/external/tensorflow/tensorflow/python/util/ |
D | tfprof_wrapper.cc | 29 std::string temp = tensorflow::tfprof::PrintModelAnalysis( in PYBIND11_MODULE() 33 m.def("NewProfiler", &tensorflow::tfprof::NewProfiler); in PYBIND11_MODULE() 34 m.def("ProfilerFromFile", &tensorflow::tfprof::ProfilerFromFile); in PYBIND11_MODULE() 35 m.def("DeleteProfiler", &tensorflow::tfprof::DeleteProfiler); in PYBIND11_MODULE() 36 m.def("AddStep", &tensorflow::tfprof::AddStep); in PYBIND11_MODULE() 38 std::string temp = tensorflow::tfprof::SerializeToString(); in PYBIND11_MODULE() 41 m.def("WriteProfile", &tensorflow::tfprof::WriteProfile); in PYBIND11_MODULE() 43 std::string temp = tensorflow::tfprof::Profile(command, options); in PYBIND11_MODULE()
|
/external/tensorflow/tensorflow/core/profiler/internal/ |
D | tfprof_utils.cc | 33 namespace tfprof { namespace 118 tensorflow::tfprof::Options* opts) { in ParseCmdLine() 130 if (pieces[i] == string(tensorflow::tfprof::kOptions[0])) { in ParseCmdLine() 136 } else if (pieces[i] == tensorflow::tfprof::kOptions[1]) { in ParseCmdLine() 142 } else if (pieces[i] == tensorflow::tfprof::kOptions[2]) { in ParseCmdLine() 148 } else if (pieces[i] == tensorflow::tfprof::kOptions[3]) { in ParseCmdLine() 154 } else if (pieces[i] == tensorflow::tfprof::kOptions[4]) { in ParseCmdLine() 160 } else if (pieces[i] == tensorflow::tfprof::kOptions[5]) { in ParseCmdLine() 166 } else if (pieces[i] == tensorflow::tfprof::kOptions[6]) { in ParseCmdLine() 172 } else if (pieces[i] == tensorflow::tfprof::kOptions[7]) { in ParseCmdLine() [all …]
|
D | tfprof_utils.h | 27 namespace tfprof { 37 tensorflow::tfprof::Options* opts);
|
D | tfprof_constants.h | 20 namespace tfprof {
|
D | print_model_analysis.h | 22 namespace tfprof {
|
/external/tensorflow/tensorflow/core/profiler/g3doc/ |
D | command_line.md | 4 * [Start `tfprof`](#start-tfprof) 17 tfprof command line tool uses the following input: 45 tensorflow.tfprof.OpLogProto (optional). A proto used to provide extra operation 60 ### Start `tfprof` 62 #### Build `tfprof` argument 72 #### Start `tfprof` Interactive Mode argument 74 # The following commands will start tfprof interactive mode. 121 #### Start `tfprof` Non-interactive Mode. argument 124 # Runs tfprof in one-shot. 135 tfprof> [all …]
|
D | profile_model_architecture.md | 12 For example `_trainable_variables` is created automatically by tfprof Python 18 tfprof> scope -account_type_regexes VariableV2 -max_depth 4 -select params 48 * It must have `RegisterStatistics('flops')` defined in TensorFlow. tfprof 54 shape is only known during runtime. tfprof can fill in the missing shape 59 * If no RunMetadata is provided, tfprof counts float_ops of each graph node 60 once, even if it is defined in a tf.while_loop. This is because tfprof 62 RunMetadata is provided, tfprof calculates float_ops as float_ops * 68 tfprof> scope -min_float_ops 1 -select float_ops -account_displayed_op_only 82 tfprof> op -min_float_ops 1 -select float_ops -account_displayed_op_only -order_by float_ops
|
D | profile_time.md | 3 * [Times in TensorFlow and tfprof](#times-in-tensorflow-and-tfprof) 10 ### Times in TensorFlow and tfprof 23 tfprof reports 3 execution times: 48 tfprof> code -show_name_regexes seq2seq_attention.* -max_depth 10 -select micros -order_by micros 75 tfprof> code -start_name_regexes .*_add_seq2seq.* -show_name_regexes seq2seq_attention.* -max_depth… 84 tfprof> code -max_depth 5 -select micros -order_by micros -start_name_regexes .*_add_seq2seq.* -mi… 118 tfprof> op -select micros,occurrence -order_by micros 134 tfprof> op -select micros,device -order_by micros 153 tfprof options allow users to generate timeline in some advanced ways. 172 tfprof> scope -max_depth 30 -select micros -min_micros 100000 -order_by micros
|
D | profile_memory.md | 8 tfprof> graph -max_depth 10000000 -step 0 -account_type_regexes .* -output timeline:outfile=<filena… 24 tfprof> op -select bytes -order_by bytes 39 tfprof> scope -order_by bytes -select bytes -min_bytes 100000000 59 tfprof> code -max_depth 10 -select bytes -order_by bytes -start_name_regexes .*seq2seq.* -min_byte…
|
D | advise.md | 3 tfprof analyzes profiles and generates advice for common issues. 28 tfprof --graph_path=graph.pbtxt \ 32 tfprof> advise 78 There is no magic behind advise mode. tfprof builds the profiles first, then
|
D | python_api.md | 30 # param_stats can be tensorflow.tfprof.GraphNodeProto or 31 # tensorflow.tfprof.MultiGraphNodeProto, depending on the view. 109 tfprof allows you to profile statistics across multiple steps.
