• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  Copyright (c) 2019, Alliance for Open Media. All Rights Reserved.
3  *
4  *  Use of this source code is governed by a BSD-style license
5  *  that can be found in the LICENSE file in the root of the source
6  *  tree. An additional intellectual property rights grant can be found
7  *  in the file PATENTS.  All contributing project authors may
8  *  be found in the AUTHORS file in the root of the source tree.
9  */
10 
11 #include <algorithm>
12 #include <ostream>
13 
14 #include "third_party/googletest/src/googletest/include/gtest/gtest.h"
15 
16 #include "config/aom_dsp_rtcd.h"
17 
18 #include "test/acm_random.h"
19 #include "test/register_state_check.h"
20 #include "test/util.h"
21 
22 namespace {
23 
24 using libaom_test::ACMRandom;
25 
26 using HadamardFunc = void (*)(const int16_t *a, ptrdiff_t a_stride,
27                               tran_low_t *b);
28 // Low precision version of Hadamard Transform
29 using HadamardLPFunc = void (*)(const int16_t *a, ptrdiff_t a_stride,
30                                 int16_t *b);
31 // Low precision version of Hadamard Transform 8x8 - Dual
32 using HadamardLP8x8DualFunc = void (*)(const int16_t *a, ptrdiff_t a_stride,
33                                        int16_t *b);
34 
35 template <typename OutputType>
Hadamard4x4(const OutputType * a,OutputType * out)36 void Hadamard4x4(const OutputType *a, OutputType *out) {
37   OutputType b[8];
38   for (int i = 0; i < 4; i += 2) {
39     b[i + 0] = (a[i * 4] + a[(i + 1) * 4]) >> 1;
40     b[i + 1] = (a[i * 4] - a[(i + 1) * 4]) >> 1;
41   }
42 
43   out[0] = b[0] + b[2];
44   out[1] = b[1] + b[3];
45   out[2] = b[0] - b[2];
46   out[3] = b[1] - b[3];
47 }
48 
49 template <typename OutputType>
ReferenceHadamard4x4(const int16_t * a,int a_stride,OutputType * b)50 void ReferenceHadamard4x4(const int16_t *a, int a_stride, OutputType *b) {
51   OutputType input[16];
52   OutputType buf[16];
53   for (int i = 0; i < 4; ++i) {
54     for (int j = 0; j < 4; ++j) {
55       input[i * 4 + j] = static_cast<OutputType>(a[i * a_stride + j]);
56     }
57   }
58   for (int i = 0; i < 4; ++i) Hadamard4x4(input + i, buf + i * 4);
59   for (int i = 0; i < 4; ++i) Hadamard4x4(buf + i, b + i * 4);
60 
61   // Extra transpose to match C and SSE2 behavior(i.e., aom_hadamard_4x4).
62   for (int i = 0; i < 4; i++) {
63     for (int j = i + 1; j < 4; j++) {
64       OutputType temp = b[j * 4 + i];
65       b[j * 4 + i] = b[i * 4 + j];
66       b[i * 4 + j] = temp;
67     }
68   }
69 }
70 
71 template <typename OutputType>
HadamardLoop(const OutputType * a,OutputType * out)72 void HadamardLoop(const OutputType *a, OutputType *out) {
73   OutputType b[8];
74   for (int i = 0; i < 8; i += 2) {
75     b[i + 0] = a[i * 8] + a[(i + 1) * 8];
76     b[i + 1] = a[i * 8] - a[(i + 1) * 8];
77   }
78   OutputType c[8];
79   for (int i = 0; i < 8; i += 4) {
80     c[i + 0] = b[i + 0] + b[i + 2];
81     c[i + 1] = b[i + 1] + b[i + 3];
82     c[i + 2] = b[i + 0] - b[i + 2];
83     c[i + 3] = b[i + 1] - b[i + 3];
84   }
85   out[0] = c[0] + c[4];
86   out[7] = c[1] + c[5];
87   out[3] = c[2] + c[6];
88   out[4] = c[3] + c[7];
89   out[2] = c[0] - c[4];
90   out[6] = c[1] - c[5];
91   out[1] = c[2] - c[6];
92   out[5] = c[3] - c[7];
93 }
94 
95 template <typename OutputType>
ReferenceHadamard8x8(const int16_t * a,int a_stride,OutputType * b)96 void ReferenceHadamard8x8(const int16_t *a, int a_stride, OutputType *b) {
97   OutputType input[64];
98   OutputType buf[64];
99   for (int i = 0; i < 8; ++i) {
100     for (int j = 0; j < 8; ++j) {
101       input[i * 8 + j] = static_cast<OutputType>(a[i * a_stride + j]);
102     }
103   }
104   for (int i = 0; i < 8; ++i) HadamardLoop(input + i, buf + i * 8);
105   for (int i = 0; i < 8; ++i) HadamardLoop(buf + i, b + i * 8);
106 
107   // Extra transpose to match SSE2 behavior (i.e., aom_hadamard_8x8 and
108   // aom_hadamard_lp_8x8).
