/external/tensorflow/tensorflow/python/keras/ |
D | losses.py | 120 def __call__(self, y_true, y_pred, sample_weight=None): argument 149 y_true, y_pred, sample_weight) 155 losses = call_fn(y_true, y_pred) 177 def call(self, y_true, y_pred): argument 245 def call(self, y_true, y_pred): argument 255 if tensor_util.is_tf_type(y_pred) and tensor_util.is_tf_type(y_true): 256 y_pred, y_true = losses_utils.squeeze_or_expand_dimensions(y_pred, y_true) 259 return ag_fn(y_true, y_pred, **self._fn_kwargs) 1192 def mean_squared_error(y_true, y_pred): argument 1216 y_pred = ops.convert_to_tensor_v2_with_dispatch(y_pred) [all …]
|
D | metrics.py | 575 def update_state(self, y_true, y_pred, sample_weight=None): argument 589 y_pred = math_ops.cast(y_pred, self._dtype) 590 [y_pred, y_true], sample_weight = \ 592 [y_pred, y_true], sample_weight) 593 y_pred, y_true = losses_utils.squeeze_or_expand_dimensions( 594 y_pred, y_true) 596 y_pred, self.normalizer = losses_utils.remove_squeezable_dimensions( 597 y_pred, self.normalizer) 598 y_pred.shape.assert_is_compatible_with(y_true.shape) 600 math_ops.abs(y_true - y_pred), self.normalizer) [all …]
|
/external/tensorflow/tensorflow/tools/api/golden/v2/ |
D | tensorflow.losses.pbtxt | 77 argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" 81 argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" 85 argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" 89 argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" 93 argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" 97 …argspec: "args=[\'y_true\', \'y_pred\', \'from_logits\', \'label_smoothing\', \'axis\'], varargs=N… 101 …argspec: "args=[\'y_true\', \'y_pred\', \'apply_class_balancing\', \'alpha\', \'gamma\', \'from_lo… 105 …argspec: "args=[\'y_true\', \'y_pred\', \'from_logits\', \'label_smoothing\', \'axis\'], varargs=N… 109 argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" 113 …argspec: "args=[\'y_true\', \'y_pred\', \'axis\'], varargs=None, keywords=None, defaults=[\'-1\'],… [all …]
|
D | tensorflow.metrics.pbtxt | 177 argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" 181 argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" 185 argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" 189 argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" 193 argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" 197 …argspec: "args=[\'y_true\', \'y_pred\', \'threshold\'], varargs=None, keywords=None, defaults=[\'0… 201 …argspec: "args=[\'y_true\', \'y_pred\', \'from_logits\', \'label_smoothing\', \'axis\'], varargs=N… 205 …argspec: "args=[\'y_true\', \'y_pred\', \'apply_class_balancing\', \'alpha\', \'gamma\', \'from_lo… 209 argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" 213 …argspec: "args=[\'y_true\', \'y_pred\', \'from_logits\', \'label_smoothing\', \'axis\'], varargs=N… [all …]
|
D | tensorflow.losses.-loss.pbtxt | 11 argspec: "args=[\'self\', \'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None"
|
D | tensorflow.losses.-cosine-similarity.pbtxt | 13 argspec: "args=[\'self\', \'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None"
|
D | tensorflow.losses.-squared-hinge.pbtxt | 13 argspec: "args=[\'self\', \'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None"
|
D | tensorflow.losses.-mean-absolute-percentage-error.pbtxt | 13 argspec: "args=[\'self\', \'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None"
|
D | tensorflow.losses.-huber.pbtxt | 13 argspec: "args=[\'self\', \'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None"
|
D | tensorflow.losses.-hinge.pbtxt | 13 argspec: "args=[\'self\', \'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None"
|
D | tensorflow.losses.-mean-absolute-error.pbtxt | 13 argspec: "args=[\'self\', \'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None"
|
D | tensorflow.losses.-log-cosh.pbtxt | 13 argspec: "args=[\'self\', \'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None"
|
D | tensorflow.losses.-mean-squared-logarithmic-error.pbtxt | 13 argspec: "args=[\'self\', \'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None"
