• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7#     http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ==============================================================================
15"""Tests for initializers in init_ops."""
16
17import numpy as np
18
19from tensorflow.core.protobuf import config_pb2
20from tensorflow.python.client import session
21from tensorflow.python.eager import context
22from tensorflow.python.framework import ops
23from tensorflow.python.framework import tensor_shape as tensor_shape_lib
24from tensorflow.python.framework import test_util
25from tensorflow.python.ops import init_ops
26from tensorflow.python.ops import variable_scope
27from tensorflow.python.ops import variables
28from tensorflow.python.platform import test
29
30
31@test_util.run_all_in_graph_and_eager_modes
32class InitializersTest(test.TestCase):
33
34  def _runner(self,
35              init,
36              shape,
37              target_mean=None,
38              target_std=None,
39              target_max=None,
40              target_min=None):
41    output = self.evaluate(init(shape))
42    self.assertEqual(output.shape, shape)
43    lim = 3e-2
44    if target_std is not None:
45      self.assertGreater(lim, abs(output.std() - target_std))
46    if target_mean is not None:
47      self.assertGreater(lim, abs(output.mean() - target_mean))
48    if target_max is not None:
49      self.assertGreater(lim, abs(output.max() - target_max))
50    if target_min is not None:
51      self.assertGreater(lim, abs(output.min() - target_min))
52
53  def test_uniform(self):
54    shape = (9, 6, 99)
55    with self.cached_session():
56      for tensor_shape in [shape, tensor_shape_lib.TensorShape(shape)]:
57        self._runner(
58            init_ops.RandomUniform(minval=-1, maxval=1, seed=124),
59            tensor_shape,
60            target_mean=0.,
61            target_max=1,
62            target_min=-1)
63
64  def test_normal(self):
65    shape = (8, 12, 99)
66    with self.cached_session():
67      for tensor_shape in [shape, tensor_shape_lib.TensorShape(shape)]:
68        self._runner(
69            init_ops.RandomNormal(mean=0, stddev=1, seed=153),
70            tensor_shape,
71            target_mean=0.,
72            target_std=1)
73
74  def test_truncated_normal(self):
75    shape = (12, 99, 7)
76    with self.cached_session():
77      for tensor_shape in [shape, tensor_shape_lib.TensorShape(shape)]:
78        self._runner(
79            init_ops.TruncatedNormal(mean=0, stddev=1, seed=126),
80            tensor_shape,
81            target_mean=0.,
82            target_max=2,
83            target_min=-2)
84
85  def test_constant(self):
86    shape = (5, 6, 4)
87    with self.cached_session():
88      for tensor_shape in [shape, tensor_shape_lib.TensorShape(shape)]:
89        self._runner(
90            init_ops.Constant(2),
91            tensor_shape,
92            target_mean=2,
93            target_max=2,
94            target_min=2)
95
96  def test_lecun_uniform(self):
97    shape = (5, 6, 4, 2)
98    with self.cached_session():
99      for tensor_shape in [shape, tensor_shape_lib.TensorShape(shape)]:
100        fan_in, _ = init_ops._compute_fans(tensor_shape)
101        std = np.sqrt(1. / fan_in)
102        self._runner(
103            init_ops.lecun_uniform(seed=123),
104            tensor_shape,
105            target_mean=0.,
106            target_std=std)
107
108  def test_glorot_uniform_initializer(self):
109    shape = (5, 6, 4, 2)
110    with self.cached_session():
111      for tensor_shape in [shape, tensor_shape_lib.TensorShape(shape)]:
112        fan_in, fan_out = init_ops._compute_fans(tensor_shape)
113        std = np.sqrt(2. / (fan_in + fan_out))
114        self._runner(
115            init_ops.glorot_uniform_initializer(seed=123),
116            tensor_shape,
117            target_mean=0.,
118            target_std=std)
119
120  def test_he_uniform(self):
121    shape = (5, 6, 4, 2)
122    with self.cached_session():
123      for tensor_shape in [shape, tensor_shape_lib.TensorShape(shape)]:
124        fan_in, _ = init_ops._compute_fans(tensor_shape)
125        std = np.sqrt(2. / fan_in)
126        self._runner(
127            init_ops.he_uniform(seed=123),
128            tensor_shape,
129            target_mean=0.,
130            target_std=std)
131
132  def test_lecun_normal(self):
133    shape = (5, 6, 4, 2)