109   for (int i = 0; i < 8; i++) {
110     for (int j = i + 1; j < 8; j++) {
111       OutputType temp = b[j * 8 + i];
112       b[j * 8 + i] = b[i * 8 + j];
113       b[i * 8 + j] = temp;
114     }
115   }
116 }
117 
118 template <typename OutputType>
ReferenceHadamard8x8Dual(const int16_t * a,int a_stride,OutputType * b)119 void ReferenceHadamard8x8Dual(const int16_t *a, int a_stride, OutputType *b) {
120   /* The source is a 8x16 block. The destination is rearranged to 8x16.
121    * Input is 9 bit. */
122   ReferenceHadamard8x8(a, a_stride, b);
123   ReferenceHadamard8x8(a + 8, a_stride, b + 64);
124 }
125 
126 template <typename OutputType>
ReferenceHadamard16x16(const int16_t * a,int a_stride,OutputType * b,bool shift)127 void ReferenceHadamard16x16(const int16_t *a, int a_stride, OutputType *b,
128                             bool shift) {
129   /* The source is a 16x16 block. The destination is rearranged to 8x32.
130    * Input is 9 bit. */
131   ReferenceHadamard8x8(a + 0 + 0 * a_stride, a_stride, b + 0);
132   ReferenceHadamard8x8(a + 8 + 0 * a_stride, a_stride, b + 64);
133   ReferenceHadamard8x8(a + 0 + 8 * a_stride, a_stride, b + 128);
134   ReferenceHadamard8x8(a + 8 + 8 * a_stride, a_stride, b + 192);
135 
136   /* Overlay the 8x8 blocks and combine. */
137   for (int i = 0; i < 64; ++i) {
138     /* 8x8 steps the range up to 15 bits. */
139     const OutputType a0 = b[0];
140     const OutputType a1 = b[64];
141     const OutputType a2 = b[128];
142     const OutputType a3 = b[192];
143 
144     /* Prevent the result from escaping int16_t. */
145     const OutputType b0 = (a0 + a1) >> 1;
146     const OutputType b1 = (a0 - a1) >> 1;
147     const OutputType b2 = (a2 + a3) >> 1;
148     const OutputType b3 = (a2 - a3) >> 1;
149 
150     /* Store a 16 bit value. */
151     b[0] = b0 + b2;
152     b[64] = b1 + b3;
153     b[128] = b0 - b2;
154     b[192] = b1 - b3;
155 
156     ++b;
157   }
158 
159   if (shift) {
160     b -= 64;
161     // Extra shift to match aom_hadamard_16x16_c and aom_hadamard_16x16_avx2.
162     for (int i = 0; i < 16; i++) {
163       for (int j = 0; j < 4; j++) {
164         OutputType temp = b[i * 16 + 4 + j];
165         b[i * 16 + 4 + j] = b[i * 16 + 8 + j];
166         b[i * 16 + 8 + j] = temp;
167       }
168     }
169   }
170 }
171 
172 template <typename OutputType>
ReferenceHadamard32x32(const int16_t * a,int a_stride,OutputType * b,bool shift)173 void ReferenceHadamard32x32(const int16_t *a, int a_stride, OutputType *b,
174                             bool shift) {
175   ReferenceHadamard16x16(a + 0 + 0 * a_stride, a_stride, b + 0, shift);
176   ReferenceHadamard16x16(a + 16 + 0 * a_stride, a_stride, b + 256, shift);
177   ReferenceHadamard16x16(a + 0 + 16 * a_stride, a_stride, b + 512, shift);
178   ReferenceHadamard16x16(a + 16 + 16 * a_stride, a_stride, b + 768, shift);
179 
180   for (int i = 0; i < 256; ++i) {
181     const OutputType a0 = b[0];
182     const OutputType a1 = b[256];
183     const OutputType a2 = b[512];
184     const OutputType a3 = b[768];
185 
186     const OutputType b0 = (a0 + a1) >> 2;
187     const OutputType b1 = (a0 - a1) >> 2;
