Searched refs:in_tensor_1 (Results 1 – 7 of 7) sorted by relevance
/external/tensorflow/tensorflow/lite/python/ |
D | convert_saved_model_test.py | 53 in_tensor_1 = array_ops.placeholder( 57 out_tensor = in_tensor_1 + in_tensor_2 58 inputs = {"x": in_tensor_1, "y": in_tensor_2}
|
D | lite_test.py | 674 in_tensor_1 = array_ops.placeholder( 678 out_tensor = math_ops.matmul(in_tensor_1, in_tensor_2) 683 [in_tensor_1, in_tensor_2], 817 in_tensor_1 = array_ops.placeholder( 824 out_tensor = math_ops.matmul(in_tensor_1, in_tensor_2, name='output') 828 float_converter = lite.TFLiteConverter.from_session(sess, [in_tensor_1], 835 sess, [in_tensor_1], [out_tensor]) 847 in_tensor_1 = array_ops.placeholder( 854 out_tensor = math_ops.matmul(in_tensor_1, in_tensor_2, name='output') 858 sess, [in_tensor_1], [out_tensor]) [all …]
|
D | convert_test.py | 99 in_tensor_1 = array_ops.placeholder( 104 in_tensor_1 + in_tensor_2, min=0., max=1., name="output") 146 in_tensor_1 = array_ops.placeholder( 151 in_tensor_1 + in_tensor_2, min=0., max=1., name="output")
|
D | tflite_convert_test.py | 173 in_tensor_1 = array_ops.placeholder( 178 in_tensor_1 + in_tensor_2, min=0., max=1., name='output', 197 in_tensor_1 = array_ops.placeholder( 202 in_tensor_1 + in_tensor_2, min=0., max=1., name='output')
|
D | metrics_nonportable_test.py | 250 in_tensor_1 = tf.compat.v1.placeholder( 255 out_tensor = in_tensor_1 + in_tensor_2 * variable_node 256 inputs = {'x': in_tensor_1, 'y': in_tensor_2}
|
D | lite_v2_test.py | 1361 in_tensor_1 = tf.compat.v1.placeholder( 1366 out_tensor = in_tensor_1 + in_tensor_2 * variable_node 1367 inputs = {'x': in_tensor_1, 'y': in_tensor_2} 3544 def model(in_tensor_1, in_tensor_2): argument 3545 return tf.matmul(in_tensor_1, in_tensor_2) 3574 def model(in_tensor_1, in_tensor_2): argument 3575 return tf.matmul(in_tensor_1, in_tensor_2, output_type=tf.int32)
|
/external/tensorflow/tensorflow/lite/python/metrics/ |
D | metrics_nonportable_test.py | 250 in_tensor_1 = tf.compat.v1.placeholder( 255 out_tensor = in_tensor_1 + in_tensor_2 * variable_node 256 inputs = {'x': in_tensor_1, 'y': in_tensor_2}
|