134    with self.cached_session():
135      for tensor_shape in [shape, tensor_shape_lib.TensorShape(shape)]:
136        fan_in, _ = init_ops._compute_fans(tensor_shape)
137        std = np.sqrt(1. / fan_in)
138        self._runner(
139            init_ops.lecun_normal(seed=123),
140            tensor_shape,
141            target_mean=0.,
142            target_std=std)
143
144  def test_glorot_normal_initializer(self):
145    shape = (5, 6, 4, 2)
146    with self.cached_session():
147      for tensor_shape in [shape, tensor_shape_lib.TensorShape(shape)]:
148        fan_in, fan_out = init_ops._compute_fans(tensor_shape)
149        std = np.sqrt(2. / (fan_in + fan_out))
150        self._runner(
151            init_ops.glorot_normal_initializer(seed=123),
152            tensor_shape,
153            target_mean=0.,
154            target_std=std)
155
156  def test_he_normal(self):
157    shape = (5, 6, 4, 2)
158    with self.cached_session():
159      for tensor_shape in [shape, tensor_shape_lib.TensorShape(shape)]:
160        fan_in, _ = init_ops._compute_fans(tensor_shape)
161        std = np.sqrt(2. / fan_in)
162        self._runner(
163            init_ops.he_normal(seed=123),
164            tensor_shape,
165            target_mean=0.,
166            target_std=std)
167
168  def test_Orthogonal(self):
169    shape = (20, 20)
170    with self.cached_session():
171      for tensor_shape in [shape, tensor_shape_lib.TensorShape(shape)]:
172        self._runner(
173            init_ops.Orthogonal(seed=123), tensor_shape, target_mean=0.)
174
175  @test.disable_with_predicate(
176      pred=test.is_built_with_rocm,
177      skip_message='Disable subtest on ROCm due to missing QR op support')
178  @test_util.run_gpu_only
179  def testVariablePlacementWithOrthogonalInitializer(self):
180    with ops.Graph().as_default() as g:
181      with ops.device('gpu:0'):
182        variable_scope.get_variable(
183            name='v', shape=[8, 2], initializer=init_ops.Orthogonal)
184        variable_scope.get_variable(
185            name='w', shape=[8, 2], initializer=init_ops.RandomNormal)
186      run_metadata = config_pb2.RunMetadata()
187      run_options = config_pb2.RunOptions(
188          trace_level=config_pb2.RunOptions.FULL_TRACE)
189      config = config_pb2.ConfigProto(
190          allow_soft_placement=False, log_device_placement=True)
191
192      # Note: allow_soft_placement=False will fail whenever we cannot satisfy
193      # the colocation constraints.
194      with session.Session(config=config, graph=g) as sess:
195        sess.run(
196            variables.global_variables_initializer(),
197            options=run_options,
198            run_metadata=run_metadata)
199
200  @test_util.run_gpu_only
201  def test_eager_orthogonal_gpu(self):
202    with context.eager_mode():
203      v = variable_scope.get_variable(
204          name='v', shape=[8, 2], initializer=init_ops.Orthogonal)
205      w = variable_scope.get_variable(
206          name='w', shape=[8, 2], initializer=init_ops.RandomNormal)
207      self.assertTrue('GPU' in v.handle.device)
208      self.assertTrue('GPU' in w.handle.device)
209
210  def test_Identity(self):
211    with self.cached_session():
212      shape = (3, 4, 5)
213      for tensor_shape in [shape, tensor_shape_lib.TensorShape(shape)]:
214        with self.assertRaises(ValueError):
215          self._runner(
216              init_ops.Identity(),
217              tensor_shape,
218              target_mean=1. / int(tensor_shape[0]),
219              target_max=1.)
220
221      shape = (3, 3)
222      for tensor_shape in [shape, tensor_shape_lib.TensorShape(shape)]:
223        self._runner(
224            init_ops.Identity(),
225            tensor_shape,
226            target_mean=1. / int(tensor_shape[0]),
227            target_max=1.)
228
229  def test_Zeros(self):
230    shape = (4, 5)
231    with self.cached_session():
232      for tensor_shape in [shape, tensor_shape_lib.TensorShape(shape)]:
233        self._runner(
234            init_ops.Zeros(), tensor_shape, target_mean=0., target_max=0.)
235
236  def test_Ones(self):
237    shape = (4, 5)
238    with self.cached_session():
239      for tensor_shape in [shape, tensor_shape_lib.TensorShape(shape)]:
240        self._runner(
241            init_ops.Ones(), tensor_shape, target_mean=1., target_max=1.)
242
243
244if __name__ == '__main__':
245  test.main()
246