188     const OutputType b2 = (a2 + a3) >> 2;
189     const OutputType b3 = (a2 - a3) >> 2;
190 
191     b[0] = b0 + b2;
192     b[256] = b1 + b3;
193     b[512] = b0 - b2;
194     b[768] = b1 - b3;
195 
196     ++b;
197   }
198 }
199 
200 template <typename OutputType>
ReferenceHadamard(const int16_t * a,int a_stride,OutputType * b,int bw,int bh,bool shift)201 void ReferenceHadamard(const int16_t *a, int a_stride, OutputType *b, int bw,
202                        int bh, bool shift) {
203   if (bw == 32 && bh == 32) {
204     ReferenceHadamard32x32(a, a_stride, b, shift);
205   } else if (bw == 16 && bh == 16) {
206     ReferenceHadamard16x16(a, a_stride, b, shift);
207   } else if (bw == 8 && bh == 8) {
208     ReferenceHadamard8x8(a, a_stride, b);
209   } else if (bw == 4 && bh == 4) {
210     ReferenceHadamard4x4(a, a_stride, b);
211   } else if (bw == 8 && bh == 16) {
212     ReferenceHadamard8x8Dual(a, a_stride, b);
213   } else {
214     GTEST_FAIL() << "Invalid Hadamard transform size " << bw << bh << std::endl;
215   }
216 }
217 
218 template <typename HadamardFuncType>
219 struct FuncWithSize {
FuncWithSize__anon7fba2d6d0111::FuncWithSize220   FuncWithSize(HadamardFuncType f, int bw, int bh)
221       : func(f), block_width(bw), block_height(bh) {}
222   HadamardFuncType func;
223   int block_width;
224   int block_height;
225 };
226 
227 using HadamardFuncWithSize = FuncWithSize<HadamardFunc>;
228 using HadamardLPFuncWithSize = FuncWithSize<HadamardLPFunc>;
229 using HadamardLP8x8DualFuncWithSize = FuncWithSize<HadamardLP8x8DualFunc>;
230 
231 template <typename OutputType, typename HadamardFuncType>
232 class HadamardTestBase
233     : public ::testing::TestWithParam<FuncWithSize<HadamardFuncType>> {
234  public:
HadamardTestBase(const FuncWithSize<HadamardFuncType> & func_param,bool do_shift)235   HadamardTestBase(const FuncWithSize<HadamardFuncType> &func_param,
236                    bool do_shift) {
237     h_func_ = func_param.func;
238     bw_ = func_param.block_width;
239     bh_ = func_param.block_height;
240     shift_ = do_shift;
241   }
242 
SetUp()243   virtual void SetUp() { rnd_.Reset(ACMRandom::DeterministicSeed()); }
244 
245   virtual int16_t Rand() = 0;
246 
CompareReferenceRandom()247   void CompareReferenceRandom() {
248     const int kMaxBlockSize = 32 * 32;
249     const int block_size_ = bw_ * bh_;
250 
251     DECLARE_ALIGNED(16, int16_t, a[kMaxBlockSize]);
252     DECLARE_ALIGNED(16, OutputType, b[kMaxBlockSize]);
253     memset(a, 0, sizeof(a));
254     memset(b, 0, sizeof(b));
255 
256     OutputType b_ref[kMaxBlockSize];
257     memset(b_ref, 0, sizeof(b_ref));
258 
259     for (int i = 0; i < block_size_; ++i) a[i] = Rand();
260     ReferenceHadamard(a, bw_, b_ref, bw_, bh_, shift_);
261     API_REGISTER_STATE_CHECK(h_func_(a, bw_, b));
262     EXPECT_EQ(memcmp(b, b_ref, sizeof(b)), 0);
263   }
264 
VaryStride()265   void VaryStride() {
266     const int kMaxBlockSize = 32 * 32;
267     const int block_size_ = bw_ * bh_;
268 
269     DECLARE_ALIGNED(16, int16_t, a[kMaxBlockSize * 8]);
270     DECLARE_ALIGNED(16, OutputType, b[kMaxBlockSize]);
