.convert_to_tensor_or_ragged_tensor(rt_input) 498 return _broadcast_to_uniform_shape(rt_input, shape, [all …]
|
D | ragged_tile_op_test.py | 38 rt_input=[[1, 2], [3]], 49 rt_input=[[[1, 2], [3]], [], [[4]]], 55 rt_input=[[[1, 2], [3]], [], [[4]]], 60 rt_input=[[[1, 2], [3]], [], [[4]]], 65 rt_input=[[[1, 2], [3]], [], [[4]]], 71 rt_input=[[[1, 2], [3]], [], [[4]]], 77 rt_input=[[[1, 2], [3]], [], [[4]]], 83 rt_input=[[['a', 'b'], ['c']], [], [['d']]], 92 rt_input=[[[1, 2], [3, 4]], [], [[5, 6]]], 99 rt_input=[[[1, 2], [3, 4]], [], [[5, 6]]], [all …]
|
D | ragged_getitem.py | 35 def ragged_tensor_getitem(rt_input, key): argument 97 if not isinstance(rt_input, ragged_tensor.RaggedTensor): 99 scope_tensors = [rt_input] + list(_tensors_in_key_list(key)) 105 return _ragged_getitem(rt_input, key) 108 def _ragged_getitem(rt_input, key_list): argument 127 return rt_input 132 expanded_key_list = _expand_ellipsis(key_list, rt_input.shape.ndims) 133 return _ragged_getitem(rt_input, expanded_key_list) 138 inner_rt = _ragged_getitem(rt_input, inner_keys) 151 sliced_rt_input = _slice_ragged_row_dimension(rt_input, row_key) [all …]
|
D | ragged_expand_dims_op_test.py | 46 dict(rt_input=[[1, 2], [3]], 50 dict(rt_input=[[1, 2], [3]], 54 dict(rt_input=[[1, 2], [3]], 61 dict(rt_input=[[1, 2], [3, 4], [5, 6]], 66 dict(rt_input=[[1, 2], [3, 4], [5, 6]], 71 dict(rt_input=[[1, 2], [3, 4], [5, 6]], 80 dict(rt_input=EXAMPLE4D, 85 dict(rt_input=EXAMPLE4D, 90 dict(rt_input=EXAMPLE4D, 95 dict(rt_input=EXAMPLE4D, [all …]
|
D | ragged_concat_ops.py | 147 rt_input, name='rt_input') for rt_input in rt_inputs 202 splits = [[rt_input.row_splits] for rt_input in rt_inputs] 302 def _increase_ragged_rank_to(rt_input, ragged_rank, row_splits_dtype): argument 305 if not ragged_tensor.is_ragged(rt_input): 306 rt_input = ragged_tensor.RaggedTensor.from_tensor( 307 rt_input, row_splits_dtype=row_splits_dtype) 308 if rt_input.ragged_rank < ragged_rank: 309 rt_input = rt_input.with_values( 310 _increase_ragged_rank_to(rt_input.values, ragged_rank - 1, 312 return rt_input
|
D | ragged_conversion_ops.py | 44 def to_tensor(rt_input, default_value=None, name=None): argument 45 if ragged_tensor.is_ragged(rt_input): 46 return rt_input.to_tensor(default_value, name) 48 return rt_input 51 def ragged_to_dense(rt_input, default_value=None, shape=None): argument 53 return rt_input.to_tensor(default_value=default_value, shape=shape) 136 def to_sparse(rt_input, name=None): argument 137 return rt_input.to_sparse(name)
|
D | ragged_math_ops.py | 478 rt_input, argument 521 if not ragged_tensor.is_ragged(rt_input): 523 return reduce_op(rt_input, axis, keepdims=keepdims, name=name) 528 rt_input, axis, keepdims=keepdims, name=name, separator=separator) 539 result = reduce_op(rt_input.flat_values, None, keepdims=keepdims, name=name) 542 for _ in rt_input.shape[1:]: 546 with ops.name_scope(name, 'RaggedReduce', [rt_input, axis]): 549 return rt_input 558 array_ops.get_positive_axis(a, rt_input.shape.ndims, 'axis[%s]' % i, 568 rt_input, axis[-1], keepdims, [all …]
|
D | ragged_where_op.py | 255 def _nrows(rt_input, out_type): argument 256 if isinstance(rt_input, ragged_tensor.RaggedTensor): 257 return rt_input.nrows(out_type=out_type) 259 return array_ops.shape(rt_input, out_type=out_type)[0]
|
D | ragged_to_tensor_op_test.py | 320 rt_input, argument 328 rt_input, ragged_rank=ragged_rank, inner_shape=inner_shape) 386 rt_input, argument 393 rt = ragged_factory_ops.constant(rt_input, ragged_rank=ragged_rank) 783 rt_input = self._generateRaggedTensor(shape, ragged_rank, dtype, fill) 796 rt = ragged_factory_ops.constant(rt_input, dtype, ragged_rank=ragged_rank)
|
D | ragged_concat_op_test.py | 38 ragged_factory_ops.constant(rt_input, ragged_rank=rrank) 39 if rrank != 0 else constant_op.constant(rt_input) 40 for (rt_input, rrank) in zip(rt_inputs, ragged_ranks)
|
D | ragged_array_ops.py | 258 def _tile_ragged_values(rt_input, multiples, const_multiples=None): argument 282 ragged_rank = rt_input.ragged_rank 283 nested_splits = rt_input.nested_row_splits 308 ragged_tiled_values = array_ops.gather(rt_input.flat_values, inner_value_ids) 317 def _tile_ragged_splits(rt_input, multiples, const_multiples=None): argument 341 ragged_rank = rt_input.ragged_rank 342 nested_splits = rt_input.nested_row_splits
|
D | ragged_stack_op_test.py | 350 ragged_factory_ops.constant(rt_input, ragged_rank=rrank) # pylint: disable=g-long-ternary 351 if rrank != 0 else constant_op.constant(rt_input) 352 for (rt_input, rrank) in zip(rt_inputs, ragged_ranks)
|
D | dynamic_ragged_shape.py | 1623 def broadcast_to(rt_input, shape: DynamicRaggedShape): argument 1640 rt_input = ragged_tensor.convert_to_tensor_or_ragged_tensor(rt_input) 1642 if ragged_tensor.is_ragged(rt_input): 1644 if rt_input.row_splits.dtype != shape.dtype: 1647 shape = shape.with_dtype(rt_input.row_splits.dtype) 1648 origin_shape = DynamicRaggedShape.from_tensor(rt_input) 1651 origin_shape = DynamicRaggedShape.from_tensor(rt_input, dtype=shape.dtype) 1653 origin_shape = DynamicRaggedShape.from_tensor(rt_input, 1658 return broadcaster.broadcast(rt_input)
|
D | ragged_tensor.py | 2956 def _get_row_partition_type_tensor_pairs(rt_input): argument 2969 partitions = rt_input._nested_row_partitions # pylint: disable=protected-access
|
/external/tensorflow/tensorflow/tools/api/golden/v2/ |
D | tensorflow.__operators__.pbtxt | 21 argspec: "args=[\'rt_input\', \'key\'], varargs=None, keywords=None, defaults=None"
|