Home
last modified time | relevance | path

Searched refs:use_pfor (Results 1 – 5 of 5) sorted by relevance

/external/tensorflow/tensorflow/python/ops/parallel_for/
Dgradients_test.py102 pfor_jacobian = gradients.batch_jacobian(output, inp, use_pfor=True)
103 while_jacobian = gradients.batch_jacobian(output, inp, use_pfor=False)
110 pfor_jacobian = gradients.batch_jacobian(output, inp, use_pfor=True)
111 while_jacobian = gradients.batch_jacobian(output, inp, use_pfor=False)
118 pfor_jacobian = gradients.batch_jacobian(final_state.c, inp, use_pfor=True)
131 pfor_jacobian = gradients.batch_jacobian(output, inp, use_pfor=True)
133 pfor_hessian = gradients.batch_jacobian(pfor_jacobian, inp, use_pfor=True)
137 while_hessian = gradients.batch_jacobian(while_jacobian, inp, use_pfor=False)
144 pfor_jacobians = gradients.jacobian(output, weights, use_pfor=True)
146 gradients.jacobian(x, weights, use_pfor=True) for x in pfor_jacobians
[all …]
Dgradients.py24 def jacobian(output, inputs, use_pfor=True, parallel_iterations=None): argument
58 if use_pfor:
79 def batch_jacobian(output, inp, use_pfor=True, parallel_iterations=None): argument
129 if use_pfor:
Dcontrol_flow_ops_test.py2015 def _f(x, y, use_pfor): argument
2026 if use_pfor:
/external/tensorflow/tensorflow/python/eager/
Dforwardprop_test.py140 _single_jvp, [params[argnums]], use_pfor=False, dtype=f_out_dtypes)
155 def _vectorize_parameters(f, params, use_pfor, dtype): argument
169 if use_pfor:
175 def _forward_over_back_hessian(f, params, use_pfor, dtype=None): argument
195 use_pfor=use_pfor,
1058 use_pfor=False,
1063 use_pfor=False,
1068 use_pfor=True,
Dbackprop_test.py1911 def compute_jacobian(use_pfor): argument
1917 return tape.jacobian(result, x, experimental_use_pfor=use_pfor)
1919 self.assertAllClose(compute_jacobian(use_pfor=True),
1920 compute_jacobian(use_pfor=False))
2027 def test_degenerate_shape(self, use_function, use_pfor): argument
2033 return tape.batch_jacobian(y, x, experimental_use_pfor=use_pfor)
2040 def test_zeros_type_correct(self, use_pfor): argument
2051 jac = tape.batch_jacobian(y, x, experimental_use_pfor=use_pfor)
2060 experimental_use_pfor=use_pfor)