271     memset(a, 0, sizeof(a));
272     for (int i = 0; i < block_size_ * 8; ++i) a[i] = Rand();
273 
274     OutputType b_ref[kMaxBlockSize];
275     for (int i = 8; i < 64; i += 8) {
276       memset(b, 0, sizeof(b));
277       memset(b_ref, 0, sizeof(b_ref));
278 
279       ReferenceHadamard(a, i, b_ref, bw_, bh_, shift_);
280       API_REGISTER_STATE_CHECK(h_func_(a, i, b));
281       EXPECT_EQ(0, memcmp(b, b_ref, sizeof(b)));
282     }
283   }
284 
SpeedTest(int times)285   void SpeedTest(int times) {
286     const int kMaxBlockSize = 32 * 32;
287     DECLARE_ALIGNED(16, int16_t, input[kMaxBlockSize]);
288     DECLARE_ALIGNED(16, OutputType, output[kMaxBlockSize]);
289     memset(input, 1, sizeof(input));
290     memset(output, 0, sizeof(output));
291 
292     aom_usec_timer timer;
293     aom_usec_timer_start(&timer);
294     for (int i = 0; i < times; ++i) {
295       h_func_(input, bw_, output);
296     }
297     aom_usec_timer_mark(&timer);
298 
299     const int elapsed_time = static_cast<int>(aom_usec_timer_elapsed(&timer));
300     printf("Hadamard%dx%d[%12d runs]: %d us\n", bw_, bh_, times, elapsed_time);
301   }
302 
303   ACMRandom rnd_;
304 
305  private:
306   HadamardFuncType h_func_;
307   int bw_;
308   int bh_;
309   bool shift_;
310 };
311 
312 class HadamardLowbdTest : public HadamardTestBase<tran_low_t, HadamardFunc> {
313  public:
HadamardLowbdTest()314   HadamardLowbdTest() : HadamardTestBase(GetParam(), /*do_shift=*/true) {}
Rand()315   virtual int16_t Rand() { return rnd_.Rand9Signed(); }
316 };
317 
TEST_P(HadamardLowbdTest,CompareReferenceRandom)318 TEST_P(HadamardLowbdTest, CompareReferenceRandom) { CompareReferenceRandom(); }
319 
TEST_P(HadamardLowbdTest,VaryStride)320 TEST_P(HadamardLowbdTest, VaryStride) { VaryStride(); }
321 
TEST_P(HadamardLowbdTest,DISABLED_SpeedTest)322 TEST_P(HadamardLowbdTest, DISABLED_SpeedTest) { SpeedTest(1000000); }
323 
324 INSTANTIATE_TEST_SUITE_P(
325     C, HadamardLowbdTest,
326     ::testing::Values(HadamardFuncWithSize(&aom_hadamard_4x4_c, 4, 4),
327                       HadamardFuncWithSize(&aom_hadamard_8x8_c, 8, 8),
328                       HadamardFuncWithSize(&aom_hadamard_16x16_c, 16, 16),
329                       HadamardFuncWithSize(&aom_hadamard_32x32_c, 32, 32)));
330 
331 #if HAVE_SSE2
332 INSTANTIATE_TEST_SUITE_P(
333     SSE2, HadamardLowbdTest,
334     ::testing::Values(HadamardFuncWithSize(&aom_hadamard_4x4_sse2, 4, 4),
335                       HadamardFuncWithSize(&aom_hadamard_8x8_sse2, 8, 8),
336                       HadamardFuncWithSize(&aom_hadamard_16x16_sse2, 16, 16),
337                       HadamardFuncWithSize(&aom_hadamard_32x32_sse2, 32, 32)));
338 #endif  // HAVE_SSE2
339 
340 #if HAVE_AVX2
341 INSTANTIATE_TEST_SUITE_P(
342     AVX2, HadamardLowbdTest,
343     ::testing::Values(HadamardFuncWithSize(&aom_hadamard_16x16_avx2, 16, 16),
344                       HadamardFuncWithSize(&aom_hadamard_32x32_avx2, 32, 32)));
345 #endif  // HAVE_AVX2
346 
347 // TODO(aomedia:3314): Disable NEON unit test for now, since hadamard 16x16 NEON
348 // need modifications to match C/AVX2 behavior.