|
D | options.md | 5 For all tfprof views, the profiles are processed with the following procedures 20 (e.g. MatMul, Conv2D). `tfprof` also considers device as operation type. 104 the type regexes specified. tfprof allow user to define extra operation types 105 for graph nodes through tensorflow.tfprof.OpLogProto proto. regexes are
|
/external/tensorflow/tensorflow/tools/api/golden/v1/ |
D | tensorflow.profiler.-op-log-proto.pbtxt | 10 type_name: ".tensorflow.tfprof.OpLogEntry" 17 type_name: ".tensorflow.tfprof.OpLogProto.IdToStringEntry"
|
D | tensorflow.profiler.-advice-proto.pbtxt | 10 type_name: ".tensorflow.tfprof.AdviceProto.CheckersEntry" 25 type_name: ".tensorflow.tfprof.AdviceProto.Checker"
|
D | tensorflow.profiler.-graph-node-proto.pbtxt | 16 type_name: ".tensorflow.tfprof.TFProfTensorProto" 162 type_name: ".tensorflow.tfprof.GraphNodeProto.InputShapesEntry" 169 type_name: ".tensorflow.tfprof.GraphNodeProto"
|
D | tensorflow.profiler.-multi-graph-node-proto.pbtxt | 124 type_name: ".tensorflow.tfprof.GraphNodeProto" 131 type_name: ".tensorflow.tfprof.MultiGraphNodeProto"
|
D | tensorflow.profiler.-advice-proto.-checkers-entry.pbtxt | 16 type_name: ".tensorflow.tfprof.AdviceProto.Checker"
|
/external/tensorflow/tensorflow/compiler/xla/python/ |
D | pprof_profile_builder.h | 33 tensorflow::tfprof::pprof::Profile& profile() { return profile_; } in profile() 45 tensorflow::tfprof::pprof::Profile profile_;
|
D | pprof_profile_builder.cc | 68 tensorflow::tfprof::pprof::Profile profile; in JsonToPprofProfile() 81 tensorflow::tfprof::pprof::Profile profile; in PprofProfileToJson()
|
/external/tensorflow/tensorflow/core/profiler/ |
D | tfprof_options.proto | 3 package tensorflow.tfprof; 6 // Only used to pass tfprof options from Python to C++.
|
D | tfprof_log.proto | 3 package tensorflow.tfprof; 31 // float_ops is filled by tfprof Python API when called. It requires the 38 // Used to support tfprof "code" view.
|
/external/tensorflow/tensorflow/tools/def_file_filter/ |
D | symbols_pybind.txt | 39 [//tensorflow/core/profiler/internal:print_model_analysis] # tfprof 40 tensorflow::tfprof::NewProfiler 41 tensorflow::tfprof::DeleteProfiler 42 tensorflow::tfprof::AddStep 43 tensorflow::tfprof::WriteProfile 44 tensorflow::tfprof::ProfilerFromFile 45 tensorflow::tfprof::Profile 46 tensorflow::tfprof::PrintModelAnalysis 47 tensorflow::tfprof::SerializeToString
|
/external/tensorflow/tensorflow/core/profiler/internal/advisor/ |
D | internal_checker_runner_dummy.cc | 18 namespace tfprof { namespace
|
D | internal_checker_runner.h | 24 namespace tfprof {
|
D | checker.h | 23 namespace tfprof {
|