|
D | tensorflow.losses.-poisson.pbtxt | 13 argspec: "args=[\'self\', \'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None"
|
/external/tensorflow/tensorflow/python/keras/engine/ |
D | compile_utils.py | 36 def build(self, y_pred): argument 40 self._output_names = create_pseudo_output_names(y_pred) 130 def build(self, y_pred): argument 132 super(LossesContainer, self).build(y_pred) 134 self._losses = self._maybe_broadcast_to_outputs(y_pred, self._losses) 135 self._losses = self._conform_to_outputs(y_pred, self._losses) 140 y_pred, self._loss_weights) 141 self._loss_weights = self._conform_to_outputs(y_pred, self._loss_weights) 166 y_pred, argument 183 y_true = self._conform_to_outputs(y_pred, y_true) [all …]
|
/external/tensorflow/tensorflow/python/keras/utils/ |
D | metrics_utils.py | 283 y_pred, argument 383 math_ops.cast(sample_weights, dtype=y_pred.dtype), y_pred) 391 y_pred) 398 y_pred = clip_ops.clip_by_value(y_pred, 404 y_pred = array_ops.reshape(y_pred, [-1]) 413 bucket_indices = math_ops.ceil(y_pred * (num_thresholds - 1)) - 1 507 y_pred, argument 586 y_pred = math_ops.cast(y_pred, dtype=variable_dtype) 607 [y_pred, 608 y_true], _ = ragged_assert_compatible_and_get_flat_values([y_pred, y_true], [all …]
|
D | losses_utils.py | 154 def squeeze_or_expand_dimensions(y_pred, y_true=None, sample_weight=None): argument 178 y_pred_shape = y_pred.shape 191 y_true, y_pred = remove_squeezable_dimensions( 192 y_true, y_pred) 195 rank_diff = array_ops.rank(y_pred) - array_ops.rank(y_true) 197 y_true, y_pred) 198 is_last_dim_1 = math_ops.equal(1, array_ops.shape(y_pred)[-1]) 200 is_last_dim_1, squeeze_dims, lambda: (y_true, y_pred)) 201 y_true, y_pred = control_flow_ops.cond( 205 return y_pred, y_true [all …]
|
/external/tensorflow/tensorflow/python/ops/losses/ |
D | util.py | 30 def squeeze_or_expand_dimensions(y_pred, y_true=None, sample_weight=None): argument 54 y_pred_shape = y_pred.shape 67 y_true, y_pred = confusion_matrix.remove_squeezable_dimensions( 68 y_true, y_pred) 71 rank_diff = array_ops.rank(y_pred) - array_ops.rank(y_true) 73 y_true, y_pred) 74 is_last_dim_1 = math_ops.equal(1, array_ops.shape(y_pred)[-1]) 76 is_last_dim_1, squeeze_dims, lambda: (y_true, y_pred)) 77 y_true, y_pred = control_flow_ops.cond( 81 return y_pred, y_true [all …]
|
/external/rnnoise/training/ |
D | rnn_train.py | 31 def my_crossentropy(y_true, y_pred): argument 32 return K.mean(2*K.abs(y_true-0.5) * K.binary_crossentropy(y_pred, y_true), axis=-1) 37 def msse(y_true, y_pred): argument 38 return K.mean(mymask(y_true) * K.square(K.sqrt(y_pred) - K.sqrt(y_true)), axis=-1) 40 def mycost(y_true, y_pred): argument 41 …square(K.square(K.sqrt(y_pred) - K.sqrt(y_true))) + K.square(K.sqrt(y_pred) - K.sqrt(y_true)) + 0.… 43 def my_accuracy(y_true, y_pred): argument 44 return K.mean(2*K.abs(y_true-0.5) * K.equal(y_true, K.round(y_pred)), axis=-1)
|
D | dump_rnn.py | 74 def mean_squared_sqrt_error(y_true, y_pred): argument 75 return K.mean(K.square(K.sqrt(y_pred) - K.sqrt(y_true)), axis=-1)
|
/external/tensorflow/tensorflow/python/keras/benchmarks/ |
D | metrics_memory_benchmark_test.py | 39 self.y_pred = np.random.rand(1024, 1024) 57 auc(self.y_true, self.y_pred) 69 auc(self.y_true, self.y_pred)
|
/external/libopus/training/ |
D | rnn_train.py | 28 def binary_crossentrop2(y_true, y_pred): argument 29 return K.mean(2*K.abs(y_true-0.5) * K.binary_crossentropy(y_true, y_pred), axis=-1) 31 def binary_accuracy2(y_true, y_pred): argument 32 …return K.mean(K.cast(K.equal(y_true, K.round(y_pred)), 'float32') + K.cast(K.equal(y_true, 0.5), '…
|
D | rnn_dump.py | 35 def binary_crossentrop2(y_true, y_pred): argument 36 return K.mean(2*K.abs(y_true-0.5) * K.binary_crossentropy(y_pred, y_true), axis=-1)
|
/external/libopus/scripts/ |
D | dump_rnn.py | 32 def binary_crossentrop2(y_true, y_pred): argument 33 return K.mean(2*K.abs(y_true-0.5) * K.binary_crossentropy(y_pred, y_true), axis=-1)
|
D | rnn_train.py | 19 def binary_crossentrop2(y_true, y_pred): argument 20 return K.mean(2*K.abs(y_true-0.5) * K.binary_crossentropy(y_pred, y_true), axis=-1)
|