349 #if HAVE_NEON
350 INSTANTIATE_TEST_SUITE_P(
351     NEON, HadamardLowbdTest,
352     ::testing::Values(HadamardFuncWithSize(&aom_hadamard_8x8_neon, 8, 8),
353                       HadamardFuncWithSize(&aom_hadamard_16x16_neon, 16, 16)));
354 #endif  // HAVE_NEON
355 
356 // Tests for low precision
357 class HadamardLowbdLPTest : public HadamardTestBase<int16_t, HadamardLPFunc> {
358  public:
HadamardLowbdLPTest()359   HadamardLowbdLPTest() : HadamardTestBase(GetParam(), /*do_shift=*/false) {}
Rand()360   virtual int16_t Rand() { return rnd_.Rand9Signed(); }
361 };
362 
TEST_P(HadamardLowbdLPTest,CompareReferenceRandom)363 TEST_P(HadamardLowbdLPTest, CompareReferenceRandom) {
364   CompareReferenceRandom();
365 }
366 
TEST_P(HadamardLowbdLPTest,VaryStride)367 TEST_P(HadamardLowbdLPTest, VaryStride) { VaryStride(); }
368 
TEST_P(HadamardLowbdLPTest,DISABLED_SpeedTest)369 TEST_P(HadamardLowbdLPTest, DISABLED_SpeedTest) { SpeedTest(1000000); }
370 
371 INSTANTIATE_TEST_SUITE_P(
372     C, HadamardLowbdLPTest,
373     ::testing::Values(HadamardLPFuncWithSize(&aom_hadamard_lp_8x8_c, 8, 8),
374                       HadamardLPFuncWithSize(&aom_hadamard_lp_16x16_c, 16,
375                                              16)));
376 
377 #if HAVE_SSE2
378 INSTANTIATE_TEST_SUITE_P(
379     SSE2, HadamardLowbdLPTest,
380     ::testing::Values(HadamardLPFuncWithSize(&aom_hadamard_lp_8x8_sse2, 8, 8),
381                       HadamardLPFuncWithSize(&aom_hadamard_lp_16x16_sse2, 16,
382                                              16)));
383 #endif  // HAVE_SSE2
384 
385 #if HAVE_AVX2
386 INSTANTIATE_TEST_SUITE_P(AVX2, HadamardLowbdLPTest,
387                          ::testing::Values(HadamardLPFuncWithSize(
388                              &aom_hadamard_lp_16x16_avx2, 16, 16)));
389 #endif  // HAVE_AVX2
390 
391 #if HAVE_NEON
392 INSTANTIATE_TEST_SUITE_P(
393     NEON, HadamardLowbdLPTest,
394     ::testing::Values(HadamardLPFuncWithSize(&aom_hadamard_lp_8x8_neon, 8, 8),
395                       HadamardLPFuncWithSize(&aom_hadamard_lp_16x16_neon, 16,
396                                              16)));
397 #endif  // HAVE_NEON
398 
399 // Tests for 8x8 dual low precision
400 class HadamardLowbdLP8x8DualTest
401     : public HadamardTestBase<int16_t, HadamardLP8x8DualFunc> {
402  public:
HadamardLowbdLP8x8DualTest()403   HadamardLowbdLP8x8DualTest()
404       : HadamardTestBase(GetParam(), /*do_shift=*/false) {}
Rand()405   virtual int16_t Rand() { return rnd_.Rand9Signed(); }
406 };
407 
TEST_P(HadamardLowbdLP8x8DualTest,CompareReferenceRandom)408 TEST_P(HadamardLowbdLP8x8DualTest, CompareReferenceRandom) {
409   CompareReferenceRandom();
410 }
411 
TEST_P(HadamardLowbdLP8x8DualTest,VaryStride)412 TEST_P(HadamardLowbdLP8x8DualTest, VaryStride) { VaryStride(); }
413 
TEST_P(HadamardLowbdLP8x8DualTest,DISABLED_SpeedTest)414 TEST_P(HadamardLowbdLP8x8DualTest, DISABLED_SpeedTest) { SpeedTest(1000000); }
415 
416 INSTANTIATE_TEST_SUITE_P(C, HadamardLowbdLP8x8DualTest,
417                          ::testing::Values(HadamardLP8x8DualFuncWithSize(
418                              &aom_hadamard_lp_8x8_dual_c, 8, 16)));
419 
420 #if HAVE_SSE2
421 INSTANTIATE_TEST_SUITE_P(SSE2, HadamardLowbdLP8x8DualTest,
422                          ::testing::Values(HadamardLP8x8DualFuncWithSize(
423                              &aom_hadamard_lp_8x8_dual_sse2, 8, 16)));
424 #endif  // HAVE_SSE2
425 
426 #if HAVE_AVX2
427 INSTANTIATE_TEST_SUITE_P(AVX2, HadamardLowbdLP8x8DualTest,
428                          ::testing::Values(HadamardLP8x8DualFuncWithSize(
429                              &aom_hadamard_lp_8x8_dual_avx2, 8, 16)));
430 #endif  // HAVE_AVX2
431 
432 #if HAVE_NEON
433 INSTANTIATE_TEST_SUITE_P(NEON, HadamardLowbdLP8x8DualTest,
434                          ::testing::Values(HadamardLP8x8DualFuncWithSize(
435                              &aom_hadamard_lp_8x8_dual_neon, 8, 16)));
436 #endif  // HAVE_NEON
437 
438 }  // namespace
439